The construction of indolizine scaffolds from α, ω-alkynoic acids and α, ω-vinylamines via a sequential-relay catalysis in "one pot"

Jiami Liu \ddagger, Yi Lu \ddagger, Lingxuan Zhu \ddagger and Xinsheng Lei*
Institutes of Biomedical Sciences \& School of Pharmacy, Fudan University, 826
Zhangheng Road, Pudong Zone, Shanghai 201203, China.

Email: leixs@fudan.edu.cn

Table of Contents:

1. General Chemistry Information S-3
2. Additional Optimization of Reaction Conditions S-4
3. Synthesis S-6
4. Reference S-20
5. Single Crystal X-ray Data for Compound 3af S-21
6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds S-26

General Chemistry Information

The chemicals and reagents were purchased from Acros, Alfa Aesar, and National Chemical Reagent Group Co. Ltd., P. R. China, and used without further purification. Anhydrous solvents (THF, MeOH, DMF, DCM, and $\mathrm{CH}_{3} \mathrm{CN}$) used in the reactions were dried and freshly distilled before use. Petroleum ether (PE) used had a boiling range of $60-90^{\circ} \mathrm{C}$. All the reactions were carried out under Ar atmosphere, otherwise stated else. Oxygen and/or moisture sensitive solids and liquids were transferred appropriately. Concentration of solutions in vacuo was accomplished using a rotary evaporator fitted with a water aspirator. Residual solvents were removed under high vacuum ($0.1-0.2 \mathrm{~mm} \mathrm{Hg}$). The progress of the reactions was monitored by TLC (silica-coated glass plates) and visualized under UV light, and by using iodine, ceric ammonium molybdate stain or phosphomolybdic acid. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded either on a 400 MHz Varian Instrument at $25^{\circ} \mathrm{C}$ or 600 MHz Bruke Instrument at $25^{\circ} \mathrm{C}$, using TMS as an internal standard, respectively. Multiplicity is tabulated as s for singlet, d for doublet, dd for doublet of doublet, t for triplet, and m for multiplet. Coupling constants (J) are reported in Hertz. ${ }^{13} \mathrm{C}$ NMR spectra were completely hetero-decoupled and measured at 150 MHz . HRMS spectra were recorded on Finnigan-Mat-95 mass spectrometer, equipped with ESI source. Single crystal X-ray diffraction measurements were performed with a diffractometer working with graphite-monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation.

Additional Optimization of Reaction Conditions

Table S1. The influence of temperature on all four steps of the procedure ${ }^{\text {a }}$.

1a
I
II
III
3aa

Entry	Temp. $1\left({ }^{\circ} \mathrm{C}\right)$	Yield (I) ${ }^{\text {b }}$	Temp. $2\left({ }^{\circ} \mathrm{C}\right)$	Yield (II) ${ }^{\text {b }}$	Temp. $3\left({ }^{\circ} \mathrm{C}\right)$	Yield (III) ${ }^{\text {b }}$	Temp. $4\left({ }^{\circ} \mathrm{C}\right)$	Yield 3aa ${ }^{\text {b }}$
1	rt.	N.D. ${ }^{\text {c }}$	-	-	-	-	-	-
2	80	90\%	-	-	-	-	-	-
3	115	98\%	-	-	-	-	-	-
4	115	98\%	rt.	40\%	-	-	-	-
5	115	98\%	80	70\%	-	-	-	-
6	115	98\%	115	96\%	-	-	-	-
7	115	98\%	115	96\%	rt.	N.D. ${ }^{\text {c }}$	-	-
8	115	98\%	115	96\%	80	20\%	-	-
9	115	98\%	115	96\%	115	95\%	-	-
10	115	98\%	115	96\%	115	95\%	rt.	N.D. ${ }^{\text {c }}$
11	115	98\%	115	96\%	115	95\%	80	30\%
12	115	98\%	115	96\%	115	95\%	115	97\%

${ }^{\text {a }}$ Conditions: substrate $\mathbf{1 a}(1.0 \mathrm{mmol})$, $\mathbf{2 a}(1.0 \mathrm{mmol})$, anhydrous toluene $(15 \mathrm{~mL})$, Cat-V ($5 \mathrm{~mol} \%$), Cat-III ($5 \mathrm{~mol} \%$), the temperature is measured by the temperature setting of the oil bath. ${ }^{b}$ Determined by crude NMR analysis. ${ }^{\text {c }}$ Not detected.

Table S2. Optimizing the solvent for aliphatic alkynoic acid substrate $\mathbf{1} \mathbf{j}^{\text {a }}$.

	$\mathbf{1 j}$		II	III
Entry	Solvent	Conversion (10)		
1	tol	53%	Yield (III) $^{\text {b }}$	
2	DCM	95%	45%	
3	DCE	96%	26%	

${ }^{\text {a }}$ Conditions: substrate $1 \mathbf{j}(1.0 \mathrm{mmol})$, $\mathbf{2 a}(1.0 \mathrm{mmol})$, anhydrous solvent $(15 \mathrm{~mL})$, refluxed overnight. ${ }^{\mathrm{b}}$ Determined by crude NMR analysis. ${ }^{\text {c }}$ Isolated yield.

Table S3. Optimizing the additive for aryl and aliphatic substrates ${ }^{\text {a }}$.

Entry	Substrate	Additive	Temp. $3\left({ }^{\circ} \mathrm{C}\right)$	Yield (III) ${ }^{\text {b }}$
1	1 a	TFA	80	95\%
2	1a	$\mathrm{CH}_{3} \mathrm{COOH}$	80	80\%
3	1a	$\mathrm{Ac}_{2} \mathrm{O}$	80	78\%
4	1 j	TFA	80/40	N.D. ${ }^{\text {c }}$
5	1 j	$\mathrm{CH}_{3} \mathrm{COOH}$	80/40	N.D. ${ }^{\text {c }}$
6	1j	$\mathrm{Ac}_{2} \mathrm{O}$	80/40	N.D. ${ }^{\text {c }}$

${ }^{\text {a }}$ Conditions: substrate $\mathbf{1}(1.0 \mathrm{mmol})$, $\mathbf{2 a}(1.0 \mathrm{mmol})$, anhydrous toluene $(15 \mathrm{~mL})$, Cat-V ($5 \mathrm{~mol} \%$), Cat-III ($5 \mathrm{~mol} \%$). ${ }^{\mathrm{b}}$ Determined by crude NMR analysis. ${ }^{\text {c }}$ Not detected.

Synthesis

Synthesis of $\boldsymbol{\alpha}, \omega$-alkynoic acid substrates (1x)

The α, ω-alkynoic acid substrates ($\mathbf{1} \mathbf{x}$) were synthesized according to the methods reported in the reference below. ${ }^{[1-3]}$
Table S4. Synthesis of α, ω-alkynoic acid substrates

1x-1
1x

Compound	Ar	Yield (\%)			
		1x-2	1x-3	1x	Total
1a	$\mathrm{C}_{6} \mathrm{H}_{5}$	90	99	99	88
1b	4-CH3- $\mathrm{C}_{6} \mathrm{H}_{5}$	92	99	75	68
1c	$3-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{5}$	86	98	93	79
1d	$4-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{5}$	76	98	85	63
1 e	$4-\mathrm{OCH}_{3}-\mathrm{C}_{6} \mathrm{H}_{5}$	10	97	99	10
1 f	$4-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{5}$	99	96	88	84
1g	4-F- $\mathrm{C}_{6} \mathrm{H}_{5}$	90	99	47	42
1h	$4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{5}$	90	98	50	44
1 i		69	99	95	65

Representative procedure for the synthesis of 1a-2, $1(\mathbf{f}-\mathbf{i}) \mathbf{- 2}$

Methyl 4-fluoro-2-[(trimethylsilyl)ethynyl]benzoate (1g-2)

