Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

1.	NMR Spectra	1
2.	HMBC Spectra	38
3.	Mass Spectra	41
4.	Photophysical properties	47
5.	Interaction with DNA	51
6.	Fluorescence microscopy	52
7.	Docking results	53
8.	Ab initio calculation results	54
9.	References	56

1. NMR Spectra

Figure S1. ¹H NMR spectrum of 2-amino-9-(4-fluorophenyl)-9*H*-purine-6-carbonitrile (2a).

Figure S2. ¹³C NMR spectrum of 2-amino-9-(4-fluorophenyl)-9H-purine-6-carbonitrile (2a).

Figure S3. ¹H NMR spectrum of 2-amino-9-(4-chlorophenyl)-9*H*-purine-6-carbonitrile (2b).

Figure S4. ¹³C NMR spectrum of 2-amino-9-(4-chlorophenyl)-9*H*-purine-6-carbonitrile (2b).

Figure S5. ¹H NMR spectrum of 2-amino-9-(4-bromophenyl)-9H-purine-6-carbonitrile (2c).

Figure S6.¹³C NMR spectrum of 2-amino-9-(4-bromophenyl)-9H-purine-6-carbonitrile (2c).

Figure S7. ¹H NMR spectrum of 2-amino-9-(3-bromophenyl)-9*H*-purine-6-carbonitrile (2d).

Figure S8. ¹³C NMR spectrum of 2-amino-9-(3-bromophenyl)-9*H*-purine-6-carbonitrile (2d).

Figure S9. ¹H NMR spectrum of 2-amino-9-phenyl-9*H*-purine-6-carbonitrile (2e).

Figure S10. ¹³C NMR spectrum of 2-amino-9-phenyl-9*H*-purine-6-carbonitrile (2e).

Figure S11. ¹H NMR spectrum of 2-amino-9-(*p*-tolyl)-9*H*-purine-6-carbonitrile (2f).

Figure S12. ¹³C NMR spectrum of 2-amino-9-(p-tolyl)-9*H*-purine-6-carbonitrile (2f).

Figure S13. ¹H NMR spectrum of 2,5-diamino-6-cyano-4-((4-fluorophenyl)amino)pyrimidinium chloride (3a).

Figure S14. ¹³C NMR spectrum of 2,5-diamino-6-cyano-4-((4-fluorophenyl)amino)pyrimidinium chloride (3a).

Figure S15. ¹H NMR spectrum of 2,5-diamino-6-cyano-4-((4-chlorophenyl)amino)pyrimidinium chloride (3b).

Figure S16. ¹³C NMR spectrum of 2,5-diamino-6-cyano-4-((4-chlorophenyl)amino)pyrimidinium chloride (3b).

Figure S17. ¹H NMR spectrum of 2,5-diamino-6-cyano-4-((4-bromophenyl)amino)pyrimidinium chloride (3c).

Figure S18. ¹³C NMR spectrum of 2,5-diamino-6-cyano-4-((4-bromophenyl)amino)pyrimidinium chloride (3c).

Figure S19. ¹H NMR spectrum of 2,5-diamino-6-cyano-4-((3-bromophenyl)amino)pyrimidinium chloride (3d).

Figure S20. ¹³C NMR spectrum of 2,5-diamino-6-cyano-4-((3-bromophenyl)amino)pyrimidinium chloride (3d).

Figure S21. ¹H NMR spectrum of 2,5-diamino-6-cyano-4-((phenylamino)pyrimidinium chloride (3e).

Figure S22. ¹³C NMR spectrum of 2,5-diamino-6-cyano-4-((phenylamino)pyrimidinium chloride (3e).

Figure S23. ¹H NMR spectrum of 2,5-diamino-6-cyano-4-((*p*-tolylamino)pyrimidinium chloride (3f).

Figure S24. ¹³C NMR spectrum of 2,5-diamino-6-cyano-4-(*p*-tolylamino)pyrimidinium chloride (3f).

Figure S25. ¹H NMR spectrum of 2,5-diamino-6-cyano-4-((4-fluorophenyl)amino)pyrimidine (4a).

