Furanyl Bis(indolyl)methane as a Palladium Ion-Selective Chromogenic Agent

Kazuho Ban, ${ }^{\text {a }}$ Shiho Nozaki, ${ }^{\text {a }}$ Takaaki Aijima, ${ }^{\text {a }}$ Shuki Oyama, ${ }^{\text {a }}$ Hirofumi Tsujino, ${ }^{\text {a }}$ Yusuke Kanematsu, ${ }^{\text {b }}$ Shuji Akai ${ }^{\text {a }}$ and Yoshinari Sawama*a

${ }^{a}$ Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565-0871, Japan.
${ }^{b}$ Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan.

E-mail: sawama@phs.osaka-u.ac.jp

Contents

1. General information.
2. Preparation of 5-chloromethyl-furan-2-yl bis(indolyl)methane (5)
3. Preparation and spectroscopic data of 5-aminomethyl furan-2-yl bis(indolyl)methanes (4) (Table 2).
3-1. General procedure for synthesis of 4 .
3-2. Spectroscopic data of 4.
4. Optimization to synthesize 4a.

4-1. Effect of solvent.
4-2. Effect of acid catalyst.
4-3. Effect of drying reagent.
5. Procedure of analysis of chromogenic properties (Figures 3, 4, and 5).

5-1. Preparation of the stock solutions of BIM or metal ion.
5-2. Effect of mixture ratio of BIM $4 a$ and metal ion.
5-3. Procedure for UV-Vis analysis (Figures 3 and 4).
5-4. Time course study of UV-Vis absorption of the mixture of 4 a and $\mathbf{P d}^{2+}$ ion.
5-5. Effect of concentration of Pd^{2+} salt solution.
6. Chromogenic property of 5-amine unit-substituted furan-2-yl BIM derivatives (4b-4e).
7. Preparation and spectroscopic data of bis(indolyl)methyl compounds (6) (Figure 4).
8. UV-Vis absorbance property of 6 a .
9. UV-Vis absorbance property of $\mathbf{4 b}$.
10. References.
11. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of products.

1. General information.

Flash column chromatography was performed with Silica Gel 60 N (Kanto Chemical Co., Inc., $63-210 \mu \mathrm{~m}$ spherical, neutral). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL ECS 300, ECS 400, ECZ 400 or ECA 500 spectrometer at room temperature in CDCl_{3} as a solvent and internal standard (${ }^{1} \mathrm{H}$ NMR: $\delta=7.26$ for $\mathrm{CDCl}_{3},{ }^{13} \mathrm{C}$ NMR: $\delta=77.0$ for CDCl_{3}) with tetramethylsilane as a further internal standard. IR spectra were recorded by a SHIMADZU IR Affinity-1S spectrophotometer as a thin film on NaCl . High resolution mass spectra were measured on JEOL JMS3000 (MALDI). UV-Vis spectra were recorded by a SHIMADZU UV-1800 using quartz square cell (OPTIMMA INC. JAPAN; pathlength 10 mm , capacity 0.5 mL).

2. Preparation of 5-chloromethyl-furan-2-yl bis(indolyl)methane (5)

To the solution of 5-chloromethyl furfural (1a, $28.8 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added MS 4A (10 beads), N-methyl indole ($\mathbf{2 b}, 50 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$, 2 equiv.) and FeCl_{3} ($1.6 \mathrm{mg}, 5 \mathrm{~mol} \%$) under Ar. The suspension was stirred at room temperature or under cooling conditions. After substrate 2a was consumed by TLC monitoring, the mixture was warmed up to room temperature and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The organic layers were washed with brine $(10 \mathrm{~mL})$, dried over with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The yield of 5-chloromethyl-furan-2-yl bis(indolyl)methane (5) was determined by ${ }^{1} \mathrm{H}$ NMR using dibromomethane ($14.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) as an internal standard (The purification of 5 with silica-gel chromatography was tried, but 5 was decomposed on the silica-gel.).
${ }^{1}$ H NMR of the crude mixture of 5-chloromethyl-furan-2-yl bis(N-methyl-indolyl)methane (5)
(Table 1, entry 4)

3. Preparation and spectroscopic data of 5-aminomethyl furan-2-yl bis(indolyl)methanes (4) (Table 2)

3-1. General procedure for synthesis of $\mathbf{4}$

To the solution of 5-chloromethyl furfural ($1 \mathbf{1 a}, 28.8 \mathrm{mg}, 0.20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added MS 4A (10 beads), indole derivative ($2,0.4 \mathrm{mmol}, 2$ equiv.) and $\mathrm{FeCl}_{3}(1.6 \mathrm{mg}, 5 \mathrm{~mol} \%$). The suspension was stirred at $-40^{\circ} \mathrm{C}$ under Ar. After 18 h , amine derivative (3, $2.0 \mathrm{mmol}, 10$ equiv.) was added dropwise to the suspension and stirred at $-40^{\circ} \mathrm{C}$ for 12 h . The mixture was warmed up to room temperature and extracted with EtOAc (10 mL x 3). The organic layers were washed with brine (10 mL), dried over with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silicagel column chromatography to obtain bis(indolyl)methyl furanyl derivative 4.