To a flame dried round bottom flask containing $\mathbf{1 g - 1}(2.33 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0 \mathrm{eq})$, was added $\mathrm{Et}_{3} \mathrm{~N} 20 \mathrm{~mL}$, ethynyltrimethylsilane $(2.2 \mathrm{~mL}, 15.0 \mathrm{mmol}, 1.5 \mathrm{eq})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.280 \mathrm{~g}$, $0.4 \mathrm{mmol}, 0.04 \mathrm{eq})$. The mixture was stirred at room temperature for 5 min , and was added
$\mathrm{CuI}(0.080 \mathrm{~g}, 0.4 \mathrm{mmol}, 0.04 \mathrm{eq})$, and then stirred at $80{ }^{\circ} \mathrm{C}$ for 20 h . After completion of the reaction, the mixture was filtered and concentrated in vacuo. The residue obtained was purified by silica gel chromatography to afford $\mathbf{1 g - 2}$ as transparent liquid ($2.25 \mathrm{~g}, 90 \%$). TLC: $R_{f}=0.79(\mathrm{PE} / \mathrm{EA}=20 / 1) ;$ ESI-MS $(\mathrm{m} / \mathrm{z}) 251.3[\mathrm{M}+\mathrm{H}]^{+}$.
Representative procedure for the synthesis of $1(\mathrm{~b}-\mathrm{e})-2$
Methyl 4-methyl-2-[(trimethylsilyl)ethynyl]benzoate (1b-2)

To a flame dried round bottom flask containing $\mathbf{1 b - 1}(2.76 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0 \mathrm{eq})$ were added $\mathrm{Et}_{3} \mathrm{~N} 20 \mathrm{~mL}$ and ethynyltrimethylsilane ($\left.2.2 \mathrm{~mL}, 15.0 \mathrm{mmol}, 1.5 \mathrm{eq}\right)$. Then $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ $(0.280 \mathrm{~g}, 0.4 \mathrm{mmol}, 0.04 \mathrm{eq})$ and $\mathrm{PCy}_{3}(0.112 \mathrm{~g}, 0.4 \mathrm{mmol}, 0.04 \mathrm{eq})$ were subsequently added to the reacting mixture and stirred at room temperature for 5 min , and $\mathrm{CuI}(0.080 \mathrm{~g}, 0.4 \mathrm{mmol}$, 0.04 eq) were added. The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 20 h , then filtered and concentrated in vacuo. The residue obtained was purified by silica gel chromatography to afford $\mathbf{1 b - 2}$ as colorless liquid ($2.26 \mathrm{~g}, 92 \%$). TLC: $R_{f}=0.20(\mathrm{PE}) ;$ ESI-MS $(\mathrm{m} / \mathrm{z}) 247.1[\mathrm{M}+\mathrm{H}]^{+}$.

Representative procedure for the synthesis of 1×-3

Methyl 2-ethynyl-4-methylbenzoate (1b-3)

To a flame dried round bottom flask containing $\mathbf{1 b - 2}(0.257 \mathrm{~g}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq})$ were added methanol 5 mL and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.015 \mathrm{~g}, 0.1 \mathrm{mmol}, 0.1 \mathrm{eq})$. The mixture was stirred at room temperature for 5 h . After completion of the reaction as indicated by thin layer chromatography, the reacting mixture was concentrated in vacuo, diluted with $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, extracted with DCM $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and subjected to the next step without further purification after removal of DCM in vacuo. TLC: $R_{f}=0.67$ (PE/EA=5/1);ESI-MS $(\mathrm{m} / \mathrm{z}) 175.2[\mathrm{M}+\mathrm{H}]^{+}$.

Representative procedure for the synthesis of alkynoic acid $\mathbf{1 x}$

2-Ethynyl-4-methylbenzoic acid (1b)

To a flame dried round bottom flask containing $\mathbf{1 b}-3(0.174 \mathrm{~g}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq})$, was added $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(4 / 1,0.2 \mathrm{M})$ and stirred ice bath for 10 min . LiOH. $\mathrm{H}_{2} \mathrm{O}(0.082 \mathrm{~g}, 2 \mathrm{mmol}, 2.0 \mathrm{eq})$ was then added under ice bath, then warmed to room temperature and reacted for another 4 h till the completion of the reaction as indicated by thin layer chromatography. Then mixture was then concentrated in vacuo, diluted with $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, carefully added 1 M HCl until pH $2-3$, then extracted with DCM $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine
$(2 \times 20 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and then purified by silica gel chromatography to afford 1b as light yellow solid ($0.155 \mathrm{~g}, 97 \%$). TLC: $R_{f}=0.22$ $(\mathrm{PE} / \mathrm{EA}=1 / 1){ }^{1}{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.4,138.5,134.4$, $132.8,131.2,130.4,119.4,81.9,81.3,20.7$. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{2}{ }^{+}$: 161.0596, found: 161.0596.

Synthesis of $\boldsymbol{\alpha}, \omega$-vinylamine substrates ($\mathbf{2 x}$)

The α, ω-vinylamine substrates ($\mathbf{2 a - 2 s}$) were synthesized according to the methods reported in the reference below. ${ }^{[4-6]}$

Table S5. Synthesis of α, ω-vinylamine substrates $\mathbf{2 a}$-2s

Compound	Ar	Yield(\%)			
		2x-2	2x-3	2	Total
2a	$\mathrm{C}_{6} \mathrm{H}_{5}$	91	98	89	79
2b	4-F-C $\mathrm{C}_{6} \mathrm{H}_{4}$	91	99	58	52
2c	$4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$	75	97	60	44
2d	6-F-C $\mathrm{C}_{6} \mathrm{H}_{4}$	98	99	37	36
2 e	$3-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$	62	96	71	42
2 f	$4-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$	77	97	90	67
2g	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	81	98	42	33
2h	6-Cl-C6 H_{4}	90	95	15	13
2 i	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	82	98	33	27
2j	$4-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$	92	97	54	48
2k	$4-\mathrm{OCH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$	44	98	70	30
21	$4-\mathrm{OCH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$	94	99	61	57
2 m	4,4-dioxol- $\mathrm{C}_{6} \mathrm{H}_{4}$	97	98	72	68
2 n	4,4-dimethoxy - $\mathrm{C}_{6} \mathrm{H}_{4}$	98	99	61	60
20		79	99	89	70
2p		91	97	85	75
2q		92	96	99	87

82
86
69

The α, ω-vinylamine substrates $(\mathbf{2 t}, \mathbf{2 v}, \mathbf{2 w})$ were synthesized according to the methods reported in the reference below. ${ }^{[7]}$

Table S6. Synthesis of α, ω-vinylamine $\mathbf{2 t}, \mathbf{2 v}$ and $\mathbf{2 w}$

Representative procedure for the synthesis of 2(a-s)-2

2-Vinylbenzaldehyde (2a-2)

To a flame dried round bottom flask containing $\mathbf{2 a - 1}(3.68 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0 \mathrm{eq})$, were added $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(9 / 1,0.1 \mathrm{M}), \mathrm{Pd}(\mathrm{OAc})_{2}(224 \mathrm{mg}, 1.0 \mathrm{mmol}, 0.05 \mathrm{eq}), \mathrm{PPh}_{3}(524 \mathrm{mg}, 2.0 \mathrm{mmol}, 0.1$ eq), Potassium vinyltrifluoroborate ($24.0 \mathrm{mmol}, 1.2 \mathrm{eq}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(18.2 \mathrm{~g}, 60.0 \mathrm{mmol}, 3.0$ eq). The reaction mixture were stirred at $70{ }^{\circ} \mathrm{C}$ for $6 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ were then added to quench the reaction after completion of the reaction indicated by thin layer chromatography. The mixture was extracted with EA $(3 \times 30 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and then purified by silica gel chromatography to afford $\mathbf{2 a - 2}$ as colorless liquid ($2.40 \mathrm{~g}, 91 \%$). TLC: $R_{f}=0.28$ $(\mathrm{PE} / \mathrm{EA}=10 / 1) ;{ }^{1} \mathbf{H}$ NMR $\left(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.29(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-\right.$ $7.49(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{[66]}$ HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}^{+}: 133.0621$, found: 133.0624 .
Representative procedure for the synthesis of 2(a-s)-3
2-Vinylbenzaldehyde oxime (2a-3)

