Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Synthesis of pyrazino[1,2-b]indazoles via cascade cyclization of

indazole aldehydes with propargylic amines

Zeng-Hui Wu,^a Heng-Tong Qu,^a Ben-Jun Han,^a Jia-Xin Yang,^a Xiang-Wei Chang*^{a,b} and Cheng-Tao Feng*^a

^aSchool of Pharmacy, Anhui University of Chinese Medicine; Anhui academy of Chinese medicine, Hefei, 230012, China.

^bMOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China.

Contents

1. General Information	S2
2. Structures of starting materials	S3
3. Experimental Procedure	S4
4. Biological Assay	S6
5. Characterization Data of Products	S7
6. ¹ H NMR and ¹³ C NMR Spectra of products	S14
7. Single-crystal X-ray Diffraction	S41
8.References	S42

1. General Information

All reagents and solvents were purchased from commercial sources and used without further purification. Reactions were performed under an atmosphere of air. Analytical TLC was performed with silica gel GF254 plates. Visualization was accomplished by UV light. Products were purified by flash column chromatography on 200-300 mesh silica gel. Flash chromatography was conducted eluting with PE/EA, and they are listed as volume/volume ratios. ¹H and ¹³C NMR spectra were recorded in Chloroform-d at 600 MHz (¹H NMR)/150 MHz (¹³C NMR) on Bruker spectrometers. Chemical shifts are expressed in parts per million (δ) and the signals were reported as s (singlet), d (doublet), t (triplet), m (multiplet), and coupling constants (*J*) were given in Hz. Chemical shifts as internal standard are referenced to CDCl₃ (δ = 7.26 for ¹H and δ = 77.16 for ¹³C NMR). High resolution mass spectra (HRMS) were measured using electrospray ionization (ESI) and the time-of-flight (TOF) mass analyzer, accurate masses are reported for the molecular ion + hydrogen ([M+H]⁺). Melting points were measured on a capillary melting point apparatus.

2. Structures of starting materials

Figure 1: Structures of aldehyde starting materials (1a-q)

Commercially available aldehydes (1a, 1d, 1f, 1i, 1k and 1q) and propargylic amines (2a) were used without further purification and the other starting aldehydes (1b, 1c, 1e, 1f, 1g, 1h, 1j, 1l, 1m, 1n, 1o and 1p) and propargylic amines (2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j and 2k) were synthesized as described below.

3. Experimental Procedures

3.1 General procedure for the synthesis of 3

To a solution of aldehyde (0.4 mmol) in DMF (3 ml) was added amine (0.6 mmol) at room temperature. The reaction mixture was stirred for 10 min at room temperature, followed by 12 h at 120°C. After reaction finished, the mixture was cooled to room temperature, added water (45 mL), and extracted with EtOAc (3×15 mL). The combined organic layers were dried with Na₂SO₄. Then, the solvent was removed under reduced pressure and purified by silica gel column chromatography (petroleum ether/ethyl acetate).

3.2 Scale-up procedure for the synthesis of 3aa

An oven-dried three-necked, round-bottom flask (100 mL), equipped with reflux condenser, was charged with 1H-indazole-3-carbaldehyde **1a** (5 mmol, 731 mg). Subsequently DMF (38 ml), propargylamine **2a** (7.5 mmol, 475ul) were added in order. The reaction was stirred at room temperature for 10 minutes, then further stirred at 120 °C for 12h. After completion of the reaction, the mixture was cooled to room temperature, then the reaction mixture was extracted with ethyl acetate. The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Finally, it was purified by column chromatography on silica gel (200-300 mesh) using petroleum ether/ethylacetate (P:E = 1:2) as an eluent to afford the pure product **3aa** (613 mg, 67%).

3.3 General procedure for the synthesis of aldehydes 2

1b, 1c, 1e, 1f, 1g, 1h, 1j, 1l, 1m, 1n, 1o and **1p** were prepared by a literature procedure¹. General procedure for 1 mmol of indole. To a solution of NaNO₂ (550 mg, 8 mmol, 8 equiv.) in 4 mL of deionized water and 3 mL of DMF at 0 °C was added slowly HCl (1.33 mL of 2 mol/L, 2.7 mmol, 2.7 equiv.) and the resulting mixture was kept under argon for 10 min. A solution of indole (1 mmol, 1 equiv.) in DMF (3 mL) was then added at 0 °C over a period of 2 h using a syringe. After reaction finished, added water, and extracted with EtOAc (3×15 mL). The combined organic layers were dried with Na₂SO₄. Then, the solvent was removed under reduced pressure and purified by silica gel column chromatography (petroleum ether/ ethyl acetate).