Figure S26. ¹³C NMR spectrum of 2,5-diamino-6-cyano-4-(4-fluorophenyl)amino)pyrimidine (4a).

Figure S27. ¹H NMR spectrum of 2,5-diamino-6-cyano-4-((4-chlorophenyl)amino)pyrimidine (4b).

Figure S28. ¹³C NMR spectrum of 2,5-diamino-6-cyano-4-((4-chlorophenyl)amino)pyrimidine (4b).

Figure S29. ¹H NMR spectrum of 2,5-diamino-6-cyano-4-((4-bromophenyl)amino)pyrimidine (4c).

Figure S30. ¹³C NMR spectrum of 2,5-diamino-6-cyano-4-((4-bromophenyl)amino)pyrimidine (4c).

Figure S31. ¹H NMR spectrum of 2,5-diamino-6-cyano-4-((3-bromophenyl)amino)pyrimidine (4d).

Figure S32. ¹³C NMR spectrum of 2,5-diamino-6-cyano-4-((3-bromophenyl)amino)pyrimidine (4d).

Figure S33. ¹H NMR spectrum of 2,5-diamino-6-cyano-4-(phenylamino)pyrimidine (4e).

Figure S34 ¹³C NMR spectrum of 2,5-diamino-6-cyano-4-(phenylamino)pyrimidine (4e).

Figure S35. ¹H NMR spectrum of 2,5-diamino-6-cyano-4-(*p*-tolylamino)pyrimidine (4f).

Figure S36. ¹³C NMR spectrum of 2,5-diamino-6-cyano-4-(*p*-tolylamino)pyrimidine (4f).

2. HMBC Spectra

2.1. 2-amino-9-(4-fluorophenyl)-9H-purine-6-carbonitrile (2a)

38

2.2. 2,5-diamine-6-(4-fluorophenyl)-amino-pyrimidine-4-carbonitrile chloride (3a)

HMBC spectra compound 3a (expansion)

HMBC spectra compound 3a

2.3. 2,5-diamino-6-cyano-4-((4-fluorophenyl)amino)pyrimidine (4a)

3. Mass Spectra

Mass spectrometry was measured in Vigo, Spain (Centro de Apoio Científico-Tecnolóxico á Investigación), using a Bruker SolarisX XR through an Electrospray Ionization (ESI) analysis.

3.1. 2,5-diamino-6-cyano-4-((4-fluorophenyl)amino)pyrimidine (4a)

3.2. 2,5-diamino-6-cyano-4-((4-chlorophenyl)amino)pyrimidine (4b)

3.3. 2,5-diamino-6-cyano-4-((4-bromophenyl)amino)pyrimidine (4c)

3.4. 2,5-diamino-6-cyano-4-((3-bromophenyl)amino)pyrimidine (4d)

3.5. 2,5-diamino-6-cyano-4-(phenylamino)pyrimidine (4e)

3.6. 2,5-diamino-6-cyano-4-(p-tolylamino)pyrimidine (4f)

4. Photophysical properties

The photophysical properties of all compounds were studied in the solvents dioxane and ethanol, while some representative molecules (with PhF and (m)Br substituents) were chosen for the study in a wider variety of solvents, including aqueous buffers of neutral (pH=7.0) and slight acidic pH (pH=5.5).

The maximum absorption wavelengths of the synthesized compounds in several solvents are presented in **Table S1**. Molar absorption coefficients in ethanol are indicated, as examples.

Table S1. Maximum absorption (λ_{abs}) wavelengths for compounds 3a-3f and 4a-4f in several solvents. Molar absorption coefficients in ethanol are also indicated.

