Efficient and metal Free synthesis of 2-aroyl 7-azaindoles via thermally induced denitrogenative intramolecular annulation of 1,2,3,4-tetrazolopyridines

Chirag A. Chamakiya, Savankumar R. Chothani, Rupal J. Joshi, Jasmin Bhalodia, Mrunal A. Ambasana, Atul H. Baodra, Naval Kapuriya*

Department of Chemistry and Forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.

Supporting Information
Table of contents

1. General information... 01
2. Experimental procedure and spectral data.. 03
3. X-Ray crystal data... 04
4. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra and LCMS data... 05

1. General Information

Reagents: All commercial reagents and KSM used in this study were purchased from Sigma-Aldrich, BLD Pharmatech India, and Thermo Fischer Scientific.

Solvents: All solvents used in this study were purchased from Finar India.
Reaction: Unless otherwise specified, all reaction was performed in oven-dried glassware (Borosil and Biotage seal tube vial)

Chromatography: Thin layer chromatography (TLC) was carried out on a silica gel 60 F254 pre-coated glass plate. Flash chromatography was carried out using silica gel (100200mesh, Rankem) eluting with a mixture of n-Hexane and ethyl acetate. LCMS were recorded in Water Acquity UPLC- H Class equipped with PDA and attached with QDa detector, Column temperature: $30^{\circ} \mathrm{C}$, Auto sampler temperature: $15^{\circ} \mathrm{C}$, Mobile Phase A : 0.1 \% Formic acid in Milli Q water ($\mathrm{pH}=2.70$), Mobile Phase B : 0.1% Formic acid in Milli Q water : Acetonitrile (10:90), Mobile phase gradient details: $\mathrm{T}=0 \mathrm{~min}(97 \% \mathrm{~A}, 3 \%$ B) flow : $0.8 \mathrm{~mL} / \mathrm{min} ; \mathrm{T}=0.75 \mathrm{~min}(97 \% \mathrm{~A}, 3 \% \mathrm{~B})$ flow : $0.8 \mathrm{~mL} / \mathrm{min}$; gradient to $\mathrm{T}=2.7$ $\min (2 \% \mathrm{~A}, 98 \% \mathrm{~B})$ flow: $0.8 \mathrm{~mL} / \mathrm{min}$; gradient to $\mathrm{T}=3 \mathrm{~min}(0 \% \mathrm{~A}, 100 \% \mathrm{~B})$ flow : $1 \mathrm{~mL} / \mathrm{min} ; \mathrm{T}=3.5 \mathrm{~min}(0 \% \mathrm{~A}, 100 \% \mathrm{~B})$ flow : $1 \mathrm{~mL} / \mathrm{min}$; gradient to $\mathrm{T}=3.51 \mathrm{~min}(97 \%$ A, $3 \% \mathrm{~B}$) flow : $0.8 \mathrm{~mL} / \mathrm{min}$; end of run at $\mathrm{T}=4 \mathrm{~min}(97 \% \mathrm{~A}, 3 \% \mathrm{~B})$, Flow rate: 0.8 $\mathrm{mL} / \mathrm{min}$, Run Time:- 4 min .

UV Detection Method: - PDA
Mass parameter:
Probe:-ESI, Mode of Ionisation :- positive and negative, Cone voltage :-10V and 30V, capillary voltage:- 0.8 KV , Extractor Voltage:- 1 KV , Rf Lens:- 0.1 ,Temperature of source:$120^{\circ} \mathrm{C}$,Temperature of Probe:- $600^{\circ} \mathrm{C}$, Cone Gas Flow:- Default, Desolvation Gas flow:Default

NMR Spectroscopy: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded in Bruker Advance Neo Ascend 400 MHz using CDCl_{3} and DMSO-d6. Data were reported as follow: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{m}=$ multiplate and $\mathrm{br} \mathrm{s}=$ broad singlet.

Elemental analysis: Elemental analysis was carried out in the Elementar Vario Micro Cube instrument.

X-Ray: X-ray diffraction data were collected on a Bruker D8 QUEST diffractometer.
IR: IR spectrums were recorded using Shimadzu-IR spirit.

2. Experimental procedures

Step-1 Synthesis of (2E,3E)-4-phenylbut-3-en-2-one oxime (i) ${ }^{1}$

To a stirred solution of (E)-4-phenylbut-3-en-2-one (CAS \# 1896-62-4) ($80 \mathrm{~g}, 547.23 \mathrm{mmol}$) in EtOH (800 ml) was added pyridine (108.12 g , 1360.91 mmol) at room temperature. After 15 min of stirring hydroxylamine hydrochloride $(50.47 \mathrm{~g}, 820.84 \mathrm{mmol})$ was added and the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was then diluted with water, extracted with ethyl acetate ($2 \times 750 \mathrm{~mL}$), and washed with 1 N HCl solution (300 ml). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under a reduced vacuum to afford CMP-i. off-white solid (77g, 87\%). m/z: $162.02(\mathrm{M}+\mathrm{H})^{+1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.56-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$.

Step-2 Synthesis of (E)-N-styrylacetamide ii ${ }^{2}$

CMP-i ($77 \mathrm{~g}, 477.66 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(34.77 \mathrm{~g}, 95.53 \mathrm{mmol})$, and phthalic anhydride $(7.07 \mathrm{~g}, 47.76 \mathrm{mmol})$ were dissolved in acetonitrile $(700 \mathrm{~mL})$ and the reaction mixture was heated at $55^{\circ} \mathrm{C}$ for 12 h . After the indicated time, the reaction mixture was diluted with water and extracted in ethyl acetate ($2 \times 750 \mathrm{~mL}$). The organic layer was then evaporated and the residue was purified by column chromatography ($0-10 \%$ ethyl acetate: hexane) to afford CMP- ii. Pale yellow solid. ($43 \mathrm{~g}, 55 \%$); m/z: 162.01 $(\mathrm{M}+1)^{1} \mathbf{H}$ NMR (400MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 3 \mathrm{H})$, $7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.12(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$

Step-3 Synthesis of 2-chloro-5-phenylnicotinaldehyde (1) ${ }^{3}$

Three neck RBF equipped with a condenser and magnetic stirrer were added DMF (40 mL) and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{POCl}_{3}(100 \mathrm{~mL})$ was added dropwise with stirring over a period of 1 h . The reaction mixture was then stirred at room temperature for 1 h followed by portion-wise addition of compound ii $(20 \mathrm{~g}, 124.20 \mathrm{mmol})$. The resulting brown reaction mixture was then heated at $90^{\circ} \mathrm{C}$ for 2 h . After completion of the reaction, the reaction mixture was cooled and poured into crushed ice water, neutralized with solid NaOAc . The crude solid was filtered and purified via normal phase column chromatography ($0-7 \%$ ethyl acetate: hexane) to afford 2-chloro-5-phenylnicotinaldehyde as a pale yellow solid (13g, 48\%). m/z: $218.01(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathbf{H}$ NMR (400MHz, CDCl $\mathbf{C D}_{3} \delta 10.52(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.64-7.61 (m, 2H), 7.56-7.28 (m, 3H); ${ }^{13}$ C NMR (100MHz, DMSO-d6) δ 189.53, 151.84, $150.42,136.23,135.60,134.60,129.27,128.98,128.35,127.02$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{ClNO}$: C, 66.22; H, 3.70; N, 6.44 Found; C, 66.72; H, 3.80; N, 6.52.

Step-4 Synthesis of 6-phenyltetrazolo[1,5-a]pyridine-8-carbaldehyde (2)

An oven-dried vial equipped with a stir bar was charged with CMP-1 $(3 \mathrm{~g}, 13.81 \mathrm{mmol}), \mathrm{NaN}_{3}(27.63 \mathrm{mmol})$, and DMF (30 mL) and heated at $55^{\circ} \mathrm{C}$ for 6 h . After an indicated time, the reaction mixture was poured into crushed ice water and the resulting solid was filtered, washed with brine solution, and dried under vacuum to afford compound 6-phenyltetrazolo[1,5-a]pyridine-8-carbaldehyde. Brown solid ($2.6 \mathrm{~g}, 84.69 \%$). m/z: 224.05 $(\mathrm{M}+1),{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0 M H z}, \mathbf{C D C l}_{3}$) $\delta 10.827(\mathrm{~s}, 1 \mathrm{H}), 9.21(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.71-7.61 (m, 2H), 7.59-7.57 (m, 3H); ${ }^{13}$ C NMR (100MHz, DMSO-d6) $\delta 187.89$, 162.26, 145.05, 138.09, 133.60, 129.62, 129.30, 127.63, 127.35, 123.14. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 64.28$; H, 3.60; N, 24.99 Found; C, 63.86; H, 3.48; N, 24.83.

