Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information for:

Ru-Mg promoted reductive cross-coupling of allyl bromides and alkenes to 1,7-Octadienes with an all-carbon quaternary center

Shurong Zhang, Xinjie Zhao and Guiping Qin*

Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P. R. China

E-mail: qin-guiping@kust.edu.cn

CONTENTS

General experimental details and materials	
2. Optimization of the reaction conditions	S3
3. General procedure	S7
4. Experimental characterization data for products	S8
5. Scale-up experiment	S19
6. Radical test	S20
7. References	S20
8. Copies for ¹ H NMR and ¹³ C NMR spectra of the products	S21

1. General experimental details and materials

All non-aqueous reactions and manipulations were using standard Schlenk techniques. All solvents before use were dried and degassed by standard methods and stored under argon atmosphere. All reactions were monitored by TLC with silica gel-coated plates. For chromatography, 200-300 mesh silica gel (Qingdao, China) was employed. ¹H NMR, ¹³C NMR spectra were measured in CDCl₃ and recorded on Bruker Avance III 500 MHz, Bruker Avance III HD (600 MHz, Bruker BioSpin, Switzerland). Chemical shifts (δ) were given in ppm, referenced to the residual proton resonance of CDCl₃ (7.26), to the carbon resonance of CDCl₃ (77.16). Coupling constants (*J*) were reported in Hertz (Hz) and referred to apparent peak multiplications. The term m, q, t, d, s referred to multiplet, quartet, triplet, doublet, singlet respectively. GC-MS spectra were recorded on a ThermoFisher Scientific ISQ 7000 Series GC-MS system. High resolution mass spectra were recorded on a high-resolution mass spectrometer using electrospray ionization (ESI) techniques.

The electron-deficient olefins **1** and allyl bromides **2** were known compounds and synthesized according to the reported methods. ¹⁻¹⁴ Unless extra specified, the used catalysts, reductants, ligands, and solvents etc. were all purchased from Energy.

2. Optimization of the reaction conditions

Ethyl 2-benzylacrylate **1a** (38.0 mg, 0.20 mmol), (3-bromoprop-1-en-2-yl)benzene **2a** (118.2 mg, 0.60 mmol), catalyst (x mol%), reductant (x mol%), ligand (x mol%) and solvent (2.0 mL) were added in a flame-dried Young-type tube. The mixture was degassed by the freeze-thaw method, and then stirred under argon at designed temperature for designed hours. Upon completion of the reaction, the reaction mixture was treated with saturated NH₄Cl_(aq.) (25 mL), extracted with ethyl acetate (3 x 10 mL), washed with saturated NaCl_(aq.) (3 x 10 mL), and dried over Na₂SO₄. Then, the solvent (ethyl acetate) was removed in vacuo and the residue was purified by flash column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/100) to afford the desired product **3aa**.

Table S1. Screening of the reductant ^a

2	\ 1 /	()
1	Mg	61
2	Fe	NR
3	Cu	NR
4	Mn	NR
5	In	Trace
6	Ni	NR
7	Zn	Trace
8	V	NR
9	Sn	NR
10	B_2Pin_2	NR

^a Reaction condition: **1a** (38.0 mg, 0.2 mmol), **2a** (118.2 mg, 0.6 mmol), reductant (0.4 mmol, 2.0 equiv.), Cp*Ru(cod)Cl (0.01 mmol, 5 mol%), and NMP (2.0 mL) under the Ar at 0 °C for 12 h, isolated yields, NR = No Reaction.

Table S2. Screening of the solvent ^a

Entry	Solvent (2.0 mL)	Yield (%)
1	NMP	61
2	DMF	20
3	DMAc	42
4	NEt_3	NR
5	EtOAc	NR
6	Toluene	NR
7	THF	ND
8	DCM	NR
9	DMSO	ND
10	DCE	NR
11	MeCN	NR

^a Reaction condition: **1a** (38.0 mg, 0.2 mmol), **2a** (118.2 mg, 0.6 mmol), Mg (0.4 mmol, 2.0 equiv.), Cp*Ru(cod)Cl (0.01 mmol, 5 mol%), and solvent (2.0 mL) under the Ar at 0 °C for 12 h, isolated yields, NR = No reaction, ND=Not detected.

Table S3. Screening of [Ru] catalyst ^a

Entry	Ru Catalyst (5 mol%)	Yield (%)
1	Cp*Ru(cod)Cl	61
2	[Ru(p-cymene)] ₂ Cl ₂	32
3	CpRu(PPh ₃) ₂ Cl	41
4	$[Ru(bpy)_3]Cl_2 \cdot 6H_2O$	46
5	$Ru(PPh_3)_3Cl_2$	45
6	RuCl₃·xH ₂ O	41
7	(PPh ₃) ₃ Ru(CO)(Cl)H	39
8	Cp*Ru(PPh ₃) ₂ Cl	54

^a Reaction condition: **1a** (38.0 mg, 0.2 mmol), **2a** (118.2 mg, 0.6 mmol), Mg (0.4 mmol, 2.0 equiv.), [Ru] catalyst (0.01 mmol, 5 mol%), and NMP (2.0 mL) under the Ar at 0 °C for 12 h, isolated yields.

Table S4. Screening of the loading ^a

Entry	Cp*Ru(cod)Cl (x mol%)	Mg (x equiv.)	Yield (%)
1	1.0	2.0	50
2	2.5	2.0	58
3	5.0	2.0	61
4	7.5	2.0	60
5	10	2.0	61
6	5.0	1.0	43
7	5.0	1.5	42
8	5.0	2.0	63
9	5.0	2.5	69
10	5.0	3.0	65

^a Reaction condition: **1a** (38.0 mg, 0.2 mmol), **2a** (118.2 mg, 0.6 mmol), Mg (x mmol, x equiv.), Cp*Ru(cod)Cl (x mmol, x mol%), and NMP (2.0 mL) under the Ar at 0 °C for 12 h, isolated yields.

Table S5. Screening of temperature ^a

^a Reaction condition: **1a** (38.0 mg, 0.2 mmol), **2a** (118.2 mg, 0.6 mmol), Mg (0.5 mmol, 2.5 equiv.), Cp*Ru(cod)Cl (0.01 mmol, 5 mol%), and NMP (2.0 mL) under the Ar at T °C for 12 h, isolated yields.

Table S6. Screening of time ^a

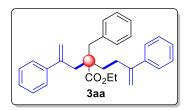
Table S7. Screening loading of 2a a

Entry	2a (x equiv.)	Yield (%)
1	2.0	48
2	2.5	66
3	3.0	69
4	3.5	69
5	4.0	64

^a Reaction condition: **1a** (38.0 mg, 0.2 mmol), **2a** (x mg, x mmol), Mg (0.5 mmol, 2.5 equiv.), Cp*Ru(cod)Cl (0.01 mmol, 5 mol%), and NMP (2.0 mL) under the Ar at 0 °C for 12 h, isolated yields.

Table S8. Control experiment ^a

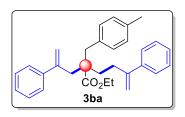
^a Reaction condition: **1a** (38.0 mg, 0.2 mmol), **2a** (118.2 mg, 0.6 mmol), Mg (0.5 mmol, 2.5 equiv.), Cp*Ru(cod)Cl (0.01 mmol, 5 mol%), and NMP (2.0 mL) under the Ar at 0 °C for t h, isolated yields.


^a Reaction condition: **1a** (38.0 mg, 0.2 mmol), **2a** (118.2 mg, 0.6 mmol), Mg (0.4 mmol, 2.0 equiv.), Cp*Ru(cod)Cl (0.01 mmol, 5 mol%), and NMP (2.0 mL) under the Ar at 0 °C for 12 h, isolated yields. NR = No Reaction.

3. General procedure

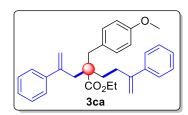
Electron-deficient olefins **1** (0.20 mmol), allyl bromides **2** (0.60 mmol), Cp*Ru(cod)Cl (0.01 mmol, 5.0 mol%), Mg (0.5 mmol, 2.5 equiv.) and NMP (2.0 mL) were added to a flame-dried Young-type tube. The mixture was stirred under Ar at 0 °C for 12 h. After rising to room temperature, the reaction mixture was treated with saturated NH₄Cl_(aq.) (25 mL), extracted with ethyl acetate (3 x 10 mL), washed with saturated NaCl_(aq.) (3 x 10 mL), and dried over Na₂SO₄. Then, the solvent (ethyl acetate) was removed in vacuo and the residue was purified by flash column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/40-1/200) to afford the desired products **3**.

4. Experimental characterization data for products


Ethyl 2-benzyl-5-phenyl-2-(2-phenylallyl)hex-5-enoate (3aa):

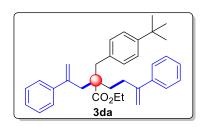
The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (58.6 mg, 69% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.18 (m, 13H), 7.08-7.06 (m, 2H),

5.24 (d, J = 1.0 Hz 1H), 5.16 (s, 1H), 5.12 (s, 1H), 4.85 (s, 1H), 3.78 (q, J = 7.0 Hz, 2H), 3.12 (d, J = 14.0 Hz, 1H), 2.94-2.91 (m, 2H), 2.81 (d, J = 15.0 Hz, 1H), 2.46-2.42 (m, 2H), 1.68-1.64 (m, 2H), 1.11 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.67, 148.33, 145.88, 142.87, 141.30, 137.54, 130.15, 128.18, 128.13, 128.09, 127.32, 127.28, 126.79, 126.44, 126.15, 117.26, 112.22, 60.36, 50.42, 41.56, 41.03, 32.20, 29.85, 13.98. HRMS (ESI) m/z: [M+H] + calcd for C₃₀H₃₃O₂+ 425.2475; found 425.2470.


Ethyl 2-(4-methylbenzyl)-5-phenyl-2-(2-phenylallyl)hex-5-enoate (3ba):

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish solid (52.5 mg, 60% yield). 1 H NMR (600 MHz, CDCl₃) δ 7.31-7.23 (m, 11H), 7.01 (d, J = 7.8 Hz,

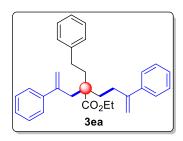
2H), 6.97 (d, J = 7.8 Hz, 2H), 5.24 (s, 1H), 5.16 (s, 1H), 5.11 (s, 1H), 4.86 (s, 1H), 3.77 (q, J = 7.2 Hz, 2H), 3.08 (d, J = 13.8 Hz, 1H), 2.94-2.88 (m, 2H), 2.79 (d, J = 14.4 Hz, 1H), 2.49-2.40 (m, 2H), 2.29 (s, 3H), 1.66 (t, J = 8.4 Hz, 2H), 1.12 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.73, 148.37, 145.92, 142.91, 141.34, 135.89, 134.34, 130.01, 128.79, 128.15, 128.10, 127.28, 127.25, 126.79, 126.16, 117.17, 112.17, 60.30, 50.41, 41.53, 40.54, 32.14, 29.82, 21.01, 13.98. HRMS (ESI) m/z: [M+H] + calcd for C₃₁H₃₅O₂+ 439.2632; found 439.2634.


Ethyl 2-(4-methoxybenzyl)-5-phenyl-2-(2-phenylallyl)hex-5-enoate (3ca):

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish solid (42.5 mg, 47% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.22 (m, 10H), 6.99-6.97 (m,

2H), 6.74-6.72 (m, 2H), 5.24 (d, J = 1.5 Hz, 1H), 5.16 (d, J = 1.0 Hz, 1H), 5.11 (d, J = 1.0 Hz, 1H), 4.86 (d, J = 1.0 Hz, 1H), 3.78-3.74 (m, 5H), 3.05 (d, J = 13.5 Hz, 1H), 2.93-2.85 (m, 2H), 2.79 (d, J = 14.5 Hz, 1H), 2.49-2.39 (m, 2H), 1.66-1.63 (m, 2H), 1.12 (t, J = 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl3) δ 175.85, 158.34, 148.51, 146.05, 143.01, 141.47, 131.20, 129.59, 128.28, 128.22, 127.41, 127.39, 126.90, 126.29, 117.27, 113.61, 112.31, 60.42, 55.31, 50.60, 41.61, 40.22, 32.20, 29.95, 14.12. HRMS (ESI) m/z: [M+H] + calcd for C₃₁H₃₅O₃+ 455.2581; found 455.2591.

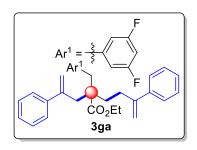
Ethyl 2-(4-(tert-butyl)benzyl)-5-phenyl-2-(2-phenylallyl)hex-5-enoate (3da):



The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (55.1 mg, 57% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.21 (m,

12H), 7.01 (d, J = 8.5 Hz, 2H), 5.24 (d, J = 1.0 Hz, 1H), 5.16 (d, J = 1.0 Hz, 1H), 5.12 (d, J = 0.5 Hz, 1H), 4.85 (d, J = 1.0 Hz, 1H), 3.78 (q, J = 7.0 Hz, 2H), 3.08 (d, J = 14.0 Hz, 1H), 2.95-2.87 (m, 2H), 2.81 (d, J = 14.5 Hz, 1H), 2.45-2.42 (m, 2H), 1.69-1.65 (m, 2H), 1.28 (s, 9H), 1.11 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.87,

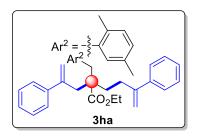
149.32, 148.51, 146.06, 143.06, 141.43, 134.52, 129.91, 128.26, 128.22, 127.39, 127.36, 126.93, 126.28, 125.08, 117.35, 112.29, 60.41, 50.56, 41.62, 40.71, 34.48, 32.36, 31.51, 29.98, 14.08. HRMS (ESI) m/z: [M+H] + calcd for C₃₄H₄₁O₂+ 481.3101; found 481.3101.


Ethyl 2-phenethyl-5-phenyl-2-(2-phenylallyl)hex-5-enoate (3ea):

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (55.3 mg, 63% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.21 (m, 12H), 7.16-7.13 (m, 1H), 6.97 (d, J = 7.0 Hz, 2H), 5.21-5.20 (m, 2H), 5.12 (s, 1H), 4.92 (s, 1H),

3.82-3.78 (m, 2H), 2.94 (q, J = 14.0 Hz, 2H), 2.39-2.32 (m, 4H), 1.91-1.78 (m, 3H), 1.73-1.67 (m, 1H), 1.17 (t, J= 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.96, 148.41, 146.25, 143.01, 142.25, 141.25, 128.45, 128.41, 128.39, 128.30, 127.54, 127.45, 127.04, 126.23, 125.94, 117.90, 112.52, 60.42, 49.79, 40.43, 36.03, 34.00, 30.56, 30.18, 14.28. HRMS (ESI) m/z: [M+H] + calcd for C₃₁H₃₅O₂+ 439.2632; found 439.2612.