To a flame dried round bottom flask containing $\mathbf{2 a - 2}(15.0 \mathrm{mmol}, 1.0 \mathrm{eq})$, were added $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(9 / 1,0.1 \mathrm{M}), \mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(1.77 \mathrm{~g}, 25 \mathrm{mmol}, 1.7 \mathrm{eq})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.86 \mathrm{~g}, 17.5$ $\mathrm{mmol}, 0.75 \mathrm{eq})$. The mixture were stirred at room temperature for 1 h , and $5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ was added to quench the reaction after completion of the reaction. The mixture was concentrated in vacuo, extracted with DCM $(3 \times 50 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo to afford $\mathbf{2 a - 3}$ as white solid (2.15 $\mathrm{g}, 98 \%$) which was used without further purification in the next step. TLC: $R_{f}=0.62$ (PE/EA=5/1); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.06(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=17.3 \mathrm{~Hz}$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 149.0,137.5,134.1,130.0,129.1,127.9,127.1,127.0,118.0$. ESI-MS (m/z) 148.2 $[\mathrm{M}+\mathrm{H}]^{+}$.

Representative procedure for the synthesis of 2(a-s)

(2-Vinylphenyl)methanamine (2a)

To a flame dried round bottom flask containing $\mathbf{2 a - 3}(5.21 \mathrm{~g}, 35.2 \mathrm{mmol}, 1.0 \mathrm{eq})$, was added $\mathrm{CH}_{3} \mathrm{COOH} 300 \mathrm{~mL}(8.5 \mathrm{~mL} / \mathrm{mmol})$, and stirred at room temperature for 5 min . Zn dust (13.7 $\mathrm{g}, 211 \mathrm{mmol}, 6.0 \mathrm{eq})$ was added afterwards, and the mixture was stirred at room temperature overnight. The reaction mixture was filtered and concentrated in vacuo after completion of reaction indicated by thin layer chromatography. Then 1 M NaOH aq. was added till emulsification and demulsification was observed. The mixture was then extracted with DCM $(3 \times 100 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and then purified by silica gel chromatography to afford 2a as light purple liquid ($4.10 \mathrm{~g}, 89 \%$). TLC: $R_{f}=0.62(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.56-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{dd}, J=17.9 \mathrm{~Hz}, 10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J$ $=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 140.3,136.2,134.0,128.1,128.0,127.3,126.0,116.3,44.2$. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}^{+}$: 134.0964, found: 134.0963.

Representative procedure for the synthesis of $\mathbf{2}(\mathbf{t}, \mathbf{v}, \mathbf{w})$

2-(2-Vinylphenyl)ethan-1-amine (2v)

To a flame dried round bottom flask containing 2-(2-bromophenyl)ethan-1-amine $(2.00 \mathrm{~g}$, $10.0 \mathrm{mmol}, 1.0 \mathrm{eq})$ were added 1,4 -dioxane $(0.1 \mathrm{M}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.230 \mathrm{~g}, 0.2 \mathrm{mmol}, 0.02 \mathrm{eq})$, and tributyl(vinyl)stannane ($3.80 \mathrm{~g}, 24 \mathrm{mmol}, 1.2 \mathrm{eq}$). The mixture was stirred at $125^{\circ} \mathrm{C}$ for 5 h , cooled to room temperature after completion of the reaction and was added $10 \% \mathrm{KF}$ aq. $(100 \mathrm{~mL})$. The mixture was stirred at room temperature for 2 h , then filtered and extracted with EA ($3 \times 50 \mathrm{~mL}$). The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and then purified by silica gel chromatography to afford $\mathbf{2 v}$ as colorless oil ($1.29 \mathrm{~g}, 88 \%$). TLC: $R_{f}=0.24(\mathrm{DCM} / \mathrm{MeOH}=10 / 1) ;{ }^{1} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=17.3 \mathrm{~Hz}, 10.9,1 \mathrm{H})$, $5.65(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{[64]}{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.5,136.2,133.9,129.4,127.1,126.0,125.3,115.1$, 42.5, 36.8. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}^{+}$: 148.1121, found: 148.1122 .

Synthesis and characterization of the representative intermediates (I-III)

3-Methyleneisobenzofuran-1(3H)-one (I)

To a flame dried sealed tube containing $\mathbf{1 a}(0.146 \mathrm{~g}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added Au-I catalyst $(0.025 \mathrm{~g}, 0.05 \mathrm{mmol}, 0.05 \mathrm{eq})$ and 10 mL anhydrous toluene. The mixture was refluxed in oil bath $\left(115{ }^{\circ} \mathrm{C}\right)$ for 2 h , and concentrated in vacuo to remove solvent after total conversion of $\mathbf{1 a}$ as indicated by thin layer chromatography. The residue obtained was purified by silica gel chromatography to afford \mathbf{I} as transparent oil ($0.118 \mathrm{~g}, 81 \%$). TLC: $R_{f}=$ $0.47(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~d}, J=7.7,1 \mathrm{H}), 7.72(\mathrm{~m}, 2 \mathrm{H}), 7.58$ $(\mathrm{m}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,151.2,138.4,133.8,129.8$, 124.7, 124.5, 120.0, 90.6. HRMS $(m / z):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}^{+}: 147.0441$, found: 147.0438.

2-Acetyl-N-(2-vinylbenzyl)benzamide (II)

To a flame dried sealed tube containing $\mathbf{1 a}(0.146 \mathrm{~g}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added Au-I catalyst ($0.025 \mathrm{~g}, 0.05 \mathrm{mmol}, 0.05 \mathrm{eq}$) and 10 mL anhydrous toluene. The mixture was refluxed in oil bath $\left(115^{\circ} \mathrm{C}\right)$ for 2 h , then cooled to room temperature after total conversion of 1a as indicated by thin layer chromatography. 2a ($0.133 \mathrm{~g}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$) was then solved in 5 mL anhydrous toluene, and added to the reaction mixture. The mixture was stirred at room temperature overnight (10 h), and concentrated in vacuo after completion of the reaction as indicated by thin layer chromatography. The residue obtained was purified by silica gel
chromatography to afford II as light yellow liquid ($0.167 \mathrm{~g}, 60 \%$). TLC: $R_{f}=0.36$ $(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.52(\mathrm{~m}, 2 \mathrm{H})$, $7.52-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{dd}, J=17.1,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=17.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ $(\mathrm{s}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.9,147.9,135.8,134.0,133.6,132.0$, $129.2,128.9,127.2,127.2,126.8,125.5,122.8,121.1,116.1,88.6,38.5,23.9$. ESI-MS $(\mathrm{m} / \mathrm{z})$ $280.1[\mathrm{M}+\mathrm{H}]^{+}$.
3-Methylene-2-(2-vinylbenzyl)isoindolin-1-one (III)

To a flame dried sealed tube containing $1 \mathbf{a}(0.146 \mathrm{~g}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added Au-I catalyst ($0.025 \mathrm{~g}, 0.05 \mathrm{mmol}, 0.05 \mathrm{eq}$) and 10 mL anhydrous toluene. The mixture was refluxed in oil bath $\left(115{ }^{\circ} \mathrm{C}\right)$ for 2 h , then cooled to room temperature after total conversion of 1a as indicated by thin layer chromatography. 2a ($0.133 \mathrm{~g}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$) was then solved in 5 mL anhydrous toluene, and added to the reaction mixture. The mixture was stirred at room temperature overnight (10 h), and then refluxed for another 10 h after total conversion of I as indicated by thin layer chromatography. The mixture was then concentrated in vacuo and the residue obtained was purified by silica gel chromatography to afford III as light yellow liquid $(0.220 \mathrm{~g}, 85 \%)$. TLC: $R_{f}=0.52(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 1 \mathrm{H})$, $7.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=17.3,10.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}$, $1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,140.9,135.7,135.6$, 133.2, 132.7, 131.5, 128.9, 128.5, 127.4, 126.8, 125.9, 125.8, 122.8, 119.3, 116.5, 89.7, 40.2. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}^{+}: 262.1226$, found: 262.1225 .