General procedure-A for Synthesis of substituted chalcones (4a-n)

To a well-stirred solution of compound-2 $(1 \mathrm{mmol})$ and appropriate acetophenone ($\mathbf{3 a - n}, 1$ $\mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added $10 \% \mathrm{KOH}(0.2 \mathrm{~mL})$ and stirred at room temperature for an appropriate time ($1-2 \mathrm{~h}$). After completion of the reaction as indicated by TLC, the reaction mixture was poured into crushed ice water and acidified with $1 \mathrm{~N} \mathrm{HCl}(\mathrm{pH} 4)$. The resulting solid was filtered and recrystallized in ethanol to afford Chalcones (4a-n).
(E)-1-phenyl-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one (4a).

Compound 6a was prepared from a mixture of 6-phenyltetrazolo[1,5-a]pyridine-8-carbaldehyde ($0.2 \mathrm{~g}, 0.89 \mathrm{mmol}$) and acetophenone (3 a , $0.107 \mathrm{~g}, 0.89 \mathrm{mmol}$) as per above general procedure-A to give (E)-1-phenyl-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one as a grey solid ($4 \mathrm{a}, 0.2 \mathrm{~g}, 68 \%$). m/z: $327.10(\mathrm{M}+\mathrm{H})^{+},{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0 M H z}, \mathbf{C D C l}_{3}\right) \delta 9.11(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.98(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.25-8.23(\mathrm{~m}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100MHz, DMSO-d6) δ 189.17, 146.13, 137.17, 136.83, 135.24, 134.08, 133.59, 130.28, 129.22, 129.01, 128.41, 128.17, 127.40, 123.84, 122.80. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 73.61 ; \mathrm{H}, 4.32 ; \mathrm{N}, 17.17$ Found; C, 74.01; H, 4.48; N, 17.26.
((E)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)-1-(3,4,5-trimethoxyphenyl) prop-2-en-1one (4b).

Compound 6 b was prepared using general procedure-A from a mixture of 6-phenyltetrazolo[1,5-a]pyridine-8-carbaldehyde ($3 \mathrm{~b}, 0.15 \mathrm{~g}, 0.68 \mathrm{mmol}$) and $3^{\prime}, 4^{\prime}, 5^{\prime}$-trimethoxyacetophenone $(0.187 \mathrm{~g}, 0.68 \mathrm{mmol})$ as per above general procedure-A to give ((E)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one as a white solid (4b, $0.18 \mathrm{~g}, 67 \%$). m/z: $417.34(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0 M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 9.10(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.98(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.079(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.67(\mathrm{~m}$, $2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.505(\mathrm{~s}, 2 \mathrm{H}), 4.036(\mathrm{~s}, 6 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 M H z , ~}$ DMSO-d6) δ 188.21, 152.99, 152.78, 146.20, 145.81, 142.39, 141.86, 136.56, 134.86, 134.77,
134.12, 132.91, 132.53, 131.94, 130.28, 130.11, 129.31, 129.23, 129.13, 128.99, 128.40, 127.99, 127.42, 127.31, 60.25, 60.11, 56.17, 556.07 Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 66.34; H, 4.84; N, 13.45 Found; C, 66.29; H, 4.75; N, 13.40.
(E)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)-1-(2-(trifluoromethyl)phenyl) prop-2-en-1one (4c).

Compound 4 c was prepared from a mixture of 6 -phenyltetrazolo[1,5-a]pyridine-8-carbaldehyde $(0.2 \mathrm{~g}, \quad 0.89 \mathrm{mmol})$ and 2^{2} (trifluoromethyl)acetophenone ($3 \mathrm{c}, 0.167 \mathrm{~g}, 0.89 \mathrm{mmol}$) as per above general procedure-A to give (E)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)-1-(2-(trifluoromethyl)phenyl)prop-2-en-1-one as off white solid ($4 \mathrm{c}, 0.23 \mathrm{~g}, 65 \%$). m/z: $\left.395.22(\mathrm{M}+\mathrm{H})^{+}, \mathbf{1}^{\mathbf{H}} \mathbf{~ N M R ~ (4 0 0 M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 8.039(\mathrm{~s}$, $1 \mathrm{H}), 7.84-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.74-7.66(\mathrm{~m}, 5 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13}$ C NMR (100MHz, DMSOd6) $\delta 194.38,145.80,140.25,137.91,136.38,133.87,132.71,132.35,130.85,130.11,129.17$, $128.44,127.31,126.89,126.85,126.40,126.08,125.08,124.30,122.36,122.16$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 63.96 ; \mathrm{H}, 3.32$; N , 14.21 Found; C, 63.87 ; H, 3.27; N, 14.14.
(E)-1-(2-nitrophenyl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one (4d).

Compound 4 d was prepared from a mixture of 6-phenyltetrazolo[1,5-a]pyridine-8-carbaldehyde $(0.15 \mathrm{~g}, 0.68 \mathrm{mmol})$ and 2^{\prime}-Nitroacetophenone $(3 \mathrm{~d}, 0.11 \mathrm{~g}, 0.68 \mathrm{mmol})$ as per above general procedure-A to give (E)-1-(2-nitrophenyl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one as reddish brown solid ($4 \mathrm{~d}, 0.13 \mathrm{~g}, 57 \%$). $\mathrm{m} / \mathrm{z}: 372.25(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathbf{H}$ NMR (400MHz, $\left.\mathbf{C D C l}_{\mathbf{3}}\right) \delta 9.79(\mathrm{~s}, 1 \mathrm{H}), 8.702(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.99-7.92 (m, 1H), 7.90-7.89 (m, 3H), 7.81-7.76 (m, 2H), 7.57-50 (m, 3H); ${ }^{13}$ C NMR (100MHz, DMSO-d6) δ 192.39, 138.92, 136.13, 134.96, 134.79, 133.91, 131.83, 131.73, 130.12, 129.16, 129.13, 129.04, 127.31, 124.76, 124.21, 122.18. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, 64.69; H, 3.53; N, 18.86 Found; C, 64.52; H, 3.39; N, 18.79.
(E)-1-(3-bromophenyl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one (4e).

Compound 4 e was prepared from a mixture of 6-phenyltetrazolo[1,5-a]pyridine-8-carbaldehyde $\quad(0.15 \mathrm{~g}$, 0.68 mmol) and 3 -bromoacetophenone ($3 \mathrm{e}, 0.13 \mathrm{~g}, 0.68 \mathrm{mmol}$) as per above general procedure-A to give (E)-1-(3-bromophenyl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one as off white solid ($4 \mathrm{e}, 0.18 \mathrm{~g}, 67 \%$), m/z: $406.20(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathbf{H}$ NMR (400MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 9.04(\mathrm{~s}, 1 \mathrm{H}), 9.00-8.99(\mathrm{~m}, 1 \mathrm{H}), 8.33-$ $8.32(\mathrm{~m}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.78(\mathrm{~m}, 1 \mathrm{H})$, 7.69-7.68 (m, 2H), 7.63-7.50 (m, 3H), 7.48-7.46 (m, 1H); ${ }^{13}$ C NMR (100MHz, DMSO-d6) δ 188.03, 131.36, 130.81, 130.29, 129.23, 129.15, 127.70, 127.50, 127.43, 124.05, 122.63, 122.45. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{BrN}_{4} \mathrm{O}$: C, 59.28; H, 3.23; N, 13.83 Found; C, 59.14; H, 3.18; N, 13.77.