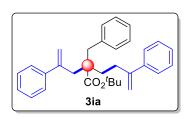
Ethyl 2-(3,5-difluorobenzyl)-5-phenyl-2-(2-phenylallyl)hex-5-enoate (3ga):



The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (45.6 mg, 50% yield). 1 H NMR (500 MHz, CDCl₃) δ 7.29-7.24 (m, 10H), 6.64-6.58 (m, 3H), 5.25 (d, J = 1.0 Hz, 1H), 5.17 (d, J =

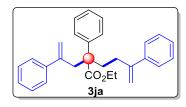
1.0 Hz, 1H), 5.11 (d, J = 1.0 Hz, 1H), 4.87 (d, J = 1.0 Hz, 1H), 3.82-3.77 (m, 2H), 3.06 (d, J = 14.5 Hz, 1H), 2.91-2.81 (m, 3H), 2.43-2.39 (m, 2H), 1.67-1.63 (m, 2H), 1.14 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.30, 163.84 (d, J = 13.0 Hz), 161.87 (d, J = 13.0 Hz), 148.23, 145.75, 142.74, 141.68 (t, J = 9.1 Hz), 141.25, 128.38, 128.33, 127.60, 127.55, 126.90, 126.24, 117.80, 113.16 (d, J = 5.5 Hz), 113.00 (d, J = 5.7 Hz), 112.62, 102.32 (t, J = 25.3 Hz), 60.77, 50.57, 41.66, 40.84, 32.68, 30.05, 14.09. HRMS

(ESI) m/z: [M+Na] + calcd for C₃₀H₃₀NaO₂+ 483.2106; found 483.2112.


Ethyl 2-(2,5-dimethylbenzyl)-5-phenyl-2-(2-phenylallyl)hex-5-enoate (3ha):

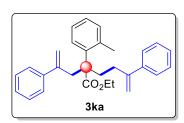
The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish solid (45.2 mg, 50% yield). 1 H NMR (500 MHz, CDCl₃) δ 7.31-7.21 (m, 8H), 7.15-7.13 (m, 2H), 6.99 (d, J = 7.5 Hz, 1H), 6.90 (d, J =

7.5 Hz, 1H), 6.80 (s, 1H), 5.24 (d, J = 1.5 Hz, 1H), 5.14 (d, J = 1.0 Hz, 1H), 5.06 (d, J = 1.0 Hz, 1H), 4.78 (d, J = 1.0 Hz, 1H), 3.88-3.80 (m, 2H), 3.07 (d, J = 14.0 Hz, 1H), 2.95-2.91 (m, 2H), 2.86 (d, J = 15.0 Hz, 1H), 2.36-2.31 (m, 2H), 2.19 (s, 3H), 2.13 (s, 3H), 1.77-1.71 (m, 2H), 1.10 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) ¹³C NMR (126 MHz, CDCl₃) δ 176.35, 148.45, 146.06, 143.15, 141.21, 136.19, 134.91, 133.92, 130.40, 130.10, 128.29, 128.27, 127.40, 127.33, 126.92, 126.82, 126.15, 117.81, 112.14, 60.53, 50.22, 40.96, 38.37, 33.05, 30.04, 21.14, 19.84, 14.02. HRMS (ESI) m/z: [M+H] + calcd for C₃₂H₃₇O₂+ 453.2788; found 453.2789.


Tert-butyl 2-benzyl-5-phenyl-2-(2-phenylallyl)hex-5-enoate (3ia):

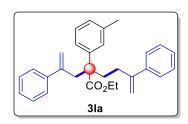
The title compound was prepared according to the general procedure and purified by column chromatography to give a colorless oil (40.5 mg, 45% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.23 (m, 10H), 7.18-7.16 (m, 3H),

7.10-7.08 (m, 2H), 5.30 (s, 1H), 5.16 (d, J = 1.0 Hz, 1H), 5.14 (d, J = 1.0 Hz, 1H), 4.84 (d, J = 1.0 Hz, 1H), 3.01 (s, 2H), 2.79 (q, J = 15.5 Hz, 2H), 2.51-2.39 (m, 2H), 1.66-1.59 (m, 2H), 1.38 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 175.27, 148.56, 145.92, 143.72, 141.54, 137.93, 130.46, 128.37, 128.29, 128.09, 127.40, 127.39, 126.65, 126.41, 126.29, 116.54, 112.27, 80.95, 50.53, 40.63, 40.33, 34.10, 30.20, 28.13. HRMS (ESI) m/z: [M+Na] + calcd for C₃₂H₃₆NaO₂+ 475.2608; found 475.2607.


Ethyl 2,5-diphenyl-2-(2-phenylallyl)hex-5-enoate (3ja):

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (43.1 mg, 53% yield). 1 H NMR (500 MHz, CDCl₃) δ 7.25-7.12 (m, 15H), 5.12 (d, J = 4.5 Hz, 2H),

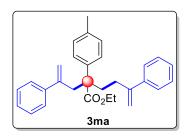
4.84 (s, 1H), 4.69 (s, 1H), 3.98-3.92 (m, 1H), 3.83-3.76 (m, 1H), 3.43 (d, J = 13.5 Hz, 1H), 3.24 (d, J = 13.5 Hz, 1H), 2.22-2.10 (m, 2H), 2.07-2.01 (m, 2H), 1.07 (t, J = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.29, 147.99, 145.50, 142.90, 142.57, 140.77, 128.21, 128.10, 127.33, 127.18, 126.90, 126.70, 126.64, 126.03, 118.37, 112.29, 60.75, 54.49, 40.00, 33.48, 30.10, 13.98. HRMS (ESI) m/z: [M+Na] + calcd for $C_{29}H_{30}NaO_2^+$ 433.2138; found 433.2137.


Ethyl 5-phenyl-2-(2-phenylallyl)-2-(o-tolyl)hex-5-enoate (3ka):

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (50.0 mg, 59% yield). 1 H NMR (600 MHz, CDCl₃) δ 7.24-7.00 (m, 14H), 5.10 (d, J = 8.4 Hz, 2H),

4.75 (s, 1H), 4.68 (s, 1H), 4.03-3.97 (m, 1H), 3.85-3.80 (m, 1H), 3.34-3.29 (m, 2H), 2.18-2.17 (m, 1H), 2.13 (s, 3H), 2.02-1.99 (m, 2H), 1.33-1.28 (m, 1H), 1.13 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.15, 147.89, 145.52, 142.92, 140.85, 140.39, 136.04, 131.82, 128.26, 128.06, 127.39, 127.20, 127.08, 126.73, 126.04, 125.49, 118.80, 112.39, 60.91, 53.77, 38.66, 32.77, 30.16, 20.46, 14.17. HRMS (ESI) m/z: [M+Na] + calcd for C₃₀H₃₂NaO₂+ 447.2295; found 447.2291.

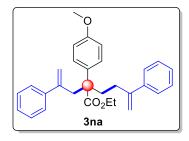
Ethyl 5-phenyl-2-(2-phenylallyl)-2-(*m*-tolyl)hex-5-enoate (3la):



The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (33.2 mg, 40% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.25-7.12 (m, 11H), 6.98-6.93 (m, 3H), 5.13-

5.12 (m, 2H), 4.89 (s, 1H), 4.69 (s, 1H), 3.98-3.93 (m, 1H), 3.82-3.77 (m, 1H), 3.41 (d,

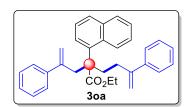
J = 13.2 Hz, 1H), 3.24 (d, J = 13.2 Hz, 1H), 2.27 (s, 3H), 2.21-2.10 (m, 2H), 2.03-2.00 (m, 2H), 1.09 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.45, 148.08, 145.71, 142.96, 142.47, 140.80, 137.70, 128.24, 128.10, 128.06, 127.48, 127.39, 127.36, 127.17, 126.91, 126.08, 123.70, 118.30, 112.33, 60.76, 54.36, 39.98, 33.47, 30.12, 21.71, 14.02. HRMS (ESI) m/z: [M+Na] + calcd for C₃₀H₃₂NaO₂+ 447.2295; found 447.2291.


Ethyl 5-phenyl-2-(2-phenylallyl)-2-(p-tolyl)hex-5-enoate (3ma):

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (37.3 mg, 45% yield). 1 H NMR (600 MHz, CDCl₃) δ 7.25-7.19 (m, 8H), 7.15-7.13 (m, 2H), 7.05 (s, 4H), 5.12-5.11 (m, 2H), 4.84 (s, 1H), 4.67 (s, 1H), 3.97-

3.92 (m, 1H), 3.81-3.76 (m, 1H), 3.41 (d, J = 13.2 Hz, 1H), 3.21 (d, J = 13.8 Hz, 1H), 2.30 (s, 3H), 2.19-2.10 (m, 2H), 2.03-1.99 (m, 2H), 1.09 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.50, 148.10, 145.62, 143.02, 140.89, 139.57, 136.24, 128.94, 128.23, 128.11, 127.34, 127.14, 126.96, 126.54, 126.09, 118.32, 112.25, 60.76, 54.18, 40.12, 33.53, 30.13, 21.08, 14.04. HRMS (ESI) m/z: [M+Na] + calcd for C₃₀H₃₂NaO₂+ 447.2295; found 447.2291.

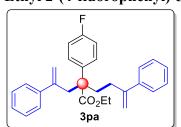
Ethyl 2-(4-methoxyphenyl)-5-phenyl-2-(2-phenylallyl)hex-5-enoate (3na):



The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (40.2 mg, 46% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.24-7.15 (m, 10H), 7.08 (d, J = 8.4 Hz, 2H), 6.78 (d, J = 9.0 Hz, 2H), 5.12 (d, J = 4.2 Hz, 2H),

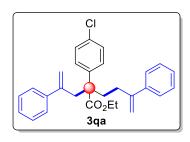
4.85 (s, 1H), 4.69 (s, 1H), 3.98-3.92 (m, 1H), 3.82-3.80 (m, 1H), 3.77 (s, 3H), 3.40 (d, J = 13.8 Hz, 1H), 3.20 (d, J = 13.8 Hz, 1H), 2.20-2.11 (m, 2H), 2.03-1.98 (m, 2H), 1.09 (t, J = 7.2 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 175.64, 158.26, 148.21, 145.73, 143.10, 140.98, 134.77, 128.35, 128.22, 127.84, 127.47, 127.26, 127.04, 126.20,

118.42, 113.64, 112.40, 60.87, 55.43, 53.91, 40.32, 33.67, 30.28, 14.16. HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{30}H_{33}O_2^+$ 441.2424; found 441.2421.


Ethyl 2-(naphthalen-1-yl)-5-phenyl-2-(2-phenylallyl)hex-5-enoate (30a):

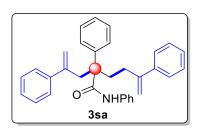
The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (50.2 mg, 55% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 8.5 Hz, 1H), 7.79-7.78 (m, 1H),

7.64-7.63 (m, 1H), 7.42-7.38 (m, 2H), 7.27 (d, J = 5.5 Hz, 2H), 7.16 (d, J = 7.0 Hz, 3H), 7.06-7.05 (m, 7H), 5.12 (s, 1H), 5.05 (s, 1H), 4.71 (s, 1H), 4.67 (s, 1H), 3.99-3.92 (m, 1H), 3.84-3.82 (m, 1H), 3.62 (d, J = 13.5 Hz, 1H), 3.52 (d, J = 13.5 Hz, 1H), 2.29 (d, J = 10.5 Hz, 2H), 2.18-2.15 (m, 2H), 0.95 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) 8 176.86, 147.89, 145.63, 142.59, 140.81, 138.19, 134.37, 131.53, 129.46, 128.24, 128.18, 127.85, 127.35, 126.97, 126.60, 126.03, 125.90, 125.08, 125.07, 124.79, 123.95, 118.65, 112.49, 61.00, 53.63, 39.23, 33.67, 30.25, 14.00. HRMS (ESI) m/z: [M+H] + cald for C₃₃H₃₃O₂+ 461.2475; found 461.2474.


Ethyl 2-(4-fluorophenyl)-5-phenyl-2-(2-phenylallyl)hex-5-enoate (3pa):

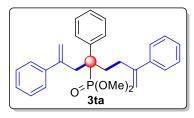
The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (17.4 mg, 20% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.26-7.16 (m, 10H), 7.11-7.09 (m, 2H),

6.92-6.89 (m, 2H), 5.13-5.12 (m, 2H), 4.84 (s, 1H), 4.71 (s, 1H), 4.0-3.95 (m, 1H), 3.86-3.81 (m, 1H), 3.39 (d, J = 13.8 Hz, 1H), 3.21 (d, J = 13.8 Hz, 1H), 2.23-2.13 (m, 2H), 2.06-1.97 (m, 2H), 1.10 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.19, 162.34 (d, J = 245.5 Hz), 147.93, 145.41, 142.74, 140.78, 138.30 (d, J = 3.2 Hz), 128.36, 128.31, 128.14, 127.47, 127.24, 126.88, 126.08, 118.51, 115.04 (d, J = 21.1 Hz), 112.49, 60.95, 53.98, 40.41, 33.54, 30.21, 14.04. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₉H₂₉FNaO₂⁺ 451.2044; found 451.2047.


Ethyl 2-(4-chlorophenyl)-5-phenyl-2-(2-phenylallyl)hex-5-enoate (3qa):

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (19.1 mg, 21% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.26-7.15 (m, 12H), 7.07 (d, J = 8.5 Hz, 2H), 5.13-5.12 (m, 2H), 4.85 (s, 1H), 4.72 (s, 1H), 4.0-

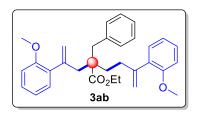
3.94 (m, 1H), 3.87-3.81 (m, 1H), 3.38 (d, J = 13.5 Hz, 1H), 3.21 (d, J = 14.0 Hz, 1H), 2.23-2.12 (m, 2H), 2.06-1.96 (m, 2H), 1.10 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.95, 148.00, 145.38, 142.73, 141.12, 140.89, 132.59, 128.33, 128.31, 128.26, 128.17, 127.49, 127.25, 126.91, 126.12, 118.53, 112.51, 61.01, 54.21, 40.50, 33.56, 30.27, 14.04. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₉H₃₀ClO₂⁺ 445.1929; found 445.1927.


