Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

π -Expanded Azaullazines: Synthesis of Quinolino-Azaullazines by Povarov Reaction and Cycloisomerisation

Jonas Polkaehn,^a Richard Thom,^a Peter Ehlers,^a Alexander Villinger,^a and Peter Langer^{*a,b}

^a Institute of Chemistry, University Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.

E-mail: peter.langer@uni-rostock.de; Fax: +49 381 498 6412; Tel: +49 381 498 6410

^b Leibniz Institute for Catalysis (LIKAT) at the University Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany.

Table of Contents

Optimization of Vilsmeier-Haack reaction	2
Optimization of Sonogashira reaction	2
X-Ray	2
UV-vis-Data	4
Cyclic voltammetry	5
DFT Calculations	6
Cartesian coordinates of the optimized ground-states (S_0)	6
Cartesian coordinates of the optimized excited-states (S_1)	20
TD-DFT calculations	25
1H-, 13C- and 19F-NMR Spectra	27

Optimization of Vilsmeier-Haack reaction

Table 1: Optimization of Vilsmeier-Haack reaction

	Br∖	Br —	Br N 2a	Br	+ N Br E 2b	r
entrv	solve	ea. POCl ₃	<i>T</i> [°C]	<i>t</i> [h]	vield ^a 2a [%]	vield ^a 2b [%]
	nt				,	,
1	DCE	1.2	reflux	3	25	27
2	DCE	2.0	reflux	3	21	23
3 ^b	DMF	2.0	r.t.	12	13	29
4 ^b	DMF	2.0	100	3	33	62
^a isolated yield, ^b argon atmosphere						

Optimization of Sonogashira reaction

Table 2: Optimization of sonogashira reaction for **3a**; i: phenylacetylene (3 eq.), [Pd] (0.05 eq.), ligand (0.1 eq.), Cul (0.05 eq), base (6 eq), solvent, T, 24 h.

entry	[Pd]	Ligand	base	solvent	<i>T</i> [°C]	yield 3a [%]ª	
1 ^b	PdCl ₂ (PPh ₃)	CataCXium	NEt₂	acetonitrile	70	51	
	2	А					
2	PdCl ₂ (PPh ₃)	CataCXium	NEt.	1,4-	00	72	
2	2	А	INL 13	dioxane	30	12	
3	PdCl ₂ (PPh ₃)	YPhos	N⊏t.	1,4-	00	55	
5	2	AF1105	INL13	dioxane	90	55	
1	PdCl ₂ (CH ₃ C	CataCXium	NI=+	1,4-	00	11	
4	N) ₂	А	INL13	dioxane	90	41	
5	PdCl ₂ (PPh ₃)	CataCXium	HNiP	1,4-	90	80	
J	2	Α	r ₂	dioxane	30	00	

X-Ray

Table 3: 11-fluoro-5,13-di-p-tolylindolizino[6,5,4,3-ija]quinolino[2,3-c][1,6]naphthyridine (5d)

Chem. F	ormula		C ₃₂ H ₂₂ N ₃ F + 0.88 CH ₂ Cl ₂		
Form. Wght [g mol-1]			566.49		
colour			red		
Crsyt. sy	stem		monoklinic		
Space	group	(Hall	C 2/c (-C 2yc)		
group)					
<i>a</i> [Å]			25.9576(15)		
b [Å]			14.7451(9)		
c [Å]			14.1378(8)		
α [°]			90		
β [°]			96.669(2)		
γ [°]			90		
V [ų]			5374.6(5)		
Z			8		
N _{ref}			9911		
$\theta_{\sf max}$ [°]			29.000		
h,k,l _{max}			35,20,19		
ρ_x [g cm ⁻³]]		1.400		
µ [mm ⁻¹]			0.256		
$λ_{MoK \setminus \alpha}$ [A]			0.71073		
<i>T</i> [K]			123		
<i>F</i> (000)			2345.0		
N _{par}			386		
R			0.0516(5117)		
wR ₂			0.1401(7148)		
S			1.051		

UV-vis-Data

Table 4: detailed Spectroscopic Data of 5a, 5c, 5d, 5h, 5j, 5k and 5l in DCM (c = 10^{-5} M) at 20 °C

	5a	5c	5d	5h	5j	5k	51
λ _{1,abs} [nm]	47	50	47	47	47	48	48
	1	3	7	0	7	2	0
ε _{λ1} [10 ⁴ L·mol⁻	1.1	0.7	0.8	1.6	0.8	0.7	0.9
¹ cm ⁻¹]							
λ _{2,abs} [nm]	44	48	45	44	47	45	45
	8	0	4	7	7	5	5
ε _{λ2} [10 ⁴ L·mol ⁻ ¹cm ⁻¹]	1.0	0.7	0.8	1.3	0.8	0.7	0.9
λ _{3,abs} [nm]	36	37	35	44	36	35	36
	2	7	9	7	0	4	0
ε _{λ3} [10 ⁴ L·mol [_] ¹cm⁻¹]	1.2	0.7	1.0	1.3	1.0	2.2	1.2
λ _{4,abs} [nm]	34	35	34	38	34	32	34
	4	4	2	5	3	1	2
ε _{λ4} [10 ⁴ L·mol [_] ¹cm ⁻¹]	1.7	1.0	1.5	0.8	1.4	2.5	1.6
λ _{5,abs} [nm]	33	32	31	31	31	30	31
	5	0	5	2	4	6	5
ε _{λ5} [10 ⁴ L·mol ⁻ ¹cm ⁻¹]	1.6	2.7	1.7	4.6	1.6	2.4	1.8
λ _{6,abs} [nm]	30	26	29	28	30	26	29
	1	8	9	5	0	1	9
ε _{λ6} [10 ⁴ L·mol ⁻ ¹cm ⁻¹]	3.8	1.9	2.9	5.1	2.5	4.4	2.8
λ _{7,abs} [nm]	28		28		26		25
	9		7		4		4
ε _{λ7} [10 ⁴ L·mol ⁻ ¹cm ⁻¹]	4.2		3.1		4.6		5.1
λ _{8,abs} [nm]	26		26				
	2		4				
ε _{λ8} [10 ⁴ L·mol ⁻ ¹ cm ⁻¹]	4.6		4.2				
λ _{1,em} [nm]	51	53	52	50	52	53	52

	5	9	5	5	4	9	4
Eg ^{opt,a} [eV]	2.5	2.4	2.5	2.5	2.5	2.5	2.5
	6	2	3	9	3	0	3
Φ^{b}	0.2	0.1	0.2	0.3	0.2	0.2	0.2
	6	9	7	5	5	0	8

^a determined from the intersection of the normalized absorption and emission spectra.