(E)-1-(2-bromophenyl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one (4f)

Compound 4 f was prepared from a mixture of 6-phenyltetrazolo[1,5-a]pyridine-8-carbaldehyde $\quad(0.15 \mathrm{~g}, \quad 0.68 \mathrm{mmol})$ and 2 bromoacetophenone ($3 \mathrm{f}, 0.13 \mathrm{~g}, 0.68 \mathrm{mmol}$) as per above general procedure-A to give (E)-1-(2-bromophenyl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one as off white solid ($4 \mathrm{f}, 0.18 \mathrm{~g}, 66 \%$). \mathbf{m} / \mathbf{z} : $406.15(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0 M H z}, \mathbf{C D C l}_{3}\right) \delta 8.97(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=16 \mathrm{~Hz}$, $1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73\left(\mathrm{dd}, J_{1}=1.2 \mathrm{~Hz}\right.$ and $\left.J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.67-7.63$ $(\mathrm{m}, 2.5 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 3.5 \mathrm{H}), 7.50-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100MHz, DMSO-d6) δ 194.10, 145.85, 140.26, 139.12, 136.18, 133.90, 133.29, 133.23, 132.00, 130.15, 129.27, 129.11, 129.14, 128.02, 127.34, 124.19, 122.53, 118.60. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{BrN}_{4} \mathrm{O}$: C, 59.28; H, 3.23; N, 13.83 Found; C, 59.20; H, 3.16; N, 13.72.

(E)-1-(4-fluorophenyl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one (4g)

Compound 4 g was prepared from a mixture of 6-phenyltetrazolo[1,5-a]pyridine-8-carbaldehyde ($0.2 \mathrm{~g}, 0.89 \mathrm{mmol}$) and 4^{\prime}-Fluoroacetophenone $(3 \mathrm{~g}, 0.12 \mathrm{~g}, 0.89 \mathrm{mmol})$ as per above general procedure-A to give (E)-1-(4-fluorophenyl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one as off white solid ($4 \mathrm{~g}, 0.19 \mathrm{~g}, 63 \%$). \mathbf{m} / \mathbf{z} : $345.02(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0 M H z}, \mathbf{C D C l}_{3}\right) \delta 9.10(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.99(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.30-8.27(\mathrm{~m}, 2 \mathrm{H}), 8.086(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68\left(\mathrm{dd}, J_{1}=1.6 \mathrm{~Hz}\right.$ and $\left.J_{2}=1.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.62-7.7 .55(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100MHz, DMSO-d6) δ 187.63, 166.47, 163.96, 146.11, 136.88, 135.16, 134.06, 133.86, 132.77, 132.68, 131.49, 131.40, 130.26, 129.21, 129.12, 128.22, 128.16, 127.84, 127.39, 126.90. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{FN}_{4} \mathrm{O}$: C, 69.76; H, 3.81; N, 16.27 Found; C, 69.65; H, 3.69; N, 15.96.

(E)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)-1-(p-tolyl)prop-2-en-1-one (4h)

Compound 4 h was prepared from a mixture of 6-phenyltetrazolo[1,5-a]pyridine-8-carbaldehyde $(0.2 \mathrm{~g}, 0.89 \mathrm{mmol})$ and 4^{\prime}-methylacetophenone ($3 \mathrm{~h}, 0.12 \mathrm{~g}, 0.89 \mathrm{mmol}$) as per above general procedure to give-A (E)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)-1-(p-tolyl)prop-2-en-1-one as off white solid (4h, $0.15 \mathrm{~g}, 60 \%$). m/z: 341.15 $(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0 M H z}, \mathbf{C D C l}_{3}\right) \delta 9.11(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.97(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.15$ (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$), $8.072(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68\left(\mathrm{dd}, J_{1}=1.6 \mathrm{~Hz}\right.$ and $\left.J_{2}=1.2 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 7.62-7.7.55 (m, 3H), 7.38 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13}$ C NMR (100MHz, DMSO-d6) δ 188.53, 146.16, 144.17, 136.49, 135.08, 134.68, 134.11, 130.29, 129.66, 129.22, 129.13, 128.57, 128.19, 127.42, 123.77, 122.86, 21.25. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 74.10 ; \mathrm{H}, 4.74 ; \mathrm{N}, 16.46$ Found; C, 74.01; H, 4.36; N, 16.41.

Compound 4 i was prepared from a mixture of 6phenyltetrazolo $[1,5-\mathrm{a}]$ pyridine- 8 -carbaldehyde ($0.2 \mathrm{~g}, 0.89 \mathrm{mmol}$) and 4^{\prime}-chloroacetophenone $(3 \mathrm{i}, 0.14 \mathrm{~g}, 0.89 \mathrm{mmol})$ as per above general procedure-A to give (E)-1-(4-chlorophenyl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one as off white solid ($4 \mathrm{i}, 0.23 \mathrm{~g}, 69 \%$). \mathbf{m} / \mathbf{z} : $361.70(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathbf{H}$ NMR (400MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 9.07(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.99(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 8.01$ (d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.47$ (m, 5 H$)$; ${ }^{13}$ C NMR (100MHz, DMSO-d6) δ 188.10, 146.11, 138.51, 137.22, 135.80, 135.34, 134.06, $130.23,130.27,129.23,129.14,127.75,127.39,123.96,122.67$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}$: C, 66.58; H, 3.63; N, 15.53 Found; C, 65.45; H, 3.59; N, 15.41.

(E)-1-(3,4-difluorophenyl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one (4j)

Compound 4 j was prepared from a mixture of 6-phenyltetrazolo[1,5-a]pyridine-8-carbaldehyde ($0.2 \mathrm{~g}, 0.89 \mathrm{mmol}$) and $3^{\prime}, 4$ 'difluoroacetophenone $(3 \mathrm{j}, 0.14 \mathrm{~g}, 0.89 \mathrm{mmol})$ as per above general procedure-A to give (E)-1-(3,4-difluorophenyl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one as off white solid ($4 \mathrm{j}, 0.21 \mathrm{~g}, 66 \%$). m/z: $363.22(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0 M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 9.06(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.00(\mathrm{~s}, 1 \mathrm{H}), 8.09-$ $8.05(\mathrm{~m}, 3 \mathrm{H}) 8.033-7.994(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68\left(\mathrm{dd}, J_{1}=1.6 \mathrm{~Hz}\right.$ and $\left.J_{2}=1.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.63-$ 7.54 (m, 3H), 7.42-7.35 (m, 1H); ${ }^{13}$ C NMR 1400MHz, DMSO-d6) δ 186.94, 151.59, 151.47, $151.02,150.89,148.55,148.42,149.17,137.29,135.01,134.68,134.07,130.29,129.23$, 129.15, 127.42-127.38, 126.43-126.32, 124.07, 122.56, 118.46, 118.28, 117.7, 117.56. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}$: C, 66.30; H, 3.34; N, 15.46 Found; C, 66.16; H, 3.19; N, 15.39.

(E)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)-1-(pyridin-2-yl)prop-2-en-1-one (4k).

Compound 4 k was prepared from a mixture of 6 -phenyltetrazolo[1,5-a]pyridine- 8 -carbaldehyde $(0.2 \mathrm{~g}, 0.89 \mathrm{mmol})$ and 2^{\prime}-acetylpyridine $(3 \mathrm{k}, 0.11 \mathrm{~g}, 0.89 \mathrm{mmol})$ as per above general procedure-A to give (E)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)-1-(pyridin-2-yl)prop-2-en1 -one as brown solid ($4 \mathrm{k}, 0.21 \mathrm{~g}, 72 \%$). m/z: $327.22(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0 M H z}, \mathbf{C D C l}_{3}$) δ 9.47 (d, $J=16 \mathrm{~Hz}, 1 \mathrm{H}), 8.98(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.87(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}) 8.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.16(\mathrm{~s}, 1 \mathrm{H}), 8.124(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100MHz, DMSO-d6) δ 189.20, 153.11, 149.41, 149.09, 145.93, 137.84, 137.52, 137.23, $136.49,134.05,130.21,129.23,129.12,127.94-127.78$, 127.37, 123.80, 123.05, 122.69, 121.31. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 69.71$; H, 4.00; N, 21.39 Found; C, 69.61; H, 3.92; N, 21.45 .

(E)-1-(furan-2-yl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one (4I)

Compound 41 was prepared from a mixture of 6-phenyltetrazolo[1,5-a]pyridine-8-carbaldehyde $(0.2 \mathrm{~g}, 0.89 \mathrm{mmol})$ and 2-Furyl methyl ketone ($31,0.1 \mathrm{~g}, 0.89 \mathrm{mmol}$) as per above general procedure-A to give (E)-1-(furan-2-yl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one as off white solid ($41,0.2 \mathrm{~g}, 70 \%$). $\left.\mathbf{m} / \mathbf{z}: 317.16(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 8.98(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.88(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}) 8.07(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}) 7.77$ (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 4 \mathrm{H}), 6.99-6.68(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100MHz, DMSO-d6) δ 176.62, 152.83, 148.79, 146.06, 135.98, 135.41, 134.07, 130.26, 129.23, 127.89, 126.90, 123.86, 122.61, 119.52, 113.22. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 68.35; H, 3.82; N, 17.71 Found; C, 68.27; H, 3.85; N, 17.75.
(E)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)-1-(thiophen-2-yl)prop-2-en-1-one (4m).