N,2,5-Triphenyl-2-(2-phenylallyl)hex-5-enamide (3sa)

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid (16.7 mg, 18% yield). 1 H NMR (600 MHz, CDCl₃) δ 7.30-7.27 (m, 4H), 7.25-7.13 (m, 15H), 7.07 (t, J = 7.2 Hz, 1H), 6.67 (s, 1H),

5.10 (d, J = 20.4 Hz, 2H), 4.67 (d, J = 6.0 Hz, 2H), 3.53 (d, J = 13.8 Hz, 1H), 3.25 (d, J = 13.8 Hz, 1H), 2.40-2.30 (m, 2H), 2.14-2.09 (m, 1H), 1.91-1.86 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 173.99, 147.82, 145.43, 143.19, 142.57, 140.64, 137.90, 129.00, 128.62, 128.37, 128.19, 127.73, 127.46, 127.43, 127.06, 126.78, 126.12, 124.28, 119.86, 118.54, 112.69, 55.99, 40.38, 33.89, 30.30. HRMS (ESI) m/z: [M+H] + calcd for C₃₃H₃₂NO+ 458.2478; found 458.2479.

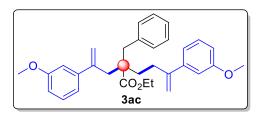
Dimethyl (2,4,7-triphenylocta-1,7-dien-4-yl)phosphonate (3ta)



The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (26.9 mg, 30% yield). 1 H NMR (600 MHz, CDCl₃) δ 7.48 (d, J = 7.8

Hz, 2H), 7.32-7.28 (m, 5H), 7.25-7.17 (m, 8H), 5.19 (s, 1H), 5.14 (s, 1H), 4.88 (s, 1H),

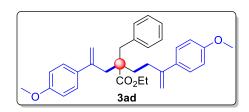
4.73 (s, 1H), 3.60 (d, J = 10.2 Hz, 3H), 3.49 (d, J = 10.2 Hz, 3H), 3.40 (t, J = 15 Hz, 1H), 3.32 (dd, J = 15, 8.4 Hz, 1H), 2.69-2.64 (m, 1H), 2.55-2.49 (m, 1H), 2.33-2.24 (m, 1H), 2.12-2.06 (m, 1H). 13 C NMR (151 MHz, CDCl₃) δ 148.82, 143.96 (d, J = 14.3 Hz), 143.36, 141.26, 138.45 (d, J = 5.7 Hz), 128.85 (d, J = 5.9 Hz), 128.31 (d, J = 10.9 Hz), 128.06 (d, J = 2.3 Hz), 127.46, 127.22, 126.89 (d, J = 2.7 Hz), 126.58, 126.32, 118.04, 112.20, 53.81 (d, J = 7.675 Hz), 52.94 (d, J = 7.7 Hz), 48.38, 47.50, 38.71, 31.94 (d, J = 3.8 Hz), 30.54 (d, J = 3.5 Hz). 31 P NMR (243 MHz, CDCl₃) δ 32.94 (s, 1P). HRMS (ESI) m/z: [M+H] + calcd for C₂₈H₃₂O₃P+ 447.2084; found 447.2082.


Ethyl 2-benzyl-5-(2-methoxyphenyl)-2-(2-(2-methoxyphenyl)allyl)hex-5-enoate

(3ab): The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (48.7 mg, 50% yield). ¹H NMR (500 MHz, CDCl₃) 7.24-7.17 (m, 7H),

7.09-7.07 (m, 2H), 6.82-6.78 (m, 4H), 5.19 (d, J = 1.5 Hz, 1H), 5.10 (d, J = 1.0 Hz, 1H), 5.04 (s, 1H), 4.81 (d, J = 1.0 Hz, 1H), 3.82 (d, J = 6.0 Hz, 5H), 3.78 (s, 3H), 3.12 (d, J = 14.0 Hz, 1H), 2.94 (dd, J = 18.0, 14.0 Hz, 2H), 2.78 (d, J = 14.5 Hz, 2H), 2.44-2.40 (m, 2H), 1.67 (t, J = 8.5 Hz, 2H), 1.14 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) 8 175.91, 159.17, 159.13, 147.80, 145.35, 137.78, 135.49, 133.84, 130.31, 128.20, 127.97, 127.33, 126.53, 116.08, 113.66, 113.63, 110.78, 60.49, 55.43, 55.42, 50.54, 41.79, 41.16, 32.52, 30.04, 14.12. HRMS (ESI) m/z: [M+Na] + calcd for C₃₂H₃₆NaO₄+ 507.2506; found 507.2505.

Ethyl 2-benzyl-5-(3-methoxyphenyl)-2-(2-(3-methoxyphenyl)allyl)hex-5-enoate



(3ac): The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (50.3 mg, 52% yield). ¹H NMR (500 MHz,

CDCl₃) δ 7.20-7.17 (m, 5H), 7.07 (d, J = 7.5 Hz, 2H), 6.90-6.76 (m, 6H), 5.27 (s, 1H), 5.16 (s, 1H), 5.11 (s, 1H), 4.87 (s, 1H), 3.83 (q, J = 7.5 Hz, 2H), 3.79 (s, 3H), 3.77 (s, 3H), 3.09 (d, J = 14.0 Hz, 1H), 2.94-2.89 (m, 2H), 2.79 (d, J = 14.5 Hz, 1H), 2.45-2.42

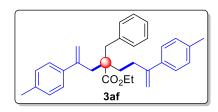
(m, 2H), 1.68-1.66 (m, 2H), 1.13 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.76, 159.64, 159.50, 148.42, 145.88, 144.51, 143.08, 137.61, 130.25, 129.20, 128.16, 126.53, 119.43, 118.82, 117.28, 112.84, 112.71, 112.67, 112.44, 112.34, 60.48, 55.32, 50.54, 41.52, 41.14, 32.39, 30.05, 14.06. HRMS (ESI) m/z: [M+Na] + calcd for $C_{32}H_{36}NaO_4$ + 507.2506; found 507.2505.

Ethyl 2-benzyl-5-(4-methoxyphenyl)-2-(2-(4-methoxyphenyl)allyl)hex-5-enoate

(3ad): The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (33.7 mg, 35% yield). ¹H NMR (500 MHz,

CDCl₃) δ 7.25-7.16 (m, 7H), 7.09-7.08 (m, 2H), 6.82-6.78 (m, 4H), 5.19 (d, J = 1.5 Hz, 1H), 5.10 (d, J = 1.0 Hz, 1H), 5.05 (s, 1H), 4.81 (d, J = 0.5 Hz, 1H), 3.82-3.78 (m, 8H), 3.10 (d, J = 14.0 Hz, 1H), 2.91 (dd, J = 17.5, 14.5 Hz, 2H), 2.77 (d, J = 14.5 Hz, 1H), 2.46-2.37 (m, 2H), 1.66 (t, J = 9.0 Hz, 2H), 1.12 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.89, 159.16, 159.12, 147.78, 145.34, 137.76, 135.48, 133.82, 130.30, 128.19, 127.96, 127.31, 126.52, 116.07, 113.65, 113.62, 110.77, 60.48, 55.42, 55.40, 50.53, 41.78, 41.15, 32.50, 30.03, 14.11. HRMS (ESI) m/z: [M+Na] + calcd for $C_{32}H_{36}NaO_4$ + 507.2506; found 507.2505.

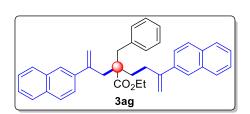
Ethyl 2-benzyl-5-(*m*-tolyl)-2-(2-(*m*-tolyl)allyl)hex-5-enoate (3ae):



The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (49.6 mg, 55% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.24-7.18 (m,

5H), 7.14-7.06 (m, 8H), 5.27 (d, J = 1.5 Hz, 1H), 5.18 (d, J = 1.0 Hz, 1H), 5.14 (d, J = 1.0 Hz, 1H), 4.88 (d, J = 1.0 Hz, 1H), 3.85 (q, J = 7.0 Hz, 2H), 3.13 (d, J = 14.0 Hz, 1H), 2.98-2.94 (m, 2H), 2.84 (d, J = 14.5 Hz, 1H), 2.49-2.45 (m, 2H), 2.37 (s, 3H), 2.35 (s, 3H), 1.72-1.68 (m, 2H), 1.16 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.83, 148.62, 146.11, 143.00, 141.51, 137.72, 137.70, 137.67, 130.26, 128.18,

128.16, 128.13, 127.60, 127.02, 126.52, 124.02, 123.42, 116.97, 112.08, 60.42, 50.50, 41.56, 41.06, 32.33, 29.98, 21.62, 21.55, 14.09. HRMS (ESI) m/z: [M+Na] + calcd for C₃₂H₃₆NaO₂+ 475.2608; found 475.2602.


Ethyl 2-benzyl-5-(p-tolyl)-2-(2-(p-tolyl)allyl)hex-5-enoate (3af):

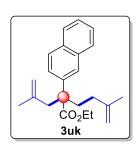
The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (49.5 mg, 55% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.26-7.05 (m,

13H), 5.23 (d, J = 1.5 Hz, 1H), 5.14 (s, 1H), 5.07 (s, 1H), 4.82 (s, 1H), 3.82 (q, J = 7.0 Hz, 2H), 3.10 (d, J = 14.0 Hz, 1H), 2.93-2.88 (m, 2H), 2.79 (d, J = 14.5 Hz, 1H), 2.45-2.40 (m, 2H), 2.33 (s, 3H), 2.31 (s, 3H), 1.67-1.64 (m, 2H), 1.12 (t, J = 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.86, 148.23, 145.82, 140.14, 138.46, 137.75, 137.07, 130.30, 128.96, 128.89, 128.16, 126.75, 126.50, 126.10, 116.54, 111.48, 60.44, 50.56, 41.60, 41.11, 32.49, 29.96, 21.21, 21.19, 14.08. HRMS (ESI) m/z: [M+Na] + calcd for C₃₂H₃₆NaO₂+ 475.2608; found 475.2602.


Ethyl 2-benzyl-5-(naphthalen-2-yl)-2-(2-(naphthalen-2-yl)allyl)hex-5-enoate (3ag):

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (65.8 mg, 63% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.81-

7.66 (m, 8H), 7.48-7.43 (m, 5H), 7.38-7.36 (m, 1H), 7.19-7.18 (m, 3H), 7.12-7.10 (m, 2H), 5.40 (s, 1H), 5.26 (d, J = 4.0 Hz, 2H), 4.94 (s, 1H), 3.73-3.67 (m, 2H), 3.18-3.08 (m, 2H), 3.01-2.93 (m, 2H), 2.62-2.58 (m, 2H), 1.78-1.74 (m, 2H), 1.05 (t, J = 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.86, 148.34, 145.91, 140.21, 138.65, 137.64, 133.45, 133.33, 132.88, 132.82, 130.26, 128.26, 128.23, 128.18, 127.79, 127.64, 126.61, 126.24, 126.16, 125.92, 125.86, 125.48, 125.40, 124.83, 117.89, 112.93, 60.51, 50.62, 41.72, 41.26, 32.44, 30.07, 14.02. HRMS (ESI) m/z: [M+Na] + calcd for $C_{38}H_{36}NaO_2^+$ 547.2608; found 547.2607.


Ethyl 5-([1,1'-biphenyl]-4-yl)-2-(2-([1,1'-biphenyl]-4-yl)allyl)-2-benzylhex-5-

enoate (3ah): The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid (47.8 mg, 41% yield). ¹H NMR (500 MHz, CDCl₃)

δ 7.59-7.30 (m, 18H), 7.23-7.22 (m, 3H), 7.14-7.12 (m, 2H), 5.34 (d, J = 1.5 Hz, 1H), 5.24 (d, J = 1.0 Hz, 1H), 5.28 (s, 1H), 4.91 (d, J = 0.5 Hz, 1H), 3.86 (q, J = 7.0 Hz, 2H), 3.18 (d, J = 14.0 Hz, 1H), 3.02-2.97 (m, 2H), 2.89 (d, J = 15.0 Hz, 1H), 2.53-2.49 (m, 2H), 1.74–1.71 (m, 2H), 1.16 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.72, 147.75, 145.41, 141.81, 140.78, 140.75, 140.16, 140.06, 137.52, 130.13, 128.79, 128.77, 128.13, 127.28, 127.24, 127.19, 126.98, 126.96, 126.86, 126.83, 126.47, 117.33, 112.23, 60.44, 50.55, 41.47, 41.17, 32.22, 29.80, 29.71, 14.01. HRMS (ESI) m/z: [M+Na] + calcd for C₄₂H₄₀NaO₂+ 599.2921; found 599.2931.

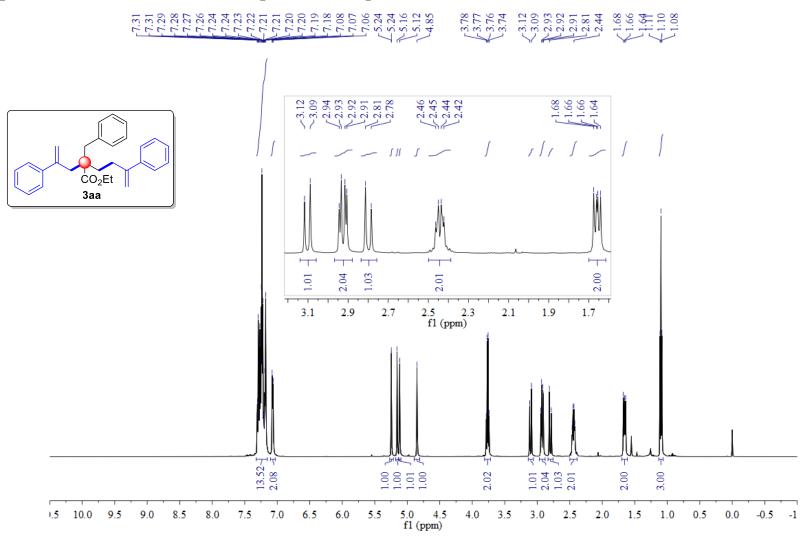
Ethyl 5-methyl-2-(2-methylallyl)-2-(naphthalen-2-yl)hex-5-enoate (3uk)

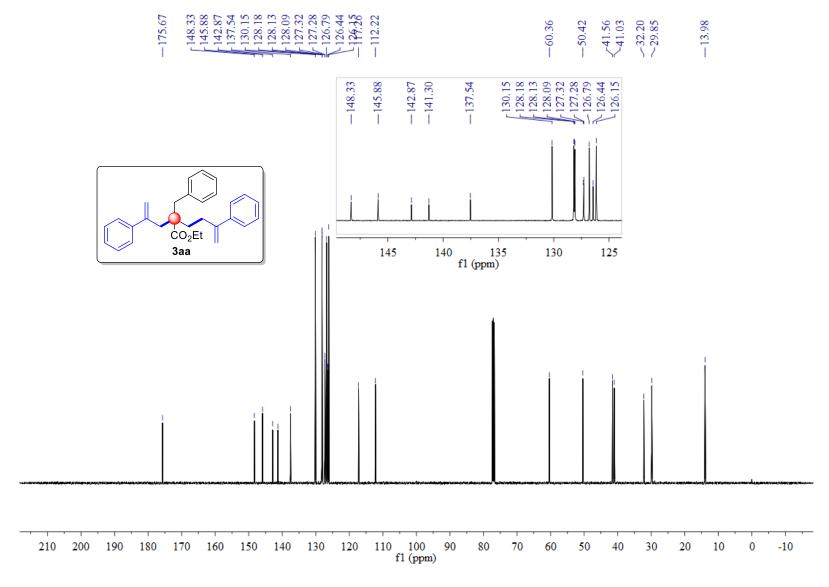
The title compound was prepared according to the general procedure and purified by column chromatography to give a yellowish oil (19.6 mg, 29% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.83-7.78 (m, 3H), 7.75 (s, 1H), 7.49-7.45 (m, 2H), 7.41 (dd, J = 8.4, 1.8 Hz, 1H), 4.84 (s, 1H), 4.70-4.84 (m, 3H), 4.17-4.08 (m,