3.4 General procedure for the synthesis of 2b, 2d, 2e and 2f

2b, **2d**, **2e** and **2f** were prepared by a literature procedure². To a degassed solution of aryl iodide (5.5 mmol) and propargylic amine (5.0 mmol) in THF/Et₃N (4:1) under nitrogen, were added CuI (38.1 mg, 0.20 mmol) and PdCl₂(PPh₃)₂ (70.2 mg, 0.10 mmol) at room temperature. The mixture was stirred overnight, and an aqueous solution of saturated NH₄Cl was added, and the mixture was extracted with EtOAc (3 x30 mL). The combined organic layer was washed with brine (50mL) and dried with Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ ethyl acetate) to give the corresponding propargylic amine derivatives in high yield.

3.4 The synthesis of 2c, 2g, 2h, 2j and 2k

2c, 2g, 2h, 2j and 2k was prepared by a literature procedure³.

4. Biological Assay

Fungi.

Rhizoctonia solani (*R.S.*), *Sclerotonia sclerotiorum* (*S.s.*); *Valsa mali* (*V.m.*); *Botryosphaeria dothidea* (*B.d.*); *Alternaria alternata* (*A.a.*) and *Alternaria solani* (*A.s.*) were provided by Anhui University of Science and Technology.

In Vitro Fungicidal Activities⁴.

The tested compounds were dissolved in DMSO to give a 10 mg/mL stock solution before mixing with PDA. The media containing compounds at a concentration of 25 mg/L were then poured into sterilized Petri dishes for primary screening. After 24-72 h at 28 °C, the colony diameter of each strain was measured. Percentage inhibition rate was calculated as $(C-A)/(C-B) \times 100\%$, where A represents the colony diameter in the Petri dishes with tested compounds, B represents the diameter of mycelial disc, and C is the mean colony diameter in control Petri dishes. Fluxapyroxad was selected as positive controls. Each treatment was performed three times. The inhibition rate of the potent compounds was further tested and the complete inhibition rate data is shown in the table S1 below.

Table S1. Growth inhibition of the mycelium of the pathogenic fungi by pyrazino[1,2 *b*]indazoles.^a