3-2. Spectroscopic data of 4

5-(N-Methyl- N-phenyl-aminomethyl)-furan-2-yl bis(indolyl)methane (4a)

$\mathbf{2 a}(46.9 \mathrm{mg}, 0.40 \mathrm{mmol}, 2$ equiv.) and N-methylaniline (3a, $220 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 10$ equiv.) were used as a substrate according to typical synthetic procedure (3-1) to afford $\mathbf{4 a}(35 \%$ yield, $30.2 \mathrm{mg}, 0.70$ mmol) after silica-gel column chromatography (n -hexane $/ \mathrm{EtOAc}=5 / 1$).
4a; wine-red oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91$ (brs, 2 H), 7.46 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 (d, J $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.76-6.72(\mathrm{~m}, 3 \mathrm{H}), 6.03(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 4.42$ (s, 2H), 2.93 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CHCl}_{3}$): $\delta 156.2,150.5,149.3,136.3,129.0,126.7,123.1$, $121.8,119.6,119.2,117.0,116.9,113.3,111.0,107.9,107.2,50.0,38.4,34.0$.

IR (NaCl$)_{\mathrm{cm}^{-1}}: 3412,1598,1544,1516,1508,1490,1455,1418,1363,1340,1094,1012,909,784$, 744, 693.
HRMS (MALDI) $m / z: 454.1892$ (Calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 454.1890$).

5-(N-Methyl- N-phenyl-aminomethyl)-furan-2-yl bis(N-methyl-indolyl)methane (4b)

$\mathbf{2 b}(50 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv.) and $\mathbf{3 a}(220 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 10$ equiv.) were used as a substrate according to typical synthetic procedure (3-1) to afford $\mathbf{4 b}(80 \%$ yield, $73.4 \mathrm{mg}, 0.16 \mathrm{mmol})$ after
silica-gel column chromatography (n-hexane $/ \mathrm{EtOAc}=10 / 1$).
4b; wine-red oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~m}, 5 \mathrm{H}), 6.70(\mathrm{~s}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H})$, $5.85(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CHCl}_{3}$): $\delta 155.9,154.1$, $147.8,137.2,129.5,127.7,127.3,127.3,121.3,119.9,118.6,115.9,112.5,109.0,107.0,106.2,33.9$, 33.7, 32.6, 30.9.

IR (NaCl) $\mathrm{cm}^{-1}: 3410,1927,1614,1521,1472,1423,1370,1328,1264,1181,1153,1062,1012,908$, 784, 739.
HRMS (MALDI) $m / z: 482.2212$ (Calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 482.2203$).

5-[N-Methyl- N-(4-methoxy)phenyl-aminomethyl]-furan-2-yl bis(N-methyl-indolyl)methane (4c)

2a ($46.9 \mathrm{mg}, 0.40 \mathrm{mmol}, 2$ equiv.) and N-methyl-4-methoxyaniline ($\mathbf{3 b}, 137 \mathrm{mg}, 2.0 \mathrm{mmol}, 10$ equiv.), which was prepared according to the reference [1], were used as a substrate according to typical synthetic procedure (3-1) to afford $\mathbf{4 c}(30 \%$ yield, $27.8 \mathrm{mg}, 0.060 \mathrm{mmol})$ after silica-gel column chromatography (n-hexane / EtOAc = 3/1).

4c; wine-red oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87$ (brs, 2 H), 7.46 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.32 (d, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.82-6.77(\mathrm{~m}, 4 \mathrm{H}), 6.66(\mathrm{~s}, 2 \mathrm{H}), 6.02$ $(\mathrm{d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CHCl}_{3}$): $\delta 155.9,154.2,147.8,137.2,129.5,127.7,127.3,121.3,119.9,118.6,115.9$, $112.6,112.5,109.0,107.0,106.2,33.9,33.7,32.6,30.9$.
IR (NaCl$)_{\mathrm{cm}^{-1}}$: 3413, 2833, 1512, 1455, 1421, 1339, 1244, 1181, 1095, 1036, 1014, 909, 819, 784, 742.