Compound 4 m was prepared from a mixture of 6-phenyltetrazolo[1,5-a]pyridine-8-carbaldehyde $\quad(0.2 \mathrm{~g}, \quad 0.89 \mathrm{mmol})$ and 2 -acetylthiophene ($3 \mathrm{~m}, 0.11 \mathrm{~g}, 0.89 \mathrm{mmol}$) as per above general procedure-A to give (E)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)-1-(thiophen-2-yl)prop-2-en-1-one as off white solid ($4 \mathrm{~m}, 0.16 \mathrm{~g}, 54 \%$). m/z: $333.22(\mathrm{M}+\mathrm{H})^{+},{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0 M H z}, \mathbf{C D C l}_{3}$) $\delta 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}) 8.17\left(\mathrm{dd}, J_{1}=1.2 \mathrm{~Hz}\right.$ and $J_{2}=$ $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}) 8.01(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.8\left(\mathrm{dd}, J_{1}=0.8 \mathrm{~Hz}\right.$ and $J_{2}=1.2 \mathrm{~Hz}$, 1H), 7.68-7.66 (m, 2H), 7.62-7.55 (m, 4H); ${ }^{13}$ C NMR (100MHz, DMSO-d6) δ 181.30, 146.20, $145.85,144.71,136.29,136.01,135.06,134.12,133.73,130.30,129.24,128.07,127.43$, 123.93, 122.63. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{OS}: \mathrm{C}, 65.05$; H, 3.64; N, 16.86; S, 9.65 Found; C, 64.89; H, 3.58; N, 16.90; S, 9.60.

(E)-1-cyclohexyl-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one (4n)

Compound 4 n was prepared from a mixture of 6-phenyltetrazolo[1,5-a]pyridine-8-carbaldehyde $(0.2 \mathrm{~g}, 0.89 \mathrm{mmol})$ and cyclohexyl methyl ketone ($3 \mathrm{n}, 0.11 \mathrm{~g}, 0.89 \mathrm{mmol}$) as per above general procedure-A to give (E)-1-cyclohexyl-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one as off white solid ($4 \mathrm{n}, 0.21 \mathrm{~g}, 70 \%$). m/z: $305.35(\mathrm{M}+1),{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0 M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 8.95(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}) 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=16 \mathrm{~Hz}$, $1 \mathrm{H}) 7.66-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.60-754(\mathrm{~m}, 3 \mathrm{H}), 2.76-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.86(\mathrm{~m}$, 2H), 1.77-1.74 (m, 1H), 1.59-1.35 (m, 4H), 1.35-1.27 (m, 1H); ${ }^{13}$ C NMR (100MHz, DMSOd6) $\delta 202.32,145.93,135.25,134.96,134.07,131.03,130.16,129.21,129.12,127.34,123.60$, 122.79, 48.45, 28.09, 25.47, 25.10. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 72.27$; H, 6.06 ; N, 16.86 Found; C, 72.18; H, 5.99; N, 16.80.

General procedure-B for Synthesis of 7-Azaindole derivatives (5a-n)

An oven-dried seal tube containing appropriate chalcone (4a-n) and Dowtherm-A was heated at $210-220^{\circ} \mathrm{C}$ for $1-2 \mathrm{~h}$. After completion of the reaction as indicated by TLC, the reaction mixture was allowed to cool at room temperature, and the obtained solid was filtered, washed with hexane, and recrystallized using ethanol to afford the required 7-Azaindole (5a-n)

Phenyl(5-phenyl-1H-pyrrolo[2,3-b]pyridin-2-yl)methanone (5a)

Compound 5a was prepared from (E)-1-phenyl-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one (4a, 0.2 g , $0.61 \mathrm{mmol})$ and Dowtherm-A $(10 \mathrm{~mL})$ as per above general procedureB. White solid ($0.13 \mathrm{~g}, 73 \%$); $\mathrm{mp}>350{ }^{\circ} \mathrm{C} \mathbf{~ m} / \mathrm{z}: 299.20(\mathrm{M}+\mathrm{H})^{+},{ }^{1} \mathbf{H}$ NMR (400MHz, DMSO-d6) $\delta 12.66(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) 7.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100MHz, DMSO-d6) $\delta 186.68,148.88,146.94$, 138.27, 137.59, 135.10, 132.56, 129.58, 129.07, 128.66, 127.28, 126.94, 119.25, 110.97. IR $\left(\mathrm{KBr}, v_{\text {max }}, \mathrm{cm}^{-1}\right): 3029,2788,1645,1497,1315,944$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 80.52$; H, 4.73; N, 9.39 Found; C, 80.47; H, 4.79; N, 9.42.

(5-phenyl-1H-pyrrolo[2,3-b]pyridin-2-yl)(3,4,5-trimethoxyphenyl)methanone (5b)

Compound 5b was prepared (E)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (4b, $0.15 \mathrm{~g}, 0.38 \mathrm{mmol})$ and Dowtherm-A $(10 \mathrm{~mL})$ as per above general procedure-B. Off-white solid ($0.11 \mathrm{~g}, 77 \%$); $\mathrm{mp}>350^{\circ} \mathrm{C} ; \mathbf{m} / \mathbf{z}$: $389.31(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathbf{H}$ NMR (400MHz, DMSO-d6) $\delta 12.61(\mathrm{~s}, 1 \mathrm{H})$, $8.78(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100MHz, DMSO-d6) δ 185.53, 152.71, 148.81, 146.74, 141.32, 138.28, 135.07, 132.66, $129.46,129.11,129.06,127.24,126.88,119.27,110.63,106.73,60.18,56.07$. IR ($\mathrm{KBr}, v_{\max }$, cm^{-1}): 3023, 2834, 1634, 1495, 1335, 1134, 1004. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 71.12 ; \mathrm{H}$, 5.19; N, 7.21 Found; C, 71.00; H, 4.98; N, 7.06.

(5-phenyl-1H-pyrrolo[2,3-b]pyridin-2-yl)(2-(trifluoromethyl)phenyl)methanone (5c)

Compound $\mathbf{5 c}$ was prepared (E)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)-1-(2-(trifluoromethyl)phenyl)prop-2-en-1-one (4c, 0.2 g , $0.50 \mathrm{mmol})$ and Dowtherm-A $(10 \mathrm{~mL})$ as per above general procedureB. Off-white solid ($0.13 \mathrm{~g}, 64 \%$); $\mathrm{mp}>350{ }^{\circ} \mathrm{C}$; m/z: $367.22(\mathrm{M}+\mathrm{H})^{+}$, ${ }^{1} H$ NMR (400MHz, DMSO-d6) $\delta 12.84(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.97(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.40 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.82 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100MHz, DMSO-d6) δ 186.33, 149.23, 147.70, 138.10, 136.97, 136.95, 135.53, 132.27, 130.80, 129.79, 129.38, 129.04, 128.92, 127.31, 126.92, 126.77, 126.72, 126.67, 126.35, 126.04, 125.10, 122.38, 119.09,
112.38. IR (KBr, $v_{\text {max }}, \mathrm{cm}^{-1}$): 2956, 2851, 1643, 1491, 1316, 1137, 1003. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 68.85$; H, 3.58; N, 7.65 Found; C, 68.76; H, 3.48; N, 7.52.

(2-nitrophenyl)(5-phenyl-1H-pyrrolo[2,3-b]pyridin-2-yl)methanone (5d)

Compound 5d was prepared E)-1-(2-nitrophenyl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one (4d, 0.1 g , $0.27 \mathrm{mmol})$ and Dowtherm- $\mathrm{A}(10 \mathrm{~mL})$ as per above general procedureB. Brown solid ($0.062 \mathrm{~g}, 68 \%$); mp $>350{ }^{\circ} \mathrm{C}$; m/z: $344.27(\mathrm{M}+\mathrm{H})^{+},{ }^{1} \mathbf{H}$ NMR (400MHz, DMSO-d6) $\delta 12.87$ (s, 1H), $8.80(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.29(\mathrm{~m}, 1 \mathrm{H}), 8.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13}$ C NMR (400MHz, DMSO-d6) $\delta 184.49$, $149.19,147.53,146.83,138.10,135.22,134.58,134.19,131.74,129.79,129.52,129.26$, $129.05,127.32,126.94,124.75,122.72,119.08,112.16,110.73$. IR (KBr, $\left.v_{\max }, \mathrm{cm}^{-1}\right): 3029$, 2836, 1651, 1524, 1497, 1354, 1005. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$: C,
 69.97; H, 3.82; N, 12.24 Found; C, 68.81; H, 3.73; N, 12.14.

