Electronic Supplementary Information Interwoven MnO/Co-Derived N-Doped Carbon Nanotube Composites as Highly Efficient and Durable Bifunctional Oxygen Catalysts for Zinc-Air Batteries

Yun Yang^{‡ 1}, Qing Long^{‡ 2}, Wei Wang *², Junlin Huang *², Yufei Zhao ^{3, 4}, Hao Liu ⁴, Hong Gao *³

¹ College of Chemistry and Environmental Engineering, Shiyan Key Laboratory of Biological Resources and Eco-environmental Protection, Hanjiang Normal University, Shiyan, Hubei 442000, China

 ² Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
 ³ Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai

200444, China.

⁴ Centre for Clean Energy Technology, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia.

‡ These authors contributed equally to this work.

*Corresponding authors

E-mail addresses: ww1454174@foxmail.com (Wei Wang),

junlinhuang1022@163.com (Junlin Huang), hgao1122@shu.edu.cn (Hong Gao).

Structural Characterization

The sample's Powder X-ray diffraction (XRD) patterns were collected with Cu Kα radiation on a Philips X'pert X-ray diffractometer. The morphology and structural characteristics were examined using scanning electron microscopy (SEM, ZEISS Sigma 300), transmission electron microscopy (TEM, FEITF 20), and high-resolution transmission electron microscopy (HRTEM, FEITF 20). X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha) was utilized for additional surface composition analysis. Thermal gravimetric analysis (TGA) was performed in air using a PerkinElmer STA-8000 thermal analyzer within the temperature range of 30 °C to 800 °C at a heating rate of 10 °C min⁻¹. Raman spectra were obtained using a Raman spectrometer (DXRxi). The specific surface area was determined through N₂ adsorption/desorption analysis at 77 K using a Micromeritics ASAP 2020 HD analyzer.

Koutecky-Levich equation

In the calculation of the number of transferred electrons (n) for each oxygen molecule during the ORR process, the Koutecky-Levich equation utilizes the slope of the best linear fitting line.

$$\frac{1}{J} = \frac{1}{J_L} + \frac{1}{J_K} = \frac{1}{Bw^{1/2}} + \frac{1}{J_K}$$
(1)

$$B = 0.2nFC_0(D_0)^{2/3} v^{-1/6}$$
⁽²⁾

Where J (mA cm⁻²) is the measured current density, $J_{\rm K}$ (mA cm⁻²) and $J_{\rm L}$ (mA cm⁻²) denote the kinetic and diffusion-limiting current densities respectively, ω is the electrode rotation rate (rpm), n is the electron transfer number in oxygen reduction, F is the Faraday constant (F=96485C mol⁻¹), C_0 is the bulk concentration of O₂ (C_0 =1.2×10⁻⁶ mol cm⁻³), D_0 is the diffusion coefficient of O₂ (1.93 × 10⁻⁵ cm² s⁻¹), v is the kinematic viscosity of the electrolyte (0.01 cm² s⁻¹), The constant 0.2 is adopted when the rotating speed is in rpm.

Randles-Sevcik equation

To compare the apparent diffusion coefficients (D) of O_2 during the ORR process for each sample, linear fitting was performed using the Randles-Sevcik equation:

$$i_p = (2.69 \times 10^5) n^{3/2} SD^{1/2} Cv^{1/2}$$
(3)

where n is the number of electrons transferred, i_p is the peak current, S is the electrode area, D is the apparent diffusion coefficient of O₂, C is the saturated concentration of O₂, and v is the scan rate.

Electrochemical surface area measurements

The ECSA was determined using the C_{dl} , which is obtained from the capacitive current in the non-Faradaic region (1.18 to 1.28 V vs. RHE) measured by CV at different scan rates (1, 2, 3, 4, and 5 mV s⁻¹). By plotting the differences in current density (J_a - J_c) at 1.23 V (vs. RHE) against the scan rate, a linear slope is obtained, which is equal to twice the C_{dl} .

Zn-Air battery measurements

The solid zinc-air battery was constructed using a carbon cloth (2 cm \times 2.5 cm) loaded with a catalyst (1 mg cm⁻²) as the cathode, and a polished zinc sheet as the anode. The electrolyte contained 11.25 M KOH gel with the addition of 0.25 M ZnO. The battery underwent testing using the LAND and CHI electrochemical workstations.

For the liquid zinc-air battery tests, a homemade battery was used with a zinc plate (3 cm \times 8 cm) as the anode. The air-electrode was created by drop-casting a catalyst ink (9 mg mL⁻¹) onto carbon paper (3 cm \times 3 cm) with a copper-foam current collector. The zinc-air battery was then assembled by filling the electrolyte (6 M KOH and 0.2 M Zn(Ac)₂) between the anode and air-cathode.

Figure and captions

Fig. S1 High-resolution spectra of (a) C1s (b) O1s for MnO/Co-N-CNTs-750.

Fig. S2 SEM of MnO/Co-N-CNTs-750 and Nanotube Diameter.

Fig. S3 SEM of (a,b) MnO/Co-N-CNTs-650,(c,d) MnO/Co-N-CNTs-850.

Fig. S4 N_2 adsorption/desorption isotherms and pore size distribution curves (the insert picture) of the (a) MnO/Co-N-CNTs-650 and (b) MnO/Co-N-CNTs-850.

Fig. S5 (a,b) TEM images of MnO/Co-N-CNTs-750 and Nanotube Diameter.

Fig. S6 EDS images of MnO/Co-N-CNTs-750 and Nanotube Diameter.

Fig. S7 J_K of MnO/Co-N-CNTs-650, MnO/Co-N-CNTs-750, MnO/Co-N-CNTs-850 and Pt/C at 0.82 Vvs.RHE.

Fig. S8 The LSVs of of (a) MnO/Co-N-CNTs-650, (b) MnO/Co-N-CNTs-850 at different rotation rates. The K-L plots of (c) MnO/Co-N-CNTs-650, (d) MnO/Co-N-CNTs-850. CV curves on (e) MnO/Co-N-CNTs-650, (f) MnO/Co-N-CNTs-850 electrodes at various scan rates.

Fig. S9 (a) ORR LSV curves of MnO/Co-N-CNTs-750 before and after 3000 CVs. (b) Methanol tolerance tests of MnO/Co-N-CNTs-750 and Pt/C.

Fig. S10 Cyclic voltammograms (CVs) of (a) MnO/Co-N-CNTs-650, (b) MnO/Co-N-CNTs-850, (c) RuO₂.

Fig. S11 (a) Discharge curves of solid-state ZABs at 5 mA cm⁻². (b) Charge/discharge polarization curves of MnO/Co-N-CNTs-750 based liquid ZABs.

Fig. S12 Long cycle performance graph of MnO/Co-N-CNTs-750 at different current densities.

Table S1 The statistics of oxygen reduction performance parameters of the materials

 prepared in this work.

Samples	$E_{1/2}(V)$	$E_{onset}\left(\mathrm{V}\right)$	J_i (mA cm ⁻²)
MnO/Co-N-CNTs-650	0.794	0.852	4.16
MnO/Co-N-CNTs-750	0.823	0.881	5.49
MnO/Co-N-CNTs-850	0.80	0.865	4.63
Pt/C	0.838	0.937	5.53