HRMS (MALDI) $m / z: 484.1994$ (Calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 484.1995$).

5-[N-Methyl- N-(4-cyano)phenyl-aminomethyl]-furan-2-yl bis(N-methyl-indolyl)methane (4d)

2a ($46.9 \mathrm{mg}, 0.40 \mathrm{mmol}, 2$ equiv.) and N-methyl-4-cyanoaniline ($\mathbf{3 c}, 132 \mathrm{mg}, 2.0 \mathrm{mmol}, 10$ equiv.), which was prepared according to the reference [1], were used as a substrate according to typical synthetic procedure (3-1) to afford $\mathbf{4 d}(17 \%$ yield, $16.6 \mathrm{mg}, 0.034 \mathrm{mmol})$ after silica-gel column
chromatography (n-hexane $/ \mathrm{EtOAc}=3 / 1$).
4d; wine-red oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94$ (brs, 2 H), $7.44-7.35$ (m, 6 H), 7.17 (t, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CHCl}_{3}$): $\delta 156.9,151.7,149.1,136.5,133.3,126.7,122.9,122.0,120.6,119.6,119.3,116.9,112.2,111.1,108.3$, 107.3, 98.0, 49.2, 38.3, 34.2.

IR (NaCl$)_{\mathrm{cm}^{-1}}: 3408,2212,1680,1607,1544,1455,1423,1387,1340,1177,1098,909,819,784$, 744.

HRMS (MALDI) $m / z: 455.1867$ (Calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{+}: 455.1866$).

5-(N-Pyrrolidinylmethyl)-furan-2-yl bis(N-methyl-indolyl)methane (4e)

$\mathbf{2 a}(46.9 \mathrm{mg}, 0.40 \mathrm{mmol}, 2$ equiv.) and pyrrolidine ($\mathbf{3 d}, 160 \mu \mathrm{~L}, 10$ equiv.) were used as a substrate according to typical synthetic procedure (3-1) to afford $\mathbf{4 e}(17 \%$ yield, $13.5 \mathrm{mg}, 0.034 \mathrm{mmol})$ after silica-gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=10 / 1\right)$.

4e; brown oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.30$ (brs, 2 H), 7.44 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.25 (d, $J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 2 \mathrm{H}), 6.12(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.97(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 4 \mathrm{H}), 1.71(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CHCl}_{3}\right): \delta 156.9,150.0,136.4,126.7,123.4,121.5,119.4,118.9,116.7,111.1,109.4,107.0,53.2,51.6$, 34.0, 23.4.

IR (NaCl) $\mathrm{cm}^{-1}: 3412,3057,2963,2925,2895,2810,1618,1455,1419,1340,1244,1215,1125,1095$, 908, 785, 739.

HRMS (MALDI) $m / z: 394.1918$ (Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{+}: 394.1914$).

4. Optimization to synthesize 4a

4-1. Effect of solvent

To the solution of 5-chloromethyl furfural ($\mathbf{1 a}, 28.8 \mathrm{mg}, 0.20 \mathrm{mmol})$ in solvent $(1 \mathrm{~mL})$ were added MS 4A (10 beads), indole ($\mathbf{2 a}, 46.9 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv.) and $\mathrm{FeCl}_{3}(1.6 \mathrm{mg}, 5 \mathrm{~mol} \%, 0.01 \mathrm{mmol})$ under Ar. The suspension was stirred at room temperature or under cooling condition. After substrate 2a disappeared by TLC monitoring, N-methyl aniline (3a, $220 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 10$ equiv.) was added dropwise to the suspension and stirred at the same temperature for 12 h . The mixture was warmed up to room temperature and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The organic layers were washed with
brine (10 mL), dried over with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The yield of $4 \mathbf{a}$ was determined by ${ }^{1} \mathrm{H}$ NMR using 1,1,2,2-tetrachloroethane ($21.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$).

Table S1. Screening of solvent

4-2. Effect of acid catalyst

To the solution of $\mathbf{1 a}(28.8 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(1 \mathrm{~mL})$ were added MS $4 \mathrm{~A}(10$ beads $), \mathbf{2 a}$ ($46.9 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv.) and acid catalyst ($5 \mathrm{~mol} \%, 0.01 \mathrm{mmol}$) under Ar. The suspension was stirred at room temperature or under cooling condition. After substrate 2a disappeared by TLC monitoring, N-methyl aniline (3a, $220 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 10$ equiv.) was added dropwise to the suspension and stirred at the same temperature for 12 h . The mixture was warmed up to room temperature and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The organic layers were washed with brine (10 mL), dried over with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The yield of $\mathbf{4 a}$ was determined by ${ }^{1} \mathrm{H}$ NMR using 1,1,2,2-tetrachloroethane ($21.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$).