Compound		Dichloromethane (DCM)	loromethane Dioxane A (DCM)		Acetonitrile Ethanol			buffer solution pH=5.5
	R	λ _{abs} (nm)	λ _{abs} (nm)	λ _{abs} (nm)	λ _{abs} (nm)	ε (M⁻¹ cm⁻¹)	λ _{abs} (nm)	λ _{abs} (nm)
3a	4-FC ₆ H ₄	352	363	365	370	1.22×10 ⁴	351	357
3b	4-CIC ₆ H ₄		358		370	1.24×10 ⁴		
3c	4-BrC ₆ H ₄		359		372	1.31×10 ⁴		
3d	3-BrC ₆ H ₄	353	353	360	371	1.09×10 ⁴	361	362
3e	C_6H_5		359		370	1.55×10 ⁴		
3f	4-MeC ₆ H ₄		356		372	9.43×10 ³		
4 a	$4-FC_6H_4$	354	357	367	370	1.08×10 ⁴	355	357
4b	4-CIC ₆ H ₄		361		371	1.20×10 ⁴		
4c	4-BrC ₆ H ₄		364		367	2.14×10 ⁴		
4d	3-BrC ₆ H ₄	350	365	365	363	2.46×10 ⁴	363	365
4e	C ₆ H ₅		364		367	1.26×10 ⁴		
4f	4-MeC ₆ H ₄		361		363	1.34×10 ⁴		

The maximum emission wavelengths of the synthesized compounds in several solvents and in aqueous buffers (pH=5.5 and 7.0) are presented in **Table S2**. Examples of fluorescence emission spectra are displayed in **Figure S37** to **Figure S39**.

Co	ompound	Dichloromethane (DCM)	Dioxane Acetonitrile		Ethanol	buffer solution pH=7.0	buffer solution pH=5.5
	R	λ _{em} (nm)	λ _{em} (nm)	λ _{em} (nm)	λ _{em} (nm)	λ _{em} (nm)	λ _{em} (nm)
3a	4-FC ₆ H ₄	441	465	448	459	449	458
3b	4-CIC ₆ H ₄		466		466		
3c	4-BrC ₆ H ₄		465		442		
3d	3-BrC ₆ H ₄	459	422	464	474	458	452
3e	C ₆ H ₅		464		457		
3f	4-MeC ₆ H ₄		463		443		
4a	4-FC ₆ H ₄	452	464	442	445	449	448
4b	4-CIC ₆ H ₄		466		469		
4c	4-BrC ₆ H ₄		466		465		
4d	3-BrC ₆ H ₄	459	465	464	474	449	451
4e	C_6H_5		463		452		
4f	4-MeC ₆ H ₄		460		436		

Table S2. Maximum emission (λ_{em}) wavelengths for compounds 3a-3f and 4a-4f in several solvents.

Figure S37. Normalized fluorescence spectra of 2.5×10⁻⁶ M solutions of compound **3a** in several solvents and aqueous buffer solutions.

Figure S38. Normalized fluorescence spectra of 2.5×10⁻⁶ M solutions of compound **4a** in several solvents and aqueous buffer solutions.

Figure S39. Normalized fluorescence spectra of 2.5×10⁻⁶ M solutions of compound **3d** in several solvents and aqueous buffer solutions.

Figure S40. Normalized fluorescence spectra of 2.5×10⁻⁶ M solutions of compound **4d** in several solvents and aqueous buffer solutions.

The Stokes Shifts of the synthesized compounds in several solvents of different polarities and, in some cases, in aqueous buffers (pH=5.5 and 7.0) are presented in **Table S3**.

Compound		Dichloromethane (DCM)	Dioxane Acetonit	Acetonitrile	Ethanol	Aqueous buffer pH=7.0	Aqueous buffer pH=5.5
	R	S (nm)	S (nm)	S (nm)	S (nm)	S (nm)	S (nm)
3a	4-FC ₆ H ₄	89	102	83	89	98	101
3b	4-CIC ₆ H ₄		108		96		
3c	4-BrC ₆ H ₄		106		70		
3d	3-BrC ₆ H ₄	106	69	104	103	97	90
3e	C_6H_5		105		87		
3f	4-MeC ₆ H ₄		107		71		
4a	4-FC ₆ H ₄	98	107	75	75	94	91
4b	4-CIC ₆ H ₄		105		98		
4c	4-BrC ₆ H ₄		102		98		
4d	3-BrC ₆ H ₄	109	100	99	111	86	86
4e	C_6H_5		99		85		
4f	4-MeC ₆ H ₄		99		73		

Table S3. Stokes shift (S) for compounds 3a-3f and 4a-4f in several solvents.