Representative procedure for the synthesis of compound 3

To a flame dried sealed tube containing α, ω-alkynoic acid $\mathbf{1}(1.0 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added Au-I catalyst ($0.025 \mathrm{~g}, 0.05 \mathrm{mmol}, 0.05 \mathrm{eq}$) and 10 mL anhydrous toluene. The mixture was refluxed in oil bath $\left(115{ }^{\circ} \mathrm{C}\right)$ for 2 h , then α, ω-vinylamine $2(1.0 \mathrm{mmol}, 1.0 \mathrm{eq})$ was solved in 5 mL anhydrous toluene, and added to the reaction mixture after total conversion of α, ω-alkynoic acid 1 as indicated by thin layer chromatography. The mixture was refluxed overnight, and Ru -III catalyst $(0.032 \mathrm{~g}, 0.05 \mathrm{mmol}, 0.05 \mathrm{eq})$ was added to the reaction mixture. The mixture was stirred for 10 h , and concentrated in vacuo after completion of the reaction as indicated by thin layer chromatography. The residue obtained was purified by silica gel chromatography to afford the desired indolizine 3.
Isoindolo[2,1-b]isoquinolin-7(5H)-one (3aa)

Yellow solid ($0.186 \mathrm{~g}, 80 \%$) TLC: $R_{f}=0.31(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.32-$ $7.22(\mathrm{~m}, 4 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.6,134.0,133.5$, 130.8, 129.7, 128.8, 128.7, 127.4, 127.3, 126.7, 126.2, 122.5, 119.6, 102.9, 42.4. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}^{+}: 234.0913$, found: 234.0912.
3-Fluoroisoindolo[2,1-b]isoquinolin-7(5H)-one (3ab)

Light yellow solid (0.200 g , 78\%) TLC: $R_{f}=0.29(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H} \mathbf{~ N M R ~ (~} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 1 \mathrm{H})$, $6.97(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.6,133.9,133.5$ (d, $J=14.1 \mathrm{~Hz}), 133.0,131.3,130.9,128.8,128.5(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 128.1(\mathrm{~d}, J=8.3 \mathrm{~Hz})$, $126.0,122.6,119.5,114.1(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 113.5(\mathrm{~d}, J=23.3 \mathrm{~Hz}), 101.8,42.4 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.20$. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FNO}^{+}: 252.0819$, found: 252.0818 .
2-Fluoroisoindolo[2,1-b]isoquinolin-7(5H)-one (3ac)

Light yellow solid ($0.160 \mathrm{~g}, 64 \%$) TLC: $R_{f}=0.31(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.91(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 1 \mathrm{H})$, $7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 165.5,161.6(\mathrm{~d}, J=245.7 \mathrm{~Hz}), 134.5,133.7,131.8(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 131.0,129.1$, $128.7,127.4(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 124.1(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 122.6,119.7,113.8(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 113.0$ $(\mathrm{d}, J=22.6 \mathrm{~Hz}), 101.7,41.9 .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-114.76$. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FNO}^{+}: 252.0819$, found: 252.0813.
4-Fluoroisoindolo[2,1-b]isoquinolin-7(5H)-one (3ad)

Light yellow solid ($0.125 \mathrm{~g}, 49 \%$) TLC: $R_{f}=0.33(\mathrm{PE} / \mathrm{EA}=5 / 1)$; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~m}, 1 \mathrm{H})$, $7.04(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5$, $159.0(\mathrm{~d}, J=246.6 \mathrm{~Hz}), 134.1,133.7,131.8(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 130.9,129.1,128.6,128.5(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}), 122.6,122.0,119.7,115.7(\mathrm{~d}, J=16.8 \mathrm{~Hz}), 114.1(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 101.5(\mathrm{~d}, J=$
$4.0 \mathrm{~Hz}), 37.5(\mathrm{~d}, J=6.5 \mathrm{~Hz}) .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.25 . \mathbf{H R M S}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$ calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{FNONa}{ }^{+}: 274.0639$, found: 274.0642.
1-Fluoroisoindolo[2,1-b]isoquinolin-7(5H)-one (3ae)

Light yellow solid ($0.082 \mathrm{~g}, 33 \%$) TLC: $R_{f}=0.36(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H} \mathbf{~ N M R ~ (~} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 1 \mathrm{H})$, $7.07-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,158.1$ (d, $J=250.4 \mathrm{~Hz}), 134.0,133.9,131.0,130.4(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 129.0,128.6,128.2(\mathrm{~d}, J=8.5$ $\mathrm{Hz}), 122.6,121.7$ (d, $J=3.2 \mathrm{~Hz}), 119.8,118.4(\mathrm{~d}, J=16.2 \mathrm{~Hz}), 113.9(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 94.7$ $(\mathrm{d}, J=6.2 \mathrm{~Hz}), 42.0 .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-121.53$. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FNO}^{+}: 252.0819$, found: 252.0816 .

3-(Trifluoromethyl)isoindolo[2,1-b]isoquinolin-7(5H)-one (3af)

Yellow solid ($0.187 \mathrm{~g}, 62 \%$) TLC: $R_{f}=0.30(\mathrm{PE} / \mathrm{EA}=5 / 1)$; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,135.5,133.6,133.4,131.1,129.4,129.0,128.7,126.5,124.3,124.3$, 123.0, 122.9, 122.7, 119.9, 101.0, 42.2. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.62$. HRMS $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}^{+}: 324.0607$, found: 324.0610.
3-Chloroisoindolo[2,1-b]isoquinolin-7(5H)-one (3ag)

Transparent oil ($0.160 \mathrm{~g}, 60 \%$) TLC: $R_{f}=0.38(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H})$, $7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.5,133.8,132.9,131.0,130.3,129.0,128.6,128.4,128.2,127.6,127.5,126.4$, 122.7, 119.7, 101.7, 42.1. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ONCl}^{+}: 268.0524$, found: 268.0519.
4-Chloroisoindolo[2,1-b]isoquinolin-7(5H)-one (3ah)

Transparent oil ($0.142 \mathrm{~g}, 53 \%$) TLC: $R_{f}=0.34(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$7.94(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 1 \mathrm{H})$, $7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,134.0,133.6,132.5,131.9,131.0,129.1,128.8,128.2$, 127.9, 126.7, 124.9, 122.7, 119.8, 101.7, 41.3. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ONCl}^{+}: 268.0524$, found: 268.0523 .
2-Chloroisoindolo[2,1-b]isoquinolin-7(5H)-one (3ai)

Transparent oil (0.198 g, 74\%) TLC: $R_{f}=0.28(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 1 \mathrm{H})$, $7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 MHz , CDCl_{3}) $\delta 165.6,134.6,133.7,133.0,131.6,131.0,129.2,128.7,127.3,127.0,126.9,126.2$, 122.7, 119.8, 101.4, 42.0. HRMS $(m / z): ~[M+N a]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{OClN}^{+}: 290.0343$, found: 290.0337.
2-Methylisoindolo[2,1-b]isoquinolin-7(5H)-one (3aj)

Yellow solid ($0.138 \mathrm{~g}, 56 \%$) TLC: $R_{f}=0.29(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.89(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 1 \mathrm{H})$, $7.13-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $165.6,136.9,134.0,133.4,130.7,129.5,128.7,128.6,128.1,127.4,126.0,125.7,122.5$, 119.5, 103.0, 42.2, 20.4. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}^{+}: 248.1070$, found: 248.1071 .