No	Compd	Mycelium growth inhibition, %					
		$(C = 25 \text{ mg} \cdot L^{-1})$					
		R. <u>s.</u>	<i>S.s.</i>	<i>V.m</i> .	<i>B.d.</i>	A.a.	A.s.
1	3aa	46.8 ± 6.0	36.3 ± 1.3	34.4 ± 0.2	44.9 ± 3.0	54.7 ± 3.8	42.2 ± 0.7
2	3ba	62.2 ± 1.0	53.2 ± 4.2	32.6 ± 1.1	48.2 ± 1.5	51.6 ± 2.9	36.9 ± 1.0
3	3ca	38.8 ± 0.5	43.2 ± 0.7	58.7 ± 5.0	45.7 ± 1.8	49.5 ± 1.7	30.3 ± 1.0
4	3da	65.9 ± 2.4	63.8 ± 1.1	44.8 ± 0.6	34.2 ± 0.6	55.5 ± 0.6	46.4 ± 0.2
5	3ea	65.8 ± 0.1	57.3 ± 0.5	47.2 ± 2.9	56.8 ± 2.1	60.4 ± 0.4	52.7 ± 1.2
6	3fa	52.3 ± 1.3	67.7 ± 1.3	55.4 ± 4.1	50.9 ± 1.4	57.8 ± 0.6	53.4 ± 2.2
7	3ga	47.9 ± 2.3	46.9 ± 3.1	44.7 ± 1.5	43.8 ± 3.4	49.0 ± 0.9	41.6 ± 5.0
8	3ha	58.2 ± 2.5	7.6 ± 0.8	16.4 ± 4.0	5.2 ± 0.3	6.5 ± 1.5	<5
9	3ia	<5	28.9 ± 2.4	8.2 ± 2.8	22.4 ± 4.6	30.1 ± 0.3	22.9 ± 0.6
10	3ja	15.7 ± 1.8	17.8 ± 0.6	30.1 ± 4.1	9.0 ± 2.3	<5	/
11	3ka	26.3 ± 2.6	19.8 ± 1.1	61.0 ± 3.1	9.7 ± 2.0	<5	/
12	3la	35.0 ± 1.0	23.9 ± 0.5	40.0 ± 5.1	10.6 ± 2.2	11.2 ± 1.6	/
13	3ma	63.6 ± 5.9	31.4 ± 0.3	76.5 ± 4.0	33.8 ± 2.8	<5	/
14	30a	41.7 ± 1.9	46.3 ± 2.5	48.0 ± 2.3	41.4 ± 1.9	59.9 ± 5.7	46.1 ± 1.2
15	Зра	$22.8\pm\!\!3.0$	44.6 ± 0.5	31.3 ± 2.4	33.2 ± 4.6	51.4 ± 0.7	43.3 ± 1.2
16	3ab	41.6 ± 4.0	22.0 ± 1.8	68.1 ± 4.3	26.3 ± 0.8	24.5 ± 1.2	10.2 ± 3.4
17	3ad	8.2 ± 0.9	8.1 ± 2.8	18.0 ± 2.5	7.9 ± 1.2	12.3 ± 1.1	14.1 ± 0.4
18	3af	29.2 ± 3.4	8.1 ± 1.3	36.0 ± 4.2	11.6 ± 2.3	21.5 ± 0.6	12.0 ± 1.6
19	3ag	41.9 ± 0.5	14.9 ± 2.2	4.9 ± 1.6	16.8 ± 4.8	13.8 ± 0.8	9.0 ± 0.2
20	3ai	37.0 ± 3.0	7.1 ± 0.3	24.6 ± 1.8	15.6 ± 1.7	9.4 ± 1.8	2.4 ± 1.1
21	3aj	10.1 ± 3.6	<5	5.2 ± 2.0	8.8 ± 2.6	13.7 ± 0.6	6.5 ± 0.9
22	3ak	48.2 ± 0.8	40.8 ± 0.9	39.1 ± 2.3	27.5 ± 2.5	32.0 ± 2.4	50.0 ± 2.2
23	fluxapyroxad	88.5±2.7	93.3±3.3	20.2±0.7	35.4±1.1	93.8±1.4	94.2±2.1
^a Data are given as the mean of triplicate experiments.							

5. Characterization Data of Products

4-methylpyrazino[1,2-b]indazole (3aa)

Yield 71%, red solid; mp: 170-172 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.44 (s, 1H), 8.19 (d, *J* = 8.2 Hz, 1H), 8.16 (s, 1H), 8.01 (d, *J* = 8.6 Hz, 1H), 7.65 (t, *J* = 7.7 Hz, 1H), 7.44 – 7.38 (m, 1H), 2.90 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.2, 140.7, 133.2, 131.2, 130.5, 129.1, 122.6, 119.7, 116.9, 115.7, 15.5. HRMS (ESI): calculated for C₁₁H₁₀N₃ [M+H]⁺ 184.0869, found 184.0869.

8-fluoro-4-methylpyrazino[1,2-b]indazole (3ba)

Yield 56%, red solid; mp: 182-185 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.38 (s, 1H), 8.16 – 8.10 (m, 2H), 7.56 (dd, J = 9.7, 2.3 Hz, 1H), 7.16 (td, J = 9.0, 2.2 Hz, 1H), 2.87 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 163.4 (d, ¹ J_{CF} = 247.1 Hz), 149.8 (d, J_{CF} = 13.2 Hz), 140.2, 133.1, 131.4, 130.5, 121.4 (d, J_{CF} = 10.9 Hz), 113.2 (d, ² J_{CF} = 27.3 Hz), 112.4, 101.0 (d, ² J_{CF} = 24.1 Hz), 15.4. HRMS (ESI): calculated for C₁₁H₉FN₃ [M+H]⁺ 202.0775 found 202.0775.