The fluorescence quantum yields of the synthesized compounds in several solvents of different polarities and, in some cases, in aqueous buffers (pH=5.5 and 7.0) are presented in **Table S4**.

Compound		Dichloromethane (DCM)	Dioxane	Acetonitrile	Ethanol	Aqueous buffer pH=7.0	Aqueous buffer pH=5.5
	R	Φ _F (nm)	$\Phi_{ extsf{F}}$ (nm)	$\Phi_{\sf F}$ (nm)	Φ_{F} (nm)	Φ _F (nm)	Φ _F (nm)
3a	4-FC ₆ H ₄	0.13	0.37	0.10	0.03	0.04	0.03
3b	4-CIC ₆ H ₄		0.32		0.04		
3c	4-BrC ₆ H ₄		0.35		0.01		
3d	3-BrC ₆ H ₄	0.67	0.34	0.54	0.10	0.01	0.03
3e	C_6H_5		0.34		0.10		
3f	4-MeC ₆ H ₄		0.20		0.10		
4a	4-FC ₆ H ₄	0.39	0.61	0.01	0.10	0.02	0.03
4 b	4-CIC ₆ H ₄		0.62		0.04		
4c	4-BrC ₆ H ₄		0.60		0.04		
4d	3-BrC ₆ H ₄	0.67	0.57	0.53	0.10	0.01	0.01
4e	C_6H_5		0.56		0.10		
4f	4-MeC ₆ H ₄		0.36		0.20		

Table S4. Fluorescence quantum yields (Φ_F) for compounds **3a-3f** and **4a-4f** in several solvents. Reference: Quinine sulfate in sulfuric acid dilute solution (0.05 M) [1], $\Phi_F = 0.546$ at 25 °C [2]. Error about 10%.

5. Interaction with DNA

The binding constant and binding site size were determined by the modified Scatchard equation, given by McGhee and von Hippel [3]:

$$\frac{r}{c_{\rm f}} = K_{\rm i} \left(1 - nr\right) \left[(1 - nr) / [1 - (n-1)r] \right]^{n-1}$$

where K_i is the intrinsic binding constant, n is the binding site size, r is the ratio $c_b/[DNA]$, c_b and c_f are the concentrations of bound and free compound, respectively, calculated by

$$\mathbf{c}_{b} = \frac{I_{F,0} - I_{F}}{I_{F,0} - I_{F,b}} \times \mathbf{c}_{total} \quad ; \quad \mathbf{c}_{total} = \mathbf{c}_{f} + \mathbf{c}_{b}$$

being $I_{F,0}$ the fluorescence intensity of the free compound and $I_{F,b}$ the fluorescence intensity of the bound compound at total binding.

The quenching data were first plotted according to the Stern-Volmer relation [5]:

$$\frac{I_0}{I} = 1 + K_{\rm SV} [Q]$$

where I_0 and I are, respectively, the fluorescence intensities in the absence and in the presence of quencher (I⁻), K_{SV} is the Stern-Volmer constant and [Q] is the quencher concentration. When some compound molecules are accessible to the quencher and other molecules are not accessible and the Stern-Volmer equation must be modified [6]:

$$\frac{I_0}{\Delta I} = \frac{1}{f_a} + \frac{1}{f_a K_{\rm SV}[Q]}$$

where $\Delta I = I_0 - I$ and f_a is the accessibility to the quencher.

6. Fluorescence microscopy

Figure S43. Dead *Saccharomyces cerevisiae* BY4741 cells stained with **3b**, **3c**, and **3e** at 250 μ M; 15 min incubation at RT in PBS pH 7.2, protected from light). The death of cells was achieved by heat treating the cells at 80 °C for 2 min in a water bath. Scale bar = 20 μ m.

7. Docking results

4d protonated form in 3ft6

4d neutral form in 3ft6

4d protonated form in 7kwk

Figure S44. Docking poses of compound 4d in DNA sequences 1hq7, 3ft6 and 7kwk

8. *Ab initio* calculation results

Figure S45: Equilibrium geometries of ground state and first excited state of compound 4d.