3-Methoxyisoindolo[2,1-b]isoquinolin-7(5H)-one (3ak)

Light yellow solid ($0.052 \mathrm{~g}, 20 \%$) TLC: $R_{f}=0.39(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.90(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 1 \mathrm{H})$, $7.25-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.6,159.0,134.1,131.5,130.7,130.5,128.4,128.3,128.0,122.6$, $122.5,119.3,112.5,112.2,102.9,54.8,42.5$. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+}: 264.1019$, found: 264.1018.
2-Methoxyisoindolo[2,1-b]isoquinolin-7(5H)-one (3al)

Light yellow solid ($0.152 \mathrm{~g}, 58 \%$) TLC: $R_{f}=0.41(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.49$ $(\mathrm{m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,158.5,133.9,133.8,130.8,128.8,128.7,127.0,122.5$, $120.8,119.6,112.8,111.9,102.9,54.8,41.9$. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+}: 264.1019$, found: 264.1020.
[1,3]Dioxolo[4,4-g]isoindolo[2,1-b]isoquinolin-7(5H)-one (3am)

Black solid ($0.078 \mathrm{~g}, 28 \%$) TLC: $R_{f}=0.19(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 1 \mathrm{H}), 6.73$ $(\mathrm{d}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $165.6,147.1,146.6,133.9,132.0,130.7,128.4,128.4,123.7,123.0,122.5,119.4,106.9$, 106.7, 103.0, 100.9, 42.6. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{NO}_{3}{ }^{+}: 278.0812$, found: 278.0814.

2,3-Dimethoxyisoindolo[2,1-b]isoquinolin-7(5H)-one(3an)

Light yellow solid ($0.070 \mathrm{~g}, 24 \%$) TLC: $R_{f}=0.35(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 2 \mathrm{H})$, $6.78(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.2,149.1,148.4,134.6,132.6,131.3,129.0,123.1,123.0,122.1,119.9,110.3$, $110.0,103.5,65.6,56.1,56.1,42.9$. HRMS $(m / z):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{3}{ }^{+}$: 294.1125, found: 294.1123.

Thieno[3',2':4,5]pyrido[2,1-a]isoindol-9(11H)-one (3aq)

Grey solid ($0.055 \mathrm{~g}, 23 \%)$ TLC: $R_{f}=0.20(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.30-$ $7.22(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.9,134.1,132.4,131.3,130.8,129.0,128.4,128.1,124.6,124.2,122.5,119.3$, 98.1, 41.3. HRMS $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ONSNa}^{+}: 262.0297$, found: 262.0301 .

4-Methylisoindolo[2,1-b]isoquinolin-7(5H)-one (3ap)

Light colored oil ($0.067 \mathrm{~g}, 27 \%$) TLC: $R_{f}=0.31(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 1 \mathrm{H})$,
$7.25-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,134.6,134.2,132.8,130.9,129.1,128.9,128.7,127.5$, 127.2, 126.4, 126.0, 122.6, 119.6, 102.9, 49.2, 22.7. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}^{+}: 248.1070$, found: 248.1070 .

9-Methylisoindolo[2,1-b]isoquinolin-7(5H)-one (3ba)

Light yellow solid ($0.173 \mathrm{~g}, 70 \%$) TLC: $R_{f}=0.30(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~ M H z , ~} \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.42(\mathrm{~s}$, $1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,139.3,133.6,131.9$, 131.5, 129.9, 128.9, 128.6, 127.3, 127.2, 126.6, 126.1, 122.7, 119.4, 102.2, 42.4, 21.1. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}^{+}: 248.1070$, found: 248.1073.
(3-2ac')

Light yellow solid ($0.176 \mathrm{~g}, 67 \%$) TLC: $R_{f}=0.20(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.78(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H})$, $7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 6 \mathrm{H}), 4.84(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.2,142.5,135.6,134.9,133.8,133.6,133.4,130.1$, 129.2, 128.1, 128.1, 127.6, 126.8, 126.6, 121.4, 94.9, 40.9, 20.6. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$: 523.2380, found: 523.2389.
10-Methylisoindolo[2,1-b]isoquinolin-7(5H)-one (3da)

Light yellow solid ($0.126 \mathrm{~g}, 51 \%$) TLC: $R_{f}=0.35(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.78(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.44(\mathrm{~s}$, $1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.7,141.5,134.4,133.6$, 129.9, 129.8, 128.7, 127.3, 127.3, 126.6, 126.3, 126.2, 122.3, 119.9, 102.5, 42.4, 21.4. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}^{+}: 248.1070$, found: 248.1068.
9-Methoxyisoindolo[2,1-b]isoquinolin-7(5H)-one (3ea)

Grey solid ($0.213 \mathrm{~g}, 81 \%$) TLC: $R_{f}=0.34(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 5.09$ $(\mathrm{s}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,160.6,133.3,130.4,129.9$, $128.3,127.3,127.0,126.7,126.5,126.1,120.9,119.3,105.2,101.8,55.2,42.4$. HRMS $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{2}^{+}$: 264.1019 , found: 264.1021.
9-Bromoisoindolo[2,1-b]isoquinolin-7(5H)-one (3fa)

Light yellow solid ($0.251 \mathrm{~g}, 81 \%$) TLC: $R_{f}=0.39(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.50(\mathrm{~s}$, $1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.1,133.8,132.6,132.5,130.3,129.4$, 128.6, 127.7, 127.4, 126.9, 126.2, 125.8, 122.8, 121.0, 103.8, 42.5. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrNO}^{+}: 312.0019$, found: 312.0019.
9-Fluoroisoindolo[2,1-b]isoquinolin-7(5H)-one (3ga)

Light yellow solid ($0.141 \mathrm{~g}, 56 \%$) TLC: $R_{f}=0.36(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.8-7.7(\mathrm{~m}, 1 \mathrm{H}), 7.6(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.4-7.2(\mathrm{~m}, 5 \mathrm{H}), 6.5(\mathrm{~s}, 1 \mathrm{H}), 5.1(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,162.9(\mathrm{~d}, J=250.3 \mathrm{~Hz}), 132.5,130.6(\mathrm{~d}, J=8.8 \mathrm{~Hz})$, $129.8,129.4,128.3,127.5,127.4,126.7,126.1,121.3(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 118.6(\mathrm{~d}, J=24.5 \mathrm{~Hz})$, $109.3(\mathrm{~d}, ~ J=24.0 \mathrm{~Hz}), 103.0,42.5 .{ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-109.57$. HRMS $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FNO}^{+}: 252.0819$, found: 252.0820 .
10-Fluoroisoindolo[2,1-b]isoquinolin-7(5H)-one (3ha)

Light yellow solid ($0.208 \mathrm{~g}, 83 \%$) TLC: $R_{f}=0.31(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.0-7.8(\mathrm{~m}, 1 \mathrm{H}), 7.4(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.3-7.2(\mathrm{~m}, 5 \mathrm{H}), 6.5(\mathrm{~s}, 1 \mathrm{H}), 5.1(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.3,164.1(\mathrm{~d}, J=145.1 \mathrm{~Hz}), 136.1(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 132.6(\mathrm{~d}, J$ $=3.9 \mathrm{~Hz}), 129.3,128.7,127.8,127.4,126.9,126.2,124.7,124.6(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 116.5(\mathrm{~d}, J$ $=23.8 \mathrm{~Hz}), 106.6(\mathrm{~d}, J=24.7 \mathrm{~Hz}), 103.8,42.4 .{ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-107.24$. HRMS $(m / z):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FNO}^{+}: 252.0819$, found: 252.0821.
Thieno[3',2':3,4]pyrrolo[1,2-b]isoquinolin-11(9H)-one (3ia)

Light purple solid ($0.170 \mathrm{~g}, 71 \%$) TLC: $R_{f}=0.43(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.7(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.3-7.2(\mathrm{~m}, 5 \mathrm{H}), 6.4(\mathrm{~s}, 1 \mathrm{H}), 5.1(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 160.8,144.4,133.8,132.7,130.4,129.0,128.6,127.3,126.9,126.7,125.8,117.8$, 104.4, 42.3. HRMS $(m / z):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{NOS}^{+}: 240.0478$, found: 240.0477 .

