## **Electronic Supplementary Information**

## Direct synthesis of conjugated tetraenes from 1,3-enynes with

## 1,3-dienes

Kanako Maekawa, Nobuyuki Komine, Sayori Kiyota and Masafumi Hirano\*

Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan

hrc@cc.tuat.ac.jp (MH)

## Table of Contents

Spectroscopic data of new compounds:

| (E)-4,4,5,5-Tetramethyl-2-(4-phenylbut-3-en-1-yn-1-yl)-1,3,2-dioxoborolane (2e)                                             | S6  |
|-----------------------------------------------------------------------------------------------------------------------------|-----|
| <sup>1</sup> H NMR Spectrum                                                                                                 | S6  |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                               | S6  |
| HRMS Spectra                                                                                                                | S7  |
| (E)-2,9-Dimethyldec-4-en-6-yne ( <b>2k</b> )                                                                                | S8  |
| <sup>1</sup> H NMR Spectrum                                                                                                 | S8  |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                               | S8  |
| HRMS Spectra                                                                                                                | S9  |
| Diethyl (E)-(5-(trimethylsilyl)pent-2-en-4-yn-1-yl)phosphonate ( <b>2o</b> )                                                | S10 |
| <sup>1</sup> H NMR Spectrum                                                                                                 | S10 |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                               | S10 |
| HRMS Spectrum                                                                                                               | S11 |
| (E)-Trimethyl(5-((tetrahydro-2H-pyran-2-yl)oxy)pent-3-en-1-yn-1-yl)silane ( <b>2p</b> )                                     | S12 |
| <sup>1</sup> H NMR Spectrum                                                                                                 | S12 |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                               | S12 |
| HRMS Spectra                                                                                                                | S13 |
| (E)-Trimethyl(5-((trimethylsilyl)oxy)pent-3-en-1-yn-1-yl)silane ( <b>2q</b> )                                               | S14 |
| <sup>1</sup> H NMR Spectrum                                                                                                 | S14 |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                               | S14 |
| HRMS Spectra                                                                                                                | S15 |
| Methyl (2 <i>E</i> ,4 <i>E</i> ,6 <i>E</i> ,8 <i>E</i> )-6-butyltrideca-2,4,6,7-tetraenoate ( <b>4aa</b> )                  | S16 |
| <sup>1</sup> H NMR Spectrum                                                                                                 | S16 |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                               | S16 |
| HRMS Spectrum                                                                                                               | S17 |
| Methyl (2 <i>E</i> ,4 <i>E</i> ,6 <i>E</i> ,8 <i>E</i> )-9-phenyl-6-(trimethylsilyl)nona-2,4,6,8-tetraenoate ( <b>4ba</b> ) | S18 |
| <sup>1</sup> H NMR Spectrum                                                                                                 | S18 |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                               | S18 |

| <sup>1</sup> H- <sup>1</sup> H COSY                                                                                   | S19  |
|-----------------------------------------------------------------------------------------------------------------------|------|
| pNOESY                                                                                                                | S19  |
| HRMS Spectra                                                                                                          | S20  |
| Dimethyl (2 <i>E,6E,8E</i> )-5-(trimethylsilyl)deca-2,4,6,8-tetraenedioate ( <b>4ca</b> )                             | S21  |
| <sup>1</sup> H NMR Spectrum                                                                                           | S21  |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                         | S21  |
| <sup>1</sup> H- <sup>1</sup> H COSY                                                                                   | S22  |
| NOE Spectrum                                                                                                          | S22  |
| HRMS Spectra                                                                                                          | S24  |
| Methyl (2 <i>E</i> ,4 <i>E</i> ,8 <i>E</i> )-6-(trimethylsilyl)trideca-2,4,6,8-tetraenoate ( <b>4da</b> )             | S25  |
| <sup>1</sup> H NMR Spectrum                                                                                           | S25  |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                         | S25  |
| HRMS Spectra                                                                                                          | S26  |
| Methyl (2 <i>E</i> ,4 <i>E</i> ,8 <i>E</i> )-6-(trimethylsilyl)trideca-2,4,6,8-tetraenoate ( <b>4ea</b> )             | S27  |
| <sup>1</sup> H NMR Spectrum                                                                                           | S27  |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                         | S27  |
| HRMS Spectra                                                                                                          | S28  |
| Methyl (2 <i>E</i> ,4 <i>E</i> ,6 <i>E</i> )-6-(( <i>E</i> )-3-phenylallylidene)deca-2,4-dienoate ( <b>4fa</b> )      | S29  |
| <sup>1</sup> H NMR Spectrum                                                                                           | S29  |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                         | S29  |
| HRMS Spectrum                                                                                                         | S30  |
| Methyl (2 <i>E</i> ,4 <i>E</i> ,7 <i>E</i> )-6-(( <i>E</i> )-3-benzylidene)dodeca-2,4,7-trienoate ( <b>5ga</b> )      | S31  |
| <sup>1</sup> H NMR Spectrum                                                                                           | S31  |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                         | S31  |
| HRMS Spectra                                                                                                          | S32  |
| Methyl (2 <i>E</i> ,4 <i>E</i> ,7 <i>E</i> )-6-(( <i>E</i> )-benzylidene)-8-phenylocta-2,4,7-trienoate ( <b>5ha</b> ) | S33  |
| <sup>1</sup> H NMR Spectrum                                                                                           | \$33 |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                         | S33  |
| pNOESY                                                                                                                | S34  |
| HRMS Spectrum                                                                                                         | S34  |

| Methyl (2 <i>E</i> ,4 <i>E</i> ,7 <i>E</i> )-6-(( <i>Z</i> )-benzylidene)-8-(trimethylsilyl)octa-2,4,7-trienoate ( <b>5ia</b> )     | S35      |
|-------------------------------------------------------------------------------------------------------------------------------------|----------|
| <sup>1</sup> H NMR Spectrum                                                                                                         | S35      |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                                       | S35      |
| HRMS Spectra                                                                                                                        | S36      |
| A mixture of mothyl (25.45.65.95) 6.0 hig/trimothylcihylypone 2.4.6.8 totrophoto ( $Aig$ ) and                                      | mothyl   |
| A mixture of methyl $(2L,4L,0L,0L) = 0,5 = 0.5(1)$ methylenological 2,4,0,0 = terrationale ( <b>4)</b> and 1                        | (27      |
| <sup>1</sup> H NMP Sportrum                                                                                                         | 557      |
| <sup>13</sup> C(14) NMB Spectrum                                                                                                    | 557      |
| -°C{-H} NIVIR Spectrum                                                                                                              | 537      |
| Methyl (2E,4E,6E,8E)-6-isobutyl-11-methyldodeca-2,4,6,8-tetraenoate (4ka)                                                           | S38      |
| <sup>1</sup> H NMR Spectrum                                                                                                         | S38      |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                                       | S38      |
| HRMS Spectra                                                                                                                        | S39      |
| Methyl ((1 <i>E</i> ,3 <i>E</i> ,5 <i>E</i> ,7 <i>E</i> )-1,8-diphenylocta-1,3,5,7-tetraen-4-yl)trimethylsilane ( <b>4bb</b> )      | S40      |
| <sup>1</sup> H NMR Spectrum                                                                                                         | S40      |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                                       | S40      |
| HRMS Spectrum                                                                                                                       | S41      |
| Methyl trimethyl((1 <i>E</i> ,3 <i>E</i> ,5 <i>E</i> ,7 <i>E</i> )-1-phenylnona-1,3,5,7-tetraen-4-yl)trimethylsilane ( <b>4bc</b> ) | S42      |
| <sup>1</sup> H NMR Spectrum                                                                                                         | S42      |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                                       | S42      |
| HRMS Spectra                                                                                                                        | S43      |
| Trimethyl((1E,3E,5E,7E)-1-phenyl-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octa-1,3,5,                                         | 7-       |
| tetraen-4-yl)silane ( <b>4bd</b> )                                                                                                  | S44      |
| <sup>1</sup> H NMR Spectrum                                                                                                         | S44      |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                                       | S44      |
| HRMS Spectra                                                                                                                        | S45      |
| A mixture of methyl (2 <i>E</i> ,4 <i>E</i> ,6 <i>Z</i> ,8 <i>E</i> )-10-(diethoxyphosphoryl)-6-(trimethylsilyl)deca-2,4,6,8-       |          |
| tetraenoate (4oa) and methyl (2E,4E,6E,8E)-10-(diethoxyphosphoryl)-6-(trimethylsilyl)deca-                                          | 2,4,6,8- |
| tetraenoate ( <b>4oa</b> )                                                                                                          | S46      |
| <sup>1</sup> H NMR Spectrum                                                                                                         | S46      |
|                                                                                                                                     |          |

| <sup>13</sup> { <sup>1</sup> H} NMR Spectrum                                                                                                                                | S46              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| HRMS Spectra                                                                                                                                                                | S47              |
| Mathul (25.45.95) 6 (trimothulcilul) 10 ((trimothulcilul) $\alpha$ w)doco 2.4.6.9 totroopooto ( <b>Aco</b> )                                                                | C 1 O            |
|                                                                                                                                                                             | 540              |
| <sup>1</sup> H NIVIR Spectrum                                                                                                                                               | 548              |
| <sup>13</sup> C( <sup>1</sup> H) NMR Spectrum                                                                                                                               | 548              |
| HRMS Spectra                                                                                                                                                                | 549              |
| Methyl (2 <i>E</i> ,4 <i>E</i> ,8 <i>E</i> )-10-(( <i>tert</i> -butyldimethylsilyl)oxy)-6-(trimethylsilyl)deca-2,4,6,8-tetraenoate                                          | e ( <b>4ra</b> ) |
|                                                                                                                                                                             | S50              |
| <sup>1</sup> H NMR Spectrum                                                                                                                                                 | S50              |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                                                                               | S50              |
| HRMS Spectra                                                                                                                                                                | S51              |
| [Ru( <i>cisoid</i> -2-5-η <sup>4</sup> -methyl (2 <i>E</i> ,4 <i>E</i> ,6 <i>E</i> ,8 <i>E</i> )-6-butyltrideca-2,4,6,7-tetraenoate)(η <sup>4</sup> -1,5-cod)] ( <b>7</b> ) | S52              |
| <sup>1</sup> H NMR Spectrum                                                                                                                                                 | S52              |
| <sup>1</sup> H- <sup>1</sup> H COSY                                                                                                                                         | S52              |
| pNOESY                                                                                                                                                                      | S53              |
| Dimethyl (2 <i>E</i> ,6 <i>E</i> ,8 <i>E</i> )-deca-2,4,6,8-tetraenedioate ( <b>9ca</b> )                                                                                   | S55              |
| <sup>1</sup> H NMR Spectrum                                                                                                                                                 | S55              |
| <sup>13</sup> C{ <sup>1</sup> H} NMR Spectrum                                                                                                                               | S55              |
| HRMS Spectra                                                                                                                                                                | S56              |
| Methyl (2 <i>E</i> ,4 <i>E</i> ,6 <i>E</i> ,8 <i>E</i> )-trideca-2,4,6,8-tetraenoate ( <b>9da</b> )                                                                         | S57              |
| <sup>1</sup> H NMR Spectrum                                                                                                                                                 | S57              |
| Methyl (2 <i>E</i> ,4 <i>E</i> ,8 <i>E</i> )-10-((tetrahydro-2 <i>H</i> -pyran-2-yl)oxy)deca-2,4,6,8-tetraenoate ( <b>9pa</b> )                                             | S57              |
| <sup>1</sup> H NMR Spectrum                                                                                                                                                 | S57              |
| Cartesian coordinates of intermediates and transition states by DFT calculations                                                                                            | S58              |
| Reaction coordinates of intermediates and transition states giving <b>4ba</b>                                                                                               | S58              |
| Reaction coordinates of intermediates and transition states giving <b>5ba</b>                                                                                               | S76              |



**Fig.S1.** <sup>1</sup>H NMR Spectrum of (*E*)-4,4,5,5-tetramethyl-2-(4-phenylbut-3-en-1-yn-1-yl)-1,3,2dioxoborolane (**2e**) (400 MHz,  $C_6D_6$ ).



**Fig.S2.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of (*E*)-4,4,5,5-tetramethyl-2-(4-phenylbut-3-en-1-yn-1-yl)-1,3,2dioxoborolane (**2e**) (100 MHz,  $C_6D_6$ ).





**Fig.S3.** HRMS Spectra of (*E*)-4,4,5,5-tetramethyl-2-(4-phenylbut-3-en-1-yn-1-yl)-1,3,2-dioxoborolane (**2e**) (APCI).



Fig.S4. <sup>1</sup>H NMR Spectrum of (*E*)-2,9-dimethyldec-4-en-6-yne (2k) (400 MHz, CDCl<sub>3</sub>).



**Fig.S5.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of (*E*)-2,9-dimethyldec-4-en-6-yne (**2k**) (100 MHz, CDCl<sub>3</sub>).





Fig.S6. HRMS Spectra of (E)-2,9-dimethyldec-4-en-6-yne (2k) (APCI).