9-fluoro-4-methylpyrazino[1,2-b]indazole (3ca)

Yield 63%, red solid; mp: 145-148 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.35 (s, 1H), 8.12 (s, 1H), 7.94 (dd, J = 9.3, 4.4 Hz, 1H), 7.74 (dd, J = 8.3, 2.5 Hz, 1H), 7.40 (td, J = 9.1, 2.5 Hz, 1H), 2.86 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.8 (d, ¹ $J_{CF} = 242.9$ Hz), 146.2, 140.9, 133.2, 131.3, 130.6 (d, $J_{CF} = 7.2$ Hz), 119.5 (d, ² $J_{CF} = 27.4$ Hz), 118.7 (d, $J_{CF} = 9.1$ Hz), 115.3 (d, $J_{CF} = 11.9$ Hz), 103.4 (d, ² $J_{CF} = 25.3$ Hz), 15.4. HRMS (ESI): calculated for C₁₁H₉FN₃ [M+H]⁺ 202.0775, found 202.0775.

9-chloro-4-methylpyrazino[1,2-b]indazole (3da)

Yield 52%, orange solid; mp: 153-156 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.40 (s, 1H), 8.19 – 8.14 (m, 2H), 7.93 (d, *J* = 9.0 Hz, 1H), 7.58 (dd, *J* = 9.1, 2.0 Hz, 1H), 2.89 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 147.5, 140.9, 133.6, 131.4, 130.2, 130.0, 128.2, 118.8, 118.3, 116.2, 15.5. HRMS (ESI): calculated for C₁₁H₉ClN₃ [M+H]⁺ 218.0480, found 218.0479.

8-chloro-4-methylpyrazino[1,2-b]indazole (3ea)

Yield 79%, white solid; mp: 155-158 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.37 (s, 1H), 8.16 (s, 1H), 8.06 (d, *J* = 8.7 Hz, 1H), 7.93 (d, *J* = 1.8 Hz, 1H), 7.31 (dd, *J* = 8.7, 1.8 Hz, 1H), 2.87 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.5, 140.5, 134.9, 133.5, 131.5, 130.4, 123.7, 120.8, 116.1, 113.9, 15.4. HRMS (ESI): calculated for C₁₁H₉ClN₃ [M+H]⁺ 218.0480, found 218.0480.

9-bromo-4-methylpyrazino[1,2-b]indazole (3fa)

Yield 52%, red solid; mp: 148-151 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.38 (s, 1H), 8.30 (d, J = 1.9 Hz, 1H), 8.18 (s, 1H), 7.85 (d, J = 9.0 Hz, 1H), 7.68 (dd, J = 9.0, 1.9 Hz, 1H), 2.88 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 147.6, 140.8, 133.7, 132.5, 131.4, 129.7, 122.1, 118.5, 116.9, 115.7, 15.5. HRMS (ESI): calculated for C₁₁H₉BrN₃ [M+H]⁺ 261.9974, found 261.9976.

8-bromo-4-methylpyrazino[1,2-b]indazole (3ga)

Yield 48%, brown solid; mp: 146-149 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.40 (s, 1H), 8.19 (s, 1H), 8.14 (d, J = 1.7 Hz, 1H), 8.03 (d, J = 8.6 Hz, 1H), 7.46 (dd, J = 8.7, 1.6 Hz, 1H), 2.88 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.9, 140.6, 133.7, 131.5, 130.5, 126.1, 123.1, 120.9, 119.4, 114.2, 15.5. HRMS (ESI): calculated for C₁₁H₉BrN₃ [M+H]⁺ 261.9974, found 261.9976.

9-iodo-4-methylpyrazino[1,2-b]indazole (3ha)

Yield 44%, red solid; mp: 150-153 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.38 (s, 1H), 8.55 (d, J = 1.5 Hz, 1H), 8.18 (s, 1H), 7.84 (dd, J = 8.9, 1.6 Hz, 1H), 7.75 (d, J = 8.9 Hz, 1H), 2.88 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 147.9, 140.8, 137.6, 133.7, 131.4, 129.3, 128.6, 118.7, 117.8, 86.1, 15.5. HRMS (ESI): calculated for C₁₁H₈IN₃ [M]⁺ 309.9763, found 308.9719.

