Carbon nanofibre framework based on πextended oligo(perylene) diimide for high-rate lithium-ion batteries

Ying Feng,^a Jiaxin Wang,^a Zehui Yang,^b Ye Cheng,^a Binbin Tian^a and Encai Ou^{*a}.

a College of Chemistry and Chemical Engineering, Hunan University, Changsha

410082, P. R. China.

b Xuanwei redrying factory of Yunnan Tobacco Leaf Redrying Co., Ltd, Xuanwei

655400, P. R. China.

*Corresponding Author

E-mail: ouencai@hnu.edu.cn

Figure S1. DMF extraction of synthesized products (PTN), TOF-MS of extracted.

Figure S2. TOF-MS after treatment with a NaOH solution.

Figure S3. Cycling performance of PTN as a direct anode material for lithium-ion batteries at a current density of $100 \text{ mA} \cdot \text{g}^{-1}$ (the voltage test range is 0.01-3 V).

Figure S4. TGA thermogram of PTN and PTCDA with a heating rate of 10 K min⁻¹ under Nitrogen atmosphere.

Figure S5. Cycling diagram of PTN at 100 mA \cdot g⁻¹ during different carbonization stages temperatures(voltage test range is 0.01-3 V).

Figure S6. (a), (b), (c) SEM images of PTNC-500, PTNC-700 and PTNC-800

Figure S7. SEM images of PTCDC (PTCDA Material after carbonization at 600°C)

Figure S8. Scanning electron microscopy images of the PTNC-600 electrode before and after 50 cycles: (a, b) surface, and (c, d) cross-section.

Figure S9. XRD pattern of PTNC-600 and PTCDC.

Figure S10. XRD images of PTNC-600 electrodes before and after 50 cycles.

Figure S11. Raman spectrum of PTN, PTNC-600, and PTCDC.

Figure S12. N₂ adsorption-desorption curves of PTNC-600 and PTCDC.

Figure S13. Pore size distribution of the adsorption branches of PTNC-600 and PTCDC materials obtained using the BJH method.

Figure S14. XPS survey spectrum of PTN. Characteristic peaks corresponding to C 1s, N 1s, and O 1s were observed at 283.9, 398.5, and 533.9 eV, respectively.

Figure S15. XPS survey spectrum of PTCDC. Characteristic peaks corresponding to C 1s and O 1s were observed at 283.9 eV and 533.9 eV, respectively.

Figure S16. High-resolution XPS spectra of C 1s and O 1s for PTCDC (a-b).

Figure S17. Cycling plot of PTCDC after 1000 cycles at a current density of 1000 $mA \cdot g^{-1}$ (voltage test range is 0.01-3 V).

Figure S18. Cycling plot of PTCDC after 1000 cycles at a current density of 2000 $mA \cdot g^{-1}$ (the voltage test range is 0.01-3 V).

Figure S19. Rate performance plot of PTCDC at current densities ranging from 100 mA \cdot g⁻¹ to 200 mA \cdot g⁻¹, 500 mA \cdot g⁻¹, 1000 mA \cdot g⁻¹, 2000 mA \cdot g⁻¹, and back to 100 mA \cdot g⁻¹ (voltage test range is 0.01-3 V).

Figure S20. Impedance fitting equation graph. In the diagram, R2 represents the charge transfer resistance, and R1 represents the diffusion impedance.

Table S1. Impedance fitting

	Before cycle (Ω)		After 300 cycles (Ω)
R1	1.142	R1	8.67
R2	292.5	R2	70.7

 Table S2. Comparison of electrochemical

Material after precursor	Capacity (mAh·g ⁻¹)	Capacity (mAh·g ⁻¹)	References
carbonization	after cycling	after cycling	
PHC-1	586.1 at 1 C after 500	251.7 at 5 C after	1
	cycles	1800 cycles	
PTCDA-1100	245.8 at 1 C after 100	156.4 at 5 C after 100	2
	cycles	cycles	
PTPAO@600	1142.5 at 0.1 $A \cdot g^{-1}$	490.9 at 1 $A \cdot g^{-1}$ after	3
	after 800 cycles	1000 cycles	
CPP-1-C	517 at 0.2 $A \cdot g^{-1}$ after	436 at 0.5 $A \cdot g^{-1}$ after	4
	200 cycles	500 cycles	
PTNC-600	670 at 0.1 $A \cdot g^{-1}$ after	380 at 1 $A \cdot g^{-1}$ after	this work
	270 cycles	1000 cycles	

References

1. Q. Zhang, H. Sun, X. Wang, Z. Zhu, W. Liang, A. Li, S. Wen and W. Deng, *Energy Technol.*, 2013, **1**, 721-725.

2. Y. Lou, X. Rao, J. Zhao, J. Chen, B. Li, L. Kuang, Q. Wang, S. Zhong, H. Wang and L. Wu, *New J. Chem.*, 2021, **45**, 16658-16669.

3. C. Li, D. Kong, B. Wang, H. Du, J. Zhao, Y. Dong and Y. Xie, *J. Taiwan Inst Chem. Eng.*, 2022, **134**.

4. G. Li, J. F. Yin, H. Guo, Z. Wang, Y. Zhang, X. Li, J. Wang, Z. Yin and G. C. Kuang, *ACS Omega*, 2018, **3**, 7727-7735.