**Fig.S7.** <sup>1</sup>H NMR Spectrum of diethyl (*E*)-(5-(trimethylsilyl)pent-2-en-4-yn-1-yl)phosphonate (**2o**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S8.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of diethyl (*E*)-(5-(trimethylsilyl)pent-2-en-4-yn-1-yl)phosphonate (**20**) (100 MHz, CDCl<sub>3</sub>).

|                                                                                                |                                                      | Mass S                                | Spectrum S                                            | SmartFormu                                | ula Repor           | t                                                                  |                                         |                 |  |
|------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------|--------------------------------------------------------------------|-----------------------------------------|-----------------|--|
| Analysis Info                                                                                  |                                                      |                                       |                                                       |                                           | Acquisiti           | ion Date                                                           | 12/14/2022 11:59:13 AM                  |                 |  |
| Analysis Name<br>Method<br>Sample Name<br>Comment                                              | D:\Data\HiranoLab\;<br>apci_pos_wide_low<br>MKW0737A | 20221214\MKW0737/<br>_140605.m        | A.d                                                   |                                           | Operato<br>Instrume | r<br>ent / Ser#                                                    | BDAL<br>micrOTOF-Q II                   | 10323           |  |
| Acquisition Param<br>Source Type<br>Focus<br>Scan Begin<br>Scan End                            | eter<br>APCI<br>Not active<br>100 m/z<br>2000 m/z    | lon Pol<br>Set Ca<br>Set En<br>Set Co | arity<br>pillary<br>d Plate Offset<br>llision Cell RF | Positive<br>4500 V<br>-500 V<br>150.0 Vpp |                     | Set Nebulizer<br>Set Dry Heater<br>Set Dry Gas<br>Set Divert Valve | 1.6 Bar<br>200 °C<br>3.0 l/min<br>Waste |                 |  |
| Intens.<br>x10 <sup>5</sup><br>1.25<br>1.00<br>0.75<br>0.50<br>0.25<br>163.0954<br>0.00<br>200 | 275.1238                                             | 600                                   | 941.389<br>800                                        | 17<br>1000 12                             | 200                 | 1400                                                               | 1600 180                                | +MS, 0.7min #44 |  |

**Fig.S9.** HRMS Spectrum of diethyl (*E*)-(5-(trimethylsilyl)pent-2-en-4-yn-1-yl)phosphonate (**2o**) (APCI).



**Fig.S10.** <sup>1</sup>H NMR Spectrum of (*E*)-trimethyl(5-((tetrahydro-2*H*-pyran-2-yl)oxy)pent-3-en-1-yn-1-yl)silane (**2p**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S11.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of (*E*)-trimethyl(5-((tetrahydro-2*H*-pyran-2-yl)oxy)pent-3-en-1-yn-1-yl)silane (**2p**) (100 MHz, CDCl<sub>3</sub>).

| nalysis Info                                    |                                                                |                                                                                |                                           | Acquisition Date                                                   | 6/10/2022 1:38:43 P                     | м         |
|-------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|-----------|
| nalysis Name<br>lethod<br>ample Name<br>comment | D:\Data\HiranoLab\APCl2<br>apci_pos_wide_low_1406<br>MKW0627B2 | 0220610\MKW0627B2.d<br>05.m                                                    |                                           | Operator<br>Instrument / Ser#                                      | BDAL<br>micrOTOF-Q II                   | 10323     |
| cquisition Param                                | neter                                                          |                                                                                |                                           |                                                                    |                                         |           |
| ource Type<br>ocus<br>can Begin<br>can End      | APCI<br>Not active<br>100 m/z<br>2000 m/z                      | lon Polarity<br>Set Capillary<br>Set End Plate Offset<br>Set Collision Cell RF | Positive<br>4500 V<br>-500 V<br>150.0 Vpp | Set Nebulizer<br>Set Dry Heater<br>Set Dry Gas<br>Set Divert Valve | 1.6 Bar<br>200 °C<br>3.0 I/min<br>Waste |           |
|                                                 |                                                                |                                                                                |                                           |                                                                    |                                         | +MS, 1.6m |
| 149.0885                                        | 9.1463                                                         |                                                                                |                                           |                                                                    |                                         |           |
|                                                 | 323.1976419.3155                                               | 941.83                                                                         | 97                                        |                                                                    |                                         |           |

 Meas. m/z
 # Formula
 Score
 m/z
 err [mDa]
 err [ppm]
 mSigma
 rdb
 e<sup>-</sup> Conf
 N-Rule

 239.1463
 1
 C 13 H 23 O 2 Si
 100.00
 239.1462
 -0.1
 -0.5
 4.4
 3.5
 even
 ok



Meas. m/z # Formula Score m/z err [mDa] err [ppm] mSigma rdb e Conf N-Rule

**Fig.S12.** HRMS Spectra of (*E*)-trimethyl(5-((tetrahydro-2*H*-pyran-2-yl)oxy)pent-3-en-1-yn-1-yl)silane (**2p**) (APCI).



**Fig.S13.** <sup>1</sup>H NMR Spectrum of (*E*)-trimethyl(5-((trimethylsilyl)oxy)pent-3-en-1-yn-1-yl)silane (**2q**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S14.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of (*E*)-trimethyl(5-((trimethylsilyl)oxy)pent-3-en-1-yn-1-yl)silane (**2q**) (100 MHz, CDCl<sub>3</sub>).









**Fig.S16.** <sup>1</sup>H NMR Spectrum of methyl (2*E*,4*E*,6*E*,8*E*)-6-butyltrideca-2,4,6,7-tetraenoate (**4aa**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S17.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of methyl (2*E*,4*E*,6*E*,8*E*)-6-butyltrideca-2,4,6,7-tetraenoate (**4aa**) (100 MHz, CDCl<sub>3</sub>).

|                                                                     |                                                                         |                          | Mass                              | Spectr                                                   | um Sn                    | nartFo                                    | rmu               | la Rej                              | port                                                               |                                         |                 |
|---------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------|-----------------------------------|----------------------------------------------------------|--------------------------|-------------------------------------------|-------------------|-------------------------------------|--------------------------------------------------------------------|-----------------------------------------|-----------------|
| Analysis Info                                                       |                                                                         |                          |                                   |                                                          |                          |                                           |                   | Aco                                 | uisition Date                                                      | 10/1/2020 3:08:26 PI                    | M               |
| Analysis Name<br>Method<br>Sample Name<br>Comment                   | D:\Data\HiranoLa<br>apci_pos_wide_l<br>MKW0161-A                        | b\MKW0161<br>bw_140605.n | -A.d<br>n                         |                                                          |                          |                                           |                   | Ope                                 | erator<br>rument / Ser#                                            | BDAL<br>micrOTOF-Q II                   | 10323           |
| Acquisition Param<br>Source Type<br>Focus<br>Scan Begin<br>Scan End | APCI<br>APCI<br>Not active<br>100 m/z<br>2000 m/z                       |                          | lon Pe<br>Set C<br>Set E<br>Set C | olarity<br>apillary<br>nd Plate Offs<br>collision Cell I | et<br>RF                 | Positive<br>4500 V<br>-500 V<br>150.0 Vpp | ,                 |                                     | Set Nebulizer<br>Set Dry Heater<br>Set Dry Gas<br>Set Divert Valve | 1.6 Bar<br>200 °C<br>3.0 l/min<br>Waste |                 |
|                                                                     | 277.2160                                                                |                          |                                   |                                                          |                          |                                           |                   |                                     |                                                                    |                                         | +MS, 2.0min #11 |
| Meas. m/<br>277.216                                                 | /z # Formula<br>50 1 C18 H 29 O 2<br>2 C 14 H 25 N 6<br>2 C 14 H 25 N 9 | Score<br>100.00<br>18.80 | m/z<br>277.2162<br>277.2135       | err [mDa]<br>0.2<br>-2.5                                 | err [ppm]<br>0.7<br>-8.9 | mSigma<br>16.0<br>26.0                    | rdb<br>4.5<br>5.5 | e <sup>—</sup> Conf<br>even<br>even | N-Rule<br>ok<br>ok                                                 |                                         |                 |

Fig.S18. HRMS Spectrum of methyl (2E,4E,6E,8E)-6-butyltrideca-2,4,6,7-tetraenoate (4aa) (APCI).



**Fig.S19.** <sup>1</sup>H NMR Spectrum of methyl (2*E*,4*E*,6*E*,8*E*)-9-phenyl-6-(trimethylsilyl)nona-2,4,6,8-tetraenoate (**4ba**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S20.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of methyl (2*E*,4*E*,6*E*,8*E*)-9-phenyl-6-(trimethylsilyl)nona-2,4,6,8-tetraenoate (**4ba**) (100 MHz, CDCl<sub>3</sub>).



**Fig.S21.** <sup>1</sup>H-<sup>1</sup>H COSY of methyl (2*E*,4*E*,6*E*,8*E*)-9-phenyl-6-(trimethylsilyl)nona-2,4,6,8-tetraenoate (**4ba**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S22.** *p*NOESY of methyl (2*E*,4*E*,6*E*,8*E*)-9-phenyl-6-(trimethylsilyl)nona-2,4,6,8-tetraenoate (**4ba**) (400 MHz, CDCl<sub>3</sub>).





**Fig.S23.** HRMS Spectra of methyl (2*E*,4*E*,6*E*,8*E*)-9-phenyl-6-(trimethylsilyl)nona-2,4,6,8-tetraenoate (**4ba**) (APCI).



**Fig.S24.** <sup>1</sup>H NMR Spectrum of dimethyl (2*E*,6*E*,8*E*)-5-(trimethylsilyl)deca-2,4,6,8-tetraenedioate (**4ca**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S25.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of dimethyl (2*E*,6*E*,8*E*)-5-(trimethylsilyl)deca-2,4,6,8-tetraenedioate (**4ca**) (100 MHz, CDCl<sub>3</sub>).



**Fig.S26.** <sup>1</sup>H-<sup>1</sup>H COSY of dimethyl (2*E*,6*E*,8*E*)-5-(trimethylsilyl)deca-2,4,6,8-tetraenedioate (**4ca**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S27.** NOE Spectrum of dimethyl (2*E*,6*E*,8*E*)-5-(trimethylsilyl)deca-2,4,6,8-tetraenedioate (**4ca**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S28.** NOE Spectrum of dimethyl (2*E*,6*E*,8*E*)-5-(trimethylsilyl)deca-2,4,6,8-tetraenedioate (**4ca**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S29.** NOE Spectrum of dimethyl (2*E*,6*E*,8*E*)-5-(trimethylsilyl)deca-2,4,6,8-tetraenedioate (**4ca**) (400 MHz, CDCl<sub>3</sub>).





**Fig.S30.** HRMS Spectra of dimethyl (2*E*,6*E*,8*E*)-5-(trimethylsilyl)deca-2,4,6,8-tetraenedioate (**4ca**) (APCI).



**Fig.S31.** <sup>1</sup>H NMR Spectrum of methyl (2*E*,4*E*,8*E*)-6-(trimethylsilyl)trideca-2,4,6,8-tetraenoate (**4da**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S32.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of methyl (2*E*,4*E*,8*E*)-6-(trimethylsilyl)trideca-2,4,6,8-tetraenoate (**4da**) (100 MHz, CDCl<sub>3</sub>).





Fig.S33. HRMS Spectra of methyl (2E,4E,8E)-6-(trimethylsilyl)trideca-2,4,6,8-tetraenoate (4da) (APCI).



**Fig.S34.** <sup>1</sup>H NMR Spectrum of methyl (2*E*,4*E*,8*E*)-6-(trimethylsilyl)trideca-2,4,6,8-tetraenoate (**4ea**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S35.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of methyl (2*E*,4*E*,8*E*)-6-(trimethylsilyl)trideca-2,4,6,8-tetraenoate (**4ea**) (100 MHz, CDCl<sub>3</sub>).

|                                                                     |                                                                                |                                           | M               | lass S                                         | pectrur                                      | n Sma             | rtForm                                 | nula             | Repo                | rt                                                                 |            |                                         |                  |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|-----------------|------------------------------------------------|----------------------------------------------|-------------------|----------------------------------------|------------------|---------------------|--------------------------------------------------------------------|------------|-----------------------------------------|------------------|
| Analysis Info                                                       |                                                                                |                                           |                 |                                                |                                              |                   |                                        |                  | Acquisi             | tion Date                                                          | 3/6/2023 3 | :11:04 PM                               |                  |
| Analysis Name<br>Aethod<br>Sample Name<br>Comment                   | D∴Data\HiranoLab\APCl230306\MKW0915.d<br>apci_pos_wide_low_140605.m<br>MKW0915 |                                           |                 |                                                |                                              |                   | Operato<br>Instrum                     | or<br>ent / Ser# | BDAL<br>micrOTOF    | -Q                                                                 | 10323      |                                         |                  |
| Acquisition Para<br>cource Type<br>ocus<br>can Begin<br>ican End    | ameter                                                                         | APCI<br>Not active<br>100 m/z<br>2000 m/z |                 | lon Polar<br>Set Capi<br>Set End<br>Set Collis | ity<br>llary<br>Plate Offset<br>sion Cell RF | F<br>4<br>-{<br>1 | Positive<br>500 V<br>500 V<br>50.0 Vpp |                  |                     | Set Nebulizer<br>Set Dry Heater<br>Set Dry Gas<br>Set Divert Valve |            | 1.6 Bar<br>200 °C<br>3.0 I/min<br>Waste |                  |
| Intens.<br>x10 <sup>5</sup><br>1.25<br>1.00<br>0.75<br>0.50<br>0.25 | 282.                                                                           | 2797                                      |                 |                                                |                                              |                   |                                        |                  |                     |                                                                    |            |                                         | +MS, 0.7min #    |
| 0.00 4 2 2                                                          | <br>200<br>m/z #                                                               | 400<br>Formula                            | 600<br>Score    | m/z                                            | 800<br>err [mDa]                             | 1000<br>err [ppm] | mSigma                                 | 1200<br>rdb      | e <sup>-</sup> Conf | 1400<br>N-Rule                                                     | 1600       | 1800                                    | ) <sup>'</sup> n |
| 367.2                                                               | 2079 1<br>2                                                                    | C 14 H 19 B 8 N 2 O 4<br>C 22 H 28 B O 4  | 100.00<br>75.06 | 367.2087<br>367.2079                           | 0.8<br>-0.0                                  | 2.1<br>-0.1       | 291.2<br>296.4                         | 10.5<br>9.5      | even<br>even        | ok<br>ok                                                           |            |                                         |                  |



Fig.S36. HRMS Spectra of methyl (2E,4E,8E)-6-(trimethylsilyl)trideca-2,4,6,8-tetraenoate (4ea) (APCI).