Table S2. Screening of acid catalyst

${ }^{\mathrm{a}} 10 \mathrm{~mol} \%$ was used. ${ }^{\mathrm{b}} 10 \mathrm{mg}$ was used.

4-3. Effect of drying reagent

To the solution of 5-chloromethyl furfural (1a, $28.8 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added drying reagent (100 mg), N-methyl indole ($\mathbf{2 b}, 50 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$, 2 equiv.) and $\mathrm{FeCl}_{3}(1.6 \mathrm{mg}, 5 \mathrm{~mol} \%$) under Ar. The suspension was stirred at $-40^{\circ} \mathrm{C}$. After 4 h , the mixture was warmed up to room temperature and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} x 3)$. The organic layers were washed with brine (10 mL), dried over with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The yield of 5-chloromethyl-furan-2-yl bis(indolyl)methane (5) was determined by ${ }^{1} \mathrm{H}$ NMR using dibromomethane ($14.0 \mu \mathrm{~L}, 0.20$ mmol) as an internal standard.

Table S3. Screening of drying reagent

		FeCl_{3} ($5 \mathrm{~mol} \%$) drying reagent (100 $\begin{array}{r} \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{M}) \\ \mathrm{Ar},-40^{\circ} \mathrm{C}, 4 \mathrm{~h} \end{array}$	
entry	drying reagent	yield (\%)	
		1	5
$1{ }^{\text {a) }}$	MS 4A	1	83
2	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	7	80
3	MgSO_{4}	0	86
4	activated alumina (neutral)	6	33

${ }^{\mathrm{a}} 10$ beads were used.

One-pot synthesis of $\mathbf{4 b}$ using $\mathbf{M g S O}_{4}$ as drying reagent; To the solution of 5-chloromethyl furfural (1a, $28.8 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added $\mathrm{MgSO}_{4}(100 \mathrm{mg})$, N-methyl indole (2b, 50 $\mu \mathrm{L}, 0.4 \mathrm{mmol}$, 2 equiv.) and $\mathrm{FeCl}_{3}(1.6 \mathrm{mg}, 5 \mathrm{~mol} \%)$. The suspension was stirred at $-40^{\circ} \mathrm{C}$ under Ar . After $18 \mathrm{~h}, \mathrm{~N}$-methyl amine (3a, $2.0 \mathrm{mmol}, 10$ equiv.) was added dropwise to the suspension and stirred at $-40^{\circ} \mathrm{C}$ for 12 h . The mixture was warmed up to room temperature and extracted with EtOAc $(10 \mathrm{~mL} x 3)$. The organic layers were washed with brine (10 mL), dried over with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The yield of $\mathbf{4 b}\left(67 \%\right.$ yield) was determined by ${ }^{1} \mathrm{H}$ NMR using 1,1,2,2tetrachloroethane ($21 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) as an internal standard. Yield of $\mathbf{4 b}$ was lower in comparison with the reaction using MS 4A. shown Table 2, entry 1.