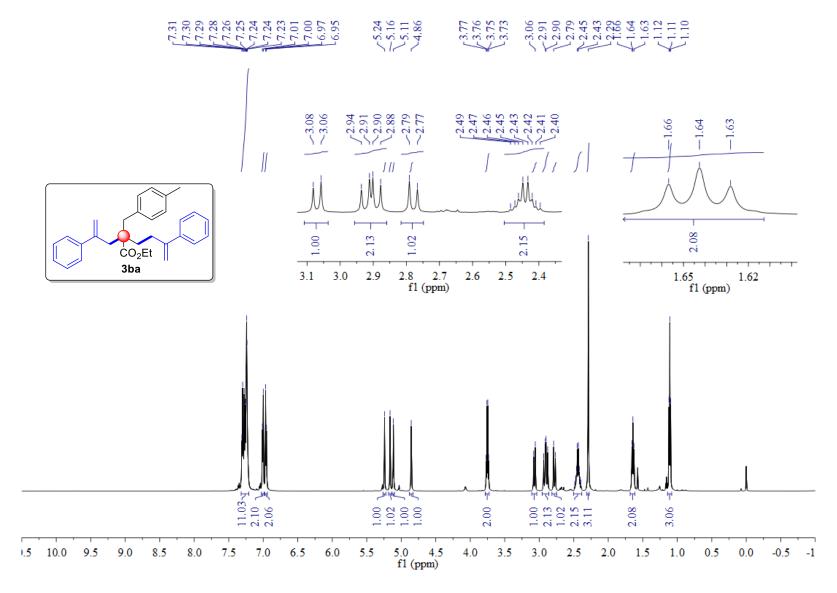
2H), 3.06 (d, J = 13.8 Hz, 1H), 2.90 (d, J = 13.8 Hz, 1H), 2.36-2.32 (m, 1H), 2.29-2.25 (m, 1H), 1.85-1.82 (m, 2H), 1.70 (s, 3H), 1.44 (s, 3H), 1.15 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.81, 145.87, 141.99, 140.30, 133.36, 132.35, 128.30, 128.05, 127.58, 126.19, 126.01, 125.29, 125.13, 115.43, 110.07, 60.98, 53.25, 42.47, 32.60, 32.57, 23.99, 22.76, 14.16. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₂₃H₂₉O₂⁺ 337.2162; found 337.2160.

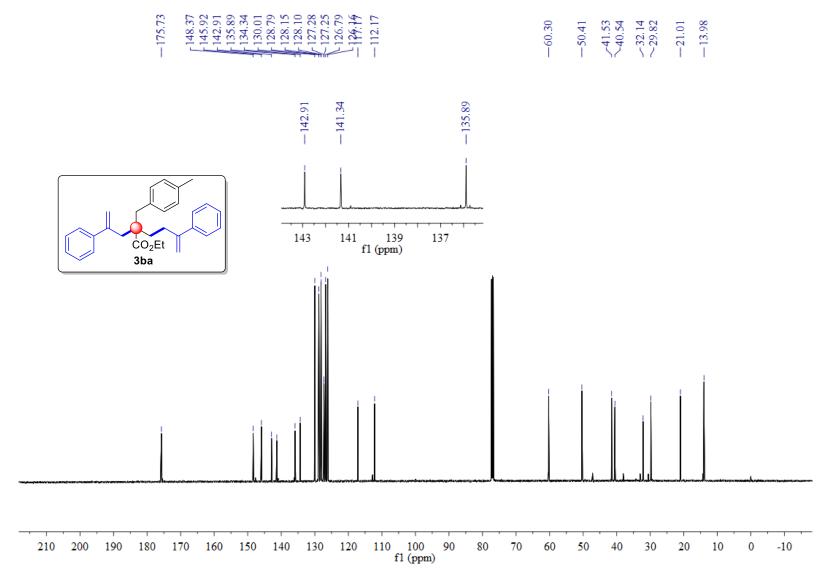
5. Scale-up Experiment

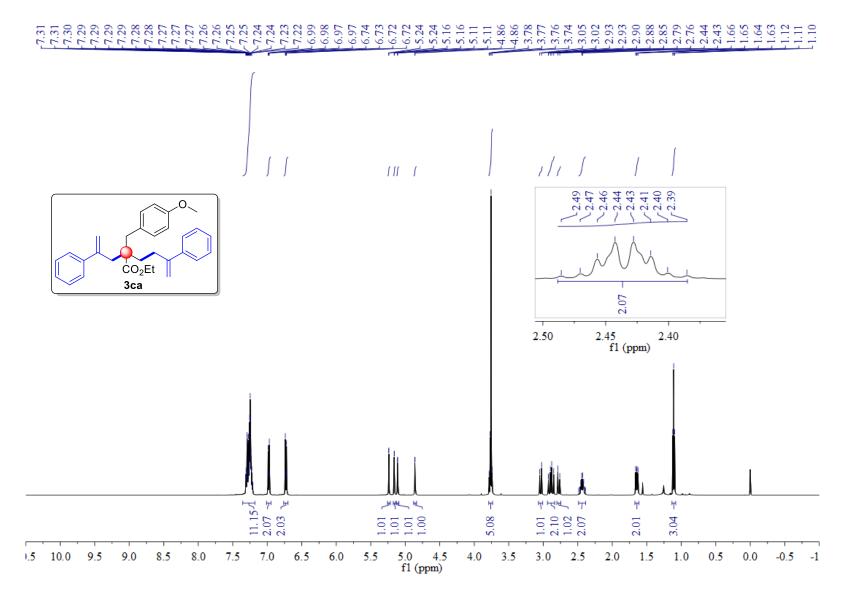
Ethyl 2-benzylacrylate **1a** (1140.0 mg, 6 mmol), 3-bromoprop-1-en-2-ylbenzene **2a** (3546.0 mg, 18 mmol), Cp*Ru(cod)Cl (114.0 mg, 0.3 mmol, 5 mol%), Mg (364.5 mg, 15 mmol), NMP (30.0 mL) were added to a flame-dried Young-type tube. The mixture was stirred under Ar at 0 °C for 12 h. After rising to room temperature, the reaction mixture was treated with saturated NH₄Cl_(aq.) (100 mL), extracted with ethyl acetate (3 x 50 mL), washed with saturated NaCl_(aq.) (3 x 50 mL), and dried over Na₂SO₄. Then, the solvent (ethyl acetate) was removed in vacuo and the residue was purified by flash column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/100) to afford the desired product **3aa** (1.401 g, 55% yield).

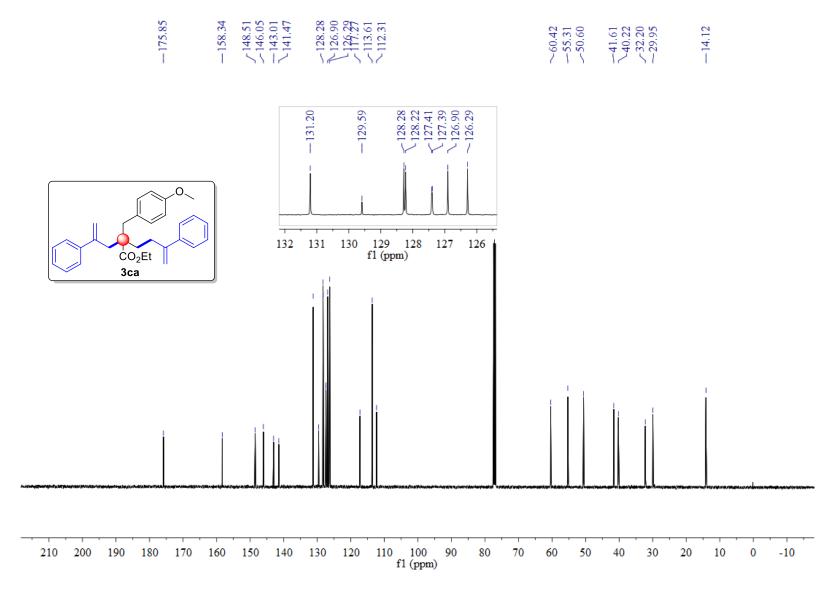

6. Radical test

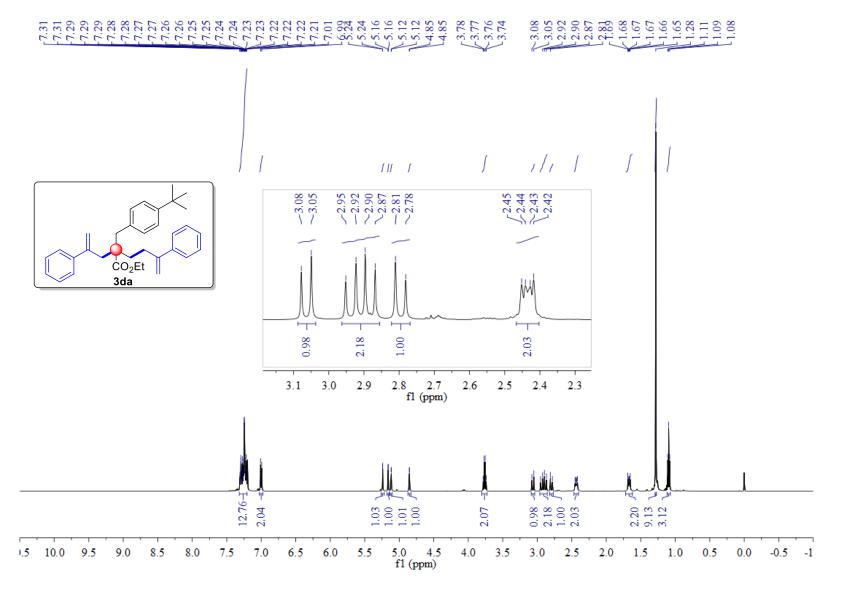

When TEMPO (4 equiv.), or BHT (4 equiv.) was introduced to the standard conditions, the desired product **3aa** was obtained in 55% and 62% yields, respectively. These results indicated that a radical pathway should be ruled out in this reaction.

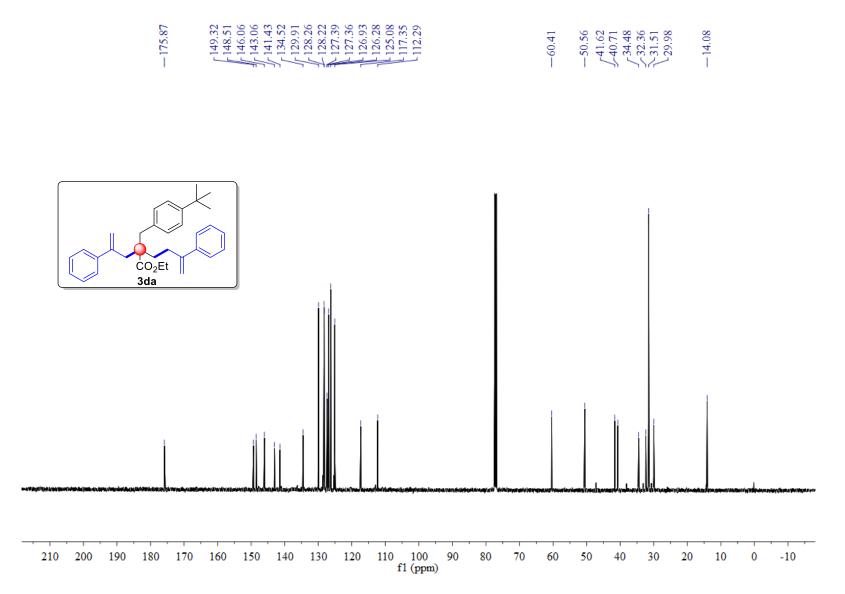

7. References

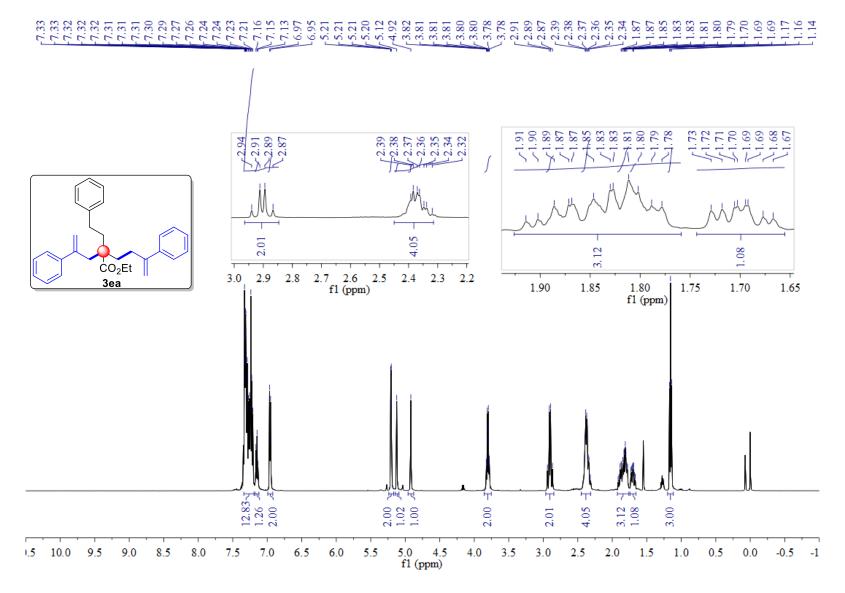

- [1] S. Yu, C. Gong, Z. Liu and Y. Zhang, Org. Lett., 2022, 24, 4871-4875.
- [2] M. Schade, B. Merla, B. Lesch, M. Wagener, S. Timmermanns, K. Pletinckx and T. Hertrampf, J. Med. Chem., 2020, 63, 11801-11808.
- [3] J. Kim and S. Chang, Angew. Chem. Int. Ed., 2014, 53, 2203-2207.
- [4] S. A. Cronin and S. J. Connon, Org. Biomol. Chem., 2021, 19, 7348-7352.
- [5] X. Dong, Y. Han, F. Yan, Q. Liu, P. Wang, K. Chen and H. Liu, Org. lett., 2016, 18, 3774-3777.
- [6] X. Dong, L. P. Xu, Y. Yang, Y. Liu, X. Li, Q. Liu and H. Liu, Org. Chem. Front., 2021, 8, 6009-6018.
- [7] C. B. Tripathi and S. Mukherjee, *Angew. Chem. Int. Ed.*, 2013, **52**, 8450-8453.
- [8] Y. Jin, Y. Zou, Y. Hu, Y. Han, Z. Zhang and W. Zhang, Chem. Eur. J., 2022, 28, e202201517.
- [9] T. Huang, T. Cheng, L.-B. Han, J. Org. Chem., 2018, 83, 2959-2965.
- [10] L. Ren, M. Ran, X. Fang, L. Zhao, Q. Yao, Chin. J. Org. Chem., 2018, 38, 2791-2797.
- [11] J. M. Bauer, R. Peters, Catal. Sci. Technol., 2015, 5, 2340-2346.
- [12] Y. Cao, H. Zhao, D. Zhang-Negrerie, Y. Du, K. Zhao, Adv. Synth. Catal., 2016, 358, 3610-3615.
- [13] M. Zhang, X. Ding, A. Lu, J. Kang, Y. Gao, Z. Wang, H. Li, Q. Wang, Org. Chem. Front., 2021, 8, 961-967
- [14] A. Gualandi, D. Mazzarella, A. Ortega-Martínez, L. Mengozzi, F. Calcinelli, E. Matteucci, F. Monti, N. Armaroli, L. Sambri and P. G. Cozzi, *ACS Catal.* 2017, 7, 5357-5362.