	S ₀ equilibrium geometry	S ₁ equilibrium		So	S1
Normal			Normal mode	equilibrium	equilibrium
mode		geometry		geometry	geometry
1	21.61328	18.14505	40	961.79437	956.94405
2	38.09624	39.73726	41	976.19751	975.25884
3	60.08875	62.85013	42	990.83217	978.08551
4	64.37417	67.34663	43	1008.28113	995.35478
5	100.11089	90.09156	44	1014.36829	997.10437
6	119.24364	117.99973	45	1079.51911	1062.29310
7	140.35813	124.69518	46	1089.26652	1068.35176
8	145.43535	133.76455	47	1104.05001	1096.38080
9	195.08116	140.28367	48	1127.95870	1107.76724
10	205.65276	162.77921	49	1157.21311	1135.00830
11	223.84479	192.46998	50	1194.24809	1188.80115
12	235.26691	220.06952	51	1223.73312	1213.43949
13	294.54622	233.14663	52	1261.16515	1269.43778
14	296.25468	272.93875	53	1307.81690	1305.82245
15	319.84436	290.25116	54	1314.52488	1320.69079
16	334.17333	304.51773	55	1327.62847	1389.57942
17	347.59422	319.88814	56	1389.64644	1404.59362
18	363.14991	343.10500	57	1460.83871	1437.55361
19	380.17355	353.45919	58	1469.83154	1460.20533
20	399.54138	393.17455	59	1481.38522	1471.25407
21	456.47311	403.29820	60	1517.49703	1476.49551
22	464.28750	448.76108	61	1546.40140	1500.36408
23	494.23799	476.46984	62	1597.92488	1519.58439
24	506.67463	487.76570	63	1611.11649	1563.90971
25	541.88658	495.26412	64	1632.40952	1592.71948
26	559.06123	539.06776	65	1649.43277	1634.31191
27	588.43240	541.93998	66	1670.67730	1648.41369
28	646.43956	582.56638	67	1692.64781	1676.84841
29	654.58867	639.73706	68	1791.72398	1781.08738
30	698.26872	640.04487	69	2328.36735	2228.48298
31	730.03569	692.39000	70	2802.68543	2609.23835
32	733.53357	718.06894	71	3056.76668	2981.10700
33	742.59646	725.46625	72	3219.08982	3218.00844
34	771.04074	728.67305	73	3232.58433	3231.65980
35	775.39670	757.08230	74	3256.84808	3258.42195
36	792.95097	824.92870	75	3304.03777	3294.51124
37	839.46001	833.17156	76	3623.24404	3653.78288
38	842.75952	881.74369	77	3683.83933	3655.56966
39	890.62430	890.94490	78	3743.53820	3799.64917

Table S5. Frequencies of normal vibrational modes (cm⁻¹)

9. References

- S. Fery-Forgues and D. Lavabre, "Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products," *J Chem Educ*, vol. 76, no. 9, pp. 1260–1264, 1999.
- S. R. Meech and D. Phillips, "Photophysics of some common Fluorescence Standards," *Journal of Photochemistry*, vol. 23, pp. 193–217, 1983.
- [3] J.D. McGhee and P.H. von Hippel, "Theoretical aspects of DNA-protein interactions Cooperative and non-cooperative binding of large ligands to a one-dimensional homogeneous lattice", *Journal of Molecular Biology*, vol. 86, pp. 469-489, 1984.
- [4] A.S. Abreu, E.M.S. Castanheira, P.J.G. Coutinho, M.J. Queiroz, P.M.T. Ferreira and L.A.Vale-Silva, "Interaction of antitumoral fluorescent heteroaromatic compounds, a benzothienopyrrole and two thienoindoles, with DNA and lipid membranes", *Journal of Photochemistry and Photobiology A: Chemistry*, vol. 240, pp. 14-25, 2012
- [5] B. Valeur, "Molecular Fluorescence Principles and Applications", Wiley–VCH, Weinheim, 2002.
- [6] S.S. Lehrer, "Solute perturbation of protein fluorescence. Quenching of tryptophyl fluorescence of model compounds and of lysozyme by iodide ion", *Biochemistry*, vol. 10, pp. 3254-3263, 1971.