 $^{\rm b}$ Fluorescence standard: quinine hemisulfate monohydrate in 0.05 M H_2SO_4 (Φ = 0.52).^2

Table 5: Quantuum yields and $\lambda_{max,em}$ of solvatochromism measurements for **5a**, **5c** and **5k**

	Cyclohe	kane	DCM		Aceto	onitrile	Ethan	ol
		$\lambda_{\text{max,em}}$ [nm]		$\lambda_{\max em}[nm]$		$\lambda_{\text{max,em}}$		λ _{max,em} [nm]
	Φ ^a		Φ ^a		Φ ^a	[nm]	Φ ^a	
-		483	0.2	515	0.2	530		525
5a	0.26		6		2		0.27	
		514	0.1	538	0.1	547		551
5c	0.30		9		5		0.20	
		494	0.2	540	0.0	563	<0.0	553
5k	0.16		0		1		1	
^{a:} Fluorescence standard: quinine hemisulfate monohydrate in 0.05 M H ₂ SO ₄ (Φ = 0.52). ²								

Cyclic voltammetry

Figure S1: Cyclic voltammograms of **5a**. Measured in DCM with 0.25 M n-Bu₄NPF₆ as a supporting electrolyte, glassy carbon working electrode, and Pt counter-electrode with ferrocene as standard at a scan rate of 100 mV/s (left) and 200 mV/s (right).

Figure S2: Cyclic voltammograms of **5a**. Measured in THF with 0.25 M n-Bu₄NPF₆ as a supporting electrolyte, glassy carbon working electrode, and Pt counter-electrode with ferrocene as standard at a scan rate of 100 mV/s (left) and 200 mV/s (right).

DFT Calculations

Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were performed with Gaussian09.³ The ground and excited state structures as well as TD-DFT calculations were performed using the B3LYP, functional and the 6-31G(d,p) basis set. The solvent effects have been considered by using the integral equation formalism variant (IEFPCM) model. NICS2BC were calculated with the B3LYP functional coupled with Grimme's D3⁴ empirical dispersion correction and 6-311G(d,p) basis set. Nucleus independent chemical shifts (NICS) were calculated using the gauge including atomic orbitals (GIAO) method at the same level of theory. The bond current maps were generated using the BC-Wizard.⁵

Cartesian coordinates of the optimized ground-states (S₀)

S_o: 5,13-di-*p*-tolylindolizino[6,5,4,3-*ija*]quinolino[2,3-*c*][1,6]naphthyridine (**5a**)

Symbol	Х	Y	Z
С	-0.696132	-0.821044	-0.231599
С	0.716544	-0.740026	-0.175463
С	1.548990	-1.879442	-0.234299
Ν	1.335677	0.479233	-0.082879
С	0.674723	1.689353	-0.104058
С	2.717832	0.677957	-0.036079
С	1.648706	2.685858	-0.070997
С	2.910965	2.064011	-0.031643
Н	1.445276	3.746150	-0.076407
Н	3.870092	2.558564	-0.013500
С	2.974916	-1.718203	-0.156817
Н	3.590029	-2.612099	-0.160724
С	3.566398	-0.482780	-0.051615
С	-1.492306	0.431611	-0.141244
С	-0.767721	1.693139	-0.137844
С	-2.889056	0.512981	-0.055526
С	-3.517520	1.799644	-0.048002
С	-2.690448	2.965493	-0.116362
Ν	-1.340089	2.890227	-0.139748
С	-3.787325	-0.676072	0.075387
С	-3.954393	-1.301515	1.318891

E = -1473.83 Hai	rtree
------------------	-------

С	-4.512987	-1.161633	-1.021468
С	-4.806932	-2.396370	1.452743
Н	-3.405762	-0.935001	2.181521
С	-5.360832	-2.260408	-0.880446
Н	-4.400528	-0.687757	-1.992232
С	-5.524071	-2.897496	0.357284
Н	-4.916043	-2.870122	2.424918
Н	-5.903757	-2.628146	-1.747210
С	-4.928378	1.979259	0.032059
С	-5.482906	3.239460	0.017656
Н	-6.560759	3.355001	0.076114
С	-4.658396	4.388873	-0.071070
Н	-5.110864	5.375881	-0.083118
С	-3.291559	4.254649	-0.133521
Н	-2.633535	5.115624	-0.190883
Н	-5.569449	1.108773	0.100722
С	5.040907	-0.337700	0.031954
С	5.879736	-1.099887	-0.798720
С	5.642599	0.536091	0.952097
С	7.265118	-0.992550	-0.708648
Н	5.439285	-1.763600	-1.536642
С	7.030289	0.636207	1.038731
Н	5.021500	1.125457	1.618797
С	7.868369	-0.124951	0.213307
Н	7.889089	-1.585628	-1.372468
Н	7.469676	1.315677	1.764428
С	0.894227	-3.114338	-0.369121
Н	1.480095	-4.031209	-0.409193
С	-1.187791	-2.128540	-0.410751
Н	-2.246863	-2.302158	-0.522471
Ν	-0.427330	-3.235920	-0.472196
С	-6.465935	-4.067183	0.513459
Н	-7.467350	-3.729082	0.807371
Н	-6.571791	-4.622567	-0.422652
Н	-6.118283	-4.759539	1.285587
С	9.371092	-0.032083	0.325032
Н	9.680046	0.906788	0.792680

Н	9.771945	-0.850382	0.935949
Н	9.849802	-0.099582	-0.656674

S_o: *N*,*N*-dimethyl-5,13-di-*p*-tolylindolizino[6,5,4,3-*ija*]quinolino[2,3-*c*][1,6]naphthyridin-11-

amine (**5c**)

E = -1607.81	Hartree
--------------	---------

Symbol	Х	Y	Z
С	-0.101742	1.121894	-0.221066
С	-1.495422	0.873836	-0.166936
С	-2.456521	1.908986	-0.203223
Ν	-1.967565	-0.411122	-0.096678
С	-1.168945	-1.533383	-0.135824
С	-3.319015	-0.771771	-0.053162
С	-2.018386	-2.637817	-0.119088
С	-3.346603	-2.169777	-0.070857
Н	-1.690789	-3.666260	-0.140444
Н	-4.240334	-2.775012	-0.059910
С	-3.853943	1.580426	-0.128429
Н	-4.569531	2.396098	-0.112729
С	-4.296284	0.282138	-0.046592
С	0.838564	-0.029193	-0.156197
С	0.264575	-1.364263	-0.167886
С	2.236914	0.055590	-0.084181
С	3.018464	-1.147655	-0.093253
С	2.323470	-2.395960	-0.163564
Ν	0.977381	-2.484593	-0.181994
С	2.990080	1.341748	0.046416
С	3.126250	1.959308	1.297574
С	3.626663	1.925745	-1.058446
С	3.854601	3.140897	1.431845
Н	2.655271	1.513183	2.168675
С	4.349814	3.110132	-0.917866
Н	3.547169	1.454412	-2.033754
С	4.472473	3.742872	0.327082
Н	3.945366	3.602036	2.412012
Н	4.828875	3.548263	-1.789718