**Fig.S37.** <sup>1</sup>H NMR Spectrum of methyl (2*E*,4*E*,6*E*)-6-((*E*)-3-phenylallylidene)deca-2,4-dienoate (**4fa**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S38.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of methyl (2*E*,4*E*,6*E*)-6-((*E*)-3-phenylallylidene)deca-2,4-dienoate (**4fa**) (100 MHz, CDCl<sub>3</sub>).

| Analysis Info<br>Analysis Name D:\Data\<br>Method apci_poo:<br>Sample Name MKW02<br>Comment<br>Acquisition Parameter<br>Source Type AP(C<br>Focus Not<br>Scan Begin 100<br>Intens.<br>x10 <sup>4</sup><br>2.0 | ata\HiranoLab\MKW0267.d<br>_pos_wide_low_140605.m<br>/0267<br>                              | Ion Polarity                                                   | Positive                      | Acquisition Date<br>Operator<br>Instrument / Ser#                  | 4/6/2021 5:16:57 PM<br>BDAL<br>micrOTOF-Q II | 10323          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------|----------------------------------------------|----------------|
| Analysis Name D:\Data\<br>Method apci_po:<br>Sample Name MKW02<br>Comment Acquisition Parameter<br>Source Type APC<br>Focus Not<br>Scan Begin 100<br>Intens.<br>x10 <sup>4</sup>                              | ata\HiranoLab\MKW0267.d<br>_pos_wide_low_140605.m<br>/0267<br>APCI<br>Not active<br>100 m/z | Ion Polarity                                                   | Positive                      | Operator<br>Instrument / Ser#                                      | BDAL<br>micrOTOF-Q II                        | 10323          |
| Acquisition Parameter<br>Source Type APC<br>Focus Not<br>Scan Begin 100<br>Scan End 200<br>Intens.<br>x10 <sup>4</sup><br>2.0                                                                                 | APCI<br>Not active<br>100 m/z                                                               | Ion Polarity                                                   | Positive                      |                                                                    |                                              |                |
| Intens.<br>x10 <sup>4</sup><br>2.0-                                                                                                                                                                           | 2000 m/z                                                                                    | Set Capillary<br>Set End Plate Offset<br>Set Collision Cell RF | 4500 V<br>-500 V<br>150.0 Vpp | Set Nebulizer<br>Set Dry Heater<br>Set Dry Gas<br>Set Divert Valve | 1.6 Bar<br>200 °C<br>3.0 l/min<br>Waste      |                |
| 1.5<br>297.1841<br>1.0<br>0.5<br>0.0<br>200                                                                                                                                                                   | 419.3180<br>                                                                                | 800                                                            | 1000 1200                     | ) 1400                                                             | 1600 1800                                    | +MS, 0.5min #3 |

**Fig.S39.** HRMS Spectrum of methyl (2*E*,4*E*,6*E*)-6-((*E*)-3-phenylallylidene)deca-2,4-dienoate (**4fa**) (APCI).



**Fig.S40.** <sup>1</sup>H NMR Spectrum of methyl (2*E*,4*E*,7*E*)-6-((*E*)-3-benzylidene)dodeca-2,4,7-trienoate (**5ga**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S41.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of methyl (2*E*,4*E*,7*E*)-6-((*E*)-3-benzylidene)dodeca-2,4,7-trienoate (**5ga**) (100 MHz, CDCl<sub>3</sub>).





Fig.S42. HRMS Spectra of methyl (2E,4E,7E)-6-((E)-3-benzylidene)dodeca-2,4,7-trienoate (5ga) (APCI).



**Fig.S43.** <sup>1</sup>H NMR Spectrum of methyl (2*E*,4*E*,7*E*)-6-((*E*)-benzylidene)-8-phenylocta-2,4,7-trienoate (**5ha**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S44.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of methyl (2*E*,4*E*,7*E*)-6-((*E*)-benzylidene)-8-phenylocta-2,4,7-trienoate (**5ha**) (100 MHz, CDCl<sub>3</sub>).



**Fig.S45.** <sup>1</sup>H-<sup>1</sup>H pNOESY of methyl (2E,4E,7E)-6-((E)-benzylidene)-8-phenylocta-2,4,7-trienoate (**5ha**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S46.** HRMS Spectrum of methyl (2*E*,4*E*,7*E*)-6-((*E*)-benzylidene)-8-phenylocta-2,4,7-trienoate (**5ha**) (APCI).



**Fig.S47.** <sup>1</sup>H NMR Spectrum of methyl (2*E*,4*E*,7*E*)-6-((*Z*)-benzylidene)-8-(trimethylsilyl)octa-2,4,7-trienoate (**5ia**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S48.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of methyl (2*E*,4*E*,7*E*)-6-((*Z*)-benzylidene)-8-(trimethylsilyl)octa-2,4,7-trienoate (**5ia**) (100 MHz, CDCl<sub>3</sub>).





**Fig.S49.** HRMS Spectra of methyl (2*E*,4*E*,7*E*)-6-((*Z*)-benzylidene)-8-(trimethylsilyl)octa-2,4,7-trienoate (**5ia**) (APCI).


**Fig.S50.** <sup>1</sup>H NMR Spectrum of a mixture of methyl (2*E*,4*E*,6*E*,8*E*)-6,9-bis(trimethylsilyl)nona-2,4,6,8-tetraenoate (**4ja**) and methyl (2*E*,4*E*,6*Z*,7*E*)-8-(trimethylsilyl)-6-((trimethylsilyl)methylene)octa-2,4,7-trienoate (**5ja**) (400 MHz, CDCl<sub>3</sub>).



Fig.S51.  ${}^{13}C{}^{1}H$  NMR Spectrum of a mixture of methyl (2*E*,4*E*,6*E*,8*E*)-6,9-bis(trimethylsilyl)nona-2,4,6,8-tetraenoate(4ja)andmethyl(2*E*,4*E*,6*Z*,7*E*)-8-(trimethylsilyl)-6-((trimethylsilyl)methylene)octa-2,4,7-trienoate(5ja)(100 MHz, CDCl\_3).



**Fig.S52.** <sup>1</sup>H NMR Spectrum of methyl (2*E*,4*E*,6*E*,8*E*)-6-isobutyl-11-methyldodeca-2,4,6,8-tetraenoate (**4ka**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S53.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of methyl (2E,4E,6E,8E)-6-isobutyl-11-methyldodeca-2,4,6,8-tetraenoate (**4ka**) (100 MHz, CDCl<sub>3</sub>).





**Fig.S54.** HRMS Spectra of methyl (2*E*,4*E*,6*E*,8*E*)-6-isobutyl-11-methyldodeca-2,4,6,8-tetraenoate (**4ka**) (APCI).



**Fig.S55.** <sup>1</sup>H NMR Spectrum of methyl ((1*E*,3*E*,5*E*,7*E*)-1,8-diphenylocta-1,3,5,7-tetraen-4-yl)trimethylsilane (**4bb**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S56.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of methyl ((1*E*,3*E*,5*E*,7*E*)-1,8-diphenylocta-1,3,5,7-tetraen-4-yl)trimethylsilane (**4bb**) (100 MHz, CDCl<sub>3</sub>).

|                                                                      |                                                                                                           | Mass Spec                                                                                                                                                                       | trum S                             | martFo                                  | orm                           | ula Re                       | port                                                               |                                         |                |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------|-------------------------------|------------------------------|--------------------------------------------------------------------|-----------------------------------------|----------------|
| Analysis Info                                                        |                                                                                                           | Acquisition Date                                                                                                                                                                |                                    | 6/10/2022 12:30:44 PM                   |                               |                              |                                                                    |                                         |                |
| Analysis Name<br>Method<br>Sample Name<br>Comment                    | Name D:\Data\HiranoLab\APCl20220610\MKW0487A.d<br>apci_pos_wide_low_140605.m<br>Name MKW0487A<br>nt       |                                                                                                                                                                                 |                                    |                                         | Operator<br>Instrument / Ser# |                              | BDAL<br>micrOTOF-Q II                                              | 10323                                   |                |
| Acquisition Parame<br>Source Type<br>Focus<br>Scan Begin<br>Scan End | ter<br>APCI<br>Not active<br>100 m/z<br>2000 m/z                                                          | lon Polarity<br>Set Capillary<br>Set End Plate C<br>Set Collision Ca                                                                                                            | Offset<br>ell RF                   | Positive<br>4500 V<br>-500 V<br>150.0 V | op                            |                              | Set Nebulizer<br>Set Dry Heater<br>Set Dry Gas<br>Set Divert Valve | 1.6 Bar<br>200 °C<br>3.0 l/min<br>Waste |                |
| 161.0836                                                             |                                                                                                           |                                                                                                                                                                                 |                                    |                                         |                               |                              |                                                                    |                                         | +MS, 0.7min #4 |
|                                                                      | 330.1806<br>410.9915                                                                                      | 649,2905                                                                                                                                                                        | 941.8420                           |                                         |                               | 1288,6                       | 462 1482,4011                                                      | 1689.7049                               | 1910,5833      |
| Meas. m/z<br>330.1806<br>331.1829                                    | <ul> <li># Formula</li> <li>1 C 23 H 26 Si</li> <li>1 C 22 H 23 N 2 O</li> <li>2 C 20 H 21 N 5</li> </ul> | Score         m/z         err [mDa]           100.00         330.1798         -0.8           100.00         331.1805         -2.4           23.70         331.1791         -3.7 | err [ppm]<br>-2.4<br>-7.2<br>-11.3 | mSigma<br>85.6<br>34.5<br>38.9          | rdb<br>12.0<br>12.5<br>13.0   | e Conf<br>odd<br>even<br>odd | N-Rule<br>ok<br>ok<br>ok                                           |                                         |                |

**Fig.S57.** HRMS Spectrum of methyl ((1*E*,3*E*,5*E*,7*E*)-1,8-diphenylocta-1,3,5,7-tetraen-4-yl)trimethylsilane (**4bb**) (APCI).



**Fig.S58.** <sup>1</sup>H NMR Spectrum of methyl trimethyl((1*E*,3*E*,5*E*,7*E*)-1-phenylnona-1,3,5,7-tetraen-4-yl)trimethylsilane (**4bc**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S59.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectra of methyl trimethyl((1*E*,3*E*,5*E*,7*E*)-1-phenylnona-1,3,5,7-tetraen-4-yl)trimethylsilane (**4bc**) (100 MHz, CDCl<sub>3</sub>).





**Fig.S60.** HRMS Spectra of methyl trimethyl((1*E*,3*E*,5*E*,7*E*)-1-phenylnona-1,3,5,7-tetraen-4-yl)trimethylsilane (**4bc**) (APCI).



**Fig.S61.** <sup>1</sup>H NMR Spectrum of trimethyl((1E,3E,5E,7E)-1-phenyl-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octa-1,3,5,7-tetraen-4-yl)silane (**4bd**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S62.** <sup>13</sup>C $^{1}$ H NMR Spectrum of trimethyl((1*E*,3*E*,5*E*,7*E*)-1-phenyl-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octa-1,3,5,7-tetraen-4-yl)silane (**4bd**) (100 MHz, CDCl<sub>3</sub>).





**Fig.S63.** HRMS Spectra of trimethyl((1*E*,3*E*,5*E*,7*E*)-1-phenyl-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octa-1,3,5,7-tetraen-4-yl)silane (**4bd**) (APCI).



**Fig.S64.** <sup>1</sup>H NMR Spectrum of a mixture of methyl (2*E*,4*E*,6*Z*,8*E*)-10-(diethoxyphosphoryl)-6-(trimethylsilyl)deca-2,4,6,8-tetraenoate (**40a**) and methyl (2*E*,4*E*,6*E*,8*E*)-10-(diethoxyphosphoryl)-6-(trimethylsilyl)deca-2,4,6,8-tetraenoate (**40a**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S65.** <sup>13</sup>{<sup>1</sup>H} NMR Spectrum of a mixture of methyl (2*E*,4*E*,6*Z*,8*E*)-10-(diethoxyphosphoryl)-6-(trimethylsilyl)deca-2,4,6,8-tetraenoate (**4oa**) and methyl (2*E*,4*E*,6*E*,8*E*)-10-(diethoxyphosphoryl)-6-(trimethylsilyl)deca-2,4,6,8-tetraenoate (**4oa**) (100 MHz, CDCl<sub>3</sub>).