4-methyl-9-nitropyrazino[1,2-b]indazole (3ia)

Yield 49%, yellow solid; mp: 225-228 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.61 (s, 1H), 9.24 (s, 1H), 8.54 – 8.29 (m, 2H), 8.04 (s, 1H), 2.96 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.7, 142.8, 140.9, 135.4, 132.5, 132.1, 123.7, 118.2, 117.4, 114.3, 15.4. HRMS (ESI): calculated for C₁₁H₉N₄O₂ [M+H]⁺ 229.0720, found 229.0721.

8-bromo-9-chloro-4-methylpyrazino[1,2-b]indazole (3ja)

Yield 53%, red solid; mp: 80-83 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.38 (s, 1H), 8.27 (s, 1H), 8.22 (d, *J* = 1.2 Hz, 1H), 8.09 (s, 1H), 2.88 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.4, 140.8, 135.1, 134.2, 131.7, 129.7, 124.3, 117.9, 116.3, 115.3, 15.5. HRMS (ESI): calculated for C₁₁H₇BrClN₃ [M]⁺ 294.9506, found 294.9527.

8,9-dichloro-4-methylpyrazino[1,2-b]indazole (3ka)

Yield 69%, red solid; mp: 106-109 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.39 (s, 1H), 8.29 (s, 1H), 8.22 (d, J = 1.1 Hz, 1H), 8.10 (s, 1H), 2.89 (t, J = 0.8 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 147.9, 140.8, 134.2, 133.7, 131.7, 129.9, 126.9, 120.7, 118.1, 114.7, 15.5. HRMS (ESI): calculated for C₁₁H₈Cl₂N₃ [M+H]⁺ 252.0090, found 252.0087.

8,9-difluoro-4-methylpyrazino[1,2-b]indazole (3la)

Yield 51%, red solid; mp: 156-159 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.37 (s, 1H), 8.17 (s, 1H), 7.92 (dd, J = 9.3, 7.5 Hz, 1H), 7.72 (dd, J = 10.4, 6.8 Hz, 1H), 2.89 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 152.9 (dd, $J_{CF} = 16.2$, 252.1 Hz), 148.6 (dd, $J_{CF} = 16.6$, 246.9 Hz), 145.5 (d, $J_{CF} = 11.7$ Hz), 140.6, 133.1, 131.5, 130.7 (d, $J_{CF} = 7.5$ Hz), 110.8 (d, $J_{CF} = 9.2$ Hz), 105.7 (d, $J_{CF} = 21.0$ Hz), 103.5 (d, $J_{CF} = 20.5$ Hz), 15.4. HRMS (ESI): calculated for C₁₁H₈F₂N₃ [M+H]⁺ 220.0681, found 220.0680.

8-chloro-9-fluoro-4-methylpyrazino[1,2-b]indazole (3ma)

Yield 45%, red solid; mp: 130-133 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.38 (s, 1H), 8.19 (d, J = 1.2 Hz, 1H), 8.06 (d, J = 6.2 Hz, 1H), 7.90 (d, J = 8.3 Hz, 1H), 2.89 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 154.1 (d, ¹ J_{CF} = 245.2 Hz), 145.9, 140.9, 133.7, 131.6, 130.7 (d, J_{CF} = 6.6 Hz), 124.9 (d, J_{CF} = 21 Hz), 118.4, 113.7 (d, J_{CF} = 9.0 Hz), 104.9 (d, J_{CF} = 25.1 Hz), 15.4. HRMS (ESI): calculated for C₁₁H₈ClFN₃ [M+H]⁺ 236.0385, found 236.0385.

4,7-dimethylpyrazino[1,2-b]indazole (3na)

Yield 77%, red solid; mp: 102-105 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.25 (s, 1H), 7.98 (s, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.27 (s, 1H), 7.17 (t, J = 7.6 Hz, 1H), 2.77 (s, 3H), 2.67 (s, 3H). ¹³C NMR (151 MHz,

 $CDCl_{3}) \ \delta \ 149.2, \ 140.7, \ 132.6, \ 131.3, \ 130.7, \ 128.2, \ 127.2, \ 122.7, \ 116.9, \ 115.4, \ 17.4, \ 15.4. \ HRMS \ (ESI): calculated for \ C_{12}H_{12}N_3 \ [M+H]^+ \ 198.1026, \ found \ 198.1024.$

4,9-dimethylpyrazino[1,2-b]indazole (3oa)

Yield 64%, red solid; mp: 115-118 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.37 (s, 1H), 8.09 (s, 1H), 7.94 (s, 1H), 7.90 (d, *J* = 8.7 Hz, 1H), 7.48 (dd, *J* = 8.7, 1.7 Hz, 1H), 2.87 (s, 3H), 2.57 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.0, 140.7, 132.7, 132.4, 131.6, 131.0, 130.0, 118.3, 116.5, 115.9, 22.0, 15.5. HRMS (ESI): calculated for C₁₂H₁₂N₃ [M+H]⁺ 198.1026, found 198.1024.