С	4.434194	-1.149269	-0.022921
С	5.174263	-2.335002	-0.055357
С	4.453747	-3.574921	-0.131878
Н	4.992829	-4.513782	-0.143468
С	3.085446	-3.596143	-0.183038
Н	2.545291	-4.536211	-0.232479
Н	4.941052	-0.199441	0.055093
С	-5.743500	-0.034883	0.040223
С	-6.672804	0.642052	-0.766854
С	-6.232015	-0.993557	0.943474
С	-8.035889	0.371416	-0.670693
Н	-6.319680	1.369166	-1.491938
С	-7.597116	-1.257825	1.035890
Н	-5.540408	-1.521140	1.592160
С	-8.525918	-0.581375	0.233501
Н	-8.730442	0.902665	-1.316471
Н	-7.947145	-2.000848	1.747961
С	-1.952063	3.214618	-0.312544
Н	-2.642138	4.056592	-0.335866
С	0.231399	2.482589	-0.369697
Н	1.262579	2.781992	-0.473526
Ν	-0.653800	3.493851	-0.409360
С	5.228248	5.042383	0.469236
Н	6.031295	5.121011	-0.269313
Н	4.563601	5.902178	0.319598
Н	5.667868	5.142165	1.465834
С	-10.006200	-0.852371	0.354899
Н	-10.199094	-1.872132	0.700031
Н	-10.473747	-0.170632	1.076322
Н	-10.518353	-0.711756	-0.601449
Ν	6.555343	-2.333387	-0.023710
С	7.291534	-3.580167	0.141411
Н	8.359598	-3.363943	0.122018
Н	7.063522	-4.085641	1.090693
Н	7.083412	-4.279017	-0.676041
С	7.260599	-1.077560	0.181529
Н	7.028279	-0.618717	1.153972

Н	8.334507	-1.257512	0.135048
Н	7.008040	-0.353387	-0.601280

 \mathbf{S}_{o} : 5,13-diphenylindolizino[6,5,4,3-*ija*]quinolino[2,3-c][1,6]naphthyridine (5i)

E = -1395.19 Hartree

Symbol	Х	Y	Z
С	-0.514879	-1.016078	-0.183975
С	0.887306	-0.824942	-0.131763
С	1.804851	-1.898048	-0.166212
Ν	1.410033	0.440166	-0.067274
С	0.657649	1.594862	-0.112009
С	2.772561	0.746032	-0.027068
С	1.551741	2.664095	-0.101534
С	2.858363	2.142626	-0.051674
Н	1.267031	3.705135	-0.128177
Н	3.776479	2.710096	-0.044142
С	3.214241	-1.625605	-0.094591
Н	3.896727	-2.469061	-0.078785
С	3.707482	-0.346077	-0.018176
С	-1.405559	0.172754	-0.118562
С	-0.780816	1.486453	-0.141518
С	-2.804163	0.147978	-0.031620
С	-3.530850	1.381493	-0.047166
С	-2.796271	2.606339	-0.138108
Ν	-1.444159	2.635245	-0.163720
С	-3.608394	-1.104299	0.126614
С	-3.731077	-1.702275	1.389332
С	-4.289992	-1.666244	-0.963296
С	-4.501762	-2.853949	1.553632
Н	-3.216167	-1.266076	2.240057
С	-5.056673	-2.820945	-0.797295
Н	-4.208497	-1.203879	-1.942481
Н	-4.586007	-3.308836	2.536015
Н	-5.572268	-3.251188	-1.650597
С	-4.951489	1.452725	0.031236
С	-5.601607	2.665878	-0.004728

Н	-6.685165	2.698850	0.052619
С	-4.868315	3.873796	-0.114235
Н	-5.395784	4.822474	-0.142737
С	-3.495223	3.844601	-0.176562
Н	-2.905899	4.752763	-0.250005
Н	-5.524162	0.537157	0.115606
С	5.167121	-0.085144	0.063072
С	6.060365	-0.794520	-0.757544
С	5.690123	0.847565	0.975411
С	7.435166	-0.579692	-0.667323
Н	5.670025	-1.502436	-1.482240
С	7.065530	1.059943	1.065344
Н	5.017598	1.390176	1.631618
Н	8.109005	-1.132368	-1.315235
Н	7.451772	1.778280	1.782363
С	1.247424	-3.182429	-0.273555
Н	1.902280	-4.051980	-0.294773
С	-0.903950	-2.361005	-0.334347
Н	-1.946259	-2.618084	-0.442148
Ν	-0.060723	-3.407679	-0.372668
С	7.942956	0.348714	0.244085
Н	9.013366	0.517700	0.312517
С	-5.162108	-3.418909	0.460426
Н	-5.758634	-4.316999	0.588415

 $S_o:$ 4,4'-(11-fluorindolizino[6,5,4,3-*ija*]quinolino[2,3-*c*][1,6]naphthyridine-5,13-diyl)bis(*N*,*N*-dimethylaniline) (**5k**)

Symbol	X	Y	Z
С	-0.722862	-0.604255	-0.389556
С	0.690164	-0.605934	-0.311400
С	1.459685	-1.784555	-0.427947
Ν	1.374808	0.570100	-0.143863
С	0.781790	1.815768	-0.127800
С	2.764822	0.688032	-0.071740
С	1.808815	2.753841	-0.042875

С	3.033781	2.060463	-0.010528
Н	1.665012	3.823398	-0.009366
Н	4.018174	2.500096	0.037636
С	2.889299	-1.709406	-0.311354
Н	3.451489	-2.636814	-0.348268
С	3.551488	-0.517172	-0.128761
С	-1.449934	0.681908	-0.228061
С	-0.657761	1.900431	-0.179095
С	-2.840948	0.825043	-0.121279
С	-3.399308	2.144931	-0.078920
С	-2.512015	3.267254	-0.127143
Ν	-1.167553	3.125269	-0.149080
С	-3.784340	-0.323576	0.009547
С	-3.869662	-1.045718	1.209144
С	-4.648877	-0.693842	-1.030783
С	-4.758522	-2.102752	1.362445
Н	-3.226653	-0.775694	2.042154
С	-5.538655	-1.754826	-0.897997
Н	-4.619900	-0.149627	-1.970698
С	-5.613510	-2.500140	0.304444
Н	-4.788871	-2.619002	2.313592
Н	-6.180062	-1.999017	-1.735298
С	-4.797160	2.389587	0.023768
С	-5.254173	3.681390	0.035617
С	-4.399773	4.800654	-0.038495
С	-3.044646	4.587501	-0.114346
Н	-2.344711	5.414919	-0.158801
Н	-5.502849	1.571620	0.086456
С	5.024992	-0.459908	-0.014478
С	5.844311	-1.273673	-0.816204
С	5.672577	0.377885	0.910217
С	7.228267	-1.260844	-0.706379
Н	5.387924	-1.913308	-1.566173
С	7.055509	0.400385	1.037698
Н	5.081754	1.010691	1.564726
С	7.879725	-0.427427	0.236355
Н	7.805570	-1.893915	-1.368316