**Fig.S66.** HRMS Spectra of a mixture of methyl (2*E*,4*E*,6*Z*,8*E*)-10-(diethoxyphosphoryl)-6-(trimethylsilyl)deca-2,4,6,8-tetraenoate (**40a**) and methyl (2*E*,4*E*,6*E*,8*E*)-10-(diethoxyphosphoryl)-6-(trimethylsilyl)deca-2,4,6,8-tetraenoate (**40a**) (APCI).



**Fig.S67.** <sup>1</sup>H NMR Spectrum of methyl (2*E*,4*E*,8*E*)-6-(trimethylsilyl)-10-((trimethylsilyl)oxy)deca-2,4,6,8-tetraenoate (**4qa**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S68.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of methyl (2*E*,4*E*,8*E*)-6-(trimethylsilyl)-10-((trimethylsilyl)oxy)deca-2,4,6,8-tetraenoate (**4qa**) (100 MHz, CDCl<sub>3</sub>).





**Fig.S69.** HRMS Spectra of methyl (2*E*,4*E*,8*E*)-6-(trimethylsilyl)-10-((trimethylsilyl)oxy)deca-2,4,6,8-tetraenoate (**4qa**) (APCI).



**Fig.S70.** <sup>1</sup>H NMR Spectrum of methyl (2*E*,4*E*,8*E*)-10-((*tert*-butyldimethylsilyl)oxy)-6-(trimethylsilyl)deca-2,4,6,8-tetraenoate (**4ra**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S71.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of methyl (2*E*,4*E*,8*E*)-10-((*tert*-butyldimethylsilyl)oxy)-6-(trimethylsilyl)deca-2,4,6,8-tetraenoate (**4ra**) (100 MHz, CDCl<sub>3</sub>).





**Fig.S72.** HRMS Spectra of methyl (2*E*,4*E*,8*E*)-10-((*tert*-butyldimethylsilyl)oxy)-6-(trimethylsilyl)deca-2,4,6,8-tetraenoate (**4ra**) (APCI).



**Fig.S73.** <sup>1</sup>H NMR Spectrum of [Ru(*cisoid*-2-5- $\eta^4$ -methyl (2*E*,4*E*,6*E*,8*E*)-6-butyltrideca-2,4,6,7-tetraenoate)( $\eta^4$ -1,5-cod)] (**7**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S74.** <sup>1</sup>H-<sup>1</sup>H COSY of [Ru(*cisoid*-2-5- $\eta^4$ -methyl (2*E*,4*E*,6*E*,8*E*)-6-butyltrideca-2,4,6,7-tetraenoate)( $\eta^4$ -1,5-cod)] (**7**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S75.** <sup>1</sup>H-<sup>1</sup>H COSY of [Ru(*cisoid*-2-5- $\eta^4$ -methyl (2*E*,4*E*,6*E*,8*E*)-6-butyltrideca-2,4,6,7-tetraenoate)( $\eta^4$ -1,5-cod)] (**7**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S76.** *p*NOESY of [Ru(*cisoid*-2-5-η<sup>4</sup>-methyl (2*E*,4*E*,6*E*,8*E*)-6-butyltrideca-2,4,6,7-tetraenoate)(η<sup>4</sup>-1,5-cod)] (**7**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S77.** *p*NOESY of [Ru(*cisoid*-2-5-η<sup>4</sup>-methyl (2*E*,4*E*,6*E*,8*E*)-6-butyltrideca-2,4,6,7-tetraenoate)(η<sup>4</sup>-1,5-cod)] (**7**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S78.** <sup>1</sup>H NMR Spectrum of dimethyl (2*E*,6*E*,8*E*)-deca-2,4,6,8-tetraenedioate (**9ca**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S79.** <sup>13</sup>C{<sup>1</sup>H} NMR Spectrum of dimethyl (2*E*,6*E*,8*E*)-deca-2,4,6,8-tetraenedioate (**9ca**) (100 MHz, CDCl<sub>3</sub>).



Fig.S80. HRMS Spectra of dimethyl (2E,6E,8E)-deca-2,4,6,8-tetraenedioate (9ca) (APCI).

222

printed:

223.0

3/6/2023 10:59:32 AM

223.5

224.0

222.0

224.5

Page 1 of 1

m/z

200

100

0

221.0

Bruker Compass DataAnalysis 4.0

221.5



**Fig.S81.** <sup>1</sup>H NMR Spectrum of methyl (2*E*,4*E*,6*E*,8*E*)-trideca-2,4,6,8-tetraenoate (**9da**) (400 MHz, CDCl<sub>3</sub>).



**Fig.S82.** <sup>1</sup>H NMR Spectrum of methyl (2*E*,4*E*,8*E*)-10-((tetrahydro-2*H*-pyran-2-yl)oxy)deca-2,4,6,8-tetraenoate (**9pa**) (400 MHz, CDCl<sub>3</sub>).

MeO<sub>2</sub>C TMS Ru 4ba-A

| Energy: -994637.0884101         |                       |           |  |  |  |
|---------------------------------|-----------------------|-----------|--|--|--|
| Ru -0.584740 -0.070190 0.776940 |                       |           |  |  |  |
| С                               | -1.353390 1.913340    | 1.271090  |  |  |  |
| С                               | -0.022820 2.076680    | 0.767140  |  |  |  |
| С                               | -1.544370 1.079100    | 2.391810  |  |  |  |
| С                               | -1.974320 0.120970    | -0.971920 |  |  |  |
| С                               | -0.757100 -0.383640 - | -1.438540 |  |  |  |
| С                               | -1.079910 -2.261040 ( | 0.647800  |  |  |  |
| С                               | -2.136940 -1.572710   | 1.254320  |  |  |  |
| С                               | 1.576480 -0.429270    | 0.254740  |  |  |  |
| С                               | -0.411790 0.411120    | 2.930920  |  |  |  |
| С                               | -3.262990 -0.680400 - | -0.830260 |  |  |  |
| С                               | -0.493120 -1.829460 - | -1.795030 |  |  |  |
| С                               | -1.086120 -2.809780 - | -0.774630 |  |  |  |
| С                               | -3.453630 -1.230270 ( | 0.586770  |  |  |  |
| С                               | 1.366420 -1.037620    | 1.336890  |  |  |  |
| С                               | 1.855610 -1.880960    | 2.391590  |  |  |  |
| Si 2                            | .929650 -0.000350 -   | 0.941200  |  |  |  |
| С                               | 2.336160 0.582400     | -2.624580 |  |  |  |
| С                               | 3.922910 -1.586300    | -1.168160 |  |  |  |
| С                               | 4.000190 1.316460     | -0.134530 |  |  |  |
| н                               | 0.812510 2.185520     | 1.452950  |  |  |  |
| н                               | -2.113800 1.183530    | -1.141920 |  |  |  |
| н                               | -0.115490 0.332400    | -1.939350 |  |  |  |
| н                               | -0.420030 -2.801730   | 1.314990  |  |  |  |
| н                               | -2.199110 -1.652710   | 2.340430  |  |  |  |
| н                               | -2.554830 0.851650    | 2.717420  |  |  |  |
| н                               | -2.199460 2.358720    | 0.759250  |  |  |  |
| С                               | 0.129420 2.842530     | -0.478260 |  |  |  |

| н | 0.523990  | 0.944970      | 3.076480  |
|---|-----------|---------------|-----------|
| Н | -0.605340 | -0.334710 3.  | 695090    |
| Н | -3.952100 | -0.470620 1.  | 199020    |
| Н | 1.816510  | -0.210490 -   | 3.170680  |
| Н | 0.591860  | -1.974010 -   | 1.830700  |
| Н | 3.309060  | -2.372420 -   | 1.619640  |
| Н | -3.278820 | -1.488830 -1  | .567280   |
| Н | -2.105960 | -3.091700 -1  | .053940   |
| Н | -4.106190 | -0.030960 -1  | .084710   |
| Н | -0.507800 | -3.738420 -0  | .788870   |
| Н | -0.867320 | -2.046150 -2  | .806030   |
| Н | -4.116290 | -2.107980 0.  | 585550    |
| Н | 1.666220  | 1.441610      | -2.548340 |
| Н | 4.291160  | -1.958930 -   | 0.206880  |
| Н | 3.203430  | 0.885920      | -3.221560 |
| Н | 3.412920  | 2.221080      | 0.043560  |
| Н | 4.787930  | -1.416130 -   | 1.818460  |
| Н | 4.392720  | 0.962760      | 0.824080  |
| Н | 4.849940  | 1.572400      | -0.777140 |
| 0 | 1.382560  | 3.328890      | -0.611020 |
| 0 | -0.734210 | 3.056190 -    | 1.310860  |
| С | 1.621300  | 4.137770      | -1.759990 |
| Н | 1.055750  | 5.070570      | -1.695160 |
| Н | 1.336090  | 3.616840      | -2.676520 |
| Н | 2.691190  | 4.343020      | -1.758810 |
| С | 1.128270  | -2.469760 3   | .354220   |
| Н | 2.932410  | -2.040450 2   | .349620   |
| Н | 0.057870  | -2.284200 3   | 8.370270  |
| С | 1.629040  | -3.351360 4   | .415620   |
| С | 2.945120  | -3.835560 4   | .459580   |
| С | 0.749040  | -3.732230 5   | .437800   |
| С | 1.167570  | -4.556730 6   | .476470   |
| С | 3.364030  | -4.659090 5   | .496410   |
| С | 2.478760  | -5.022300 6   | .510660   |
| Н | -0.276010 | -3.371210 5.4 | 415850    |
| Н | 0.468640  | -4.835970 7   | 2.258620  |

- H 3.647530 -3.577530 3.673210
- H 4.386150 -5.024430 5.511630
- H 2.809340 -5.667470 7.318360

Table S2. Cartesian coordinates of intermediate 4ba-B.



H -0.656930 -2.831470 0.050100 H -2.670010 -2.144490 1.127750 H -2.857260 0.111330 2.518900 H -2.484630 2.221940 1.215230 -0.154190 2.977660 0.071910 С -0.221250 0.129560 3.480270 н H -1.113730 -1.362050 3.124240 -4.325900 -0.696140 0.179290 Н H 2.013690 0.339360 -2.489300 H 0.525900 -1.163760 -2.758900 1.652350 -2.808400 -1.878070 Н -3.250320 -0.677710 -2.644220 н Н -2.159960 -2.474380 -2.461360 H -4.185480 0.526470 -1.794450 H -0.565220 -3.149630 -2.266410 -0.933650 -0.860770 -3.677130 н H -4.299580 -2.018470 -0.977540 Н 2.445000 1.391170 -1.135900 2.493630 -3.448330 -0.461620 Н 3.706410 0.486740 -1.999230 н 3.943510 -0.097690 1.485150 Н 3.422030 -2.790650 -1.818140 н Н 4.268080 -1.820440 1.214460 4.912400 -0.618080 0.099720 н 0 1.153280 3.249480 -0.118470 -1.036470 3.577980 -0.515330 0 С 1.437970 4.238950 -1.105020 0.993280 5.198740 -0.832680 н 1.051690 3.932120 -2.080230 н 2.523720 4.319360 -1.137970 н С 1.363510 -1.969980 4.086240 2.463240 -1.995380 2.319820 Н 0.437690 -1.716180 4.595880 н 2.347720 -2.682220 4.916800 С С 3.711840 -2.741360 4.593470 С 1.919410 -3.321860 6.088080

| C 2.812630 | -4.019380 | 6.894240 |
|------------|-----------|----------|
|------------|-----------|----------|

- C 4.604560 -3.440160 5.396870
- C 4.159900 -4.085750 6.549420
- H 0.868580 -3.276860 6.362550
- H 2.455420 -4.511390 7.793730
- H 4.082930 -2.216760 3.717830
- H 5.656210 -3.470880 5.128640
- H 4.860080 -4.627030 7.177730

**Table S3.** Cartesian coordinates of intermediate **4ba-B'**. This compound is an intermediate with a slight rearrangement of **4ba-B**.