5. Procedure of analysis of chromogenic properties (Figures 3, 4, and 5)

$\mathbf{5 - 1}$. Preparation of the stock solutions of BIM or metal ion

The concentrations of stock solutions were referred to the reference [2].
Stock solutions $\left(1.0 \times 10^{-4} \mathrm{M}\right)$ of BIM ($\mathbf{4 a}-\mathbf{4 e}$, and $\mathbf{6 a - 6 e}$); BIM (0.010 mmol) was dissolved in $\mathrm{MeCN} /$ distilled water $(7 / 3 ; 1 \mathrm{~mL})$. This solution $(100 \mu \mathrm{~L})$ was further dissolved in $\mathrm{MeCN} /$ distilled water $(7 / 3 ; 10 \mathrm{~mL}) . \mathbf{4 a}(4.3 \mathrm{mg}), \mathbf{4 b}(4.6 \mathrm{mg}), \mathbf{4 c}(4.6 \mathrm{mg}), \mathbf{4 d}(4.6 \mathrm{mg}), \mathbf{4 e}(4.0 \mathrm{mg}), \mathbf{6 a}(3.1 \mathrm{mg}), \mathbf{6 b}$
$(3.4 \mathrm{mg}), \mathbf{6 c}(3.2 \mathrm{mg}), \mathbf{6 d}(3.2 \mathrm{mg}), \mathbf{6 e}(2.5 \mathrm{mg})$ were used, respectively.
Stock solutions ($4.0 \times 10^{-4} \mathrm{M}$) of metal ion; Metal salts (0.040 mmol) were dissolved in $\mathrm{MeCN} /$ distilled water $(7 / 3)(1 \mathrm{~mL})$. The solution $(100 \mu \mathrm{~L})$ was dissolved in $\mathrm{MeCN} /$ distilled water $(7 / 3)(10 \mathrm{~mL}) . \mathrm{PdCl}_{2}(7.1 \mathrm{mg}), \mathrm{CuCl}_{2}(5.4 \mathrm{mg}), \mathrm{FeCl}_{2}(5.1 \mathrm{mg}), \mathrm{FeCl}_{3}(6.5 \mathrm{mg}), \mathrm{CrCl}_{2}(4.9 \mathrm{mg}), \mathrm{CrCl}_{3}$ (6.3 mg), $\mathrm{NiCl}_{2}(5.2 \mathrm{mg}), \mathrm{ZnCl}_{2}(5.5 \mathrm{mg}), \mathrm{InCl}_{3}(8.8 \mathrm{mg}), \mathrm{PtCl}_{2}(10.6 \mathrm{mg}), \mathrm{CeCl}_{3}(9.9 \mathrm{mg})$ were used, respectively.

5-2. Effect of mixture ratio of BIM 4a and metal ion

Stock solutions $\left(1.0 \times 10^{-4} \mathrm{M}\right)$ of $\mathbf{P d}^{2+} \mathbf{i o n} ; \mathrm{PdCl}_{2}(1.8 \mathrm{mg}, 0.010 \mathrm{mmol})$ was dissolved in $\mathrm{MeCN} /$ distilled water $(7 / 3)(1 \mathrm{~mL})$. The solution $(100 \mu \mathrm{~L})$ was dissolved in $\mathrm{MeCN} /$ distilled water (7/3) (9 mL).
Stock solutions $\left(4.0 \times 10^{-3} \mathrm{M}\right)$ of $\mathbf{P d}^{\mathbf{2 +}}$ ion; $\mathrm{PdCl}_{2}(7.1 \mathrm{mg}, 0.040 \mathrm{mmol})$ was dissolved in $\mathrm{MeCN} /$ distilled water $(7 / 3)(10 \mathrm{~mL})$.

To the stock solution of BIM $(0.25 \mathrm{~mL})$ in a sample tube, each stock solution of Pd^{2+} ion $(0.25 \mathrm{~mL})$ was added. After 1 h , the color of the mixture was checked.
The color change in the mixture $\left(\mathbf{4 a} / \mathrm{Pd}^{2+}=1 / 1\right)$ was subtle, and the color change in the mixture $\left(\mathbf{4 a} / \mathrm{Pd}^{2+}=1 / 40\right)$ was comparable to the mixture $\left(\mathbf{4 a} / \mathrm{Pd}^{2+}=1 / 4\right)$. Therefore, a mixing ratio of $\mathbf{4 a} / \mathrm{Pd}^{2+}$ $=1 / 4$ was applied to further study.

Figure S1. Screening of the mixing ratio of 4 a and $\mathbf{P d}^{\mathbf{2 +}}$

5-3. Procedure for UV-Vis analysis (Figures 3 and 4)

To the stock solution of BIM $(0.25 \mathrm{~mL})$ in a sample tube, the stock solution of metal ion $(0.25 \mathrm{~mL})$ was added, and the color of the mixture was checked. After 1 h , UV-Vis absorption of the mixture poured to the quartz square cell from the sample tube, was measured

5-4. Time course study of UV-Vis absorption of the mixture of 4a and $\mathbf{P d}^{\mathbf{2 +}}$ ion
 Background data of 4a (black dash line) or $\mathbf{P d}^{2+}$ ion (gray dash line); The stock solution of 4a

$(0.5 \mathrm{~mL})$ was poured to the quartz square cells, and UV-Vis absorption was measured from 190 to 700 nm . Independently, the stock solution of Pd^{2+} ion was poured to the quartz square cells, and UV-Vis absorption was measured.

