Material Characterization:

The crystallinity of the samples was studied using the **Panalytical X'pert Pro-diffractometer**, between 20 range of 5° to 70°, using Cu-K radiation with the wavelength λ =1.5406. Morphology of the samples are characterised using **Thermoscientific Apreo S** HR-SEM within the range of 500nm – 5000nm also studying the elemental composition using EDS. **Versaprobe III** X-Ray Photoelectron spectroscopy was used to study the electronic configuration and chemical composition of the Zn 2p, C 1s, O 1s, and Eu 4d plotted and deconvoluted using the origin software. **Shimadzu IR-Tracer** was used to study the functionals groups of the materials using infrared spectroscopy within the range of 400 cm⁻¹-4000cm⁻¹. Raman spectra was studied using **Horiba LabRAM HR Evolution** using a probe wavelength of 532 nm and 633 nm continuous lasers within the range of 600 cm⁻¹-1800cm⁻¹. **Shimadzu UV 3600 plus** spectrometer was used to find UV absorption spectra within the excitation range of 200 nm to 500 nm. The **FLS1000** PL spectrometer (Edinburg instruments) was used to study the photoluminescence properties with the emission range of 300 nm to 800 nm. The obtained time resolved photoluminescence spectroscopy was fitted using the **bi-exponential function**. The Non-linear Absorption coefficient and the Normalized transmittance is found using the Sheik Bahae's theoretical fit ⁴¹ to match with the reverse saturable absorption data.

	Lattice parameter		Crystallite size		Dislocation Density	
Equations	$a = d_{hkl}\sqrt{h^2 + k^2 + l^2}$		$D = \frac{n\lambda}{\beta \sin\theta}$		$\delta = \frac{1}{D}$	
Descriptions	d_{hkl}	Interplanar spacing	n	Scherrer's constant (0.9)	D	Crystallite size
			λ	Wavelength of XRD (0.15406nm)		
	(h k l)	Miller indices	β	Full width half maximum		
			θ	Diffraction angle		

Table S1 Equations for calculat	ng the parameters	of the crystal structure
---------------------------------	-------------------	--------------------------

EDS Sample Elements Weight Percentage Zinc 26.08 MOF-5 Oxygen 43.53 Carbon 30.39 CO Zn Total 100.00 27.61 Zinc 1% Oxygen 34.72 doped Carbon 36.71 MOF-5 Europium 0.87 Zn CO Eu 100.00 Total Zinc 32.76 2% Oxygen 36.63 doped Carbon 28.65 MOF-5 1.96 Europium Zn CO Eu 100.00 Total Zinc 34.84 3% Oxygen 35.99 doped Carbon 26.32 MOF-5 Europium 2.85 100.00 Zn CO Eu Total

Table S2. EDS Spectrum and Weight percentage of pure and doped MOF-5

Fig. S2 HRSEM images of pure and doped MOF-5 whose grain size is calculated using imageJ software

Fig. S2(a) EDS mapping of M_0 sample

Fig. S3(b) EDS of M_1 sample

Fig. S3(c) EDS of M_2 sample

Fig. S3(d) EDS of M_3 sample

Fig. S4 FTIR spectra of pure and doped samples

Fig. S5 RAMAN spectra of pure and doped samples (a) using 532 nm, (b) using 633nm

Fig. S6 TR-PL Spectra of the pure and doped MOF-5 samples

Fig. S7 CIE diagram of pure and doped samples