9-methoxy-4-methylpyrazino[1,2-b]indazole (3pa)

Yield 41%, brown solid; mp: 133-136 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.35 (s, 1H), 8.04 (s, 1H), 7.91 (d, *J* = 9.2 Hz, 1H), 7.43 (d, *J* = 2.5 Hz, 1H), 7.32 (dd, *J* = 9.2, 2.5 Hz, 1H), 3.95 (s, 3H), 2.85 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 156.0, 145.4, 140.9, 132.2, 131.1, 130.1, 122.7, 118.3, 115.9, 97.5, 55.8, 15.4. HRMS (ESI): calculated for C₁₂H₁₂N₃O [M+H]⁺ 214.0975, found 214.0976.

7-methylpyrazolo[1,5-a]pyrazin (3qa)

Yield 56%, pale yellow oil; ¹H NMR (600 MHz, DMSO-*d6*) δ 9.17 (s, 1H), 8.27 (d, *J* = 6 Hz, 1H), 7.90 (s, 1H), 7.09 (s, *J* = 6 Hz, 1H), 2.73 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d6*) δ 142.9, 142.1, 135.6, 131.8, 128.2, 99.7, 14.7. MS (EI): m/z calculated for C₇H₇N₃ 133, found 133.

4-benzylpyrazino[1,2-b]indazole (3ab)

Yield 50%, gray solid; mp: 130-133 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.45 (s, 1H), 8.20 (d, J = 8.2 Hz, 1H), 8.03 (d, J = 8.6 Hz, 1H), 7.94 (s, 1H), 7.66 (t, J = 7.7 Hz, 1H), 7.47 – 7.40 (m, 3H), 7.37 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.4 Hz, 1H), 4.66 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 149.2, 140.8, 135.4, 134.0, 133.1, 130.6, 129.7, 129.1, 128.9, 127.4, 122.7, 119.6, 117.0, 115.8, 35.2. HRMS (ESI): calculated for C₁₇H₁₄N₃ [M+H]⁺ 260.1182, found 260.1180.

4-(2-methylbenzyl)pyrazino[1,2-b]indazole (3ac)

Yield 28%, red solid; mp: 118-121 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.46 (s, 1H), 8.23 (d, J = 8.2 Hz, 1H), 8.05 (d, J = 8.6 Hz, 1H), 7.71-7.67 (m, 2H), 7.45 (t, J = 7.5 Hz, 1H), 7.29-7.21 (m, 4H), 4.66 (s, 2H), 2.32 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 149.3, 140.6, 137.4, 133.3, 132.7, 130.9, 130.6, 130.5, 129.2, 127.9, 126.7, 122.8, 119.7, 117.0, 115.9, 33.1, 19.6. HRMS (ESI): calculated for C₁₈H₁₆N₃ [M+H]⁺ 274.1339, found 274.1340.

4-(4-methylbenzyl)pyrazino[1,2-b]indazole (3ad)

Yield 35%, white solid; mp: 138-141 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.46 (s, 1H), 8.22 (d, J = 8.2 Hz, 1H), 8.03 (d, J = 8.6 Hz, 1H), 7.94 (s, 1H), 7.67 (t, J = 7.7 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 7.32 (d, J = 7.6 Hz, 2H), 7.18 (d, J = 7.5 Hz, 2H), 4.63 (s, 2H), 2.36 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.2, 140.8, 137.1, 134.2, 133.2, 132.3, 130.5, 129.7, 129.6, 129.0, 122.6, 119.6, 117.0, 115.8, 34.8, 21.2 HRMS (ESI): calculated for C₁₈H₁₆N₃ [M+H]⁺ 274.1339, found 274.1341.