Energy: -994617.0353724 Ru -0.128870 0.015040 0.338960 C -0.361130 1.759450 1.687430 C 0.561050 2.702300 0.938850 C -1.162940 -1.391090 1.530070 C 0.220210 -1.709450 1.575660 C 0.551620 -1.471200 -1.159710 C -0.836870 -1.337260 -1.274500 С 1.826580 0.569860 0.471920 C -1.632330 1.425490 1.190450 C 1.672770 1.924240 0.260380 C -1.884650 1.338410 -0.195440 C -2.193290 -2.178690 0.740030 C 0.740890 -2.964200 0.875240 C 1.217740 -2.690540 -0.554460 C -1.813220 -2.382200 -0.741520 C 2.601960 2.689180 -0.576880 Si 3.583300 -0.155350 0.508210 C 3.731780 -1.641980 1.662700 C 4.249360 -0.604860 -1.205320 C 4.748350 1.119220 1.282930 H -0.019600 3.290350 0.215270 H -1.217410 -0.706750 -2.073260

H -1.575120 -0.918980 2.421500 H 1.156390 -0.926760 -1.884460 H 0.755830 -1.424800 2.476950 H -1.342120 1.957560 -0.909270 -0.214070 1.668280 2.760190 н 1.017570 3.436070 1.616580 Н H -2.381650 1.005700 1.854730 -3.174650 0.824240 -0.674540 С H -3.131070 -1.620920 0.787030 H 3.504880 -2.597520 1.187110 2.296120 -2.525760 -0.555020 Н H -1.383820 -3.378860 -0.896050 Н 3.568890 -1.247210 -1.770950 -0.057470 -3.714720 0.871950 н -2.722490 -2.349420 -1.349250 Н 1.550600 -3.398950 1.466370 н 3.088560 -1.535220 2.541090 н Н -2.378830 -3.147290 1.226620 1.046960 -3.564960 -1.198520 Н 4.436380 0.288340 -1.810240 н 4.767400 -1.690400 2.016860 Н 4.428940 1.341930 2.307130 н Н 4.797940 2.066920 0.741420 5.202250 -1.135780 -1.100110 н 5.761710 0.705140 1.336830 н -3.240850 0.856820 -2.020490 0 O -4.080990 0.398090 0.016250 -4.433020 0.316870 -2.587610 С H -4.547450 -0.735050 -2.313560 H -5.310590 0.868820 -2.243780 H -4.319870 0.416770 -3.666020 2.554400 4.015490 -0.793070 С 3.362980 2.111550 -1.093530 н 1.764020 4.604930 -0.332950 н 3.487800 4.779870 -1.633350 C С 4.718390 4.264750 -2.068630

| С | 3.148060 | 6.085990 | -2.011340 |
|---|----------|----------|-----------|
| С | 3.993660 | 6.845850 | -2.812420 |
| С | 5.563420 | 5.022460 | -2.869480 |
| С | 5.204790 | 6.315520 | -3.247910 |
| н | 2.203340 | 6.505620 | -1.675390 |
| н | 3.706380 | 7.853680 | -3.095690 |
| н | 5.027590 | 3.268400 | -1.766610 |
| Н | 6.512010 | 4.605440 | -3.193440 |
| Н | 5.868670 | 6.906220 | -3.871050 |
|   |          |          |           |

Table S4. Cartesian coordinates of intermediate 4ba-C.



Energy: -994620.7070746

Ru -0.110960 0.103370 -0.306460

C -0.282230 2.129670 0.399500

- C 0.583470 2.116390 -0.719130
- C -0.920600 -0.505740 1.869660
- C 0.375360 -0.951480 1.810260
- C 0.139020 -2.041320 -0.814820
- C -1.231420 -1.752880 -0.725850
- C 2.052870 0.462050 -0.316560
- C -1.632560 1.694730 0.187480
- C 2.020360 1.803730 -0.524150
- C -2.025250 1.210660 -1.065980
- C -2.154860 -1.353950 1.661420
- C 0.696070 -2.425460 1.652220
- C 0.876420 -2.884960 0.199010
- C -2.109580 -2.261670 0.417270
- C 3.043960 2.834400 -0.628830
- Si 3.623480 -0.573470 -0.380820

C 3.956880 -1.542030 1.216870 C 3.569290 -1.699440 -1.898370 5.223380 0.414390 -0.643040 С H 0.156000 0.170770 -1.858990 H -1.749550 -1.575120 -1.664430 -1.090620 0.444770 2.367440 н H 0.561000 -2.080310 -1.814700 1.156980 -0.312360 2.208050 Н -1.629070 1.597460 -1.994420 н H 0.079130 2.319060 1.405500 0.249480 2.485630 -1.686290 Н H -2.322800 1.604530 1.018810 С -3.334910 0.535500 -1.183880 -3.006400 -0.678700 1.558700 н 3.579880 -2.567200 1.202390 Н 1.935530 -2.871980 -0.053510 н -1.771720 -3.268610 0.689080 н Н 2.729960 -2.396070 -1.924940 -0.105650 -2.998270 2.129360 н -3.130930 -2.377230 0.044950 Н 1.601470 -2.647760 2.222100 н 3.527160 -1.035670 2.087050 н Н -2.338120 -1.958220 2.561360 0.557380 -3.932160 0.095090 н 3.509300 -1.076110 -2.797320 н 5.039340 -1.598080 1.373610 н 5.471360 1.068740 0.198900 Н 5.212230 1.008770 -1.561770 н 4.495030 -2.282610 -1.960390 н 6.037860 -0.314360 -0.735890 н 0 -3.564360 0.155960 -2.451370 -4.117440 0.321960 -0.278540 0 -4.783830 -0.554090 -2.669670 С H -4.795700 -1.480220 -2.089800 -5.642680 0.056340 -2.382930 н H -4.810920 -0.773940 -3.735510

| С | 2.759000 | 4.133100 | -0.825640 |
|---|----------|----------|-----------|
| н | 4.074820 | 2.526340 | -0.513740 |
| н | 1.712810 | 4.432060 | -0.893290 |
| С | 3.730260 | 5.229170 | -0.938480 |
| С | 5.112210 | 5.016930 | -1.064660 |
| С | 3.267050 | 6.552240 | -0.922880 |
| С | 4.147040 | 7.625490 | -1.014100 |
| С | 5.992090 | 6.087980 | -1.154040 |
| С | 5.515550 | 7.398200 | -1.127710 |
| Н | 2.199670 | 6.737490 | -0.832830 |
| Н | 3.762450 | 8.640690 | -0.996840 |
| Н | 5.504040 | 4.004870 | -1.104780 |
| Н | 7.057020 | 5.899930 | -1.251910 |
| Н | 6.205670 | 8.232760 | -1.200930 |

**Table S5.** Cartesian coordinates of intermediate **4ba-C'**. This compound is an intermediate with a slight rearrangement of **4ba-C**.

Energy: -994609.7211220 Ru -0.610090 0.813550 -0.452620 C 0.039530 -1.216540 -0.053460 C -0.911530 2.397940 1.330910 C -2.165310 1.931290 1.031200 C -1.819230 2.101670 -1.796470 C -0.598500 2.740520 -1.530070 C -2.132460 -0.764070 -0.427030 C 0.415530 -0.374530 1.019730 C 1.313490 0.703940 0.722690 C -1.324710 -1.798720 -0.078320 C 1.720830 0.934890 -0.596350 C -0.324800 3.709060 0.858740 C -3.161980 2.784720 0.271260 C -3.143730 2.581300 -1.249800 C -0.491910 3.984830 -0.648410 C -1.553800 -3.213760 0.178310

Si -3.920270 -0.964380 -0.980790

H -0.341890 0.148260 -1.856310 H 0.172490 2.643940 -2.289750 H -1.895000 1.581130 -2.746690 H 0.778800 -1.570530 -0.768730 -2.557880 1.102130 1.610750 н H -0.406300 1.941600 2.177420 -0.055300 -0.440140 1.995680 Н H 0.743010 3.694070 1.084930 -3.908140 1.856520 -1.525310 н -1.373920 4.610590 -0.828710 Н H -2.958350 3.833540 0.510430 н 0.367400 4.572890 -0.981610 1.575850 1.431400 1.482720 н -4.163260 2.578580 0.657280 Н -0.759160 4.533530 1.441910 н -3.423170 3.516890 -1.755630 н Н 1.877710 0.137840 -1.309540 2.432140 2.192900 -0.906830 С 2.768020 2.243380 0 -2.206000 0 2.684610 3.088090 -0.124170 С 3.417810 3.442950 -2.627400 Н 2.764910 4.305600 -2.473280 4.345620 3.595050 -2.072020 н 3.625380 3.309690 -3.687710 н -4.056290 -0.542120 -2.818370 С С -5.152620 0.022130 0.072650 -4.590990 -2.738740 -0.902290 С H -3.417070 -1.227730 -3.385440 H -3.760560 0.475020 -3.080040 H -5.087260 -0.692520 -3.158120 H -4.667870 -3.128210 0.117970 H -4.009410 -3.441880 -1.506340 H -5.606460 -2.715700 -1.316210 -5.390200 1.009890 -0.328580 Н H -4.787180 0.151910 1.096350

- H -6.092100 -0.537800 0.130030
- C -0.574830 -4.065370 0.528870
- H -2.571170 -3.574260 0.102820
- H 0.436810 -3.676550 0.647020
- C -0.729610 -5.500510 0.801570
- C -1.902900 -6.212370 0.505850
- C 0.336900 -6.202590 1.380270
- C 0.234840 -7.559370 1.669160
- C -2.006580 -7.566870 0.795530
- C -0.939670 -8.248190 1.380160
- H 1.256780 -5.671010 1.610200
- H 1.074750 -8.078900 2.120260
- H -2.739770 -5.706560 0.033450
- H -2.923520 -8.097220 0.556910
- H -1.022850 -9.307410 1.602080

Table S6. Cartesian coordinates of intermediate 4ba-D.

MeO<sub>2</sub>0 MS 4ba-D

Energy: -994645.7699659

- Ru -0.307550 1.390150 -0.693100
- C -0.277870 -0.712200 -1.488110
- C -1.532690 0.789010 1.017130
- C -2.343500 1.448370 0.077620
- C -0.442980 3.511790 -0.363620
- C 0.218860 2.953950 0.748090
- C -2.476140 -1.418120 -2.300990
- C 0.705880 -0.559110 -0.490090
- C 1.653390 0.500230 -0.568170
- C -1.488120 -1.561640 -1.386440
- C 1.652730 1.375880 -1.690690

C -1.002120 1.378490 2.305570 C -2.850560 2.878340 0.246750 С -1.905790 3.929830 -0.373860 -0.423740 2.787560 2.117290 С C -1.653390 -2.521270 -0.274370 Si -4.142640 -2.279100 -2.355620 H -2.283440 -0.690720 -3.094540 1.303470 3.026340 0.753390 Н H 0.175850 4.030780 -1.097870 H -0.028720 -0.444480 -2.514800 -2.948630 0.806610 -0.563490 Н H -1.592010 -0.298490 1.030950 0.642250 -1.106380 0.444350 Н -0.210570 0.712020 2.665820 н -2.194560 4.090020 -1.418930 Н -1.200400 3.545660 2.256270 н -3.012230 3.088680 1.308740 Н Н 0.327060 2.979050 2.889890 H 2.313760 0.691010 0.271910 -3.834460 2.961280 -0.224890 н -1.784600 1.377050 3.078190 Н -2.033600 4.900340 0.127040 н Н 1.452830 1.008280 -2.695060 2.509970 2.568300 -1.646710 С 0 2.497000 3.224620 -2.825230 3.142680 2.968740 -0.685970 0 С 3.258930 4.429280 -2.863340 2.885340 5.146460 -2.128270 н 4.312770 4.228720 -2.656510 н 3.139720 4.824130 -3.871410 н С -4.933700 -1.840750 -4.007900 -5.243950 -1.631690 -0.963680 С -3.976000 -4.151710 -2.218040 С H -4.326130 -2.201680 -4.844250 -5.043830 -0.756500 -4.116730 Н H -5.928760 -2.288430 -4.098800

- H -3.527250 -4.456190 -1.267720
- H -3.345200 -4.543880 -3.022210
- H -4.958590 -4.629570 -2.297340
- H -5.376330 -0.548170 -1.051390
- H -4.824090 -1.832450 0.027370
- H -6.234960 -2.096680 -1.005420
- C -0.699590 -3.323420 0.219020
- H -2.664780 -2.610580 0.116290
- H 0.297180 -3.283730 -0.217400
- C -0.880960 -4.324660 1.281700
- C -1.995540 -4.336670 2.133220
- C 0.098830 -5.310310 1.457450
- C -0.036460 -6.289700 2.435700
- C -2.131210 -5.314280 3.110860
- C -1.154350 -6.296900 3.265010
- H 0.972960 -5.310270 0.811650
- H 0.732840 -7.046800 2.550730
- H -2.756730 -3.567520 2.043610
- H -3.000060 -5.305500 3.761600
- H -1.261920 -7.057740 4.031460

Table S7. Cartesian coordinates of transition state 4ba-TS1.