Н	7.495432	1.062426	1.772725
С	0.737811	-2.967832	-0.656161
Н	1.271280	-3.912923	-0.744880
С	-1.285050	-1.864181	-0.673033
Н	-2.350079	-1.963327	-0.819563
Ν	-0.585888	-3.005729	-0.797833
Ν	-6.479302	-3.567578	0.438823
Ν	9.254509	-0.425978	0.371943
С	-6.649473	-4.200365	1.738512
Н	-7.353454	-5.026958	1.642499
Н	-5.702827	-4.612103	2.106332
Н	-7.036454	-3.506349	2.499012
С	-7.455440	-3.840526	-0.605425
Н	-8.028777	-4.726962	-0.334201
Н	-8.159414	-3.008605	-0.754314
Н	-6.964325	-4.043930	-1.563774
С	10.073234	-1.166503	-0.576969
Н	9.971303	-0.793608	-1.606898
Н	11.120398	-1.082331	-0.285985
Н	9.813564	-2.230764	-0.575001
С	9.895680	0.580726	1.205650
Н	9.554276	0.511187	2.244468
Н	10.972678	0.413013	1.201188
Н	9.705527	1.605054	0.853079
Н	-4.825417	5.798043	-0.025404
F	-6.585072	3.910891	0.127015

 $\mathbf{S_o:}$ 5,14-diphenylbenzo[j]naphtho[2,1,8-def][2,7]phenanthroline (6)

E = -1417.28 Hartree

Symbol	Х	Y	Ζ
С	-1.371352	0.591479	-0.154293
С	-5.143237	-0.236516	0.110806
С	-5.691663	0.413067	1.230444
С	-6.019961	-0.815086	-0.821734
С	-7.073270	0.481700	1.409019
Н	-5.030963	0.849807	1.973107

C	-7 /02008	-0 744808	-0.6/3381
н	-5 611627	-0.744000	-1 697052
C	-7 933769	-0 095482	0 472197
н	-7 477155	0.981055	2 284813
н	-8.062614	-1.193805	-1.379346
Н	-9.009240	-0.039607	0.611304
С	3.611828	-1.250520	0.205585
С	3.469055	-1.901135	1.440231
С	4.457623	-1.811170	-0.764098
С	4.141643	-3.097281	1.691547
Н	2.825688	-1.469128	2.200767
С	5.125010	-3.011226	-0.512703
Н	4.580043	-1.312548	-1.721032
С	4.967183	-3.658250	0.714675
Н	4.020502	-3.590493	2.651353
Н	5.768238	-3.438527	-1.276074
Н	5.486918	-4.591283	0.909946
С	-2.408256	3.190767	-0.066705
Н	-2.808869	4.199722	-0.046161
С	-1.027913	2.997530	-0.133512
Н	-0.347459	3.839474	-0.154062
С	-3.275832	2.106974	-0.030569
Н	-4.344936	2.277321	0.006934
С	-2.786257	0.786192	-0.063404
С	-3.668994	-0.371101	-0.064255
С	-3.130342	-1.615643	-0.244971
Н	-3.780231	-2.485829	-0.263868
С	-0.496506	1.706459	-0.178244
С	0.961185	1.495535	-0.219789
С	0.574868	-0.968155	-0.374534
С	0.957415	-2.283953	-0.678561
Н	1.994640	-2.522983	-0.859803
С	-1.182151	-3.102466	-0.614355
Н	-1.846456	-3.963329	-0.680220
С	-1.722246	-1.825846	-0.382033
С	-0.827456	-0.728153	-0.286247
С	1.515139	0.160625	-0.210439

С	2.907025	0.047724	-0.035480
С	3.704679	1.232072	-0.010885
С	3.045574	2.494654	-0.150245
С	3.811953	3.694136	-0.173395
Н	3.276496	4.630766	-0.289323
С	5.178150	3.650655	-0.038817
Н	5.758855	4.567914	-0.054564
С	5.835641	2.405800	0.137160
Н	6.913998	2.382472	0.260466
С	5.121497	1.230438	0.156897
Н	5.638811	0.289088	0.294435
Ν	0.114628	-3.326823	-0.792975
Ν	1.701139	2.596435	-0.216610

 $\mathbf{S_o:}$ 5,13-diphenylindolizino[6,5,4,3-ija]quinolino[2,3-c]quinoline (7)

E = -1379.16 Hartree

Symbol	Х	Y	Z
С	-0.517709	-1.029364	-0.217404
С	0.891098	-0.849481	-0.158103
С	1.822505	-1.917998	-0.196846
Ν	1.414366	0.423925	-0.083323
С	0.662438	1.578391	-0.129378
С	2.772930	0.737663	-0.031290
С	1.552799	2.653102	-0.108327
С	2.857644	2.136638	-0.050053
Н	1.262243	3.692622	-0.132308
Н	3.775629	2.704206	-0.033368
С	3.228525	-1.625218	-0.111352
Н	3.918084	-2.463258	-0.096822
С	3.715163	-0.345233	-0.021671
С	-1.402101	0.166361	-0.138240
С	-0.773870	1.477544	-0.162956
С	-2.800857	0.150631	-0.036332
С	-3.522719	1.388429	-0.050245
С	-2.783370	2.608930	-0.154100
Ν	-1.431715	2.630550	-0.186168

С	-3.618145	-1.091334	0.142470
С	-3.725254	-1.682143	1.410007
С	-4.334312	-1.645931	-0.929186
С	-4.513315	-2.818605	1.596566
Н	-3.184259	-1.251790	2.247406
С	-5.118109	-2.785831	-0.741640
Н	-4.266170	-1.189070	-1.912014
Н	-4.585203	-3.266879	2.583050
Н	-5.660418	-3.209571	-1.581628
С	-4.942174	1.468812	0.041944
С	-5.586898	2.685107	0.003758
Н	-6.669750	2.723569	0.071459
С	-4.848817	3.888293	-0.121347
Н	-5.371349	4.839719	-0.151735
С	-3.476433	3.850627	-0.195421
Н	-2.882584	4.755014	-0.279522
Н	-5.519813	0.557610	0.138341
С	5.172801	-0.077617	0.074501
С	6.077993	-0.776494	-0.742184
С	5.683626	0.851031	0.997984
С	7.451005	-0.556351	-0.637147
Н	5.697947	-1.481247	-1.475448
С	7.057104	1.069479	1.102570
Н	5.002111	1.386558	1.650763
Н	8.133512	-1.101601	-1.282405
Н	7.432882	1.784937	1.828092
С	1.318948	-3.224956	-0.320593
Н	2.011711	-4.060613	-0.348229
С	-0.947218	-2.358513	-0.382508
Н	-1.996241	-2.577819	-0.488674
С	-0.047930	-3.428875	-0.427927
Н	-0.437145	-4.434634	-0.551617
С	-5.207510	-3.376513	0.520814
Н	-5.818271	-4.262377	0.666156
С	7.946081	0.368043	0.285273
Н	9.015015	0.541549	0.365130