1,4-Dihydropyrrolo[1,2-b]isoquinolin-3(2H)-one (3ja)

To a flame dried sealed tube containing $\mathbf{1 j}(0.100 \mathrm{~g}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added $\mathbf{A u} \mathbf{- I}$ catalyst ($0.025 \mathrm{~g}, 0.05 \mathrm{mmol}, 0.05 \mathrm{eq}$) and 10 mL anhydrous DCE. The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 2 h , then $2 \mathrm{a}(0.133 \mathrm{~g}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq})$ was solved in 5 mL anhydrous DCE, and added to the reaction mixture after total conversion of $\mathbf{1} \mathbf{j}$ as indicated by thin layer chromatography. The mixture was stirred under $80{ }^{\circ} \mathrm{C}$ for 3 h , and evaporated to remove solvent after total conversion of enol lactone I indicated by thin layer chromatography. Then Ru-III catalyst ($0.032 \mathrm{~g}, 0.05 \mathrm{mmol}, 0.05 \mathrm{eq}$) and 10 mL anhydrous toluene was added to the reaction mixture. The mixture was refluxed for 10 h , and concentrated in vacuo after completion of the reaction as indicated by thin layer chromatography. The residue obtained was purified by silica gel chromatography to afford the desired 3ja as transparent oil $(0.133 \mathrm{~g}$, 72%).
Transparent oil (0.133 g, 72\%) TLC: $R_{f}=0.31(\mathrm{PE} / \mathrm{EA}=5 / 1) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.14(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H})$, $4.89(\mathrm{~s}, 2 \mathrm{H}), 2.81-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.53(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.1$, 140.6, 131.6, 127.8, 126.2, 126.1, 124.7, 119.7, 99.6, 43.6, 28.8, 23.0. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}^{+}$: 186.0913, found: 186.0912.

Reference

[1] E. Marchal, P. Uriac, B. Legouin, L. Toupet and P. van de Weghe, Tetrahedron, 2007, 63, 9979-9990.
[2] J. Alzeer, J. Chollet, I. Heinze-Krauss, C. Hubschwerlen, H. Matile and R. G. Ridley, J. Med. Chem., 2000, 43, 560-568.
[3] A. S. K. Hashmi, C. Lothschütz, R. Döpp, M. Ackermann, J. D. B. Becker, M. Rudolph, C. Scholz and F.
Rominger, Adv. Synth. Catal., 2012, 354, 133-147
[4] M. L. Bennasar, T. Roca, M. Monerris and D. García-Díaz, J. Org. Chem., 2006, 71, 7028-7034.
[5] B. Aneja, M. Irfan, C. Kapil, M. A. Jairajpuri, R. Maguire, K. Kavanagh, M. M. A. Rizvi, N. Manzoor, A. Azamb and M. Abid, Org. Biomol. Chem., 2016, 14, 10599-10619.
[6] L. Jarrige, A. Carboni, G. Dagousset, G. Levitre, E. Magnier and G. Masson, Org. Lett., 2016, 18, 2906-2909.
[7] J. Zhang, X. Li, X. Li, H. Shi, F. Sunb and Y. Du, ChemCommun, 2021, 57, 460-463.

Single Crystal X-ray Data for Compound 3af

CCDC 2073382
DOI: 10.5517/ccdc.csd.cc27lj9p

Table 1 Crystal data and structure refinement for 3-1af.

Identification code	3-1af
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{NOF}_{3}$
Formula weight	301.26
Temperature/K	298(2)
Crystal system	triclinic
Space group	P-1
a / \AA	7.2327(11)
b/Å	7.6558(11)
c/Å	13.5621(18)
$\alpha /{ }^{\circ}$	100.334(4)
$\beta /{ }^{\circ}$	95.405(4)
γ°	109.676(4)
Volume/ \AA^{3}	685.89(17)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.459
μ / mm^{-1}	0.119
$\mathrm{F}(000)$	308.0
Crystal size/mm ${ }^{3}$	$0.21 \times 0.18 \times 0.07$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ} 5.8$ to 50.044	
Index ranges	$-8 \leq \mathrm{h} \leq 8,-9 \leq \mathrm{k} \leq 9,-15 \leq 1 \leq 16$
Reflections collected	18581

Independent reflections $\quad 2418\left[R_{\text {int }}=0.2218, R_{\text {sigma }}=0.0945\right]$
Data/restraints/parameters 2418/0/199
Goodness-of-fit on $\mathrm{F}^{2} \quad 0.959$
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0614, \mathrm{wR}_{2}=0.1446$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.1572, \mathrm{wR}_{2}=0.1908$
Largest diff. peak/hole / e \AA^{-3} 0.20/-0.19

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3-1af. $U_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised $U_{I J}$ tensor.

Atom				$\mathbf{U}(\mathbf{e q})$
F1	2157(7)	4390(5)	177(2)	173.7(17)
F2	575(6)	2046(6)	739(2)	175.1(17)
F3	3207(7)	2150(6)	199(2)	181.2(19)
O1	1286(4)	7919(4)	6075(2)	101.0(10)
N1	3730(4)	7468(4)	5218(2)	66.9(9)
C1	2403(11)	3198(9)	734(4)	120.1(19)
C2	3531(8)	4215(6)	1767(3)	88.4(13)
C3	2574(6)	4729(6)	2524(3)	80.5(12)
C4	3586(6)	5770(5)	3484(3)	68.9(10)
C5	2450(5)	6307(5)	4279(3)	76.8(11)
C6	3048(6)	8185(5)	6044(3)	75.1(11)
C7	4817(6)	9245(5)	6824(3)	71.3(10)
C8	4967(7)	10227(6)	7803(3)	91.5(13)
C9	6834(8)	11110(7)	8378(3)	100.4(15)
C10	5567(8)	4716(6)	1951(3)	94.5(14)
C11	6611(6)	5752(6)	2901(3)	82.8(12)
C12	5661(5)	6307(5)	3673(2)	64.7(10)
C13	6752(5)	7434(5)	4668(3)	64.0(10)
C14	5812(5)	7975(5)	5390(3)	61.2(9)
C15	6469(5)	9108(5)	6429(3)	65.2(10)
C16	8487(7)	10992(6)	7993(3)	96.9(14)
C17	8346(6)	9991(5)	7011(3)	78.5(12)

Table 3 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{\mathbf{3}}\right)$ for 3-1af. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a * b * U_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$		$\mathbf{U}_{\mathbf{1 2}}$
F1	$268(5)$	$126(3)$	$80.6(18)$	$4.9(18)$	$-63(2)$	$46(3)$
F2	$171(4)$	$161(3)$	$102(2)$	$-10(2)$	$-50(2)$	$-16(3)$

Table 3 Anisotropic Displacement Parameters $\left(\AA^{\mathbf{2}} \times 10^{\mathbf{3}}\right)$ for 3-1af. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \mathbf{U}_{11}+2 h k a * b * U_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	\mathbf{U}_{22}	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$	
F3	$240(5)$	$171(3)$	$94(2)$	$-48(2)$	$-24(2)$	$78(3)$
O1	$64(2)$	$107(2)$	$125(2)$	$14.3(19)$	$22.1(17)$	$26.6(16)$
N1	$51.5(18)$	$71(2)$	$67.9(19)$	$8.2(16)$	$-0.6(16)$	$15.4(15)$
C1	$155(5)$	$103(4)$	$70(3)$	$6(3)$	$-30(3)$	$26(4)$
C2	$110(4)$	$72(3)$	$64(3)$	$3(2)$	$-13(3)$	$23(3)$
C3	$75(3)$	$74(3)$	$72(3)$	$15(2)$	$-15(2)$	$10(2)$
C4	$65(3)$	$62(2)$	$65(2)$	$15.8(19)$	$-5(2)$	$7.9(18)$
C5	$56(2)$	$81(3)$	$77(3)$	$13(2)$	$-8(2)$	$12(2)$
C6	$67(3)$	$70(3)$	$87(3)$	$16(2)$	$16(2)$	$23(2)$
C7	$75(3)$	$64(2)$	$71(3)$	$13(2)$	$9(2)$	$23(2)$
C8	$104(4)$	$86(3)$	$83(3)$	$9(2)$	$17(3)$	$36(3)$
C9	$129(4)$	$85(3)$	$76(3)$	$-5(2)$	$7(3)$	$39(3)$
C10	$118(4)$	$95(3)$	$62(3)$	$4(2)$	$9(3)$	$35(3)$
C11	$81(3)$	$92(3)$	$71(3)$	$12(2)$	$8(2)$	$30(2)$
C12	$68(3)$	$61(2)$	$58(2)$	$14.1(18)$	$-0.8(19)$	$17.0(18)$
C13	$53(2)$	$68(2)$	$66(2)$	$13.4(19)$	$3.5(19)$	$19.5(18)$
C14	$53(2)$	$62(2)$	$60(2)$	$11.4(18)$	$-2.6(18)$	$13.7(17)$
C15	$66(2)$	$61(2)$	$61(2)$	$7.4(18)$	$-3(2)$	$19.9(19)$
C16	$102(4)$	$86(3)$	$76(3)$	$-12(2)$	$-20(3)$	$25(3)$
C17	$69(3)$	$77(3)$	$74(3)$	$0(2)$	$-8(2)$	$20(2)$