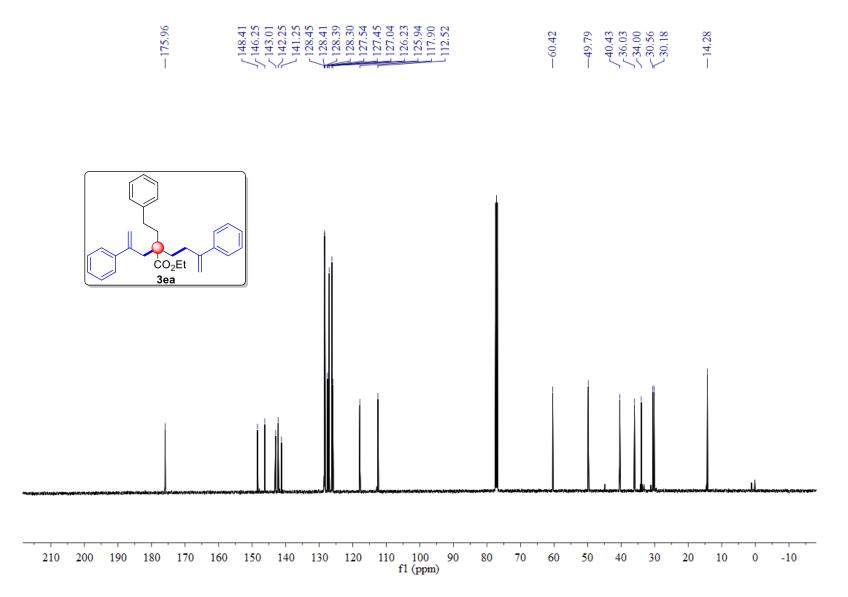

8. Copies for ¹H NMR and ¹³C NMR spectra of the products

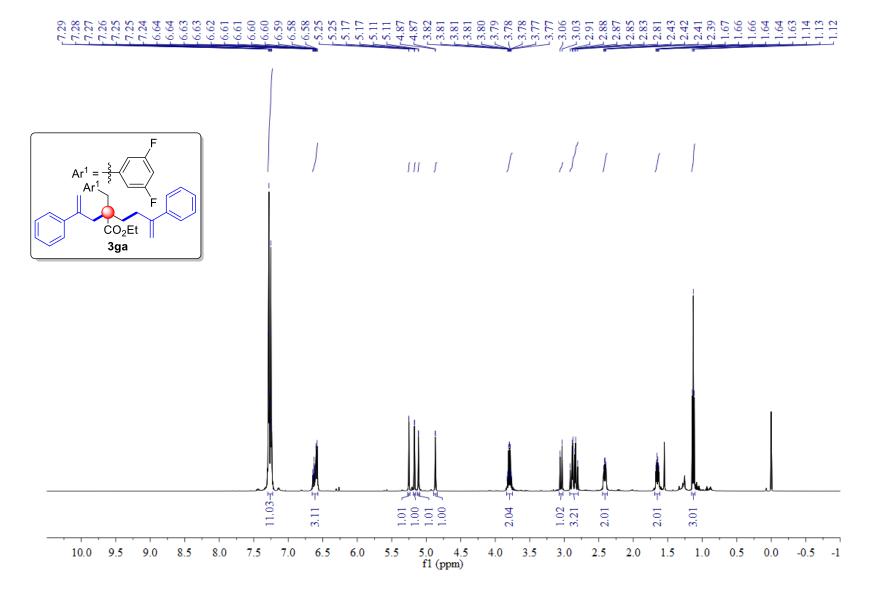


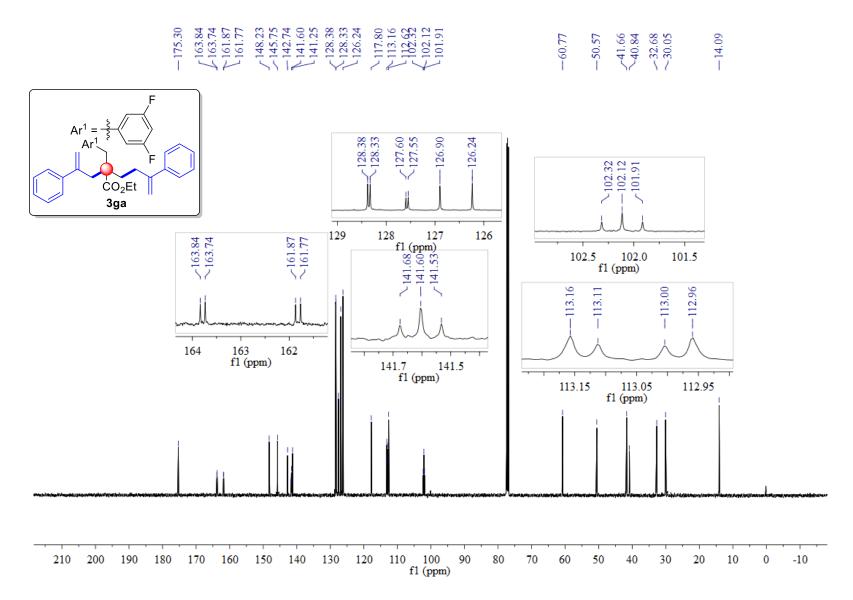


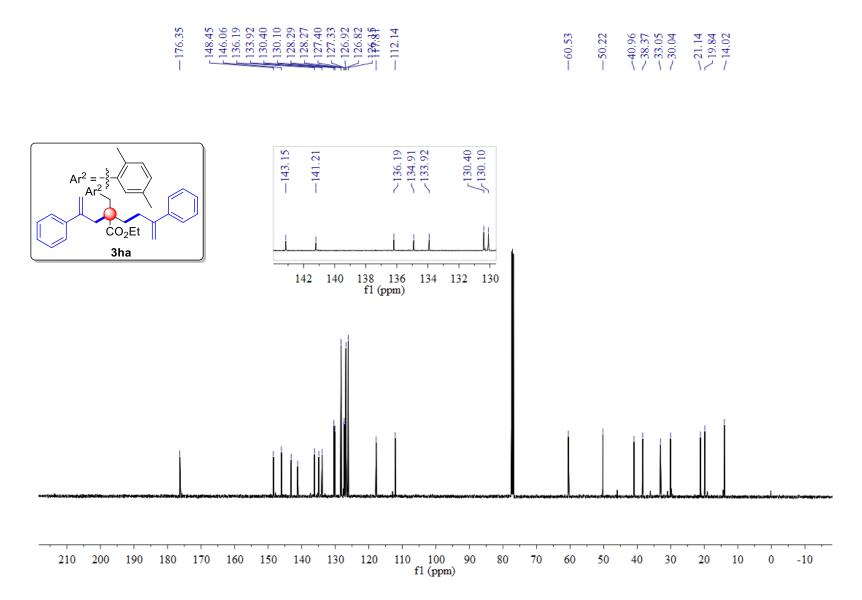


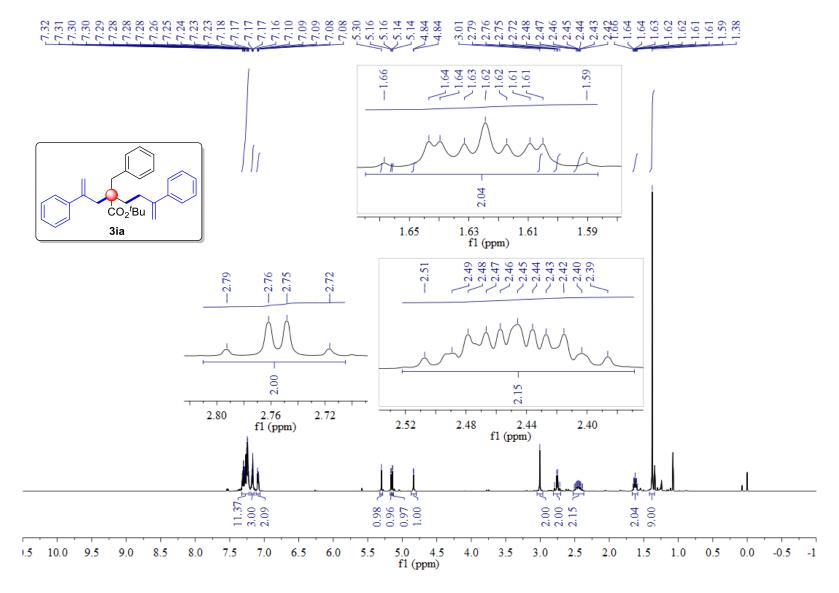


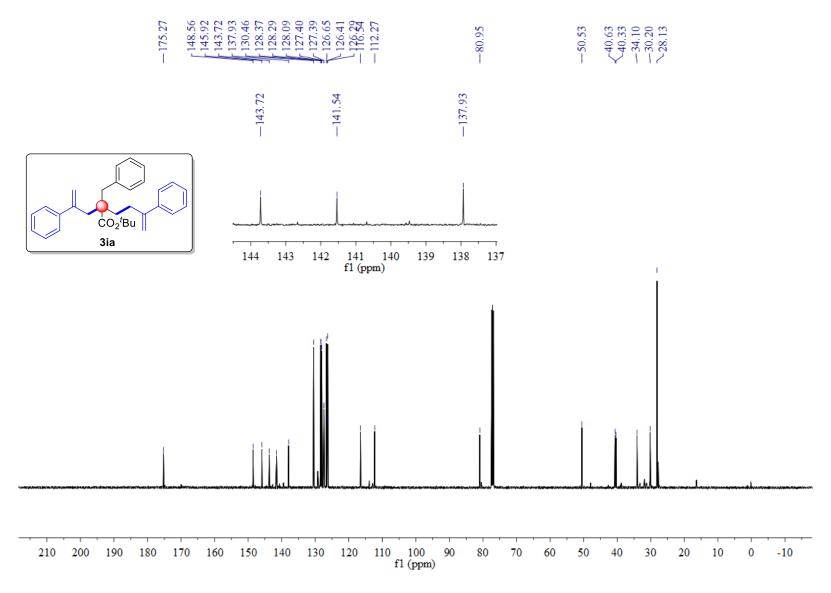


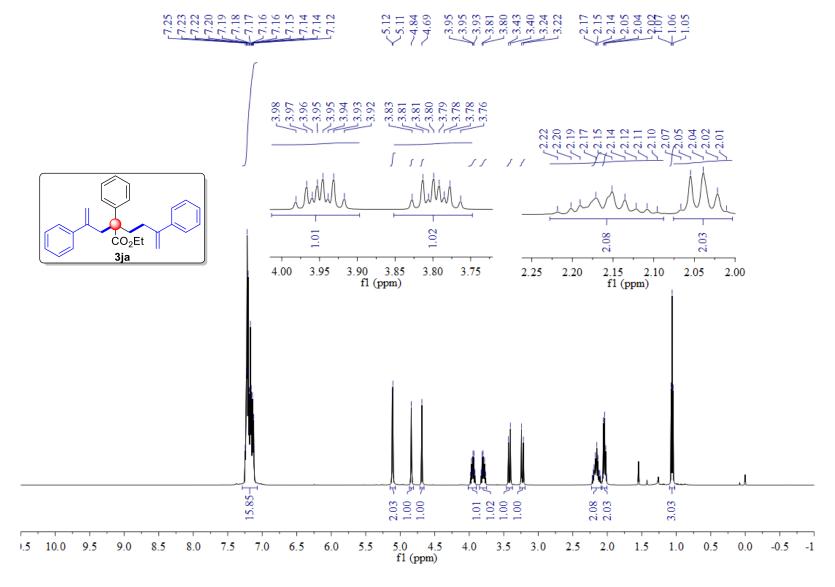


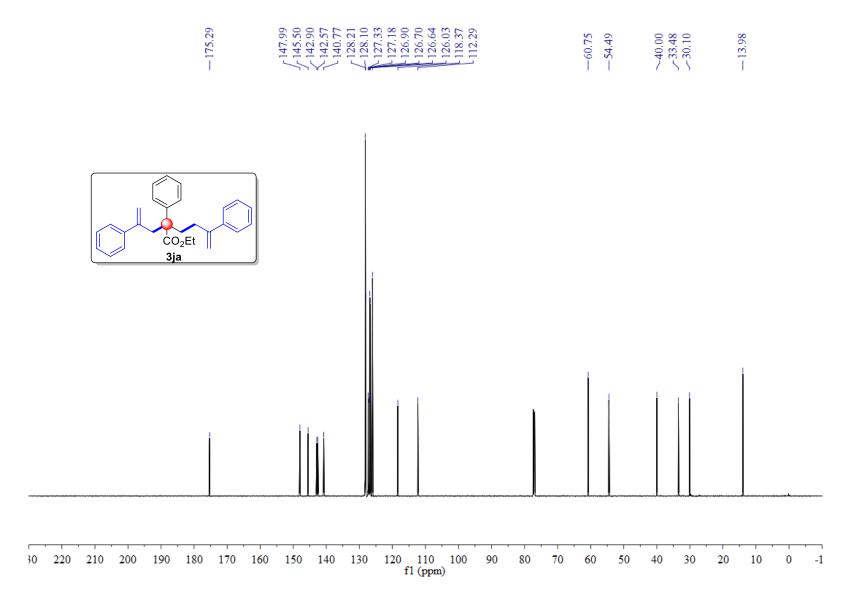




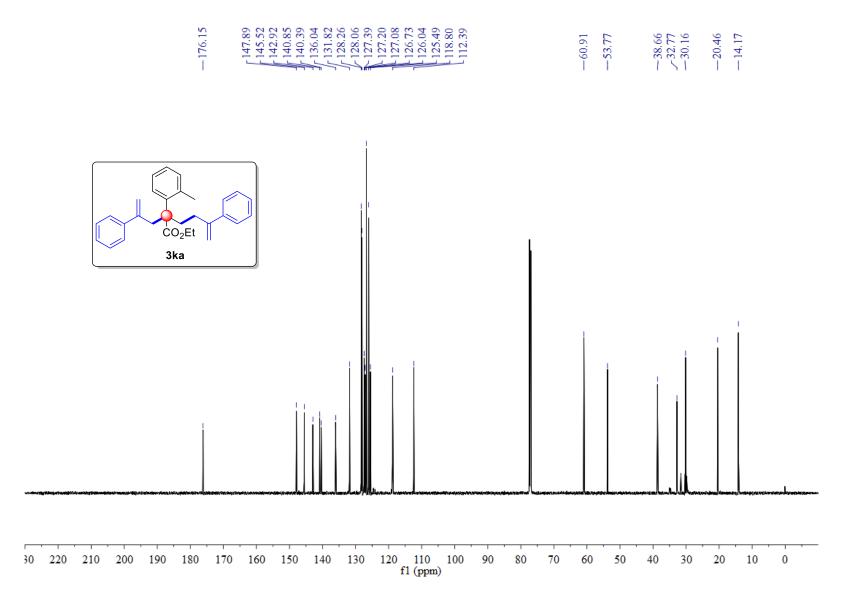