 $\boldsymbol{S_o}: indolizino[6,5,4,3-ija] quinolino[2,3-c][1,6] naphthyridine~(\boldsymbol{5}^{'})$

E = -933.29	Hartree
-------------	---------

Symbol	Х	Y	Z
С	-0.835300	1.307174	0.000032
С	-1.965756	0.469853	0.000002
С	-3.278301	0.984379	-0.000030
Ν	-1.798269	-0.889174	-0.000002
С	-0.582688	-1.545502	0.000020
С	-2.846842	-1.807338	-0.000035
С	-0.861527	-2.909483	0.000018
С	-2.259497	-3.074065	-0.000032
Н	-0.109029	-3.680783	0.000039
Н	-2.799736	-4.007599	-0.000054
С	-4.384806	0.061898	-0.000062
Н	-5.392214	0.460815	-0.000086
С	-4.170580	-1.284923	-0.000065
С	0.621187	-0.752503	0.000051
С	0.499111	0.690766	0.000063
Н	-4.998419	-1.982998	-0.000091
С	-3.384377	2.384875	-0.000029
Н	-4.368218	2.847008	-0.000053
С	-1.108419	2.680769	0.000026
Н	-0.296527	3.400119	0.000039
Ν	-2.339051	3.207773	-0.000003
С	2.922989	0.765207	0.000026
С	2.924102	-0.667349	0.000033
С	5.348015	-0.647012	-0.000040
Н	6.293827	-1.177037	-0.000079
С	5.346069	0.770722	-0.000068
Н	6.288074	1.306756	-0.000119
Ν	1.781750	-1.390851	0.000084
С	1.673735	1.416192	0.000081
С	4.159737	1.461260	-0.000032
Н	4.151265	2.546385	-0.000050
Н	1.655486	2.500282	-0.000012
С	4.169319	-1.350522	0.000023

 $\boldsymbol{S_o}: \texttt{benzo[j]naphtho[2,1,8-def][2,7]phenanthroline}~(\boldsymbol{6'})$

E = -955.38086

Symbol	Х	Y	Z
С	-1.816986	0.731861	0.000020
С	-1.761139	3.528451	-0.000141
Н	-1.732257	4.612197	-0.000231
С	-0.564958	2.809455	-0.000055
Н	0.390330	3.316711	-0.000037
С	-2.981765	2.871497	-0.000120
Н	-3.908024	3.436079	-0.000208
С	-3.036318	1.467562	-0.000017
С	-4.284158	0.755424	0.000041
С	-4.322695	-0.601708	0.000077
Н	-5.270388	-1.129364	0.000139
С	-0.575502	1.414969	0.000020
С	0.674292	0.641970	0.000054
С	-0.674308	-1.475738	-0.000004
С	-0.821733	-2.865339	-0.000010
Н	0.048235	-3.512710	-0.000110
С	-3.103772	-2.773164	0.000049
Н	-4.047038	-3.314708	0.000086
С	-3.111454	-1.368081	0.000062
С	-1.860271	-0.699755	0.000038
С	0.624007	-0.796621	-0.000020
С	1.834497	-1.470544	-0.000092
С	3.050931	-0.769059	-0.000063
С	2.986207	0.660943	0.000075
С	4.198128	1.403921	0.000168
Н	4.125882	2.484677	0.000295
С	5.407305	0.756883	0.000095
Н	6.327993	1.329330	0.000176
С	5.470953	-0.661341	-0.000080
Н	6.437657	-1.151599	-0.000157
С	4.320700	-1.407548	-0.000154

Н

Н	4.363311	-2.491783	-0.000276
Ν	-1.998290	-3.506651	-0.000022
Ν	1.811024	1.323635	0.000129
Н	1.866749	-2.553460	-0.000150
Н	-5.203352	1.331528	0.000058

 \mathbf{S}_{o} : indolizino[6,5,4,3-ija]quinolino[2,3-c]quinoline (7)

E = -917.25 Hartree

Symbol	Х	Y	Z
С	-0.837539	1.308314	-0.000314
С	-1.972614	0.468872	0.000071
С	-3.300181	0.960711	0.000206
Ν	-1.791859	-0.896872	0.000219
С	-0.572508	-1.545576	-0.000399
С	-2.827006	-1.827998	0.000536
С	-0.836178	-2.914269	-0.000435
С	-2.229092	-3.091820	0.000105
Н	-0.073705	-3.675676	-0.000812
Н	-2.763388	-4.028825	0.000226
С	-4.387531	0.014467	0.000640
Н	-5.401087	0.397965	0.000762
С	0.498599	0.689597	-0.000045
С	0.626740	-0.752017	-0.000415
С	2.924729	0.769875	0.000507
С	2.930053	-0.662401	-0.000374
Ν	1.789955	-1.387988	-0.000692
С	4.159430	1.469491	0.001120
С	5.348325	0.783097	0.000768
Н	6.288719	1.322054	0.001245
С	5.354493	-0.634702	-0.000204
Н	6.301964	-1.161845	-0.000512
С	4.177767	-1.341522	-0.000756
Н	4.158838	-2.424491	-0.001458
Н	4.147554	2.554726	0.001834
С	-3.473741	2.354022	-0.000186
Н	-4.478980	2.760136	-0.000048

С	-1.074583	2.688080	-0.000975
Н	-0.242220	3.379838	-0.001759
С	-2.372977	3.198808	-0.000860
Н	-2.519856	4.272607	-0.001327
С	-4.156610	-1.328504	0.000816
Н	-4.974311	-2.038470	0.001089
С	1.672962	1.416137	0.000650
Н	1.654569	2.500029	0.001328

Cartesian coordinates of the optimized excited-states (S_1)

S₁: 5,13-di-*p*-tolylindolizino[6,5,4,3-*ija*]quinolino[2,3-*c*][1,6]naphthyridine (**5a**)