(3-bromophenyl)(5-phenyl-1H-pyrrolo[2,3-b]pyridin-2-

yl)methanone (5e)

Compound 5e was prepared (E)-1-(3-bromophenyl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one ($4 \mathrm{e}, 0.1 \mathrm{~g}, 0.25 \mathrm{mmol}$) and Dowtherm-A (10 mL) as per above general procedure-B. Off-white solid ($0.070 \mathrm{~g}, 75 \%$); $\mathrm{mp}>350^{\circ} \mathrm{C}$; m/z: $378.18(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400MHz, DMSO-d6) $\delta 12.72(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~s}$, $1 \mathrm{H}), 7.96(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 2H), $7.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13}$ C NMR (100MHz, DMSO-d6) δ 185.15, 149.0, 147.27, 139.68, 138.20, 135.14, 134.66, 131.33, 130.89, 129.66, 129.31, 129.09, 128.09, 127.32, 126.93, 121.88, 119.22, 111.49. IR (KBr, $v_{\max }, \mathrm{cm}^{-1}$): 3029, 2886, 1645, 1418, 1251, 1009, 693. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}: \mathrm{C}, 63.38$; H, 3.47; N, 7.43 Found; C, 63.30; H, 3.41; N, 7.31.

(2-bromophenyl)(5-phenyl-1H-pyrrolo[2,3-b]pyridin-2-yl)methanone (5f)

Compound $\mathbf{5 f}$ was prepared (E)-1-(2-bromophenyl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one (4f, 0.1 g , $0.25 \mathrm{mmol})$ and Dowtherm-A $(10 \mathrm{~mL})$ as per above general procedureB. Off-white solid ($0.063 \mathrm{~g}, 68 \%$); mp $>350{ }^{\circ} \mathrm{C}$; $\mathbf{m} / \mathbf{z}: 378.10(\mathrm{M}+\mathrm{H})^{+}$, ${ }^{1}$ H NMR (400MHz, DMSO-d6) $\delta 12.81(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~m}, 4 \mathrm{H}), 7.40(\mathrm{t}, J=8.4 \mathrm{~Hz}$, 1H), $6.82(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13}$ C NMR (400MHz, DMSO-d6) δ 186.64, 149.28, 147.62, 139.64, 138.11, 135.21, 133.01, 131.90, 129.74, 129.38, 129.21, 129.05, 127.56, 127.31, 126.92, 119.16, 118.87, 112.34. IR (KBr, $v_{\text {max }}, \mathrm{cm}^{-1}$): 3025, 2837, 1651, 1466, 1305, 1001, 697. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}: \mathrm{C}, 63.68 ; \mathrm{H}, 3.47$; N, 7.43 Found; C, 63.49; H, 3.38; N, 7.31.

Compound $\mathbf{5 g}$ was prepared (E)-1-(4-fluorophenyl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one $\quad(4 \mathrm{~g}, \quad 0.1 \mathrm{~g}$, 0.32 mmol)and Dowtherm-A $(10 \mathrm{~mL})$ as per above general procedure-B. Off-white solid ($0.056 \mathrm{~g}, 61 \%$); mp $>350{ }^{\circ} \mathrm{C} ; \mathbf{m} / \mathbf{z}: 317.19(\mathrm{M}+\mathrm{H})^{+},{ }^{1} \mathbf{H}$ NMR (400MHz, DMSO-d6) $\delta 12.67$ (s, 1H), 8.79 (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.41(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.065-8.029(\mathrm{q}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.67$ (F coupled, 0.5 H), 7.53-7.40 (m, 5H), $7.38(\mathrm{br}$ F coupled 0.5 H$), 7.17(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100MHz, DMSO-d6) δ 185.23, 165.88, 163.39, 148.85, 146.97, 140.16, 138.23, 134.92, 134.13, 134.10, 131.95, 131.86, 129.59, 129.11, 129.06, 128.90, 127.39, 127.27, 126.92, 126.66, 119.21, 115.83, 115.61, 110.87. IR (KBr, $\nu_{\text {max }}, \mathrm{cm}^{-1}$): 3026, 2888, 2831, 1643, 1430, 1296, 1155, 1009. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}$: C, 75.94; H, 4.14; N, 8.86 Found; C, 75.82; H, 4.29; N, 9.01.

(5-phenyl-1H-pyrrolo[2,3-b]pyridin-2-yl)(p-tolyl)methanone (5h)

Compound 5 h was prepared (E)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)-1-(p-tolyl)prop-2-en-1-one ($4 \mathrm{~h}, 0.13 \mathrm{~g}, 0.38 \mathrm{mmol}$) and Dowtherm-A $(10 \mathrm{~mL})$ as per above general procedure-B. Off-white solid (0.082 g , $66 \%)$; mp $>350{ }^{\circ} \mathrm{C}$; m/z: $313.15(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathrm{H}$ NMR (400MHz, DMSOd6) $\delta 12.61(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}$, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J=2 \mathrm{~Hz}$, 1H), 2.44 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR (100MHz, DMSO-d6) $\delta 186.23,148.76,146.7,142.93,138.28$, 135.21, 134.88, 129.50, 129.19, 129.04, 127.23, 126.90, 119.22, 110.41, 21.15. IR ($\mathrm{KBr}, v_{\max }$, cm^{-1}): 3028, 2834, 2778, 1645, 1430, 1310, 1006. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 80.75 ; \mathrm{H}$, 5.16; N, 8.97 Found; C, 80.61; H, 5.02; N, 9.03.

(4-chlorophenyl)(5-phenyl-1H-pyrrolo[2,3-b]pyridin-2-yl)methanone (5i)

Compound 5i was prepared from ((E)-1-(4-chlorophenyl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one (4i, 0.12 g , $0.33 \mathrm{mmol})$ and Dowtherm-A $(10 \mathrm{~mL})$ as per above general procedureB. Off-white solid ($0.072 \mathrm{~g}, 65 \%$); mp $>350{ }^{\circ} \mathrm{C}$; m/z: $333.60(\mathrm{M}+\mathrm{H})^{+}$, ${ }^{1}$ H NMR (400MHz, DMSO-d6) $\delta 12.69(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.42(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.51(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 2H), 7.40 (m, 1H), 7.188 (s, 1H); ${ }^{13}$ C NMR (100MHz, DMSO-d6) δ 185.43, 148.91, 147.11, 138.19, 137.43, 136.20, 134.80, 130.92, 129.63, 129.15, 129.06, 128.77, 127.29, 126.92, 119.19, 111.09. IR (KBr, $v_{\text {max }}, \mathrm{cm}^{-1}$): 3029, 2844, 2772, 1648, 1486, 1298, 1004, 835. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}$: C, 72.18; H, 3.94; N, 8.42 Found; C, 72.08; H, 3.83; N, 8.33.

(3,4-difluorophenyl)(5-phenyl-1H-pyrrolo[2,3-b]pyridin-2-yl)methanone (5j)

Compound $\mathbf{5 j}$ was prepared from (E)-1-(3,4-difluorophenyl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one $\quad(4 \mathrm{j}, \quad 0.13 \mathrm{~g}$, 0.35 mmol) and Dowtherm-A (10 mL) as per above general procedure-B. Off-white solid ($0.085 \mathrm{~g}, 72 \%$); $\mathrm{mp}>350{ }^{\circ} \mathrm{C} ; \mathbf{m} / \mathbf{z}$: $335.16(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathrm{H}$ NMR (400MHz, DMSO-d6) $\delta 12.71(\mathrm{~s}, 1 \mathrm{H})$, $8.80(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.73-7.66$ $(\mathrm{m}, 3 \mathrm{H}), 7.51(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100MHz, DMSO-d6) δ 188.14, 148.96, 147.23, 138.17, 134.87, 134.50, 129.65, 129.20, 129.07, 127.30, 126.92, 126.79, 126.76, 126.72, 119.19, 118.51, 118.33, 118.02, 117.84, 111.43. IR (KBr, $v_{\max }$, cm^{-1}): 3028, 2845, 1645, 1428, 1285, 1173, 1011. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 71.85 ; \mathrm{H}$, 3.62; N, 8.38 Found; C, 71.75; H, 3.55; N, 8.27.