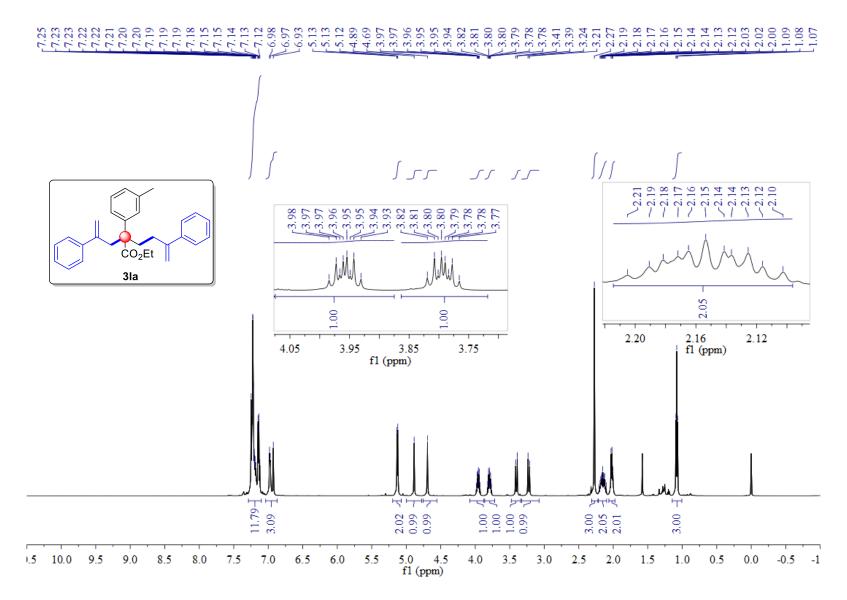


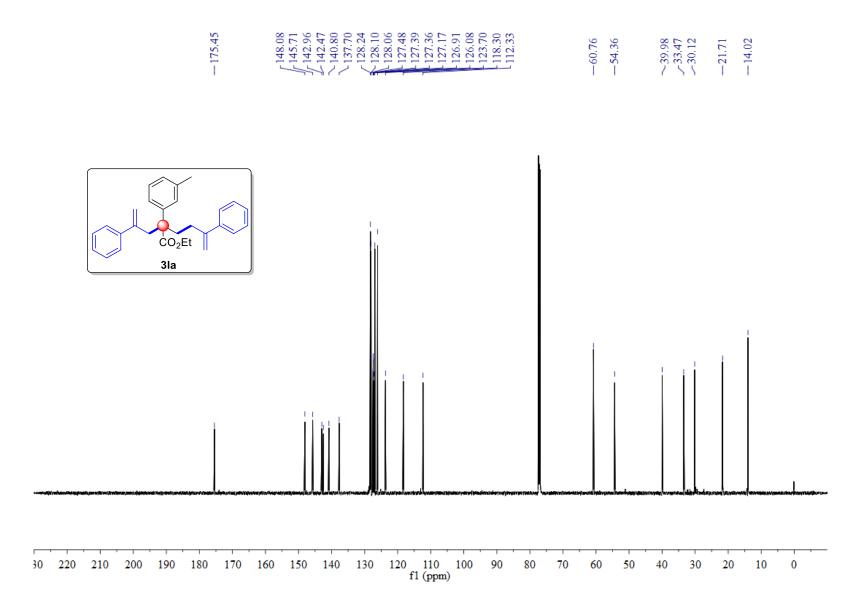


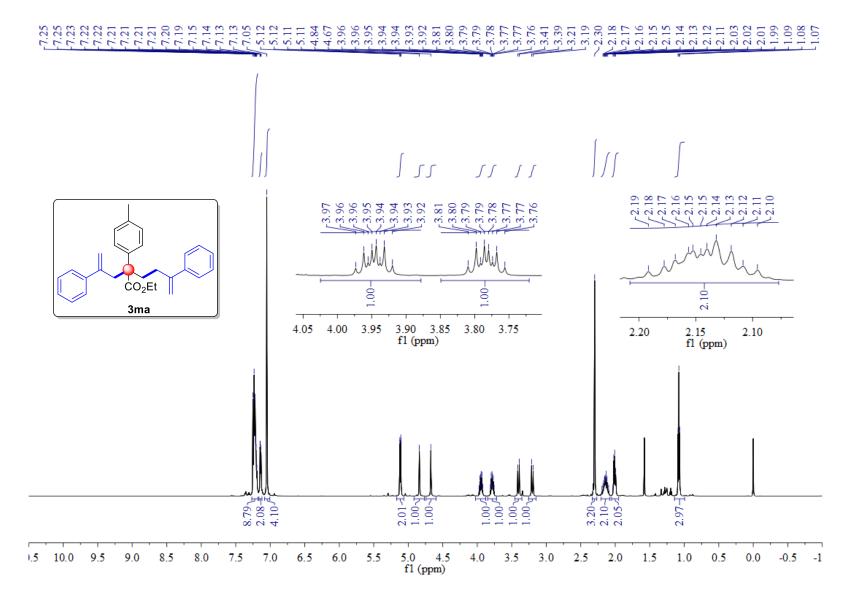


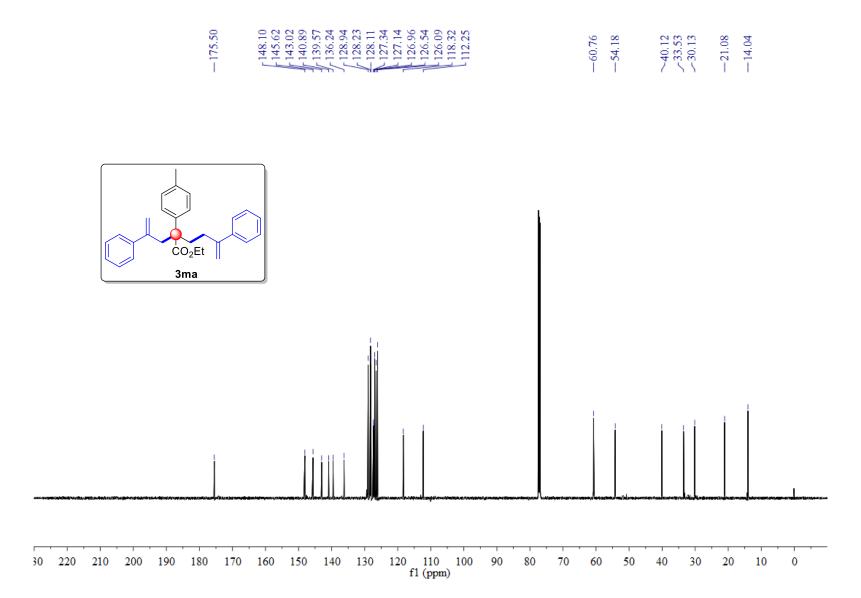


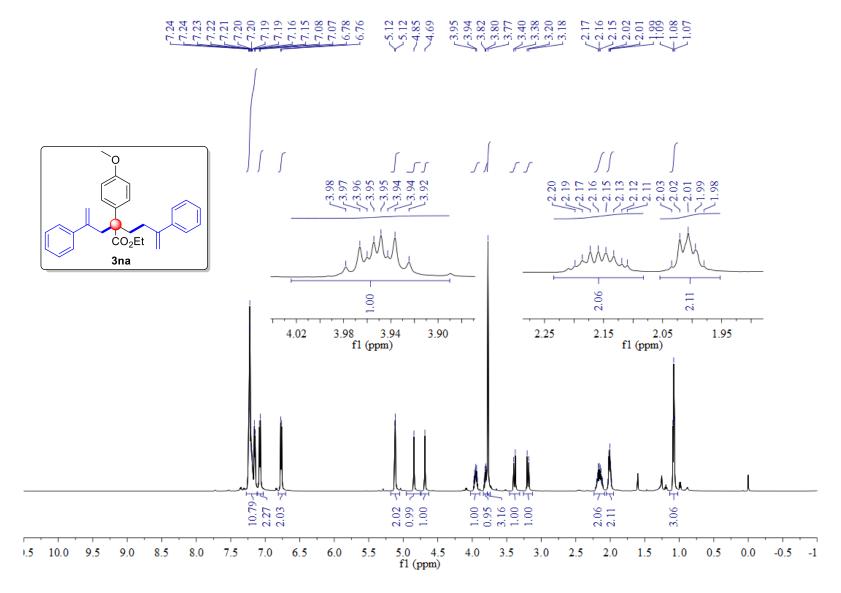


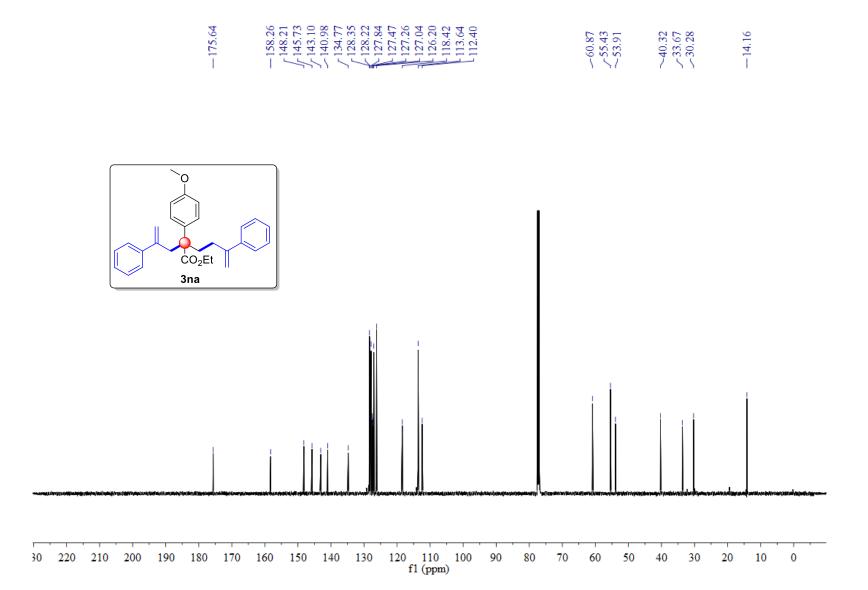


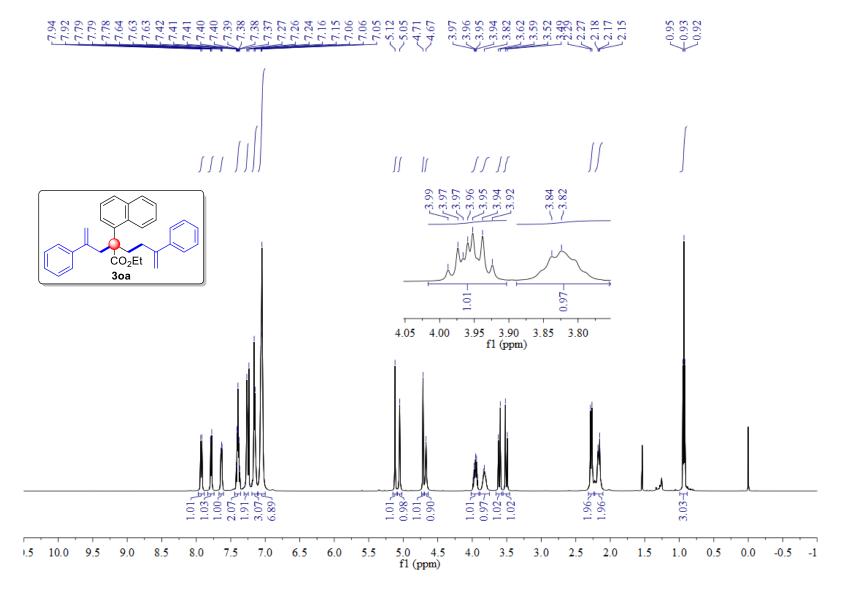


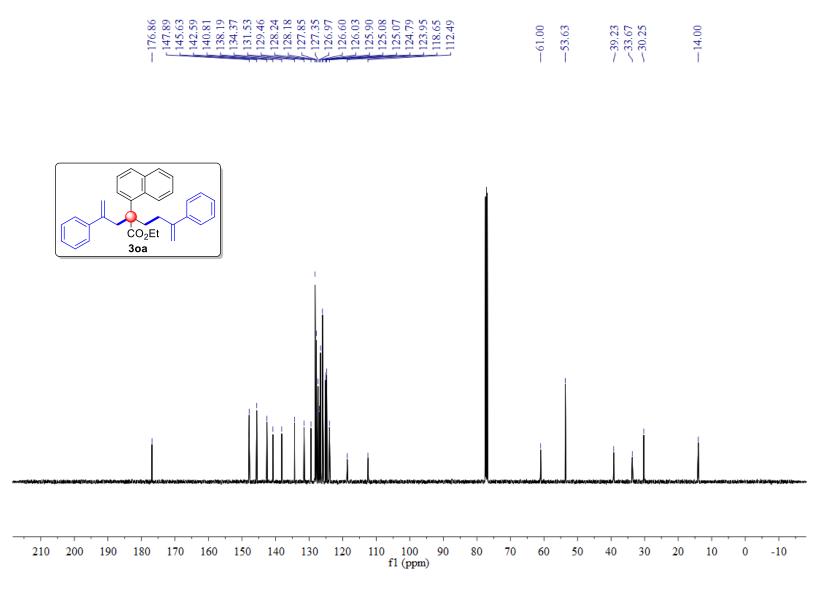


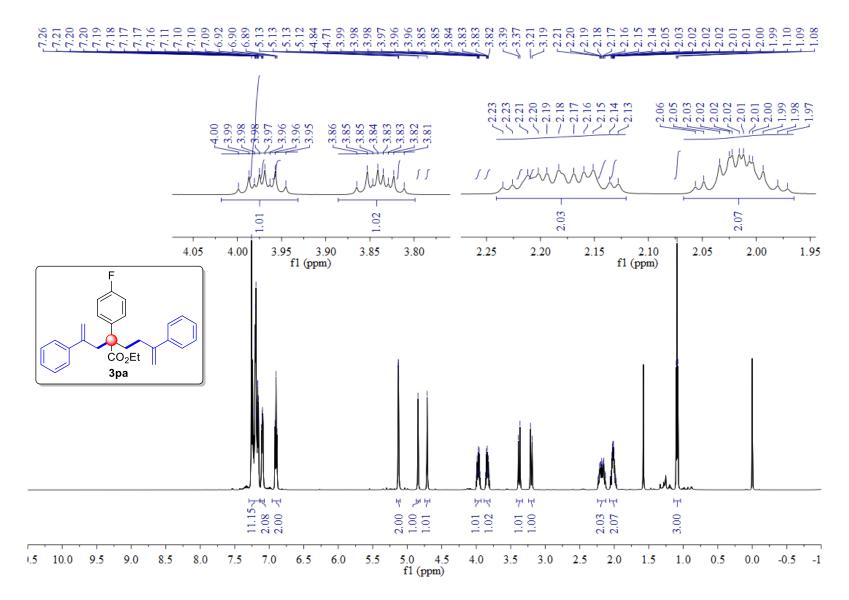


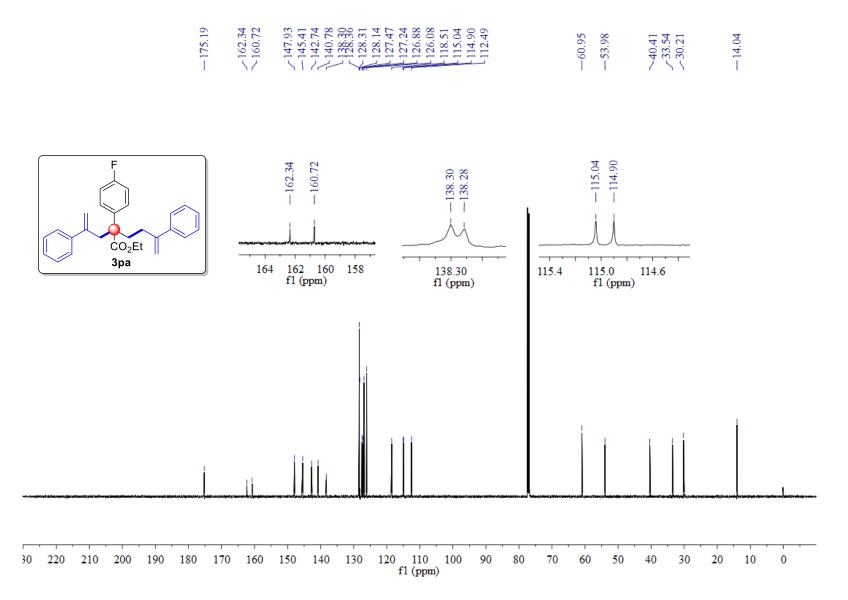