4-(3-methylbenzyl)pyrazino[1,2-b] indazole (3ae)

Yield 47%, red solid; mp: 185-188°C; ¹H NMR (600 MHz, CDCl₃) δ 9.46 (s, 1H), 8.21 (d, *J* = 8.2 Hz, 1H), 8.04 (d, *J* = 8.6 Hz, 1H), 7.94 (s, 1H), 7.67 (s, 1H), 7.43 (s, 1H), 7.23 (s, 3H), 7.13 (s, 1H), 4.63 (s, 2H), 2.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.2, 140.8, 138.6, 135.3, 134.2, 133.2, 130.5, 129.1, 128.8, 128.2, 126.8, 122.7, 119.7, 117.1, 115.8, 35.1, 21.5. HRMS (ESI): calculated for C₁₈H₁₆N₃ [M+H]⁺ 274.1339, found 274.1337.

4-(4-methoxybenzyl)pyrazino[1,2-b]indazole (3af)

Yield 47%, gray solid; mp: 112-115 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.43 (s, 1H), 8.20 (d, J = 8.2 Hz, 1H), 8.03 (d, J = 8.6 Hz, 1H), 7.92 (s, 1H), 7.66 (t, J = 7.7 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.35 (d, J = 8.3 Hz, 2H), 6.93 – 6.88 (m, 2H), 4.59 (s, 2H), 3.80 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.0, 149.2, 140.7, 134.4, 133.0, 130.8, 130.5, 129.0, 127.3, 122.7, 119.6, 117.0, 115.8, 114.4, 55.4, 34.4. HRMS (ESI): calculated for C₁₈H₁₆N₃O [M+H]⁺ 290.1288, found 290.1296.

4-methyl-3-phenylpyrazino[1,2-b]indazole (3ag)

Yield 67%, red solid; mp: 191-194 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.48 (s, 1H), 8.20 (d, J = 8.2 Hz, 1H), 8.01 (d, J = 8.6 Hz, 1H), 7.66 (t, J = 5.9 Hz, 2H), 7.63 (d, J = 7.1 Hz, 1H), 7.52 (t, J = 7.6 Hz, 2H), 7.46 (t, J = 7.4 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 2.99 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.6, 143.7, 139.3, 138.2, 130.0, 129.4, 129.0, 128.9, 128.6, 128.5, 122.5, 119.6, 116.7, 115.8, 15.6. HRMS (ESI): calculated for C₁₇H₁₄N₃ [M+H]⁺ 260.1182, found 260.1182.

4-methyl-3-(o-tolyl)pyrazino[1,2-b]indazole (3ah)

Yield 45%, yellow oil; mp: 100-103 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.51 (s, 1H), 8.24 (d, J = 8.2 Hz, 1H), 8.04 (d, J = 8.6 Hz, 1H), 7.67 (t, J = 7.7 Hz, 1H), 7.46 – 7.41 (m, 1H), 7.41 – 7.29 (m, 4H), 2.78 (s, 3H), 2.19 (s, 3H), 1.32 – 1.24 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 148.4, 142.7, 138.1, 136.4, 135.7, 129.5, 128.8, 128.5, 128.4, 127.9, 127.8, 124.9, 121.5, 118.5, 115.7, 114.8, 18.7, 13.8. HRMS (ESI): calculated for C₁₈H₁₆N₃ [M+H]⁺ 274.1339, found 274.1336.

4-methyl-3-(p-tolyl)pyrazino[1,2-b]indazole (3ai)

Yield 66%, white solid; mp: 160-163 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.50 (s, 1H), 8.22 (d, J = 8.2 Hz, 1H), 8.02 (d, J = 8.6 Hz, 1H), 7.66 (t, J = 7.7 Hz, 1H), 7.57 (d, J = 8.0 Hz, 2H), 7.42 (t, J = 7.5 Hz, 1H), 7.34 (d, J = 7.8 Hz, 2H), 3.01 (s, 3H), 2.45 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.6, 143.8, 139.3, 138.6, 135.3, 129.9, 129.4, 129.3, 128.9, 128.9, 122.5, 119.6, 116.8, 115.9, 21.5, 15.7. HRMS (ESI): calculated for C₁₈H₁₆N₃ [M+H]⁺ 274.1339, found 274.1339.