Table 4 Bond Lengths for 3-1af.

Atom Atom	Length/A	Atom Atom		Length/ \AA
F1	C1	$1.329(6)$	C 6	C7

Table 5 Bond Angles for 3-1af.

Table 6 Torsion Angles for 3-1af.

A B	C	D	Angle/ ${ }^{\circ}$	A	B	C D	Angle/ ${ }^{\circ}$
F1 C1	C2	C3	84.5(7)	C 5	C4	C12C13	-0.5(5)
F1 C1	C2	C10	-92.7(7)	C6	N1	C5 C4	177.9(3)
F2 C1	C2	C3	-33.2(7)	C6	N1	C14C13	-179.0(3)
F2 C1	C2	C10	149.6(5)	C6	N1	C14C15	0.4(4)
F3 C1	C2	C3	-154.5(5)	C6	C7	C8 C9	-179.8(4)
F3 C1	C2	C10	28.4(8)	C6	C7	C15 C14	0.4(4)
O1 C6	C7	C8	0.1(7)	C6	C7	C15C17	179.9(4)
O1 C6	C7	C15	179.1(4)	C7	C8	C9 C16	-1.0(7)
N1 C6	C7	C8	-179.2(4)	C7	C15	5 C 17 C 16	0.3(6)
N1 C6	C7	C15	-0.2(4)	C8	C7	C15 C14	179.5(4)
N1 C14	C15	C7	-0.5(4)	C8	C7	C15 C17	-1.0(6)
N1 C14	C15	C17	-179.9(4)	C8	C9	C16C17	0.4(7)

C1 C2	C3 C4	-176.4(4)	C9 C 16 C 17 C 15	0.0(7)
C1 C2	C10C11	176.5(4)	C 10 C 2 C 3 C 4	0.7(6)
C2 C3	C4 C5	179.4(4)	C 10 C 11 C 12 C 4	1.1(6)
C2 C3	C4 C12	0.1(6)	C 10 C 11 C 12 C 13	-178.6(4)
C2 C10	C11 C12	-0.3(7)	C 11 C 12 C 13 C 14	178.8(4)
C3 C2	C10C11	-0.6(7)	C 12 C 4 C 5 N 1	2.1 (5)
C3 C4	C5 N1	-177.1(3)	C 12 C 13 C 14 N 1	$0.4(5)$
C3 C4	C12C11	-1.0(5)	C 12 C 13 C 14 C 15	-178.7(4)
C3 C4	C12 C13	178.7(3)	C 13 C 14 C 15 C 7	178.7(4)
C4 C12	C13 C14	-0.8(5)	C 13 C 14 C 15 C 17	-0.7(7)
C5 N1	C6 O1	0.0(6)	C 14 N 1 C 5 C 4	-2.7(5)
C5N1	C6 C7	179.4(3)	C 14 N 1 C 6 O 1	-179.5(4)
C5 N1	C14C13	1.5(5)	C 14 N 1 C 6 C 7	-0.1(4)
C5 N1	C14C15	-179.1(3)	C 14 C 15 C 17 C 16	179.7(4)
C5 C4	C12C11	179.8(4)	$\mathrm{C} 15 \mathrm{C} 7 \mathrm{C} 8 \quad \mathrm{C} 9$	1.3(6)

Table 7 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3-1af.

Atom	x	y	z	$\mathbf{U}(\mathrm{eq})$
H8	1196.06	4368.1	2392.02	97
H7	1680.19	6998.26	4020.36	92
H6	1524.48	5157.52	4413.7	92
H5	3843.13	10289.79	8065.65	110
H1	6981	11799.04	9037.26	121
H2	6230.75	4361.55	1441.77	113
H10	7986.31	6086.34	3025.32	99
H9	8128.48	7781.29	4801.44	77
H4	9732.57	11597.75	8400.22	116
H3	9471.96	9916.05	6754.9	94

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 3a ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3aa ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
UM-6-55_C13-CDCl3_20200916.3.fid - UM-6-55 C13-CDC13 20200916

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{ab}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{ab}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：
UM－9－5＿C13－CDCl3＿20210203．17．fid－UM－9－5 C13－CDCl3 20210203

${ }^{19}$ F NMR spectrum of compound 3ab ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
UM-9-5fluo-CDCL3-2-26 - LXS-41d F19-CDC13 190705 -

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3ac ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{ac}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{19} \mathrm{~F}$ NMR spectrum of compound 3ac ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
UM-9-41-2fluo-CDCL3-2-26 - LXS-41d F19-CDC13 190705 $--114.760$
${ }^{1} \mathrm{H}$ NMR spectrum of compound 3ad ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{ad}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{19}$ F NMR spectrum of compound 3ad ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
LM -9-63-2flour-CDCL3-3-10 - LXS-41d F19-CDC13 190705 -
\qquad

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3ae ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

UM-10-47-CDCL3-4-17 - Ethyl indanone, standard test sample - Recorded on ProPulse 500 with OneNMR probe and Protune tuning - - Classical 8 scan PROTON with a recycle time of 3 s , non-s

${ }^{19} \mathrm{~F}$ NMR spectrum of compound 3ae ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
UM-10-47fluor-CDCL3-4-17 - LXS-41d F19-CDCI3 190705 -
${ }^{1} \mathrm{H}$ NMR spectrum of compound 3af ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3af ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

[^0]${ }^{19}$ F NMR spectrum of compound 3af ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
UM-9-23fluor-CDCL3-3-15 - LXS-41d F19-CDC13 190705 -

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{ag}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$):

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3ag ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{ah}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3ah ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3ai ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

LIM-9-69-2-CDCL3-3-15 - Ethyl indanone, standard test sample - Recorded on ProPulse 500 with OneNMR probe and Protune tuning - - Classical 8 scan PROTON with a recycle time of 3 s, non
 \qquad

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3ai ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3ai ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

UM-9-3-CDCL3-1-20 - Ethyl indanone, standard test sample - Recorded on ProPulse 500 with OneNMR probe and Protune tuning - Classical 8 scan PROTON with a recycle time of 3 s, non-spin

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3aj ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3ak ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3ak ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

\qquad

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{al}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{al}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{am}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3am ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3an ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3an ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3ap ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3ap ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3aq ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

LIM-9-78-1-CDCL3-3-22 - Ethyl indanone, standard test sample - Recorded on ProPulse 500 with OneNMR probe and Protune tuning - - Classical 8 scan PROTON with a recycle time of 3 s , non

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3aq ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{ba}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3ba ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{ca}{ }^{\prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{ca}{ }^{\prime}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of compound $3 \mathrm{ca}{ }^{\prime}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

HSQC NMR spectrum of compound 3ca' ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