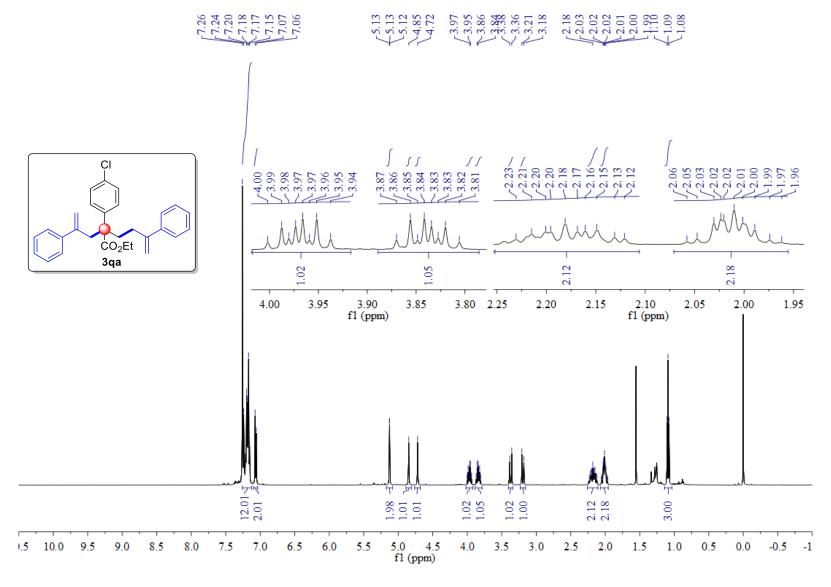


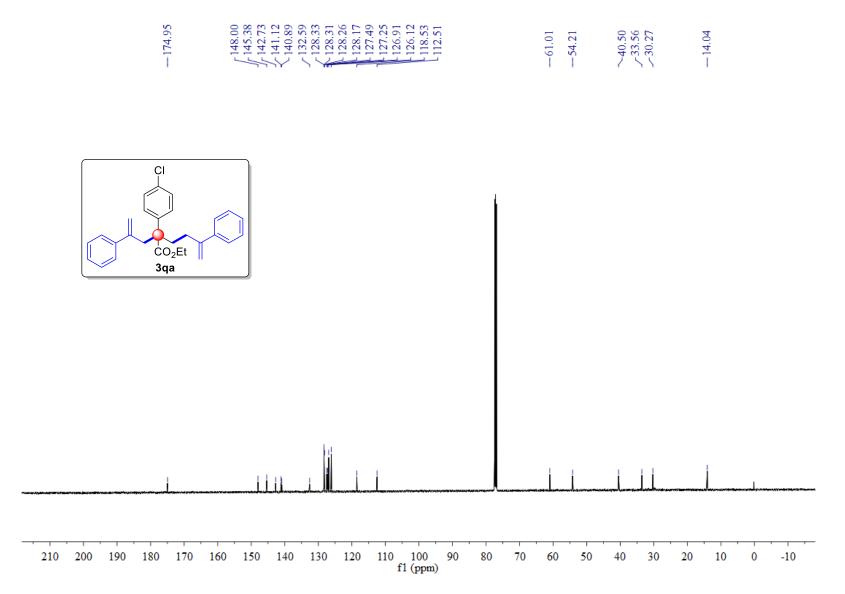


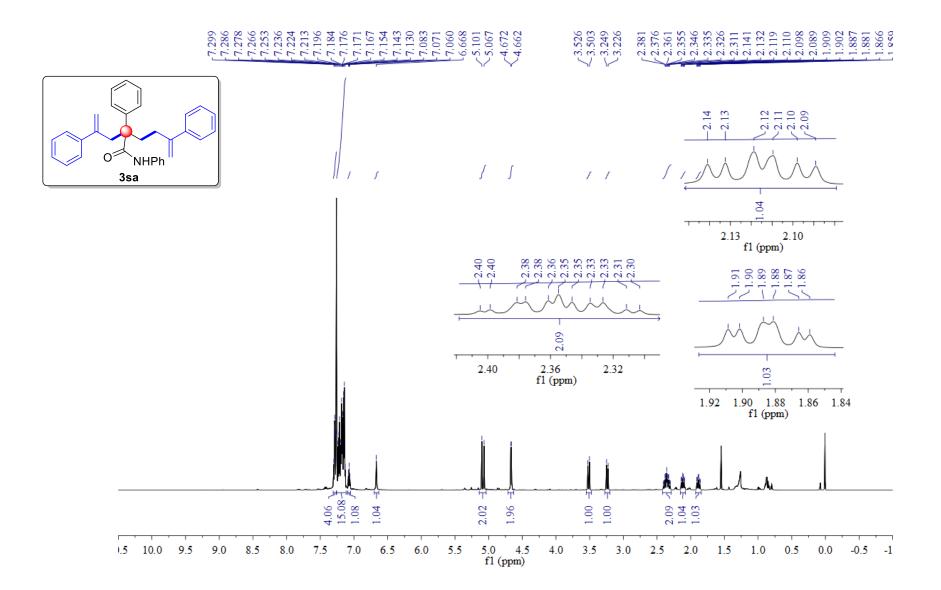


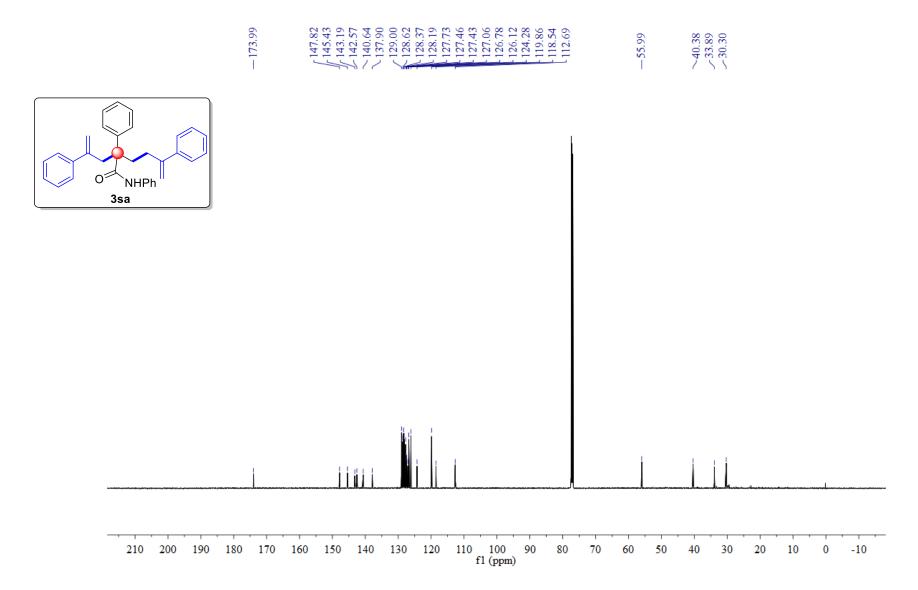


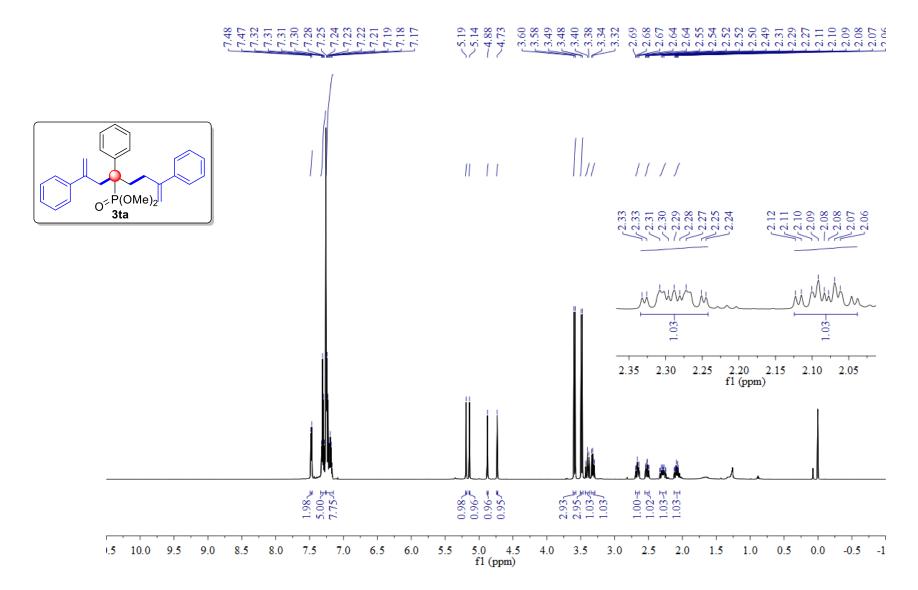


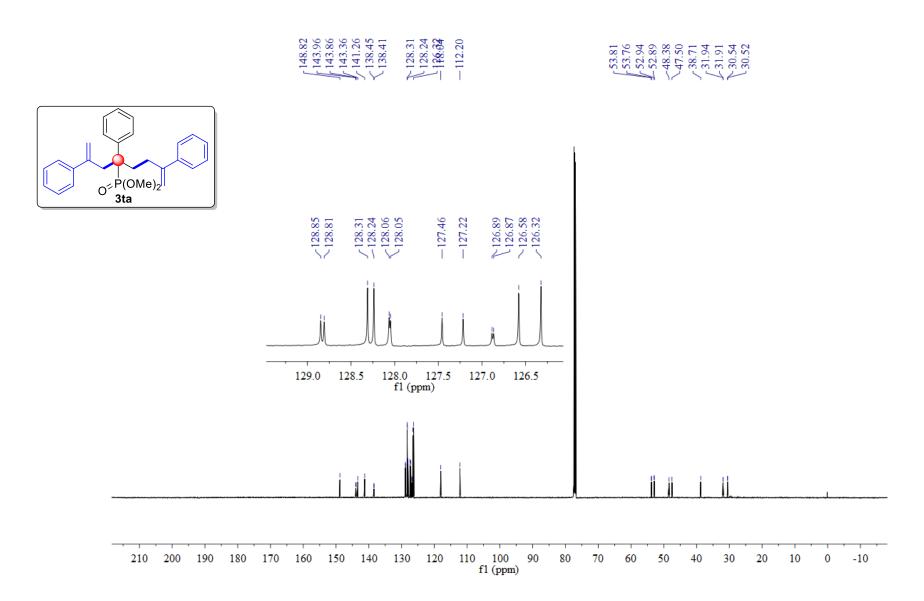


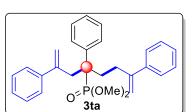


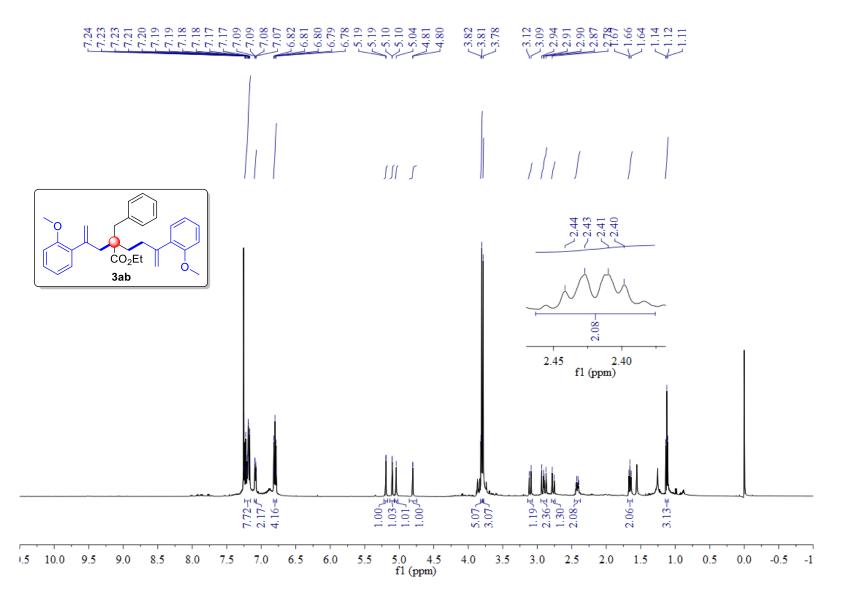


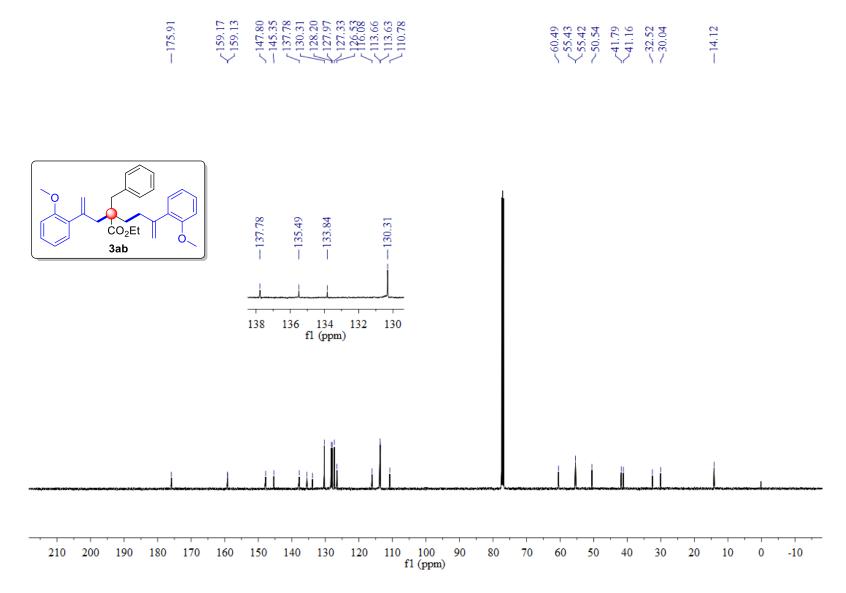


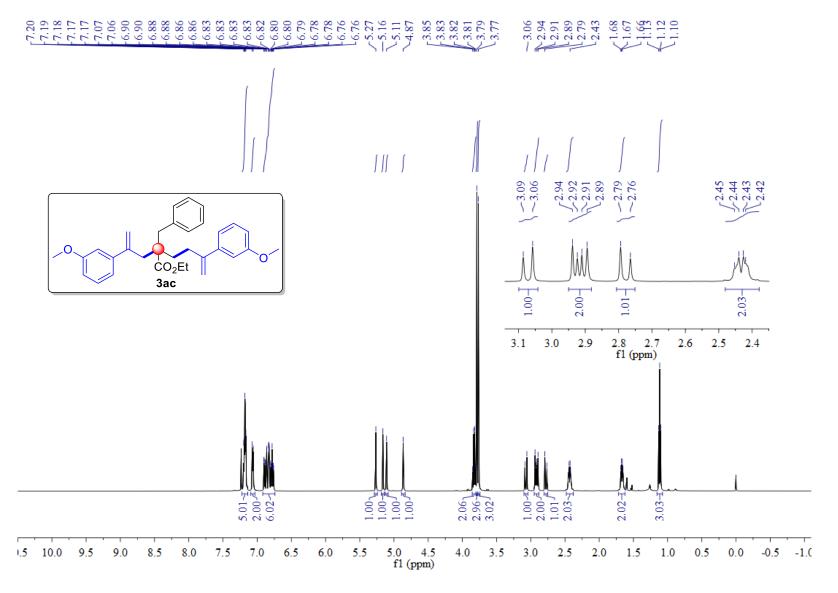