Mixing of $\mathbf{4 a}$ and $\mathbf{P d}^{\mathbf{2 +}} \mathbf{i o n}$; To the stock solution of $\mathbf{4 a}(0.25 \mathrm{~mL})$ in the quartz square cells, the stock solution of Pd^{2+} ion $(0.25 \mathrm{~mL})$ was added. UV-Vis absorption of the mixture was measured [2 min. (black), 5 min . (gray), 10 min . (purple), 15 min . (blue), 30 min . (green), 45 min . (orange), 60 min . (rad) after mixed].

Figure S2. Time course study of UV-Vis absorption of the mixture of $\mathbf{4 a}$ and $\mathbf{P d}^{\mathbf{2 +}}$

5-5. Effect of concentration of $\mathbf{P d}^{\mathbf{2 +}}$ salt solution

Stock solutions $\left(4.0 \times 10^{-5} \mathrm{M}\right)$ of $\mathbf{P d}^{2+}$ ion; The stock solution $\left(4.0 \times 10^{-4} \mathrm{M}, 1 \mathrm{~mL}\right)$ was dissolved in $\mathrm{MeCN} /$ distilled water ($7 / 3$) (9 mL).
Mixing of $\mathbf{4 a}$ and $\mathbf{P d}^{\mathbf{2 +}} \mathbf{i o n}$; To the stock solution of $\mathbf{4 a}(0.25 \mathrm{~mL})$ in the quartz square cells, the stock solution of Pd^{2+} ion $(0.25 \mathrm{~mL})$ was added. After $1 \mathrm{~h}, \mathrm{UV}$-Vis absorption of the mixture was measured. [The concentration of PdCl_{2} solution ($\mathrm{MeCN} /$ distilled water (7/3)) ; $4 \times 10^{-4} \mathrm{M}$ (red), $1 \times 10^{-4} \mathrm{M}$ (blue), $4 \times 10^{-5} \mathrm{M}$ (gray)]

[BIM $/$ metal ion $=1 / 4,1 / 1$ or $1 / 0.4$]

Figure S3. Effect of concentration of $\mathbf{P d C l}_{2}$ solution

6. Chromogenic property of 5-amine unit-substituted furan-2-yl BIM derivatives

 (4a-e)To the stock solution of $4(0.25 \mathrm{~mL})$ in a sample tube, the stock solution of Pd^{2+} ion $(0.25 \mathrm{~mL})$ was added. After 1 h , the color of the mixture was checked.

Figure S4. Chromogenic property of the mixture of 4 and $\mathbf{P d}^{\mathbf{2 +}}$

7. Preparation and spectroscopic data of bis(indolyl)methyl compounds (6)

Furan-2-yl bis(indolyl)methane (6a)

Furan-2-yl bis(indolyl)methane (6a) was prepared according to the reference [3]. The suspension of furfural ($50 \mathrm{mg}, 0.50 \mathrm{mmol}$) and $\mathbf{2 a}\left(117 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added amberlyst-15 (50 mg), and stirred at room temperature under Ar atmosphere. After 6 h , the suspension was filtrated and the filtrate was concentrated. The residue was purified by silica-gel column chromatography $(\mathrm{Hex} / \mathrm{EtOAc}=3 / 1)$ to obtain $\mathbf{6 a}(72 \%$ yield, $119 \mathrm{mg}, 0.38 \mathrm{mmol})$.

6a; wine-red oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97(\mathrm{~s}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.36(\mathrm{~m}$, $3 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{dd}, J=2.7,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.06(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CHCl}_{3}$): $\delta 157.0,141.2,136.4,126.7$, $123.0,121.9,119.6,119.3,117.0,111.1,110.1,106.6,34.0$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 a}$ was identical to that of the reference [4].

5-Hydroxymethyl-furan-2-yl bis(indolyl)methane (6b)

To the solution of 5-hydroxymethyl furfural $(25.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added 2a ($46.9 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv.) and $\mathrm{FeCl}_{3}\left(1.6 \mathrm{mg}, 5 \mathrm{~mol} \%\right.$). The solution was stirred at $0{ }^{\circ} \mathrm{C}$ under Ar . After 2 h , the mixture was warmed up to room temperature and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The organic layers were washed with brine $(10 \mathrm{~mL})$, dried over with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. To the residue were added $\mathrm{MeOH}(1 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(1.9 \mathrm{mg}, 0.05 \mathrm{mmol})$ to reduce the unreacted 5-hydroxymethyl furfural since 5-hydroxymethyl furfural and $\mathbf{6 b}$ could not be separated by silica-gel chromatography, and the solution was stirred at $0^{\circ} \mathrm{C}$ under Ar atmosphere. After 30 min , the mixture was quenched with water, and extracted with EtOAc ($10 \mathrm{~mL} x 3$). The organic layers were washed with brine (10 mL), dried over with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica-gel column chromatography $(\mathrm{Hex} / \mathrm{EtOAc}=2 / 1)$ to obtain $\mathbf{6 b}(44 \%$ yield, $30.2 \mathrm{mg}, 0.057 \mathrm{mmol}$).
6b; wine-red oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83$ (brs, 2 H), $7.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.25 (d, J $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 2 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~s}$, $1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CHCl}_{3}$): $\delta 157.2,152.5,136.4,126.6,123.3$, $121.8,119.5,119.2,116.6,111.2,108.6,107.3,57.4,34.1$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6} \mathbf{b}$ was identical to that of the reference [5].