HMBC NMR spectrum of compound 3ca' ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3da ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3da ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3ea ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3ea ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{fa}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
(
${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{fa}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3ga ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
LM -10-87-CDCL3-5-17 - Ethyl indanone, standard test sample - Recorded on ProPulse 500 with OneNMR probe and Protune tuning - - Classical 8 scan PROTON with a recycle time of 3 s , non-s

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{ga}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

\qquad
${ }^{19} \mathrm{~F}$ NMR spectrum of compound $3 \mathrm{ga}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
UM-10-87fluor-CDCL3-5-17 - LXS-41d F19-CDCI3 190705 -

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3ha ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{ha}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{19} \mathrm{~F}$ NMR spectrum of compound 3ha ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
LMM-11-5fluor-CDCL3-5-17 - LXS-41d F19-CDC13 190705 -
${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{ia}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{ia}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{ja}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$):

UM-12-TM_H1-CDCI3 20210902.3.fid - LUM-12-TM H1-CDCl3 20210902

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{ja}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
UMM-12-TM_C13-CDC13_20210902.4.fid - UM-12-TM C13-CDC13 20210902

[^1]${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 b}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $2 \mathrm{~b}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $2 \mathrm{c}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

[^2]${ }^{1} \mathrm{H}$ NMR spectrum of compound $2 \mathrm{~d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound 2d ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{19} \mathrm{~F}$ NMR spectrum of compound 2d ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
LUM-9-61-3fluor-CDCL3-3-6 - LXS-41d F19-CDC13 190705 -
\qquad

${ }^{1} \mathrm{H}$ NMR spectrum of compound $2 \mathrm{e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $2 \mathrm{e}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $2 \mathrm{e}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
UM-10-44fluor-CDCL3-4-13 - LXS-41d F19-CDCI3 190705

${ }^{1} \mathrm{H}$ NMR spectrum of compound $2 \mathrm{f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $2 \mathrm{f}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
UM-920-2_C13-CDC13_20210203.9.fid - UM-920-2 C13-CDC13 20210203

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $2 \mathrm{f}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
LM-9-20-2flour-CDCL3-3-17 - LXS-41d F19-CDCl3 190705 -

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
UM - $9-35 \mathrm{C}$-CDCL3-2-23 - Ethyl indanone, standard test sample - Recorded on Propulse 500 with OneNMR probe and Protune tuning - - Classical 8 scan PROTON with a recycle time of 3 s , non-s

${ }^{13} \mathrm{C}$ NMR spectrum of compound $2 \mathrm{~g}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
UM-9-35C_C13-CDC13_202102244.4id - UM-9-35C C13-CDC13 2021024

${ }^{1} \mathrm{H}$ NMR spectrum of compound $2 \mathrm{~h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

UM -9-61-2-CDCL3-3-6 - Ethyl indanone, standard test sample - Recorded on Propulse 500 with OneNMR probe and Protune tuning _ Classical 8 scan PROTON with a recycle time of 3 s , non-st

${ }^{13} \mathrm{C}$ NMR spectrum of compound $2 \mathrm{~h}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
UM-9-61-2_C13-CDC13_20210317.11.fid - UM-9-61-2 C13-CDC13 20210317

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 i}\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $2 \mathrm{i}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
UM-9-30_C13-CDC13_20210203.10.fid - UM-9-30 C13-CDC13 20210203

${ }^{1} \mathrm{H}$ NMR spectrum of compound $2 \mathrm{j}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $2 \mathrm{j}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound $2 \mathrm{k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
LIM-9-30B-CDCL3-2-2 - Ethyl indanone, standard test sample - Recorded on ProPulse 500 with OneNMR probe and Protune tuning - - Classical 8 scan PROTON with a recycle time of 3 s , non-s

${ }^{13} \mathrm{C}$ NMR spectrum of compound $2 \mathrm{k}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound $21\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $21\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 m}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $2 \mathrm{~m}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound $2 \mathrm{n}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $2 \mathrm{n}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 o}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $20\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound $2 \mathrm{p}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $2 \mathrm{p}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
UM-12-57_C13-CDC13_20210913.2.fid - UM-12-57 C13-CDCI3 20210913

${ }^{1} \mathrm{H}$ NMR spectrum of compound $2 \mathrm{q}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $2 \mathrm{q}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound $2 \mathrm{r}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
UM-11-47-2-CDCL3-5-31 - Ethyl indanone, standard test sample - Recorded on ProPulse 500 with OneNMR probe and Protune tuning - Classical 8 scan PROTON with a recycle time of 3 s , no

${ }^{13} \mathrm{C}$ NMR spectrum of compound $2 \mathrm{r}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
UM-11-47-2_C13-CDC13_20210601.2.fid - UM -11-47-2 C13-CDC13 20210601

${ }^{1} \mathrm{H}$ NMR spectrum of compound $2 \mathrm{~s}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $2 \mathrm{~s}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
UM-11-47-1_C13-CDCI3_20210601.1.fid - UM-11-47-1

${ }^{1} \mathrm{H}$ NMR spectrum of compound $2 \mathrm{t}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $2 \mathrm{t}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
UM-8-83Carbon-CDCL3-1-7 - Ethyl indanone, standard test sample - Recorded on ProPulse 500 with OneNMR probe and Protune tuning - - Classical 8 scan PROTON with a recycle time of 3 s , n

${ }^{1} \mathrm{H}$ NMR spectrum of compound $2 v\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $2 v\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound $2 \mathrm{w}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $2 \mathrm{w}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
LXS-15-74_C13-CDCl3_20210820.2.fid - LXS-15-74 C13-CDCLI 20210820

${ }^{1} \mathrm{H}$ NMR spectrum of compound $1 \mathrm{a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $1 \mathrm{a}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound $1 \mathrm{c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $1 \mathrm{c}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound 1d ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR spectrum of compound 1d ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR spectrum of compound $1 \mathrm{e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

UM-11-7-CDCL3-5-17 - Ethyl indanone, standard test sample - Recorded on ProPulse 500 with OneNMR probe and Protune tuning - - Classical 8 scan PROTON with a recycle time of 3 s, non-spi

${ }^{13} \mathrm{C}$ NMR spectrum of compound $1 \mathrm{e}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
UM-11-7_C13-CDCl3_20210518.6.fid - UM-11-7 C13-CDCI3 20210518
${ }^{1} \mathrm{H}$ NMR spectrum of compound $1 \mathrm{f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $1 \mathrm{f}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound $1 \mathrm{~g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $1 \mathrm{~g}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
LUM-10-82FLUOR-CDCL3-5-10 - LXS-41d F19-CDCI3 190705 -

${ }^{1} \mathrm{H}$ NMR spectrum of compound $1 \mathrm{~h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
(10-84-CDCL3-5-9 - Ethyl indanone, standard test sample Recorded on ProPulse 500 with OneNMR probe and Protune tuning - Classical 8 scan PROTON with a recycle time of 3 s , non-spi
${ }^{13} \mathrm{C}$ NMR spectrum of compound $1 \mathrm{~h}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $1 \mathrm{~h}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
LMM-10-85-2fluor-CDCL3-5-17 - LXS-41d F19-CDC13 190705 -

${ }^{1} \mathrm{H}$ NMR spectrum of compound $1 \mathrm{i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$ NMR spectrum of compound $1 \mathrm{i}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
UM-12-31_C13_CDCI3_210713.1.fid -

${ }^{1} \mathrm{H}$ NMR spectrum of compound I ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR spectrum of compound I ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
UM-10-63A_C13-CDCI3_20210422.7.fid -UM-10-63A C13-CDCl3 20210422

${ }^{1} \mathrm{H}$ NMR spectrum of compound II ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR spectrum of compound II ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR spectrum of compound III ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

UM-8-73DCE-CDCL3-1-7 - Ethyl indanone, standard test sample - Recorded on ProPulse 500 with OneNMR probe and Protune tuning - Classical 8 scan PROTON with a recycle time of 3 s , non

${ }^{13} \mathrm{C}$ NMR spectrum of compound III ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

[^0]:

[^1]:

[^2]:

