Supporting Information

Synthesis of Intrinsically Sodium Intercalated Ultra-Thin Layered MnO₂ and its Ionic Charge Transport

Amir Parsi¹, Abdulsalam Aji Suleiman^{1*}, Mohammadali Razeghi^{1**}, Doruk Pehlivanoğlu¹, Oğuzhan Oğuz¹, Uğur Başçı², Hafiz Muhammad Shakir², Emine Yegin¹, T. Serkan Kasırga¹⁺

¹Bilkent University UNAM – Institute of Materials Science and Nanotechnology, Ankara 06800, Türkiye

²Department of Physics, Bilkent University, Ankara 06800, Türkiye

*Corresponding author email: kasirga@unam.bilkent.edu.tr

*Current Address: Engineering Fundamental Science Department, Sivas University of Science and Technology, Sivas 58010, Türkiye

**Current Address: IMCN/NAPS, Université Catholique de Louvain (UCLouvain), 1348, Louvainla-Neuve, Belgium

Figure S1 a. Optical micrograph of a 2D Na-MnO₂ nanosheet grown on a sapphire substrate and **b.** corresponding AFM map of the nanosheet with a thickness of 4.2 nm. **c.** SEM image of the 2D Na-MnO₂ nanosheet with sharp edges. **d.** A close-up SEM image of the nanosheet shows the uniform surface of the 2D Na-MnO₂.

Figure S2. SAED pattern obtained along a -7° tilted angle with respect to the [001] zone axis.

Figure S3. Mn 3s XPS scan showing a 5.1 eV multiplet splitting, indicative of a mixed Mn oxidation state (Mn^{3+}/Mn^{4+}) .

Figure S4. Endurance testing over eight consecutive cycles. LRS/HRS ratio was calculated at the read voltage of (a) 6 V and (b) -6 V.

Figure S5 a. DC I–V curves with 10 different devices to verify device-to-device variation. **b**. Current variations at a read voltage of \pm 5V for 10 different devices.

Figure S6. DC I–V sweep of the Au-contacted Na- MnO_2 device (a) in ambient (40-60% relative humidity), (b) under vacuum (0% relative humidity), and (c) in highly humid conditions (100% relative humidity). The compliance current is set at 50 nA. The image of the device is shown in the inset.