3-(4-fluorophenyl)-4-methylpyrazino[1,2-b]indazole (3aj)

Yield 74%, yellow solid; mp: 191-194 °C¹H NMR (600 MHz, CDCl₃) δ 9.49 (s, 1H), 8.23 (d, *J* = 8.1 Hz, 1H), 8.03 (d, *J* = 8.5 Hz, 1H), 7.66 (t, *J* = 9.3 Hz, 3H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.23 (t, *J* = 8.4 Hz, 2H), 3.00 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.9 (d, ^{*I*}_{*J*CF} = 247.5 Hz), 149.7, 142.7, 139.3, 134.1 (d, *J*_{*CF*} = 4.5 Hz), 131.8 (d, *J*_{*CF*} = 9.0 Hz), 129.5, 129.0 (d, *J*_{*CF*} = 9.0 Hz), 122.7, 119.6, 116.9, 115.9, 115.7, 115.6, 15.6. HRMS (ESI): calculated for C₁₇H₁₃FN₃ [M+H]⁺ 278.1088, found 278.1088.

3-(4-chlorophenyl)-4-methylpyrazino[1,2-b]indazole (3ak)

Yield 69%, white solid; mp: 207-210 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.47 (s, 1H), 8.21 (d, J = 8.2 Hz, 1H), 8.02 (d, J = 8.6 Hz, 1H), 7.69 – 7.64 (m, 1H), 7.62 (d, J = 8.1 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H), 7.42 (t, J = 7.5 Hz, 1H), 2.99 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.6, 142.5, 139.4, 136.6, 134.8,

131.4, 129.4, 129.1, 128.8, 122.7, 119.6, 116.8, 115.8, 15.6. HRMS (ESI): calculated for $C_{17}H_{13}ClN_3$ [M+H]⁺ 294.0793, found 294.0792.

6. ¹H NMR and ¹³C NMR Spectra of products _{3aa}

3ba

3ca

3da

тьо 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 гі (ррш)

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

7. Single-crystal X-ray Diffraction

Single crystal of **3aa** was grown by slow evaporation of its dichloromethane/methanol/petroleum ether solution.

Figure S1. X-ray single crystal structure of 3aa

Table S2 Crystal data a	nd structure refinement for 3aa.
Identification code	3aa
Empirical formula	$C_{11}H_9N_3$
Formula weight	183.21
Temperature/K	293.15
Crystal system	orthorhombic
Space group	Pna2 ₁
a/Å	13.009(3)
b/Å	15.324(3)
c/Å	4.6638(9)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	929.7(3)
Ζ	4
$\rho_{calc}g/cm^3$	1.309
µ/mm ⁻¹	0.082
F(000)	384.0
Crystal size/mm ³	$0.19 \times 0.18 \times 0.18$
Radiation	MoKa ($\lambda = 0.71073$)

2Θ range for data collection/°	4.108 to 49.996
Index ranges	$-15 \le h \le 15, -18 \le k \le 18, -5 \le l \le 5$
Reflections collected	6472
Independent reflections	1541 [$R_{int} = 0.1180, R_{sigma} = 0.0602$]
Data/restraints/parameters	1541/1/128
Goodness-of-fit on F ²	1.053
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0775, wR_2 = 0.2056$
Final R indexes [all data]	$R_1 = 0.0792, wR_2 = 0.2102$
Largest diff. peak/hole / e Å-3	0.18/-0.20
Flack parameter	-10.0(10)

8. References

- 1. A. Chevalier, A. Ouahrouch, A. Arnaud, T. Gallavardin and X. Franck, *RSC Adv*, 2018, **8**, 13121-13128.
- 2. M. Duan, G. Hou, Y. Zhao, C. Zhu and C. Song, *J Org Chem*, 2022, **87**, 11222-11225.
- 3. A. Guðmundsson, K. P. J. Gustafson, B. K. Mai, V. Hobiger, F. Himo and J.-E. Bäckvall, *ACS Catalysis*, 2019, **9**, 1733-1737.
- 4. W. Wang, J. Wang, J. Wu, M. Jin, J. Li, S. Jin, W. Li, D. Xu, X. Liu and G. Xu, *J Agric Food Chem*, 2022, **70**, 7566-7575.