Symbol	Х	Y	Z
С	-0.708756	-0.783012	-0.370260
С	0.702667	-0.726689	-0.297384
С	1.537153	-1.857501	-0.441815
Ν	1.321483	0.476831	-0.103472
С	0.649232	1.677811	-0.062833
С	2.698577	0.678485	-0.017222
С	1.631335	2.698831	0.056706
С	2.877281	2.095723	0.083905
Н	1.411462	3.754722	0.107489
Н	3.834585	2.592170	0.150616
С	2.943722	-1.692020	-0.325193
Н	3.573152	-2.574325	-0.395629
С	3.547488	-0.444263	-0.099259
С	-1.494969	0.436177	-0.181559
С	-0.784694	1.685736	-0.131155
С	-2.921527	0.507736	-0.085965
С	-3.540383	1.805856	-0.082235
С	-2.703377	2.982790	-0.132636
Ν	-1.342957	2.905197	-0.115794
С	-3.778455	-0.692079	0.121134
С	-3.676219	-1.447570	1.302060
С	-4.728663	-1.102764	-0.832929

С	-4.478703	-2.572859	1.512944
Н	-2.957506	-1.152183	2.062930
С	-5.525129	-2.228280	-0.620608
Н	-4.827408	-0.544089	-1.760625
С	-5.417762	-2.986328	0.558112
Н	-4.370251	-3.137660	2.436892
Н	-6.239420	-2.526735	-1.385871
С	-4.943279	2.010499	0.007799
С	-5.498457	3.287848	-0.011303
Н	-6.577849	3.401080	0.055083
С	-4.677096	4.426092	-0.108247
Н	-5.116692	5.419881	-0.127496
С	-3.296586	4.268795	-0.159087
Н	-2.632735	5.128069	-0.207645
Н	-5.600334	1.152180	0.092198
С	5.016057	-0.320138	0.037742
С	5.876602	-1.018617	-0.829773
С	5.591550	0.475265	1.043928
С	7.259799	-0.914188	-0.697990
Н	5.460729	-1.625172	-1.630059
С	6.977931	0.568784	1.173120
Н	4.954086	1.000794	1.749370
С	7.838801	-0.121435	0.307088
Н	7.901347	-1.452924	-1.391883
Н	7.395885	1.184574	1.966204
С	0.885077	-3.090220	-0.699556
Н	1.464609	-4.004439	-0.806569
С	-1.198853	-2.081256	-0.701605
Н	-2.254670	-2.232924	-0.873788
Ν	-0.437384	-3.178288	-0.849762
С	-6.299379	-4.192243	0.789103
Н	-7.335467	-3.892551	0.996335
Н	-6.323622	-4.845079	-0.091686
Н	-5.949649	-4.784947	1.640766
С	9.339063	-0.037812	0.460292
Н	9.631660	0.822684	1.070383
Н	9.734466	-0.939212	0.947393

 \mathbf{S}_1 : *N*,*N*-dimethyl-5,13-di-*p*-tolylindolizino[6,5,4,3-*ija*]quinolino[2,3-*c*][1,6]naphthyridin-11-amine (**5c**)

e
)

Н

Symbol	Х	Y	Z
С	-0.084517	1.085984	-0.417698
С	-1.482560	0.858671	-0.327744
С	-2.446440	1.881279	-0.459429
Ν	-1.945937	-0.411305	-0.127024
С	-1.126936	-1.527909	-0.097757
С	-3.284267	-0.777998	-0.020559
С	-1.980977	-2.650515	0.036324
С	-3.294753	-2.196532	0.084197
Н	-1.642312	-3.675166	0.087966
Н	-4.184263	-2.804088	0.170177
С	-3.829163	1.545991	-0.321019
Н	-4.558518	2.349197	-0.380307
С	-4.268797	0.246594	-0.092423
С	0.846590	-0.029464	-0.232102
С	0.285609	-1.366740	-0.182431
С	2.259266	0.073606	-0.121214
С	3.039824	-1.143742	-0.117874
С	2.355048	-2.408082	-0.189713
Ν	1.002210	-2.506533	-0.182006
С	2.964419	1.366172	0.102778
С	2.765182	2.089659	1.291949
С	3.865201	1.899538	-0.837954
С	3.424779	3.299639	1.521715
Н	2.084152	1.699154	2.044568
С	4.521346	3.109870	-0.605811
Н	4.038068	1.368576	-1.771214
С	4.311159	3.837743	0.576886
Н	3.248069	3.832849	2.453963
Н	5.204199	3.497553	-1.359765
С	4.440852	-1.158398	-0.009016

С	5.197923	-2.360052	-0.034391
С	4.503633	-3.600098	-0.163044
Н	5.041034	-4.539465	-0.196284
С	3.122396	-3.602334	-0.226829
Н	2.581381	-4.542351	-0.297849
Н	4.956411	-0.214831	0.095640
С	-5.711587	-0.064502	0.054434
С	-6.659256	0.507433	-0.812458
С	-6.180224	-0.914901	1.072494
С	-8.020869	0.237699	-0.665692
Н	-6.326734	1.150557	-1.623356
С	-7.542814	-1.177965	1.214903
Н	-5.476979	-1.355282	1.774029
С	-8.490819	-0.607322	0.350878
Н	-8.728464	0.685942	-1.359997
Н	-7.875110	-1.834670	2.016354
С	-1.948533	3.178185	-0.729580
Н	-2.633510	4.016686	-0.836429
С	0.244627	2.432451	-0.750335
Н	1.274369	2.711735	-0.922308
Ν	-0.644370	3.426077	-0.895488
С	4.998860	5.163645	0.809707
Н	6.033982	5.147828	0.449441
Н	4.483573	5.975181	0.278051
Н	5.011928	5.425269	1.873173
С	-9.967289	-0.876605	0.527128
Н	-10.150420	-1.907180	0.851153
Н	-10.400156	-0.214898	1.289706
Н	-10.518399	-0.707661	-0.403961
Ν	6.566304	-2.322157	0.068338
С	7.340428	-3.559277	0.045845
Н	8.398860	-3.321042	0.143923
Н	7.054979	-4.219887	0.874254
Н	7.192953	-4.101187	-0.896942
С	7.273444	-1.051634	0.205133
Н	6.967387	-0.521969	1.115749
Н	8.343816	-1.245584	0.264065

S₁: 4,4'-(11-fluorindolizino[6,5,4,3-*ija*]quinolino[2,3-*c*][1,6]naphthyridine-5,13-diyl)bis(N,N-dimethylaniline) (**5k**)