Energy: -994625.5221053

Ru -0.911510 -0.137760 0.393920

- C -1.632570 1.663550 1.441230
- C -0.286170 1.910360 1.044040
- C -1.910430 0.496740 2.179950
- C -2.148540 0.536830 -1.234410
- C -0.873780 0.178210 -1.739710
- C -1.256810 -2.192500 -0.328110
- C -2.397270 -1.745820 0.358180
- C 1.101860 -0.726280 0.424990
- C -0.789740 -0.307030 2.674350
- C -3.410050 -0.295520 -1.460830

C -0.643450 -1.087640 -2.543790 C -1.180830 -2.346090 -1.843090 -3.676580 -1.269250 -0.304950 С 0.889650 -1.006870 1.669040 С 1.634130 -1.668680 2.718420 С Si 2.612750 -0.838330 -0.659950 C 2.630820 0.556540 -1.918460 2.670880 -2.539750 -1.466700 С 4.153790 -0.645800 0.415970 С H 0.539520 1.721940 1.722870 -2.321210 1.604570 -1.135330 Н H -0.213000 1.001740 -2.003680 H -0.586370 -2.841400 0.230400 H -2.535530 -2.124900 1.371190 H -2.932610 0.207900 2.397610 H -2.440870 2.267100 1.041230 -0.032640 2.942980 0.033830 С H -0.060130 0.248200 3.260470 H -1.113220 -1.222000 3.159910 H -4.274100 -0.759260 0.458770 1.896760 0.422890 -2.716460 н H 0.431310 -1.198600 -2.704330 Н 1.792260 -2.744250 -2.083820 -3.330570 -0.834900 -2.410670 н -2.170420 -2.610690 -2.230530 н H -4.265290 0.377790 -1.573430 H -0.536030 -3.200090 -2.074280 H -1.088310 -0.983830 -3.544430 -4.274520 -2.128910 -0.640950 н 2.412310 1.501070 -1.411340 Н 2.727020 -3.316110 -0.696520 н 3.621680 0.633800 -2.378760 Н H 4.068930 0.219610 1.080890 3.559130 -2.630350 -2.101350 н 4.347930 -1.531760 1.029130 н 5.032190 -0.494530 -0.221110 н

O 1.281190 3.245510 -0.044350 O -0.864440 3.472850 -0.681230 1.631510 4.192670 -1.051140 С H 1.116230 5.141840 -0.888060 H 1.372770 3.813830 -2.043330 2.709490 4.326490 -0.969100 Н С 1.283690 -2.117380 3.935030 H 2.662360 -1.831330 2.401740 H 0.261160 -2.036350 4.286970 C 2.205050 -2.778780 4.872280 С 3.600150 -2.660250 4.783860 С 1.672490 -3.556150 5.909820 2.500690 -4.214770 6.812110 С 4.428330 -3.319230 5.684050 С C 3.883820 -4.102350 6.700440 H 0.593520 -3.650160 6.001920 H 2.064620 -4.815730 7.604040 H 4.044390 -2.030490 4.018740 H 5.505300 -3.211820 5.599090

H 4.533250 -4.612370 7.404730

Table S8. Cartesian coordinates of transition state 4ba-TS2.

Energy: -994615.5892580

- Ru -0.187730 0.153360 -0.113650
- C -0.134150 2.128120 0.777940
- C 0.508120 2.136910 -0.537510
- C -1.151320 -1.223810 1.440200
- C 0.190330 -1.551170 1.392340
- C 0.316070 -1.543480 -1.443550
- C -1.081350 -1.398580 -1.408450
- C 1.982150 0.485550 -0.028620
- C -1.493420 1.766970 0.842590
- C 1.954940 1.770490 -0.476600
- C -2.185180 1.348640 -0.315230
```
C -2.238360 -2.068270 0.804530
  0.650730 -2.834830 0.721830
С
  1.072240 -2.647270 -0.742600
С
  -2.011950 -2.372830 -0.691200
С
C 3.011410 2.692900 -0.870090
Si 3.653740 -0.261040 0.433770
C 3.701550 -1.843300 1.465600
  4.656020 -0.619590 -1.130660
С
  4.567380 0.977660 1.540100
С
H 0.005670 0.908380 -1.505530
   -1.540470 -0.863380 -2.234860
Н
H -1.487780 -0.556300 2.228860
H 0.833650 -1.134890 -2.307960
H 0.858790 -1.101130 2.118590
  -2.005700 1.801300 -1.282540
Н
  0.440110 2.307910 1.679550
н
H 0.111700 2.787650 -1.318880
  -1.969610 1.633040 1.809210
Н
  -3.522440 0.761550 -0.150470
С
H -3.183980 -1.541810 0.931410
H 3.502680 -2.751480 0.892550
H 2.135390 -2.401000 -0.789860
H -1.622200 -3.388980 -0.821320
H 4.149840 -1.370730 -1.747120
  -0.160210 -3.566770 0.783200
н
  -2.977870 -2.355660 -1.204160
Н
H 1.475960 -3.262490 1.293400
  3.028540 -1.816740 2.327310
н
  -2.336460 -3.005830 1.369510
н
   0.951330 -3.590640 -1.294150
Н
  4.793250 0.271190 -1.751110
н
   4.722260 -1.927760 1.856720
Н
   4.044630 1.060930 2.499830
н
   4.643860 1.984060 1.122890
н
   5.646840
            -1.010940 -0.874470
н
   5.580560 0.615650 1.749080
н
```

| 0 | -4.049260 | 0.404900    | -1.337020 |
|---|-----------|-------------|-----------|
| 0 | -4.103100 | 0.588250    | 0.905480  |
| С | -5.321880 | -0.235080 - | 1.274030  |
| Н | -5.248800 | -1.181040   | -0.729810 |
| Н | -6.054820 | 0.403130    | -0.776050 |
| Н | -5.614120 | -0.417130   | -2.307120 |
| С | 2.818480  | 3.993770    | -1.147880 |
| Н | 4.008550  | 2.273910    | -0.969930 |
| Н | 1.811370  | 4.401470    | -1.062890 |
| С | 3.843680  | 4.957980    | -1.569400 |
| С | 5.217810  | 4.671760    | -1.553950 |
| С | 3.442040  | 6.229300    | -2.002460 |
| С | 4.371670  | 7.176600    | -2.418350 |
| С | 6.147050  | 5.616550    | -1.969870 |
| С | 5.730030  | 6.873510    | -2.406220 |
| Н | 2.382850  | 6.473290    | -2.015520 |
| Н | 4.033600  | 8.152930    | -2.751840 |
| Н | 5.568430  | 3.705710    | -1.203510 |
| Н | 7.204960  | 5.373200    | -1.948100 |
| Н | 6.459070  | 7.610090    | -2.728610 |

Table S9. Cartesian coordinates of transition state 4ba-TS3.

Energy: -994607.6784657

```
Ru -0.553530 0.842370 -0.458130
```

- C 0.134860 -1.221590 -0.320340
- C -0.768950 2.022070 1.527090
- C -2.032230 1.551460 1.201910
- C -1.826260 2.354190 -1.509740
- C -0.626930 2.969610 -1.145780
- C -2.009340 -0.798960 -0.803480
- C 0.677470 -0.473180 0.740130
- $C \quad 1.477670 \quad 0.654660 \quad 0.341740$
- C -1.232840 -1.805070 -0.319260
- C 1.670650 0.905870 -1.043600

C -0.263390 3.436660 1.345600 C -3.113680 2.491050 0.693220 C -3.154280 2.620530 -0.835220 -0.537640 4.021600 -0.045220 С C -1.547170 -3.146760 0.127650 Si -3.764050 -1.004860 -1.466110 H -1.136670 0.051340 -1.783340 H 0.116290 3.053980 -1.931690 H -1.905660 2.030690 -2.544020 H 0.724230 -1.413790 -1.212690 -2.365800 0.629630 1.669630 Н H -0.206350 1.442820 2.254860 H 0.380210 -0.617390 1.773660 H 0.818700 3.418170 1.497960 -3.884340 1.915600 -1.234270 Н -1.463510 4.608850 -0.045370 н H -2.959920 3.474650 1.149830 H 0.267760 4.715120 -0.297450 H 1.875580 1.345700 1.076260 -4.084180 2.144480 1.059700 н -0.681090 4.084550 2.130170 н -3.512490 3.618950 -1.125000 н Н 1.824330 0.117530 -1.768670 2.303660 2.185890 -1.399650 С 0 2.548830 2.260530 -2.723190 2.569560 3.096610 -0.636340 0 С 3.124640 3.485680 -3.171100 2.466780 4.327790 -2.941820 н 4.093800 3.655550 -2.696370 н 3.243530 3.381350 -4.248620 н С -3.896080 -0.128470 -3.131420 -5.089320 -0.443400 -0.247100 С -4.144960 -2.820630 -1.848140 С H -3.132920 -0.524510 -3.810570 -3.771380 0.954900 -3.087060 Н H -4.874910 -0.334250 -3.578250

- H -4.450090 -3.385660 -0.961740
- H -3.295560 -3.335040 -2.307730
- H -4.980820 -2.857050 -2.556090
- H -5.102900 0.632650 -0.065980
- Н -4.944940 -0.944250 0.716160
- Н -6.076270 -0.731350 -0.626030
- C -0.621850 -3.996910 0.607600
- Н -2.590790 -3.440930 0.101530
- H 0.412420 -3.656280 0.659880
- C -0.864520 -5.358470 1.098340
- C -2.072180 -6.041540 0.884910
- C 0.149610 -6.017840 1.807010
- C -0.037970 -7.303870 2.302200
- C -2.260510 -7.325570 1.379750
- C -1.246130 -7.962950 2.093220
- H 1.095120 -5.508510 1.974460
- H 0.761490 -7.791850 2.851190
- H -2.866880 -5.572190 0.312650
- H -3.201820 -7.836370 1.201300
- H -1.395450 -8.967460 2.476180

Table S10. Cartesian coordinates of intermediate 5ba-A.



Energy: -994635.4997883

- Ru 1.300580 -0.514970 0.160900
- C 1.361390 -1.806010 1.925300
- C 0.172100 -1.020360 2.021410
- C 2.599000 -1.135320 1.812850
- C 0.910730 -2.455980 -0.924290

| С    | 0.019630    | -1.515180    | -1.436780 |
|------|-------------|--------------|-----------|
| С    | 2.329550    | 0.086410     | -1.722900 |
| С    | 3.158630    | -0.782770    | -1.005030 |
| С    | -0.283560   | 1.049940     | -0.193230 |
| С    | 2.567670    | 0.288460     | 1.764330  |
| С    | 2.119740    | -2.990130    | -1.683770 |
| С    | 0.173560    | -0.810880    | -2.765860 |
| С    | 1.595590    | -0.284260    | -3.007200 |
| С    | 3.410460    | -2.236360    | -1.348570 |
| С    | 0.772910    | 1.669570     | 0.098790  |
| С    | -1.676010   | 1.151000     | -0.544360 |
| Si 1 | 633490 3    | 8.281480 (   | ).392270  |
| С    | 1.805150    | 3.619890     | 2.236060  |
| С    | 3.332450    | 3.317860     | -0.414600 |
| С    | 0.530340    | 4.598020     | -0.380010 |
| н    | 0.161890    | -0.117070    | 2.623570  |
| н    | 0.484420    | -3.130420    | -0.188210 |
| Н    | -0.999730   | -1.588870 -: | 1.081040  |
| н    | 2.558840    | 1.141190     | -1.629710 |
| н    | 3.967050    | -0.316770    | -0.442060 |
| н    | 3.503200    | -1.707580    | 1.633150  |
| н    | 1.308730    | -2.887240    | 1.856350  |
| С    | -1.117460 - | 1.721410 1   | .991370   |
| н    | 1.947850    | 0.828270     | 2.474300  |
| н    | 3.494770    | 0.801370     | 1.518450  |
| н    | 3.885910    | -2.708540    | -0.482020 |
| Н    | -0.531050   | 0.025830     | -2.781260 |
| н    | 1.917500    | -2.949600    | -2.758830 |
| Н    | 2.189660    | -1.018560    | -3.561750 |
| Н    | 2.242900    | -4.050610    | -1.443720 |
| н    | 1.547390    | 0.601270     | -3.647970 |
| н    | -0.131360   | -1.484570 -3 | 3.579630  |
| н    | 4.134780    | -2.309360    | -2.172800 |
| н    | 3.936010    | 2.452510     | -0.123870 |
| н    | 2.609670    | 3.032250     | 2.686760  |
| Н    | 3.262000    | 3.331380     | -1.506710 |

H 0.876340 3.391760 2.767870

- H 0.396710 4.419360 -1.451650
- H -0.459010 4.598990 0.088910
- H 3.868480 4.221600 -0.104760
- H 2.034500 4.679290 2.395760
- H 0.963760 5.596020 -0.253910
- 0 -2.067770 -1.021220 2.643290
- O -1.349500 -2.794500 1.459020
- C -3.369440 -1.600060 2.662320
- Н -3.337540 -2.615720 3.062590
- Н -3.800350 -1.626200 1.657930
- Н -3.970490 -0.955720 3.302320
- C -2.616340 0.210540 -0.371630
- Н -1.953010 2.116000 -0.968640
- Н -2.321890 -0.756450 0.021040
- C -4.042820 0.350550 -0.691050
- C -4.680450 1.593860 -0.803870
- C -4.804940 -0.809800 -0.886030
- C -6.156540 -0.732960 -1.203930
- C -6.030900 1.670930 -1.122140
- C -6.773960 0.509120 -1.325730
- Н -4.323310 -1.780700 -0.797600
- Н -6.727450 -1.643480 -1.356390
- Н -4.121520 2.506250 -0.619430
- Н -6.509500 2.642100 -1.201340
- Н -7.829650 0.572810 -1.569530

Table S11. Cartesian coordinates of intermediate 5ba-B.