Phenyl bis(indolyl)methane (6c)

Phenyl bis(indolyl)methane ($\mathbf{6 c}$) was prepared according to the reference [3]. The suspension of furfural ($50 \mathrm{mg}, 0.50 \mathrm{mmol}$) and $\mathbf{2 a}\left(117 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added amberlyst-15 (50 mg), and stirred at room temperature under Ar atmosphere. After 6 h , the suspension was filtrated and the filtrate was concentrated. The residue was purified by silica-gel column chromatography $(\mathrm{Hex} / \mathrm{EtOAc}=3 / 1)$ to obtain $\mathbf{6 c}(64 \%$ yield, $102 \mathrm{mg}, 0.32 \mathrm{mmol})$.
6c; brown oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89$ (brs, 2 H), $7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.35(\mathrm{~m}$, $4 \mathrm{H}), 7.29(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.65(\mathrm{~s}, 2 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CHCl}_{3}$): $\delta 143.9,136.6,128.7,128.2,127.0,126.1$, 123.6, 121.9, 119.9, 119.7, 119.2, 111.0, 40.1.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 c}$ was identical to that of the reference [4].

1,1-Bis(indolyl)hexane (6d)

To the solution of hexanal $(20.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(1 \mathrm{~mL})$ were added indole $(46.9 \mathrm{mg}$, $0.4 \mathrm{mmol}, 2$ equiv.) and $\mathrm{FeCl}_{3}(1.6 \mathrm{mg}, 5 \mathrm{~mol} \%)$. The solution was stirred at rt under Ar. After 6 h , the mixture was extracted with EtOAc (10 mL x 3). The organic layers were washed with brine (10 mL), dried over with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica-gel column chromatography ($\mathrm{Hex} / \mathrm{EtOAc}=3 / 1$) to obtain $\mathbf{6 d}(73 \%$ yield, $46.2 \mathrm{mg}, 0.146 \mathrm{mmol})$.
6d; wine-red oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-$ $7.20(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{q}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 1.52-1.30(\mathrm{~m}, 6 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CHCl}_{3}$): $\delta 136.4,127.1$, $121.6,121.4,120.4,119.6,118.9,111.0,35.8,33.9,32.0,28.0,22.6,14.1$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 d}$ was identical to that of the reference [6].

Diindolylmethane (6e)

Diindolylmethane (6e) was prepared according to the reference [7]. To the solution of indole-2-nal $(29.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(2 \mathrm{~mL})$ were added indole $(70.4 \mathrm{mg}, 0.60 \mathrm{mmol}, 3$ equiv. $)$, AcOH ($29 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$, 5 equiv.) and $\mathrm{NaBH}_{4}(11.5 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv.). The mixture was heated to reflux under Ar. After 6 h , the mixture was cooled to room temperature, quenched with saturated sodium bicarbonate (4 mL), and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The organic layers were washed with brine $(10 \mathrm{~mL})$, dried over with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica-gel column chromatography $(\mathrm{Hex} / \mathrm{EtOAc}=10 / 1)$ to obtain $\mathbf{6 e}(60 \%$ yield, 29.5 mg , 0.12 mmol).

6e; brown oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90$ (brs, 2 H), 7.63 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.36(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CHCl}_{3}$): $\delta 136.5,127.6,122.2,121.9,119.2,119.2,115.7,111.0,21.2$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 e}$ was identical to that of the reference [7].

8. UV-Vis absorbance property of 6a

To the stock solution of $\mathbf{6 a}(0.25 \mathrm{~mL})$ in a sample tube, the stock solution of the metal ion $(0.25 \mathrm{~mL})$ was added. After 1 h , UV-Vis absorption of the mixture poured to the quartz square cell from the sample tube was measured.