E = -1762.31 Hartree

Н

Symbol	Х	Y	Z
С	-0.708962	-0.551678	-0.480672
С	0.706496	-0.559902	-0.418551
С	1.480846	-1.729440	-0.602466
Ν	1.382348	0.606619	-0.201498
С	0.765262	1.838175	-0.130933
С	2.773728	0.742860	-0.128887
С	1.785344	2.800222	-0.012760
С	3.014437	2.133699	-0.016104
Н	1.622528	3.865673	0.057075
Н	3.989923	2.596447	0.030716
С	2.895612	-1.639960	-0.503273
Н	3.470098	-2.556573	-0.593191
С	3.565870	-0.432847	-0.240403
С	-1.439998	0.695859	-0.253504
С	-0.676104	1.910035	-0.177157
С	-2.863700	0.819840	-0.140152
С	-3.427977	2.136115	-0.083084
С	-2.547893	3.280972	-0.108179
Ν	-1.186597	3.145925	-0.118352
С	-3.774777	-0.348211	0.019099
С	-3.757323	-1.133130	1.185193
С	-4.721761	-0.697432	-0.958642
С	-4.616424	-2.216438	1.364067
Н	-3.054822	-0.888940	1.979230
С	-5.587275	-1.778253	-0.801726
Н	-4.779947	-0.114004	-1.874983
С	-5.551616	-2.582804	0.365089
Н	-4.553666	-2.776077	2.290127
Н	-6.290767	-1.993408	-1.597592
С	-4.824811	2.383496	0.030020

С	-5.290800	3.684701	0.057371
С	-4.466928	4.806220	-0.005823
С	-3.089859	4.584971	-0.081813
Н	-2.398256	5.422399	-0.109910
Н	-5.533265	1.566207	0.090997
С	5.018703	-0.421986	-0.061500
С	5.854054	-1.298991	-0.794953
С	5.651872	0.448689	0.856559
С	7.228466	-1.290441	-0.652192
Н	5.416671	-1.973222	-1.525245
С	7.023971	0.461258	1.024731
Н	5.047912	1.098816	1.480928
С	7.864999	-0.400778	0.262175
Н	7.818651	-1.965482	-1.259292
Н	7.450549	1.127486	1.764018
С	0.770381	-2.922035	-0.881086
Н	1.306072	-3.859314	-1.016340
С	-1.260117	-1.814279	-0.842878
Н	-2.323085	-1.907996	-1.012389
Ν	-0.556176	-2.945530	-1.022467
Ν	-6.386338	-3.683611	0.514973
Ν	9.221520	-0.381896	0.408290
С	-6.503167	-4.310287	1.825833
Н	-7.181692	-5.162011	1.752068
Н	-5.533562	-4.689039	2.167108
Н	-6.893068	-3.619955	2.591951
С	-7.499166	-3.858605	-0.409986
Н	-8.030291	-4.777492	-0.155466
Н	-8.215475	-3.021295	-0.374606
Н	-7.140260	-3.959469	-1.440013
С	10.061569	-1.305670	-0.352284
Н	9.953472	-1.142214	-1.431425
Н	11.104163	-1.140703	-0.083629
Н	9.808085	-2.348753	-0.127763
С	9.855446	0.550238	1.339384
Н	9.554833	0.346398	2.374781
Н	10.936915	0.441476	1.268488

Н	9.597107	1.587392	1.095982
Н	-4.889876	5.805231	0.017221
F	-6.648070	3.882532	0.159051

TD-DFT calculations

Calculated TD-DFT transitions of compound 5a at B3LYP/6-31+G(d,p) level (IEFPCM).

S _n	E (eV)	λ (nm)	f	Configuration	CI coefficent
S ₁	2.6490	468.04	0.2388	$HOMO \rightarrow LUMO$	0.96875
S ₂	3.2153	385.61	0.0385	HOMO \rightarrow LUMO+1	0.65070
				$\text{HOMO} \rightarrow \text{LUMO+2}$	0.22908
S ₃	3.3892	365.82	0.0024	$\text{HOMO-2} \rightarrow \text{LUMO}$	0.30006
				$\text{HOMO-1} \rightarrow \text{LUMO}$	-0.41862
				HOMO \rightarrow LUMO+1	-0.15248
				$\text{HOMO} \rightarrow \text{LUMO+2}$	0.43751
S ₄	3.5515	349.11	0.2832	$\text{HOMO-3} \rightarrow \text{LUMO}$	-0.14844
				$\text{HOMO-2} \rightarrow \text{LUMO}$	0.17587
				HOMO-1 \rightarrow LUMO	0.53739
				$\text{HOMO} \rightarrow \text{LUMO+2}$	0.36715

Calculated TD-DFT transitions of compound 5c at B3LYP/6-31+G(d,p) level (IEFPCM).

S _n	E (eV)	λ (nm)	f	Configuration	CI coefficent
S ₁	2.4433	507.45	0.2953	$HOMO \rightarrow LUMO$	0.70022
S ₂	3.0007	413.18	0.0165	HOMO-1 \rightarrow LUMO	-0.14216
				HOMO-1 \rightarrow LUMO+2	0.11581
				HOMO \rightarrow LUMO+1	0.66492
				$\text{HOMO} \rightarrow \text{LUMO+2}$	0.10556
S ₃	3.0987	400.12	0.0124	$\text{HOMO-1} \rightarrow \text{LUMO}$	0.68343
				$HOMO \rightarrow LUMO+1$	0.13660
S ₄	3.3446	370.69	0.1809	$\text{HOMO-2} \rightarrow \text{LUMO}$	-0.33396
				$HOMO \rightarrow LUMO+1$	-0.10178
				$\text{HOMO} \rightarrow \text{LUMO+2}$	0.60089

Calculated TD-DFT transitions of compound **5k** at B3LYP/6-31+G(d,p) level (IEFPCM).

S _n	E (eV)	λ (nm)	f	Configuration	CI coefficent
S ₁	2.4735	501.26	0.0774	$HOMO-1 \rightarrow LUMO$	0.22514
				$\text{HOMO} \rightarrow \text{LUMO}$	0.65804

S ₂	2.5462	486.93	0.0742	HOMO-1 \rightarrow LUMO	0.66692
				$\text{HOMO} \rightarrow \text{LUMO}$	-0.22012
S ₃	2.8240	439.03	0.2604	$\text{HOMO-2} \rightarrow \text{LUMO}$	0.69059
				$\text{HOMO} \rightarrow \text{LUMO}$	0.10885
S ₄	3.1871	389.02	0.1266	$HOMO-2 \rightarrow LUMO+1$	-0.22829
				$HOMO \rightarrow LUMO+1$	0.63678
				$\text{HOMO} \rightarrow \text{LUMO+2}$	0.10078

1H-, 13C- and 19F-NMR Spectra

1-(3,5-Dibromopyridin-4-yl)-1*H*-pyrrol-2-carbaldehyd (2a)

1-(3,5-bis(phenylethynyl)pyridin-4-yl)-1*H*-pyrrole-2-carbaldehyde (3a)

110 100 f1 (ppm) 1-(3,5-bis(p-tolylethynyl)pyridin-4-yl)-1H-pyrrole-2-carbaldehyde (3b)

1-(3,5-bis((4-fluorphenyl)ethynyl)pyridin-4-yl)-1*H*-pyrrole-2-carbaldehyde (3c)

1-(3,5-bis((4-(trifluoromethyl)phenyl)ethynyl)pyridin-4-yl)-1*H*-pyrrole-2-carbaldehyde (3d)

f1 (ppm)