MeO<sub>2</sub>C 5ba-B

Energy: -994639.3868455

| Ru   | 1.691310   | 0.148620    | -0.340040 |
|------|------------|-------------|-----------|
| С    | 2.561770   | 1.278180    | 1.221470  |
| С    | 1.674920   | 0.379960    | 1.880550  |
| С    | 2.197190   | 2.248040    | 0.264770  |
| С    | 2.137080   | -2.052410   | -0.659170 |
| С    | 0.770650   | -2.003660   | -0.771570 |
| С    | 1.308710   | 0.240790    | -2.545010 |
| С    | 2.675860   | 0.315540    | -2.277640 |
| С    | -0.166960  | 0.987910    | -0.306450 |
| С    | 0.938080   | 3.086690    | 0.305740  |
| С    | 3.079730   | -2.187080   | -1.839780 |
| С    | 0.090370   | -2.054720   | -2.119240 |
| С    | 0.581660   | -0.974910   | -3.122850 |
| С    | 3.659280   | -0.835410   | -2.311330 |
| С    | -0.312510  | 2.278270    | 0.049120  |
| С    | -1.338110  | 0.142540    | -0.575600 |
| Si - | 1.979960 3 | .131510 0   | .265180   |
| С    | -2.707640  | 2.746480    | 1.963210  |
| С    | -1.682490  | 4.994480    | 0.148520  |
| С    | -3.237590  | 2.668900    | -1.066270 |
| н    | 0.671110   | 0.680100    | 2.159100  |
| н    | 2.578010   | -2.221370   | 0.324050  |
| н    | 0.156290   | -2.178330   | 0.105970  |
| н    | 0.815800   | 1.190000    | -2.738070 |
| н    | 3.140170   | 1.298420    | -2.324070 |
| н    | 3.044270   | 2.715560    | -0.234210 |
| н    | 3.617780   | 0.994020    | 1.252290  |
| С    | 2.236130   | -0.765690   | 2.598030  |
| Н    | 0.871840   | 3.598680    | 1.277600  |
| Н    | 1.021170   | 3.889680    | -0.437770 |
| Н    | 4.508210   | -0.565910   | -1.670650 |
| Н    | -0.986120  | -1.967280 - | 1.969370  |
| Н    | 2.568680   | -2.686040   | -2.667190 |
| н    | 1.233410   | -1.441020   | -3.869840 |
| н    | 3.908090   | -2.839360   | -1.549210 |
| Н    | -0.284310  | -0.606070 - | 3.680650  |

H 0.250390 -3.048950 -2.557350 н 4.070920 -0.949480 -3.323290 Н -0.981250 5.343810 0.913410 -1.991220 2.977880 2.758690 н -1.273520 5.270560 -0.829500 н -2.966340 1.685810 2.039880 Н н -2.787680 2.696300 -2.064510 -3.652670 1.669960 -0.906500 Н -2.621940 5.541270 0.283490 Н -3.615990 3.331180 2.146060 Н -4.067730 3.384180 -1.054240 Н 0 1.298200 -1.393740 3.337440 0 3.383880 -1.177410 2.521750 С 1.728770 -2.584410 3.992270 2.549310 -2.374170 4.682110 Н 2.061400 -3.328930 3.264470 н 0.861140 -2.953030 4.538000 Н С -2.015970 -0.521040 0.370530 -1.644750 0.065800 -1.618040 н -1.658350 -0.451510 1.397320 Н -3.189460 -1.380000 0.157150 С С -3.874260 -1.445380 -1.066110 С -3.652340 -2.173780 1.215330 -4.749440 -3.013840 1.057420 С -4.969660 -2.285440 -1.225300 С -5.412200 -3.075200 -0.165450 С -3.138790 -2.129850 2.172350 Н -5.087870 -3.620750 1.891560 н -3.557620 -0.824430 -1.899080 н -5.485940 -2.318730 -2.179840 Н -6.270060 -3.728040 -0.291350 н

**Table S12.** Cartesian coordinates of intermediate **5ba-B'**. This compound is an intermediate with a slight rearrangement of **5ba-B**.

Energy: -994623.0796189

| Ru   | -0.401390 0.497380 -0.337490  |
|------|-------------------------------|
| С    | 0.151260 -1.275480 -1.549290  |
| С    | 1.384880 -1.719640 -0.781700  |
| С    | -1.768370 1.425090 -1.639760  |
| С    | -0.471110 1.962150 -1.883390  |
| С    | -0.392040 2.330730 0.874520   |
| С    | -1.568790 1.623340 1.156280   |
| С    | 1.646470 0.719850 -0.463070   |
| С    | -1.173050 -1.440830 -1.122160 |
| С    | 2.226970 -0.508800 -0.403350  |
| С    | -1.541120 -1.342430 0.240160  |
| С    | -2.880890 2.214840 -0.949910  |
| С    | -0.107600 3.371710 -1.448080  |
| С    | -0.346990 3.616560 0.053170   |
| С    | -2.922030 1.984540 0.570870   |
| С    | 2.449790 1.945050 -0.342330   |
| Si 4 | .037580 -0.812500 0.094820    |
| С    | 4.319350 -0.540200 1.941160   |
| С    | 5.235520 0.255070 -0.895810   |
| С    | 4.432880 -2.622630 -0.275780  |
| Н    | 1.094430 -2.298900 0.106730   |
| Н    | -1.612060 1.055420 2.084130   |
| Н    | -2.130930 0.700960 -2.366720  |
| Н    | 0.407620 2.230810 1.603210    |
| Н    | 0.041310 1.625560 -2.783320   |
| Н    | -0.855640 -1.657460 1.029250  |
| Н    | 0.293160 -1.163900 -2.622680  |
| Н    | 1.970490 -2.414420 -1.395380  |
| н    | -1.978440 -1.383540 -1.849580 |
| С    | -2.961020 -1.316100 0.610790  |
| Н    | -3.840960 1.921820 -1.382550  |
| н    | 0.452680 4.249840 0.447370    |
| н    | -3.318650 2.873030 1.082180   |
| н    |                               |
| •••  | -0.673490 4.093470 -2.054750  |

| Н | 0.944810    | 3.545910     | -1.680070 |
|---|-------------|--------------|-----------|
| Н | -2.758160   | 3.279970 ·   | -1.174740 |
| Н | -1.279020   | 4.171860     | 0.206460  |
| Н | 4.355090    | -2.846610    | -1.344960 |
| Н | 3.766020    | -3.306390    | 0.259900  |
| Н | 5.025420    | 0.191490     | -1.968570 |
| Н | 5.184840    | 1.306120     | -0.600670 |
| Н | 3.542830    | -1.029270    | 2.538670  |
| Н | 4.322140    | 0.523820     | 2.192470  |
| Н | 5.458830    | -2.848180    | 0.035150  |
| Н | 6.261530    | -0.094610    | -0.734990 |
| Н | 5.286670    | -0.958290    | 2.241130  |
| 0 | -3.116290   | -1.336460 1  | .949740   |
| 0 | -3.900370   | -1.252090 -0 | 0.159640  |
| С | -4.463870 - | 1.273860 2.  | 413240    |
| Н | -4.937120 - | 0.337590 2   | .106210   |
| Н | -5.047340 - | 2.109900 2   | .021400   |
| Н | -4.405900 - | 1.327010 3   | .499360   |
| С | 2.866560    | 2.504420     | 0.800780  |
| Н | 2.731860    | 2.404980     | -1.289680 |
| Н | 2.615610    | 2.013090     | 1.739440  |
| С | 3.685750    | 3.720850     | 0.916900  |
| С | 3.764470    | 4.679130     | -0.103720 |
| С | 4.414800    | 3.944240     | 2.092430  |
| С | 5.214550    | 5.072770     | 2.237170  |
| С | 4.563600    | 5.807250     | 0.039690  |
| С | 5.294880    | 6.008350     | 1.208990  |
| Н | 4.355700    | 3.217190     | 2.898520  |
| Н | 5.774910    | 5.222260     | 3.154950  |
| Н | 3.182920    | 4.549450     | -1.011860 |
| Н | 4.608800    | 6.538520     | -0.761560 |
| Н | 5.915780    | 6.891600     | 1.320090  |

Table S13. Cartesian coordinates of intermediate 5ba-C.

MeO<sub>2</sub>C H<sup>endo</sup> Ru TMS 5ba-C

Energy: -994621.9322743 Ru -0.294190 0.384090 0.024040 C 0.323820 -1.350230 -1.094440 С 1.160880 -1.229310 0.050350 C -1.444070 1.183690 -1.875110 С -0.338590 1.988910 -1.713870 C -0.686240 2.282790 1.105800 -1.899560 1.597610 0.940290 С 1.760090 0.883950 -0.031090 С -1.082140 -1.536720 -0.881400 С С 2.353590 -0.330240 -0.026850 С -1.625330 -1.521980 0.408160 -2.857650 1.516110 -1.454830 С C -0.434210 3.410610 -1.179980 -0.327570 3.542450 0.350170 С -2.978210 2.079840 -0.028160 С C 2.459350 2.163980 -0.013270 Si 4.139240 -0.887630 -0.128770 4.961770 -0.928200 1.570270 С 5.137560 0.227020 -1.272860 С 4.104100 -2.643250 -0.820800 С H 0.072880 0.021610 1.517600 -2.254790 1.010100 1.782730 н -1.361820 0.391310 -2.614250 Н H -0.193880 2.196880 2.070310 H 0.540300 1.751760 -2.306000 -1.094240 -1.896390 1.272080 Н H 0.697080 -1.163270 -2.096850 1.043030 -1.919540 0.884020 н -1.764480 -1.532830 -1.724860 Н С -3.089210 -1.427090 0.562140

| Н | -3.440040 | 0.594900    | -1.515190 |
|---|-----------|-------------|-----------|
| Н | 0.692310  | 3.815530    | 0.625300  |
| н | -2.961460 | 3.175880    | -0.047920 |
| н | -1.382430 | 3.835850    | -1.526670 |
| н | -3.957540 | 1.802260    | 0.372800  |
| н | 0.349580  | 4.012340    | -1.651490 |
| н | -3.299250 | 2.217980    | -2.176820 |
| н | -0.967770 | 4.365020    | 0.698880  |
| н | 3.652240  | -2.663060   | -1.818250 |
| н | 3.518080  | -3.309370   | -0.178020 |
| н | 4.689680  | 0.263920    | -2.271260 |
| н | 5.183580  | 1.249110    | -0.886680 |
| н | 4.368130  | -1.507230   | 2.285350  |
| н | 5.080090  | 0.082630    | 1.973480  |
| н | 5.113820  | -3.059580   | -0.899720 |
| н | 6.162350  | -0.146360   | -1.375540 |
| н | 5.956470  | -1.383850   | 1.511150  |
| 0 | -3.434660 | -1.420990 1 | L.861250  |
| 0 | -3.904570 | -1.344730 - | 0.336700  |
| С | -4.829690 | -1.274920 2 | .124590   |
| н | -5.197800 | -0.326710 1 | .724850   |
| н | -5.396020 | -2.093150 1 | .674630   |
| н | -4.929800 | -1.293480 3 | 8.208560  |
| С | 3.298210  | 2.545540    | 0.962050  |
| н | 2.252100  | 2.845050    | -0.838480 |
| н | 3.481030  | 1.849460    | 1.779310  |
| С | 4.009530  | 3.830460    | 1.039270  |
| С | 3.648040  | 4.947950    | 0.272190  |
| С | 5.095880  | 3.955360    | 1.915720  |
| С | 5.810120  | 5.144960    | 2.010310  |
| С | 4.360510  | 6.137300    | 0.366050  |
| С | 5.446820  | 6.241590    | 1.233190  |
| н | 5.384730  | 3.102420    | 2.524600  |
| н | 6.651250  | 5.215670    | 2.693120  |
| н | 2.793130  | 4.892750    | -0.395810 |
| н | 4.061940  | 6.990700    | -0.235230 |
|   |           |             |           |

**Table S14.** Cartesian coordinates of intermediate **5ba-C'**. This compound is an intermediate with a slight rearrangement of **5ba-C**.

