First principle investigation of hydrogen passivation for selective atomic layer deposition of Pt, Cu, and Au metals

Giorgia Barile, Federico Ravera, Yuri Ardesi, Fabrizio Mo, Gianluca Piccinini, and Mariagrazia Graziano

May 7, 2025

Figure 1: Projected density of states (PDOS) onto the d orbitals of the metal atom in the precursor for Reactions A–G, shown in panels (a)–(g), respectively. In each panel, the left side shows the PDOS before and after interaction with the Si(100) or H–Si(100) substrate. Comparisons highlight changes in d-orbital features upon adsorption, providing insight into the degree of hybridization and the nature of the precursor–surface interaction.

•	
4u)	
Ju, /	
ť,	
Ð	
tals	
Me	
all.	
or	
d f	
lyzε	
na	
es a	
ture	5
erai	LV TV
np£	H _
ter	-
The	Ċ
all t	<
or é	
y, fi	
erg	
en	
ree	5
Г	1
S	ì
ibbs	عا / سر
Gibbs	Kcal/m
and Gibbs	A [Kral/m
py and Gibbs	DRCA [Kral/m
halpy and Gibbs	H ORCA [Kral/m
enthalpy and Gibbs	H ORCA [Kral/m
y, enthalpy and Gibbs	H ORCA [Kral/m
ropy, enthalpy and Gibbs	H OBCA [Keal/m
Entropy, enthalpy and Gibbs	
for Entropy, enthalpy and Gibbs	/moll H ORCA [Kral/mr
es for Entropy, enthalpy and Gibbs	ral/moll H OBCA [Kral/m
alues for Entropy, enthalpy and Gibbs	[Kral/mol] H OBCA [Kral/mo
te values for Entropy, enthalpy and Gibbs	3CA [Kral/mol] H ORCA [Kral/mo
g the values for Entropy, enthalpy and Gibbs	DRCA [Kral/mol] H ORCA [Kral/mi
ting the values for Entropy, enthalpy and Gibbs	T*S ORCA [Kral/moll H ORCA [Kral/mr
porting the values for Entropy, enthalpy and Gibbs	
reporting the values for Entropy, enthalpy and Gibbs	T*S OBCA [Kcal/mol] H OBCA [Kcal/mo
ole reporting the values for Entropy, enthalpy and Gibbs	
Table reporting the values for Entropy, enthalpy and Gibbs	
1: Table reporting the values for Entropy, enthalpy and Gibbs	
ble 1: Table reporting the values for Entropy, enthalpy and Gibbs	
Table 1: Table reporting the values for Entropy, enthalpy and Gibbs	T*S OBCA [Kral/moll H OBCA [Kral/moll

		T*S ORCA [Kc	al/mol]	H ORCA [Kcal/m	[lo]	$\Delta G = \Delta H -$	ΔTS		
		S Final Step	S Initial Step	H Final Step	H Initial Step	ΔTS	ΔH	ΔG	
11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	A	79.2548	79.6121	-5751457.3753	-5751402.7568	-0.3573	-54.6184	-54.2612	Spontaneous at Low T
Megaurmeg 21.0.100	В	82.9830	80.8537	-5754505.0068	-5754470.0232	2.1293	-34.9837	-37.1130	Spontaneous at all T
Mo. A.DMo. 900 1EV	Α	92.0604	92.6192	-5751451.5633	-5751396.9630	-0.5588	-54.6002	-54.0415	Spontaneous at Low T
Me3ANFMe3 290.13U	В	96.5712	93.0116	-5754498.7154	-5754464.4226	3.5596	-34.2928	-37.8523	Spontaneous at all T
	Α	134.8598	135.5590	-5751432.4826	-5751377.6734	-0.6992	-54.8092	-54.1100	Spontaneous at Low T
Me ₃ AuPMe ₃ 373.15K	В	142.0898	139.2755	-5754477.9863	-5754443.1551	2.8143	-34.8312	-37.6454	Spontaneous at all T
Culanan), 979 1EV	Α	84.6556	83.7551	-6917712.8076	-6917673.1583	0.9004	-39.6493	-40.5498	Spontaneous at all T
NCI.CI2 2(JUU)	В	87.7405	84.9564	-6920747.8167	-6920748.3795	2.7841	0.5628	-2.2213	Spontaneous at all THigh T
	U	98.2586	97.2185	-6917706.6380	-6917667.0735	1.0401	-39.5645	-40.6046	Spontaneous at all T
CU(UCUC)2 270.130	D	102.0247	98.9597	-6920741.2368	-6920741.8644	3.0650	0.6275	-2.4375	Spontaneous at High T
	ы	143.5451	142.0592	-6917686.4562	-6917647.1316	1.4858	-39.3246	-40.8105	Spontaneous at all T
Cu(acac) ₂ 373.15K	ц	149.8548	145.9284	-6920719.5186	-6920720.3624	3.9264	0.8438	-3.0826	Spontaneous at High T
	ы	76.4219	67.9210	-5904842.3398	-5904748.7964	8.5008	-93.5434	-102.0443	Spontaneous at all T
Me ₃ AuPMe ₃ 273.15K	н	84.9613	82.1515	-5907973.6293	-5907944.5383	2.8099	-29.0910	-31.9008	Spontaneous at all T
	ყ	83.2554	82.1518	-5907928.9793	-5907944.5389	1.1036	15.5596	14.4559	Spontaneous at High T
	ы	88.8272	79.3346	-5904836.7043	-5904743.5392	9.4926	-93.1651	-102.6577	Spontaneous at all T
<i>Me</i> ₃ <i>AuPMe</i> ₃ 298.15K	ц	98.8271	95.7714	-5907967.2512	-5907938.2038	3.0557	-29.0474	-32.1031	Spontaneous at all T
	ს	97.0407	95.7793	-5907922.6133	-5907938.2395	1.2614	15.6262	14.3649	Spontaneous at High T
	ы	130.3238	117.6907	-5904818.2347	-5904726.1651	12.6331	-92.0697	-104.7028	Spontaneous at all T
<i>Me</i> ₃ <i>AuPMe</i> ₃ 373.15K	ц	145.1636	141.4363	-5907946.3200	-5907917.3424	3.7273	-28.9776	-32.7049	Spontaneous at all T
	ს	143.0824	141.4366	-5907901.6007	-5907917.3429	1.6458	15.7423	14.0965	Spontaneous at High T

Figure 2: Electron density plots for Reactions A–G, shown in panels (a)–(g), respectively. Each panel illustrates the charge redistribution upon adsorption of the precursor on the Si(100) or H–Si(100) surface. In all cases, an isovalue equal to 0.3 $Å^{-3}$ is considered.

Reaction		Initial state [e]	Final state [e]
٨	Precursor	0.0120428303708	0.105269448315
A	Substrate	-0.0120428303706	-0.105269448238
В	Precursor	0.00544528489243	0.0131105298932
	Substrate	-0.00544528489161	-0.0131105298925
C	Precursor	0.040967419284	0.117565432675
C	Substrate	-0.0409674192548	-0.117565432772
D	Precursor	0.0481875713274	0.103194763725
D	Substrate	-0.0598857011368	-0.111322277312
F	Precursor	-0.0546376581764	0.146259559312
L	Substrate	0.0546376581763	-0.146259559272
F	Precursor	0.0291139828143	0.116546227398
Г	Substrate	-0.0291139828145	-0.116546227398
C	Precursor	0.0291139828143	0.193717811962
U	Substrate	-0.0291139828145	-0.193717811963

Table 2: Electronic charge (in units of e) transferred during the initial and final states for each reaction, distinguishing between precursor and substrate contributions.