1-(3,5-bis((4-(dimethylamino)phenyl)ethynyl)pyridin-4-yl)-1H-pyrrole-2-carbaldehyde

10 0 -10 -20 -30 -40 -50 -60 -70 -80

14-(p-Tolyl)-4-(p-tolylethinyl)pyrrolo[1,2-a]chinolino[2,3-c][1,6]naphthyridin (4)

5,13-di-p-tolylindolizino[6,5,4,3-ija]quinolino[2,3-c][1,6]naphthyridine (5a)

11-methyl-5,13-di-p-tolylindolizino[6,5,4,3-ija]quinolino[2,3-c][1,6]naphthyridine (5b)

f1 (ppm)

N,*N*-dimethyl-5,13-di-*p*-tolylindolizino[6,5,4,3-*ija*]quinolino[2,3-*c*][1,6]naphthyridin-11-amine (5c)

11-fluoro-5,13-di-p-tolylindolizino[6,5,4,3-ija]quinolino[2,3-c][1,6]naphthyridine (5d)

10,12-difluor-5,13-di-p-tolylindolizino[6,5,4,3-ija]quinolino[2,3-c][1,6]naphthyridine (5e)

f1 (ppm) . 180

	Parameter	Value
1	Solvent	CDCI3
2	Temperature	298.2
3	Pulse Sequence	zgfhigqn
4	Number of Scans	64
5	Receiver Gain	2050.0
6	Relaxation Delay	1.0000
7	Pulse Width	10.0000
8	Acquisition Time	0.9787
9	Spectrometer Frequency	282.38
10	Spectral Width	66964.3
11	Lowest Frequency	-61722.4
12	Nucleus	19F
13	Acquired Size	65536
14	Spectral Size	131072

10

-10

-20

0

-40

-30

-50

-60

9-fluor-5,13-di-p-tolylindolizino[6,5,4,3-ija]quinolino[2,3-c][1,6]naphthyridine (5f)

-100 -110 -120 -130 -140 -150 f1 (ppm) 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -160 -170 -180 -190 -200 -210

5,13-diphenylindolizino[6,5,4,3-*ija*]quinolino[2,3-c][1,6]naphthyridine (5i)

Parameter 1 Solvent 2 Temperature 3 Pulse Sequence 4 Number of Scans 5 Receiver Gain 6 Relaxation Delay 7 Pulse Width 8 Acquisition Time 9 Spectran Width 11 Lowest Frequency 12 Nucleus 13 Acquired Size 14 Spectral Size	Value CDC13 298.2 2g30 16 2.03.0 2.0000 10.0000 5.2954 y 300.13 6188.1 -1246.2 1H 32768 65536	ſ	, []	//, ,,					
		- F-001	1.02-1 2.02-1 2.02-1 4.04-1 4.04-1	3000 1010 1010 1010 1010		и			
2.0 11.5 11.0 10. Parameter 1 Solvent 2 Temperature 3 Pulse Sequence 4 Number of Scans 5 Receiver Gain 6 Relaxation Delay 7 Pulse Width 8 Acquisition Time 9 Spectral Width 11 Lowest Frequency 12 Nucleus 13 Acquired Size 14 Spectral Size	5 10.0 5 10.0 5 10.0 5 10.0 5 298.2 2993.0 1024 2050.0 1.8176 75.48 13C 32768 65536	9.5 9.0 5.5 9.0 5.5 9.0 5.5 9.0 5.5 801 5.5	8.5 8.0 90601		6.0 5.5 f1 (ppm)				
00 190 180	170	160 150	140 130	120 110	100 90 f1 (ppm)	80 70	60 50	40 30 20 10	

11-fluor-5,13-diphenylindolizino[6,5,4,3-*ija*]quinolino[2,3-c][1,6]naphthyridine (5j)

Parameter Value 1 Solvent CDCI3 2 Temperature 298.2 3 Pulse Sequence zg30 4 Number of Scans 16 5 Receiver Gain 322.0 6 Relaxation Delay 2.0000 7 Pulse Width 10.0000 8 Acquisition Time 5.2954 9 Spectrometer Frequency 300.13 10 Spectral Width 6188.1 11 Lowest Frequency 1246.4		F
13 Acquired Size 32768 14 Spectral Size 65536		
		1
		T
2.0 11.5 11.0 10.5 10.0 9.5	9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 fl (ppm)	0.
→ 165.82 → 160.40 ✓ 158.25	139.70 138.40 137.49 137.49 137.49 137.49 137.49 137.40 137.40 116.55 1105 1105 1105 1105 1105 1105 1105 1	
Parameter Value 1 Solvent CDCI3/TFA 2 Temperature 298.7 3 Pulse Sequence 29930 4 Number of Scans 2048 5 Receiver Gain 2050.0	CE:28:20 CE:28:21 CE:27:11 CE:27	
6 Relaxation Delay 2.0000 7 Pulse Width 10.0000 8 Acquisition Time 1.8176 9 Spectrometer Frequency 75.48 10 Spectral Width 18028.8 11 Lowest Frequency -1456.1 12 Nucleus 13C		
13 Acquired Size 32768 14 Spectral Size 65536	164 163 162 161 160 159 158 157 120 115 110 f1 (ppm)	
TFA		
00 190 180 170 160	150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)	

	Parameter	Value
1	Solvent	CDCI3
2	Temperature	298.2
3	Pulse Sequence	zgfhigqn
4	Number of Scans	64
5	Receiver Gain	2050.0
6	Relaxation Delay	1.0000
7	Pulse Width	10.0000
8	Acquisition Time	0.9787
9	Spectrometer Frequency	282.38
10	Spectral Width	66964.3
11	Lowest Frequency	-61722.4
12	Nucleus	19F
13	Acquired Size	65536
14	Spectral Size	131072

4,4'-(11-fluorindolizino[6,5,4,3-*ija*]quinolino[2,3-*c*][1,6]naphthyridine-5,13-diyl)bis(*N,N*-dimethylaniline) (5k)

11-fluor-5,13-bis(4-fluorphenyl)indolizino[6,5,4,3-*ija*]quinolino[2,3-*c*][1,6]naphthyridine (5l)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

- (1) Boldt, S.; Parpart, S.; Villinger, A.; Ehlers, P.; Langer, P. Synthesis and Properties of Azaullazines. *Angew. Chem. Int. Ed.* **2017**, *56*, 4575–4578.
- (2) Brouwer, A. M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). *Pure Appl. Chem.* **2011**, *83*, 2213–2228.
- (3) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16 Rev. C.01*, Wallingford, CT, 2016.
- (4) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, *132*, 154104.
- (5) Paenurk, E.; Gershoni-Poranne, R. Simple and efficient visualization of aromaticity: bond currents calculated from NICS values. *Phys. Chem. Chem. Phys.* **2022**, *24*, 8631–8644.