Figure S5. Chromogenic property of the mixture of 6a and metal ions

9. UV-Vis absorbance property of 4b

To the stock solution of $\mathbf{4 b}(0.25 \mathrm{~mL})$ in a sample tube, the stock solution of the metal ion $(0.25 \mathrm{~mL})$ was added. After 1 h , UV-Vis absorption of the mixture poured to the quartz square cell from the sample tube was measured.

Figure S6. Chromogenic property of the mixture of 4b and metal ions

10. References

[1] Y. Zhang, H. Zhang, K. Gao, Org. Lett. 2021, 23, 8282-8286.
[2] R. M. F. Batista, S. P. G. Costa, R. M. P. Silva, N. E. M. Lima and M. M. M. Raposo, Dyes Pigm., 2014, 102, 293-300.
[3] C. Ramesh, J. Banerjee, R. Pal, B. Das, Adv. Synth, Catal. 2003, 345, 557-559.
[4] Z. M. Salem, J. Saway, J. J. Badillo, Org. Lett. 2019, 21, 8528-8532.
[5] H. B. Phan, C. M. Luong, L. P. Nguyen, B. T. Bui, H. T. Nguyen, B. V. Mai, T. V.-T. Mai, L. K. Huynh and P. H. Tran, ACS Sustainable Chem. Eng., 2022, 10, 8673-8684.
[6] S. Rinkam, W. Senapak, S. Watchasit, R. Saeeng, U. Sirion, Synlett, 2022, 33, 1383-1390.
[7] H. Zhou, Z. Huang, H. Huang, C. Song, J. Chang, Tetrahedron, 2021, 94, 132338.
11. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of products.
${ }^{1} \mathrm{H}$ NMR of 5-(N-methyl- N-phenyl-aminomethyl)-furan-2-yl bis(indolyl)methane (4a)

${ }^{13}$ C NMR of 5-(N-methyl- N-phenyl-aminomethyl)-furan-2-yl bis(indolyl)methane (4a)

${ }^{1} \mathrm{H}$ NMR of 5-(N-methyl- N-phenyl-aminomethyl)-furan-2-yl bis(N-methyl-indolyl)methane (4b)

${ }^{13}$ C NMR of 5-(N-methyl- N-phenyl-aminomethyl)-furan-2-yl bis(N-methyl-indolyl)methane (4b)

${ }^{1} \mathrm{H}$ NMR of 5 -[N-methyl- N-(4-methoxy)phenyl-aminomethyl)-furan-2-yl bis(N-methylindolyl)methane (4c)

${ }^{13} \mathrm{C}$ NMR of 5-[N-methyl- N-(4-methoxy)phenyl-aminomethyl)-furan-2-yl bis(N-methylindolyl)methane (4c)

${ }^{1} \mathrm{H}$ NMR of 5 -[N-methyl- N-(4-cyano)phenyl-aminomethyl)-furan-2-yl bis(N-methylindolyl)methane (4d)

${ }^{13} \mathrm{C}$ NMR of 5 -[N-methyl- N-(4-cyano)phenyl-aminomethyl)-furan-2-yl bis(N-methylindolyl)methane (4d)

${ }^{1} \mathrm{H}$ NMR of 5-(N-pyrrolidinylmethyl)-furan-2-yl bis(N-methyl-indolyl)methane (4e)

${ }^{13} \mathrm{C}$ NMR of 5-(N-pyrrolidinylmethyl)-furan-2-yl bis(N-methyl-indolyl)methane (4e)

${ }^{1} \mathrm{H}$ NMR of furan-2-yl bis(indolyl)methane (6a)

${ }^{13}$ C NMR of furan-2-yl bis(indolyl)methane (6a)

${ }^{1} \mathrm{H}$ NMR of 5-hydroxymethyl-furan-2-yl bis(indolyl)methane (6b)

${ }^{13}$ C NMR of 5-hydroxymethyl-furan-2-yl bis(indolyl)methane (6b)

${ }^{1} \mathrm{H}$ NMR of phenyl bis(indolyl)methane (6c)

${ }^{13} \mathrm{C}$ NMR of phenyl bis(indolyl)methane (6c)

${ }^{1} \mathrm{H}$ NMR of 1,1-bis(indolyl)hexane (6d)

${ }^{13}$ C NMR of 1,1-bis(indolyl)hexane (6d)

${ }^{1} \mathrm{H}$ NMR of diindolylmethane (6e)

${ }^{13} \mathrm{C}$ NMR of diindolylmethane (6e)