(5-phenyl-1H-pyrrolo[2,3-b]pyridin-2-yl)(pyridin-2-yl)methanone (5k)

Compound $\mathbf{5 k}$ was prepared from (E)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)-1-(pyridin-2-yl)prop-2-en-1-one ($4 \mathrm{k}, 0.15 \mathrm{~g}, 0.45 \mathrm{mmol}$) and Dowtherm-A $(10 \mathrm{~mL})$ as per above general procedure-B. Brown solid ($0.075 \mathrm{~g}, 45 \%$); mp $>350{ }^{\circ} \mathrm{C} ; \mathbf{m} / \mathrm{z}: 300.10(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathbf{H}$ NMR (400MHz, DMSO-d6) $\delta 12.59(\mathrm{~s}, 1 \mathrm{H}), 8.86-8.85(\mathrm{~m}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J$ $=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$ (m, 1H); ${ }^{13}$ C NMR (100MHz, DMSO-d6) δ 183.36, 154.53, 149.47, 149.14, 147.68, 138.74, $138.24,135.01,130.51,129.99,129.91,129.54,127.73,127.70,127.41,124.15,123.89$, 119.08, 119.06, 113.56. IR (KBr, $v_{\max }, \mathrm{cm}^{-1}$): 3025, 2845, 1645, 1453, 1293, 1007. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 76.24$; H, 4.38; N, 14.04 Found; C, 76.13; H, 4.24; N, 13.89.
furan-2-yl(5-phenyl-1H-pyrrolo[2,3-b]pyridin-2-yl)methanone (51)

Compound $5 \mathbf{1}$ was prepared from (E)-1-(furan-2-yl)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one (41, 0.15 g , $0.47 \mathrm{mmol})$ and Dowtherm-A $(10 \mathrm{~mL})$ as per above general procedure-B. Off-white solid ($0.080 \mathrm{~g}, 62 \%$); $\mathrm{mp}>350^{\circ} \mathrm{C}$; m/z: $289.20(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathbf{H}$ NMR (400MHz, DMSO-d6) $\delta 12.61(\mathrm{~s}, 1 \mathrm{H}), 8.77$ (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.17(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.684(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 2H), 7.42-7.38 (m, 1H), 6.86-6.85 (m, 1H); ${ }^{13}$ C NMR (100MHz, DMSO-d6) δ 172.06, 151.63, $148.59,148.19,146.85,138.26,134.39,129.56,129.06,128.90,127.27,126.94,119.49$, 119.39, 112.84, 109.13. IR (KBr, $v_{\text {max }}, \mathrm{cm}^{-1}$): 3027, 2886, 2781, 1631, 1470, 1305, 1261, 935. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 74.99; H, 4.20; N, 9.72 Found; C, 74.81; H, 4.08; N, 9.62.

(5-phenyl-1H-pyrrolo[2,3-b]pyridin-2-yl)(thiophen-2-yl)methanone (5m)

Compound 5 m was prepared from (E)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)-1-(thiophen-2-yl)prop-2-en-1-one $\quad(4 \mathrm{~m}, \quad 0.13 \mathrm{~g}$, $0.39 \mathrm{mmol})$ and Dowtherm-A $(10 \mathrm{~mL})$ as per above general procedure-B. Off-white solid ($0.066 \mathrm{~g}, 54 \%$); mp $>350{ }^{\circ} \mathrm{C}$; m/z: $305.15(\mathrm{M}+\mathrm{H})^{+},{ }^{1} \mathbf{H}$ NMR (400MHz, DMSO-d6) $\delta 12.64(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H})$, 8.16-8.13 (m, 2H), 7.76-7.74 (m, 2H), 7.53-7.50 (m, 3H), 7.42-7.35 (m, 2H), 7.42-7.38 (m, 1H); ${ }^{13}$ C NMR (400MHz, DMSO-d6) δ 177.99, 149.17, 147.25, 142.71, 138.74, 135.45, 135.31, 134.42, 130.51, 130.07, 129.56, 129.49, 129.36, 127.76, 127.42, 119.79, 119.07, 109.44. IR (KBr, $v_{\text {max }}, \mathrm{cm}^{-1}$): 3040, 2887, 2834, 1613, 1422, 1300, 1023. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 71.03; H, 3.97; N, 9.20, S, 10.53 Found; C, 70.91; H, 3.85; N, 8.81, S, 10.37.

(cyclohexyl(5-phenyl-1H-pyrrolo[2,3-b]pyridin-2-yl)methanone (5n)

Compound $\mathbf{5 n}$ was prepared from (E)-1-cyclohexyl-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one $\quad(4 \mathrm{n}, \quad 0.1 \mathrm{~g}$, $0.30 \mathrm{mmol})$ and Dowtherm-A $(10 \mathrm{~mL})$ as per above general procedureB. Off-white solid ($0.072 \mathrm{~g}, 79 \%$); mp $>350{ }^{\circ} \mathrm{C} ; \mathbf{m} / \mathbf{z}: 305.20(\mathrm{M}+\mathrm{H})^{+}$, ${ }^{1}{ }^{1}$ NMR (400MHz, DMSO-d6) $\delta 13.24$ (s, 1H), $8.73(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.69(\mathrm{~m}, 5 \mathrm{H}), 1.48-1.33$ (m, 4H), 1.26 (br s, 2H); ${ }^{13}$ C NMR (400MHz, DMSO-d6) δ 196.11, 148.75, 146.46, 138.32, $135.25,129.36,129.03,128.82,127.20,126.92,119.25,107.45,45.31,29.35,25.46,25.08$. IR $\left(\mathrm{KBr}, \mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}\right): 2928,2853,1651,1427,1287,1005$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 78.92$; H, 6.62; N, 9.20 Found; C, 78.81; H, 6.49; N, 8.91.

ethyl (E)-3-(6-phenyltetrazolo[1,5-a]pyridin-8-yl)acrylate (6a)

To a stirred solution of 6-phenyltetrazolo[1,5-a]pyridine-8carbaldehyde ($2,0.2 \mathrm{~g}, 1.3 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$, (ethoxycarbonylmethylene)triphenylphosphorane $(0.51 \mathrm{~g}, 1.5 \mathrm{mmol})$ was added in one portion. The resulting solution was stirred at ambient temperature overnight and then concentrated. The residue was column-chromatographed using 10% EA in hexane to afford the desired compound as off white solid. $\mathbf{m} / \mathbf{z}: 294.31(\mathrm{M}+\mathrm{H})^{+}$,

ethyl 5-phenyl-1H-pyrrolo[2,3-b]pyridine-2-carboxylate (7a)

Compound 7a was prepared from ethyl (E)-3-(6-phenyltetrazolo[1,5-a]pyridin- 8 -yl)acrylate ($6 \mathrm{a}, 0.1 \mathrm{~g}, 0.34 \mathrm{mmol}$) and Dowtherm-A (10 mL) as per above general procedure-B. Off-white solid (0.061 g , 65%); $\mathrm{mp}>350^{\circ} \mathrm{C}$; m/z: $266.31(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathbf{H}$ NMR (400MHz, DMSO-d6) $\delta 12.594(\mathrm{~s}, 1 \mathrm{H})$, 8.73 (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.216(\mathrm{~s}, 1 \mathrm{H}), 4.39-4.33(\mathrm{q}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$
NMR (100MHz, DMSO-d6) $\delta 160.89,148.34,145.84,138.32,129.36,129.02,128.59$,
128.36, 127.20, 126.92, 119.02, 106.72, 60.72, 14.20. IR (KBr, $\left.v_{\max }, \mathrm{cm}^{-1}\right): 2923,2853,1716$, 1443, 1286, 1024.