Energy: -994610.8517748 Ru -0.299330 0.390540 0.015180 C 0.327140 -1.347690 -1.092450 C 1.157350 -1.221320 0.056680 C -1.437880 1.180570 -1.894680 С -0.333890 1.987230 -1.730260 C -0.699830 2.293780 1.085670 C -1.911520 1.606750 0.915810 C 1.754670 0.892230 -0.028810 С -1.079910 -1.534750 -0.886900 С 2.349500 -0.321210 -0.016690 C -1.630490 -1.515330 0.399450 C -2.854370 1.513720 -1.484840 C -0.433460 3.411370 -1.203650 С -0.338040 3.550530 0.326620 С -2.984440 2.083750 -0.061530 C 2.452100 2.173220 -0.010730 Si 4.136790 -0.875370 -0.106400 C 4.952790 -0.900940 1.596050 С 5.136550 0.233740 -1.254650 4.108800 -2.636060 -0.785760 С H 0.058640 0.034930 1.512730 H -2.271490 1.022770 1.758700 H -1.350500 0.384970 -2.629770 -0.213260 2.212680 2.053510 н H 0.548720 1.747860 -2.315930 -1.103980 -1.885830 1.267830 Н H 0.706080 -1.164290 -2.093390 1.035080 -1.908080 0.892560 Н

Н -1.757310 -1.535020 -1.734330

C -3.095310 -1.421320 0.544830 H -3.435580 0.591730 -1.544710 H 0.679250 3.827090 0.607710 H -2.968310 3.179710 -0.086190 H -1.379080 3.834970 -1.559360 -3.966080 1.807260 0.334480 Н H 0.353730 4.010920 -1.672250 -3.291970 2.211940 -2.212780 Н H -0.982350 4.373430 0.666860 H 3.660180 -2.664350 -1.784470 3.522640 -3.299190 -0.140050 Н 4.694040 0.260010 -2.255760 н Н 5.175650 1.259260 -0.876830 4.357010 -1.474450 2.313780 н 5.068660 0.113450 1.990940 н 5.119930 -3.050080 -0.858500 н 6.163650 -0.135570 -1.348460 н Н 5.948140 -1.356080 1.544510 -3.447980 -1.411350 1.841970 0 -3.905710 -1.342670 -0.358820 0 -4.844570 -1.265730 2.097150 С H -5.211150 -0.318820 1.692980 H -5.407750 -2.085550 1.646120 H -4.950710 -1.281610 3.180590 3.281270 2.560500 0.970590 С 2.250850 2.850130 -0.840840 Н 3.457030 1.868430 1.792790 Н 3.989820 3.846840 1.049350 С 3.639790 4.958150 0.268090 С С 5.061880 3.979480 1.942120 С 5.773370 5.170500 2.039290 4.349620 6.148860 0.364350 С 5.421790 6.260810 1.248030 С 5.341710 3.131420 2.561940 н 6.603320 5.247230 2.735030 Н 2.795930 4.897060 -0.413330 н

```
H4.0601106.997340-0.248200H5.9729707.1927601.323380
```

 Table S15. Cartesian coordinates of intermediate 5ba-D.

H 1.759560 1.133660 -1.921450 H -0.610070 -1.411440 2.233280 H 0.125470 -2.380140 -1.453690 H 0.988750 -1.802970 1.490930 H -2.174120 -1.920710 -0.399860 С -2.582300 -0.699300 1.967970 H -2.172960 -0.204900 -2.684780 H 0.733870 3.530720 0.445390 H -2.121140 2.736630 -1.943570 H -0.170520 3.233840 -2.405170 -3.399860 1.561290 -1.745600 Н H 1.437380 3.393830 -1.749200 Н -1.643170 1.137730 -3.691180 -0.725710 4.151270 -0.304580 н 2.251450 -0.726280 -3.403660 Н 2.099300 -2.325480 -2.647700 н 3.904110 1.569490 -2.003810 н Н 4.905610 1.145130 -0.604250 3.959460 -2.984130 -0.163840 Н 4.877990 -1.688290 0.617460 н 3.625050 -1.836210 -3.385480 Н 5.267360 0.465740 -2.194900 н Н 5.374730 -2.288610 -0.973760 -2.477270 -0.254250 3.237790 0 0 -3.652300 -0.741450 1.384580 С -3.696320 0.172360 3.840420 H -4.136210 1.000850 3.279960 -4.417020 -0.647880 3.881360 Н -3.432930 0.495100 4.846870 н С 2.758650 2.588890 2.113330 2.867420 2.128340 0.065160 н 2.464540 2.225340 3.097740 Н 3.330170 3.940920 2.077260 С С 3.513480 4.657370 0.883810 С 3.699440 4.560610 3.279370 С 4.246880 5.838860 3.291710

| С | 4.061480 | 5.933830 | 0.894960  |
|---|----------|----------|-----------|
| С | 4.433350 | 6.531270 | 2.098270  |
| н | 3.556910 | 4.026340 | 4.215090  |
| н | 4.527280 | 6.295470 | 4.235980  |
| н | 3.213410 | 4.219030 | -0.063700 |
| н | 4.191820 | 6.469600 | -0.040370 |
| н | 4.857820 | 7.530120 | 2.104760  |

Table S16. Cartesian coordinates of transition state 5ba-TS1.

Energy: -994628.0398428 Ru -0.469250 0.368540 -0.393520 C -1.154770 -1.031530 -1.950750 C -0.945820 -1.771100 -0.747190 C -0.099760 -0.228580 -2.424830 C -2.510330 1.041620 -0.317320 C -2.050710 0.808710 1.005340 C 0.103570 2.395520 0.257550 C -0.214300 2.422520 -1.110350 C 0.868740 -0.220380 1.076990 C 1.222650 -0.368910 -1.790840 C -2.742720 2.431410 -0.910490 C -1.699100 1.915620 1.981600 C -0.777630 2.974600 1.358510 C -1.519230 2.944790 -1.682670 C 1.759520 -0.246520 0.127900 C 0.902920 -0.452100 2.507320 Si 3.614240 -0.144120 0.013960 C 4.307490 -1.452220 -1.149040 C 4.091020 1.572530 -0.598500 C 4.307240 -0.410930 1.742220 H -0.006570 -2.281900 -0.557310 H -3.162950 0.269790 -0.715970 H -2.439540 -0.089110 1.484250 H 1.163920 2.359280 0.495790

H 0.625060 2.455710 -1.805930 H -0.241270 0.447440 -3.260560 H -2.147060 -0.953050 -2.382960 -2.106680 -2.339870 -0.053170 С H 1.568580 -1.400010 -1.754890 1.967040 0.296170 -2.222180 н H -1.585420 2.602200 -2.721310 -1.190500 1.458470 2.834500 Н H -3.021750 3.130280 -0.115250 H -1.358840 3.812540 0.960080 -3.604820 2.389660 -1.583380 Н H -0.133650 3.401280 2.133790 -2.615420 2.379920 2.375030 н H -1.507870 4.043910 -1.720000 3.673570 1.788170 -1.587250 Н 4.017810 -1.281570 -2.190200 н 3.729280 2.341890 0.091180 н Н 3.969040 -2.453020 -0.861930 4.017420 0.399510 2.418590 н 3.963110 -1.357130 2.170880 н 5.179960 1.667470 -0.669950 н 5.401940 -1.443410 -1.105490 н Н 5.401560 -0.436010 1.704010 -1.723340 -3.120420 0.979130 0 -3.278920 -2.129570 -0.309450 0 С -2.774650 -3.616280 1.802140 H -3.416590 -4.303340 1.245370 H -3.387470 -2.794560 2.183050 H -2.286000 -4.135980 2.625510 С -0.131980 -0.990270 3.169950 1.833970 -0.227140 3.024870 н -1.031710 -1.199180 2.598470 Н -0.182320 -1.349190 4.591860 С 0.947670 -1.368240 5.422600 С -1.421530 -1.691940 5.149610 C С -1.536010 -2.026840 6.494450

- C 0.834460 -1.701650 6.766310
- C -0.407190 -2.030590 7.309080
- H -2.304790 -1.687630 4.515830
- H -2.506730 -2.285210 6.906030
- H 1.925960 -1.134710 5.013480
- H 1.720560 -1.712580 7.393460
- H -0.491180 -2.293770 8.358700

Table S17. Cartesian coordinates of transition state 5ba-TS2.

Energy: -994621.5641835 Ru -0.304310 0.364430 -0.035990 C 0.504570 -1.342770 -1.090560 C 1.172850 -1.207010 0.205250 C -1.667340 1.374460 -1.528320 C -0.524770 2.153920 -1.413780 C -0.516890 2.026770 1.422760 C -1.749090 1.367180 1.312560 C 1.753420 0.916930 -0.048970 C -0.890920 -1.553000 -1.121180 C 2.356280 -0.278790 0.158760 C -1.659280 -1.548390 0.060800 C -3.005870 1.720660 -0.908610 C -0.537900 3.489090 -0.679870 C -0.259350 3.397730 0.833970 C -2.942200 2.001640 0.604660 C 2.445690 2.193760 -0.160540 Si 4.136830 -0.861810 0.186670 C 4.848340 -0.861770 1.936240 C 5.242810 0.168250 -0.937540 C 4.106450 -2.644100 -0.436950 H 0.242670 -0.423870 1.267120 H -1.996450 0.627780 2.068770 H -1.725030 0.699030 -2.378090 H 0.111120 1.781110 2.275350

H 0.245780 2.026180 -2.168710 H -1.287110 -1.961450 0.989820 H 1.060430 -1.197670 -2.010340 H 1.126840 -2.039550 0.910630 H -1.411650 -1.533500 -2.074000 -3.122540 -1.493220 -0.053950 C H -3.678860 0.883170 -1.095000 H 0.783010 3.654400 1.026820 H -2.922280 3.082240 0.789600 H -1.511630 3.961450 -0.853280 -3.859210 1.633900 1.074870 Н H 0.198480 4.153400 -1.143250 Н -3.436000 2.583780 -1.436260 H -0.863730 4.142200 1.370680 3.710680 -2.697210 -1.456770 Н 3.477490 -3.278840 0.196890 н 4.813120 0.246050 -1.941420 н Н 5.383100 1.183220 -0.556590 4.212660 -1.432450 2.621450 Н 4.938490 0.154400 2.333820 н 5.112610 -3.076240 -0.443720 Н 6.227990 -0.302790 -1.027110 н Н 5.845890 -1.314830 1.948550 -3.706030 -1.476710 1.160040 0 0 -3.760540 -1.445970 -1.089960 С -5.125860 -1.349430 1.153960 H -5.423960 -0.401670 0.696830 -5.588640 -2.169220 0.600250 н -5.431050 -1.375940 2.198980 н С 3.373200 2.619130 0.712010 2.158100 2.841020 -0.988430 н 3.635990 1.963690 1.541070 Н 4.091540 3.899800 0.651880 С 3.603750 5.007940 -0.055730 С С 5.313030 4.029390 1.326580 С 6.037210 5.215650 1.276480

| С | 4.325720 | 6.194320 | -0.104830 |
|---|----------|----------|-----------|
| С | 5.547310 | 6.303040 | 0.557670  |
| Н | 5.699190 | 3.182690 | 1.888660  |
| Н | 6.984610 | 5.291610 | 1.801170  |
| Н | 2.642340 | 4.946360 | -0.557730 |
| Н | 3.929350 | 7.042090 | -0.655320 |
| н | 6.108120 | 7.231540 | 0.520380  |

Table S18. Cartesian coordinates of transition state 5ba-TS3.

Energy: -994608.7146031 Ru -0.367450 0.384890 0.001390 C 0.268320 -1.495060 -0.865020 C 1.100750 -1.213240 0.239210 C -1.160070 0.916950 -2.055510 C -0.103490 1.785180 -1.772450 C -1.063060 2.363420 0.842310 C -2.187510 1.627200 0.475010 C 1.712630 0.887960 0.340990 C -1.138570 -1.578330 -0.570470 C 2.295260 -0.317620 0.147010 C -1.578060 -1.424190 0.773080 C -2.637460 1.240060 -2.003640 C -0.319740 3.257580 -1.435500 C -0.520720 3.541600 0.063680 C -3.050270 1.983200 -0.730050 C 2.413940 2.176630 0.384930 Si 4.046120 -0.763490 -0.348000 C 5.224000 -0.697700 1.122610 C 4.655170 0.423270 -1.678030 C 3.974190 -2.519420 -1.027700 H 0.590070 0.750320 1.315170 H -2.693070 1.101110 1.277830 H -0.920790 0.070890 -2.697080 H -0.800710 2.364080 1.896840

H 0.860040 1.538640 -2.211240 H -1.038680 -1.832750 1.617700 H 0.624490 -1.460990 -1.890130 0.897580 -1.668080 1.205330 Н -1.866440 -1.691380 -1.366440 н -3.025580 -1.284650 0.983340 C H -3.178460 0.290580 -2.032820 H 0.433120 3.824870 0.515110 H -3.014610 3.068040 -0.881810 H -1.180990 3.621370 -2.006550 -4.089200 1.738060 -0.496090 Н H 0.537960 3.832590 -1.799950 Н -2.932840 1.804820 -2.900160 -1.189450 4.402970 0.201700 н 3.308580 -2.579140 -1.895310 Н 3.600000 -3.219690 -0.273410 н 3.996940 0.401570 -2.552880 н Н 4.680620 1.449350 -1.298330 4.863330 -1.314160 1.952130 Н 5.329260 0.330180 1.484320 н 4.965760 -2.861880 -1.341100 Н 5.665860 0.159250 -2.007380 н Н 6.219110 -1.058520 0.839890 -3.333760 -1.280170 2.297140 0 0 -3.873850 -1.158540 0.118150 С -4.715730 -1.105820 2.600250 H -5.083050 -0.157870 2.198980 -5.311100 -1.920090 2.180660 Н -4.784040 -1.108150 3.687260 н С 3.259750 2.522610 1.364380 2.228560 2.854350 -0.446180 н 3.421690 1.811750 2.173870 Н 4.023050 3.777830 1.449740 С 3.724350 4.903330 0.668490 С С 5.097480 3.858310 2.344790 С 5.862800 5.015570 2.444560

| С | 4.487400 | 6.060100 | 0.767920  |
|---|----------|----------|-----------|
| С | 5.562050 | 6.121060 | 1.653930  |
| н | 5.336540 | 2.997930 | 2.964550  |
| н | 6.694040 | 5.053730 | 3.141720  |
| н | 2.879700 | 4.881380 | -0.014080 |
| Н | 4.238420 | 6.921860 | 0.156330  |
| Н | 6.155130 | 7.026730 | 1.731290  |