(E)-1-phenyl-3-(tetrazolo[1,5-a]quinolin-4-yl)prop-2-en-1-one (6b)

Compound 6b was prepared from Tetrazolo [1,5-a] quinoline-4carbaldehyde ($1.58 \mathrm{~g}, 8 \mathrm{mmol}$) and acetophenone ($0.93 \mathrm{ml}, 8 \mathrm{mmol}$) as per above general procedure-A. Off-white solid ($1.68 \mathrm{~g}, 72 \%$). m/z: $300.1(\mathrm{M}+\mathrm{H})^{+}$,
phenyl(1H-pyrrolo[2,3-b]quinolin-2-yl)methanone (7b)

Compound 7b was prepared from (E)-1-phenyl-3-(tetrazolo[1,5-a]quinolin-4-yl)prop-2-en-1-one ($6 \mathrm{~b}, 1 \mathrm{~g}, 3.3 \mathrm{mmol}$) and DowthermA $(25 \mathrm{~mL})$ as per above general procedure-B. Off-white solid (0.16 $\mathrm{g}, 17 \%$); $\mathrm{mp}>350{ }^{\circ} \mathrm{C} ; \mathbf{m} / \mathbf{z}: 273.3(\mathrm{M}+\mathrm{H})^{+},{ }^{\mathbf{1}} \mathbf{H}$ NMR (400MHz, DMSO-d6) $\delta 12.39$ (s, 1H), $8.83(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.76$ (m, 2H), $7.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100MHz DMSO-d6) δ 186.96, 150.38, 147.27, 137.98, 132.79, 131.57, 129.33, 128.96, 127.53, 124.61, 123.12, 121.01, 110.54. IR (KBr, $v_{\text {max }}, \mathrm{cm}^{-1}$): 3209, 3122, 1632, 1447, 1301, 1003.
(E)-1-(4-bromophenyl)-3-(7-methyltetrazolo[1,5-a]quinolin-4-yl)prop-2-en-1-one (6c)

Compound $\mathbf{6 b}$ was prepared from 7-methyl tetrazolo [1,5a] quinoline-4-carbaldehyde ($1 . \mathrm{g}, 8 \mathrm{mmol}$) and 4-bromo acetophenone $(0.9 \mathrm{ml}, 8 \mathrm{mmol})$ as per above general procedure-A. Off-white solid ($1.5 \mathrm{~g}, 81 \%$). m/z: 394.1 $(\mathrm{M}+\mathrm{H})^{+}$

(4-bromophenyl)(6-methyl-1H-pyrrolo[2,3-b]quinolin-2-yl)methanone (7c)

Compound 7c was prepared from (E)-1-(4-bromophenyl)-3-(7-methyltetrazolo[1,5-a]quinolin-4-yl)prop-2-en-1-one (6c, $1.17 \mathrm{~g}, 3 \mathrm{mmol})$ and Dowtherm-A $(25 \mathrm{~mL})$ as per above general procedure-B. Off-white solid ($0.14 \mathrm{~g}, 13 \%$); mp $>350^{\circ} \mathrm{C} ; \mathbf{m} / \mathbf{z}$: $365.23(\mathrm{M}+\mathrm{H})^{+}$; $\mathrm{mp}>350^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400MHz, DMSO-d6) $\delta 12.34(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.88-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.30 (s, 1H); ${ }^{13}$ C NMR (100MHz DMSO-d6) δ 185.91, 150.09, 146.10, 137.50, 136.43, $132.25,131.92,130.69,127.34,126.70,124.67,120.92,110.72$. IR (KBr, $v_{\max }, \mathrm{cm}^{-1}$): 3215, 3095, 1626, 1435, 1296, 1005, 693

References

1. K. Taku, Xu Pengu, I. Satoshi, Z. Lei, K. Shu, Chem. Commun., 2014, 50, 9336
2. X. Ze-feng, Z. Teng, H. Wenjun, Tetrahedron, 2019, 75, 3113
3. R. Amresh, P. Perumal, Synthetic Communications, 2000, 30 (13), 2269

3. X-Ray crystal data

CMP-2a

The crystal of 5 a was obtained by dissolving 20 mg of a compound in 1 mL DMF upon slow volatilization. A total of 2316 frames were collected. The total exposure time was 6.43 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm.

Table S2: Crystal data and Structure refinement of 5a

Chemical formula	$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	$298.33 \mathrm{~g} / \mathrm{mol}$
Temperature	$273(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal size	$0.043 \times 0.249 \times 0.435 \mathrm{~mm}$
Crystal habit	clear light colourless plate
Crystal system	triclinic
Space group	$\mathrm{P}-1$
Unit cell dimensions	$\mathrm{a}=4.045(3) \AA \quad \alpha=80.01(2)^{\circ}$
	$\mathrm{b}=12.408(11) \AA \beta=88.13(2)^{\circ}$
	$\mathrm{c}=15.626(14) \AA \quad \gamma=87.10(2)^{\circ}$
Volume	$771.2(12) \AA^{3}$
Z	2
Density (calculated)	$1.285 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$0.081 \mathrm{~mm}^{-1}$
F(000)	312
Theta range for data collection	2.30 to 28.76°
Index ranges	$-3<=\mathrm{h}<=5,-16<=\mathrm{k}<=16,-21<=1<=20$
Reflections collected	17994
Independent reflections	$3901[\mathrm{R}($ int $)=0.0397]$
Coverage of independent reflections 97.2%	
Absorption correction	Multi-Scan
Refinement method	Full-matrix least-squares on F^{2}
Refinement Program	$\mathrm{SHELXL}-2018 / 3$ (Sheldrick, 2018)
Structure solution technique	direct methods
Function minimized	$\left.\Sigma \mathrm{w}\left(\mathrm{F}_{0}{ }^{2}-\mathrm{F}_{\mathrm{c}}\right)_{2}\right)_{2}$

Data / restraints / parameters	$3901 / 0 / 208$
Goodness-of-fit on F^{2}	1.360
Final R indices	3231 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \mathrm{R} 1=0.0471$, wR2 $=0.1670$
	all data $\quad \mathrm{R} 1=0.0566$, wR $2=0.1785$
	$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.1000 \mathrm{P})^{2}\right]$
	where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{o}}{ }^{2}\right) / 3$
Weighting scheme	0.221 and $-0.217 \mathrm{e}^{-3}$
Largest diff. peak and hole	$0.054 \mathrm{e}^{-3} \mathrm{~A}^{-3}$
R.M.S. deviation from mean	

4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

${ }^{1} H$ NMR of Compound-4a

${ }^{13}$ C NMR of Compound-4a

LCMS of Compound-4a

Base Peak 327.58 Channel Description $1: 50.00-1250.00 \mathrm{ES}+$, Centroid, $\mathrm{CV}=10$ - AVG ($0.0: 1.6 ; 2.0: 3.6$) $\times 10.000 \mathrm{Th}: 0.100$ - AVG $(0.0: 0.3) \times 30.000 \mathrm{Th}$: 0.100 Retention Time 1.870
${ }^{1} \mathrm{H}$ NMR of Compound-4b

${ }^{13}$ C NMR of Compound-4b

LCMS of Compound-4b

Base Peak 185.48 Channel Description 2: QDa Positive(+) Scan (50.00-1250.00)Da, Centroid, CV=30-AVG (1.4:3.9;0.1:0.8) x 30.000 Retention Time 0.965

${ }^{1} H$ NMR of Compound-4c

${ }^{13}$ C NMR of Compound-4c

LCMS of Compound-4c

Match Plot

Base Peak 397.34 Channel Description 1: QDa Positive(+) Scan (60.00-1240.00)Da, Centroid, CV=10 - AVG (0.1:0.2;3.5:3.9) $\times 21.000 \mathrm{Th}: 0.010$ Retention Time 2.766
${ }^{1} \mathrm{H}$ NMR of Compound-4d

${ }^{13}$ C NMR of Compound-4d

LCMS of Compound-4d

Match Plot

Base Peak 372.45 Channel Description 1: QDa Positive(+) Scan (60.00-1240.00)Da, Centroid, CV=10 - AVG $(0.0: 0.8 ; 2.9: 4.0) \times 20.000$ Th: $0.010-\operatorname{AVG}(0.0: 1.8 ; 2.8: 3.1) \times 20.000$ Th: 0.010 Retention Time 2.442
${ }^{1} \mathrm{H}$ NMR of Compound-4e

${ }^{13}$ C NMR of Compound-4e

LCMS of Compound-4e

Match Plot

Base Peak 407.33 Channel Description 1: QDa Positive(+) Scan (60.00-1240.00)Da, Centroid, CV=10 - AVG (0.1:0.6;3.5:4.0) $\times 21.000$ Th: 0.010 Retention Time 2.875

${ }^{1} H$ NMR of Compound-4f

${ }^{13}$ C NMR of Compound-4f

LCMS of Compound-4f

Base Peak 405.33 Channel Description 1: QDa Positive(+) Scan (60.00-1240.00)Da, Centroid, CV=10 - AVG $(0.0: 2.5 ; 2.8: 4.0) \times 20.000 \mathrm{Th}: 0.010$ Retention Time 2.656
${ }^{1} \mathrm{H}$ NMR of Compound-4g

${ }^{13} \mathrm{C}$ NMR of Compound- 4 g

LCMS of Compound-4g

Base Peak 539.49 Channel Description 1: QDa Positive(+) Scan (60.00-1240.00)Da, Centroid, CV=10 - AVG (0.0:1.6;3.5:4.0) $\times 20.000$ Th: 0.010 Retention Time 2.617

${ }^{1}$ H NMR of Compound-4h

${ }^{13}$ C NMR of Compound-4h

LCMS of Compound-4h

Base Peak 341.38 Channel Description 1: QDa Positive(+) Scan (60.00-1240.00)Da, Centroid, CV=10 - AVG (0.0:2.2;2.8:4.0) x 20.000 Th: 0.010 Retention Time 2.749

${ }^{1} \mathrm{H}$ NMR of Compound-4i

 n| $1 \mid 1$

${ }^{13}$ C NMR of Compound-4i

LCMS of Compound-4i

Match Plot

Base Peak 361.41 Channel Description 1: QDa Positive(+) Scan (60.00-1240.00)Da, Centroid, CV=10 - AVG (0.0:2.3;3.0:4.0) $\times 20.000$ Th: 0.010 Retention Time 2.760
${ }^{1} \mathrm{H}$ NMR of Compound-4j

${ }^{13}$ C NMR of Compound-4j

N্ড

LCMS of Compound-4j

Due to presence of di-Fluoro, desired mass was not observed in LCMS

${ }^{1} \mathrm{H}$ NMR of Compound-4k

 $\downarrow \angle Z^{\prime} \downarrow-$
$809^{\circ} \downarrow-$

${ }^{13} \mathrm{C}$ NMR of Compound-4k

"

${ }^{1}$ H NMR of Compound-41

${ }^{13}$ C NMR of Compound-41

LCMS of Compound-41

Match Plot

Base Peak 317.36 Channel Description 1: QDa Positive(+) Scan (60.00-1240.00)Da, Centroid, CV=10 - AVG (2.8:4.0;0.0:1.2) x 30.000 Retention Time 2.583

${ }^{1} \mathrm{H}$ NMR of Compound-4m

${ }^{13}$ C NMR of Compound-4m

LCMS of Compound-4m

Base Peak 333.33 Channel Description 1: QDa Positive(+) Scan (60.00-1240.00)Da, Centroid, CV=10 - AVG (0.0:2.6;2.8:4.0) $\times 20.000$ Th: 0.010 Retention Time 2.726

${ }^{1}$ H NMR of Compound-4n

${ }^{13}$ C NMR of Compound-4n

LCMS of Compound-4n

Base Peak 333.42 Channel Description 1: QDa Positive(+) Scan (60.00-1240.00)Da, Centroid, CV=10 - AVG $(-0.4: 0.1 ; 3.7: 4.0) \times 21.000$ Th: 0.010 Retention Time 2.783

${ }^{1} \mathrm{H}$ NMR of Compound-5a

${ }^{13}$ C NMR of Compound-5a

LCMS of Compound-5a

Base Peak 299.25 Channel Description 1: QDa Positive(+) Scan (50.00-1250.00)Da, Centroid, CV=10 - AVG (2.4:3.9;0.3:2.1) $\times 20.000 \mathrm{Th}: 0.200$ Retention Time 2.258

${ }^{1} \mathrm{H}$ NMR of Compound-5b

${ }^{13}$ C NMR of Compound-5b

LCMS of Compound-5b

Match Plot

Base Peak 389.44 Channel Description 1: QDa Positive(+) Scan (60.00-1240.00)Da, Centroid, CV=10 - AVG
$(0.0: 1.9 ; 2.8: 3.9) \times 20.000$ Th: $0.200-$ AVG $(0.1: 0.5 ; 1.6: 2.4 ; 2.6: 3.9) \times 50.000$ Th: 0.200 Retention Time 2.498

${ }^{1} \mathrm{H}$ NMR of Compound-5c

${ }^{13}$ C NMR of Compound-5c

LCMS of Compound-5c

Base Peak 367.12 Channel Description 1: 50.00-1250.00 ES+, Centroid, $C V=10$ - AVG (2.8:4.0;0.0:2.3) $\times 30.000$ Th: 0.010 Retention Time 2.634

${ }^{1} \mathrm{H}$ NMR of Compound-5d

${ }^{13}$ C NMR of Compound-5d

LCMS of Compound-5d

Match Plot

Base Peak 344.35 Channel Description 1: QDa Positive(+) Scan (60.00-1240.00)Da, Centroid, CV=10 - AVG (0.0:1.2;3.0:4.0;1.9:2.4;2.7:2.9) $\times 20.000$ Th: 0.010 Retention Time 2.463

${ }^{1} H$ NMR of Compound-5e

${ }^{13}$ C NMR of Compound-5e

[^0] 1

${ }^{1} H$ NMR of Compound-5f

${ }^{13}$ C NMR of Compound-5f

LCMS of Compound-5f

Match Plot

Base Peak 379.12 Channel Description 1: 50.00-1250.00 ES+, Centroid, CV=10 - AVG (3.2:3.7;0.1:1.4) $\times 30.000$ Retention Time 2.673

${ }^{1} \mathrm{H}$ NMR of Compound-5g

${ }^{13} \mathrm{C}$ NMR of Compound-5g

LCMS of Compound-5g

Base Peak 317.37 Channel Description 1: QDa Positive(+) Scan (60.00-1240.00)Da, Centroid, CV=10 - AVG (0.1:1.2;2.5:4.0) $\times 20.000$ Th: 0.100 Retention Time 2.336

${ }^{1}$ H NMR of Compound-5h

${ }^{13}$ C NMR of Compound-5h

LCMS of Compound-5h

Base Peak 313.37 Channel Description 1: QDa Positive(+) Scan (60.00-1240.00)Da, Centroid, CV=10 - AVG (0.0:2.1;2.9:4.0) $\times 20.000$ Th: 0.010 Retention Time 2.682

${ }^{1} H$ NMR of Compound-5i

${ }^{13}$ C NMR of Compound-5i

LCMS of Compound-5i

Match Plot

Base Peak 333.33 Channel Description 1: QDa Positive(+) Scan (60.00-1240.00)Da, Centroid, CV=10 - AVG (0.0:2.6;2.8:4.0) x 20.000 Th: 0.010 Retention Time 2.726

${ }^{1}$ H NMR of Compound-5j

${ }^{13}$ C NMR of Compound-5j

LCMS of Compound-5j

Base Peak 335.37 Channel Description 1: QDa Positive(+) Scan (60.00-1240.00)Da, Centroid, CV=10 - AVG (0.1:2.0;3.0:4.0) x 20.000 Th: 0.010 Retention Time 2.625

${ }^{1} \mathrm{H}$ NMR of Compound-5k

${ }^{13}$ C NMR of Compound-5k

LCMS of Compound-5k

Base Peak 300.32 Channel Description 1: QDa Positive(+) Scan (60.00-1240.00)Da, Centroid, CV=10 - AVG (0.0:2.3;2.5:4.0) $\times 20.000$ Th: 0.010 Retention Time 2.418

${ }^{1}$ H NMR of Compound-51

${ }^{1} \mathrm{H}$ NMR of Compound-5m

${ }^{13}$ C NMR of Compound-5m

${ }^{1}$ H NMR of Compound-5n

${ }^{13}$ C NMR of Compound-5n

${ }^{1} \mathrm{H}$ NMR of Compound-7a

${ }^{13}$ C NMR of Compound-7a

2P

${ }^{1}$ H NMR of Compound-7b

${ }^{13}$ C NMR of Compound-7b

${ }^{1} H$ NMR of Compound-7c

${ }^{13} \mathrm{C}$ NMR of Compound-7c

[^0]: $\stackrel{\text { ® }}{\circ}$