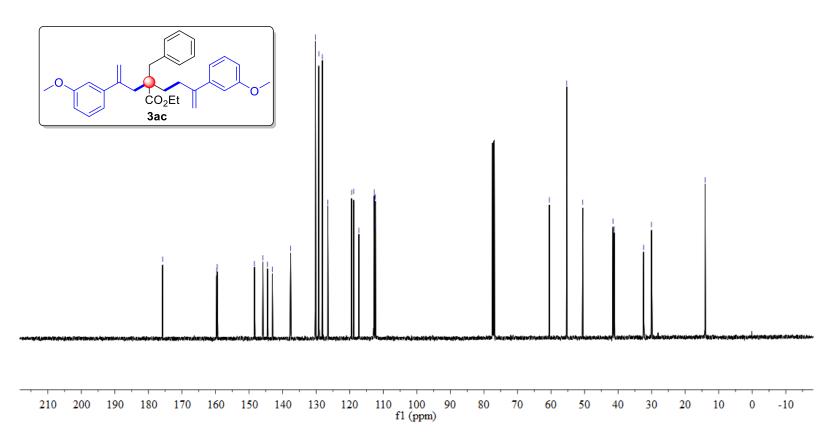


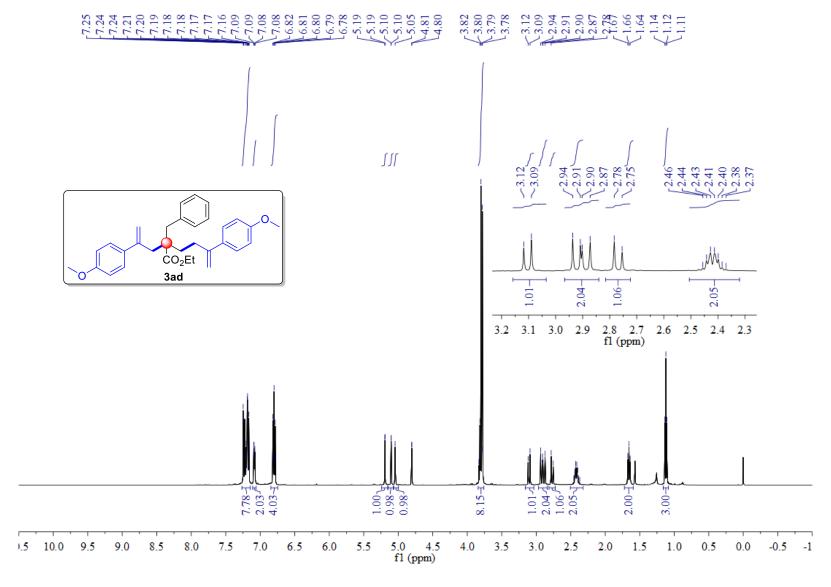


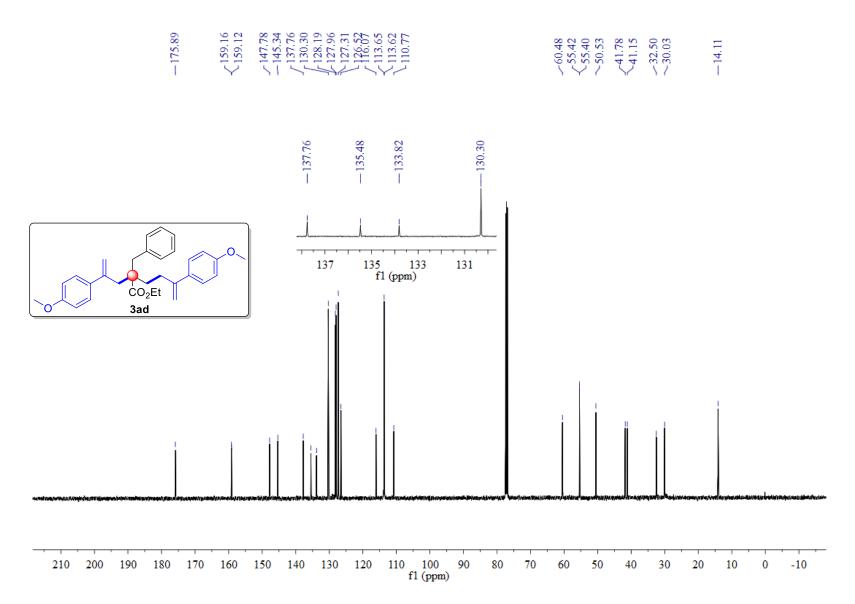


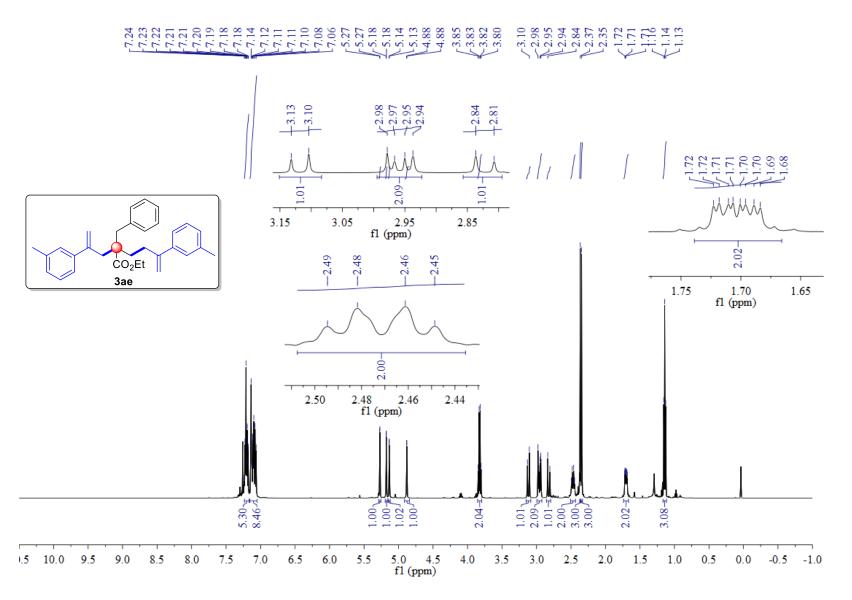


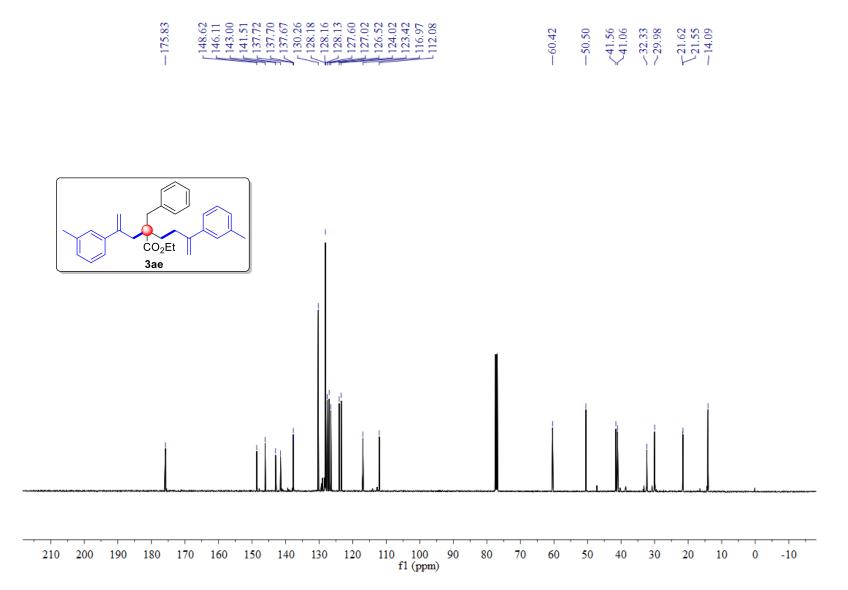
-32.94

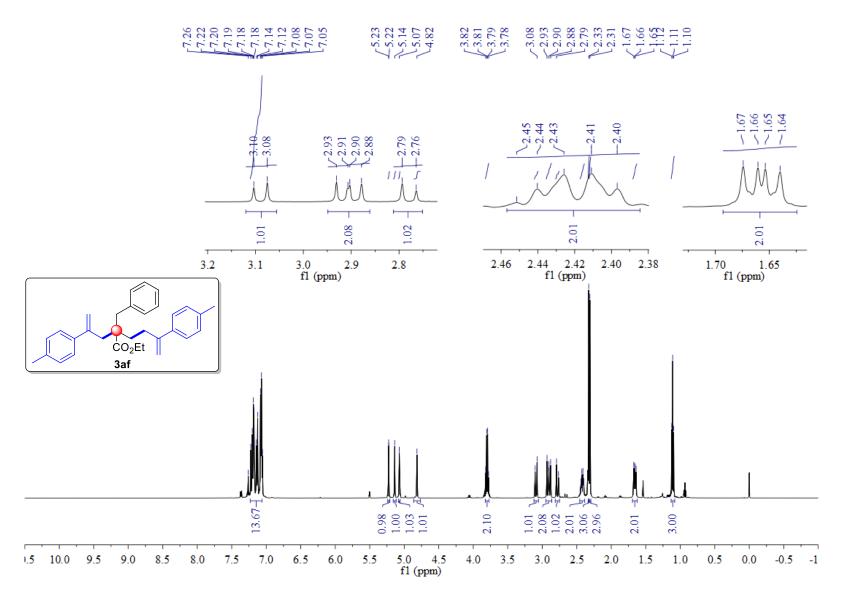

140 110 80 60 40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220 f1 (ppm)

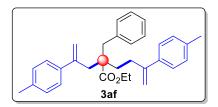


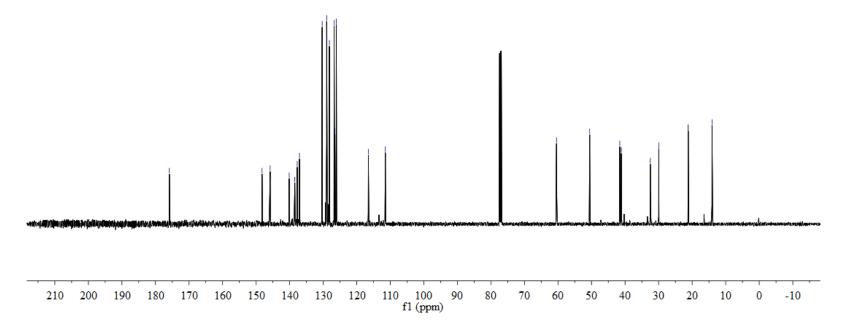


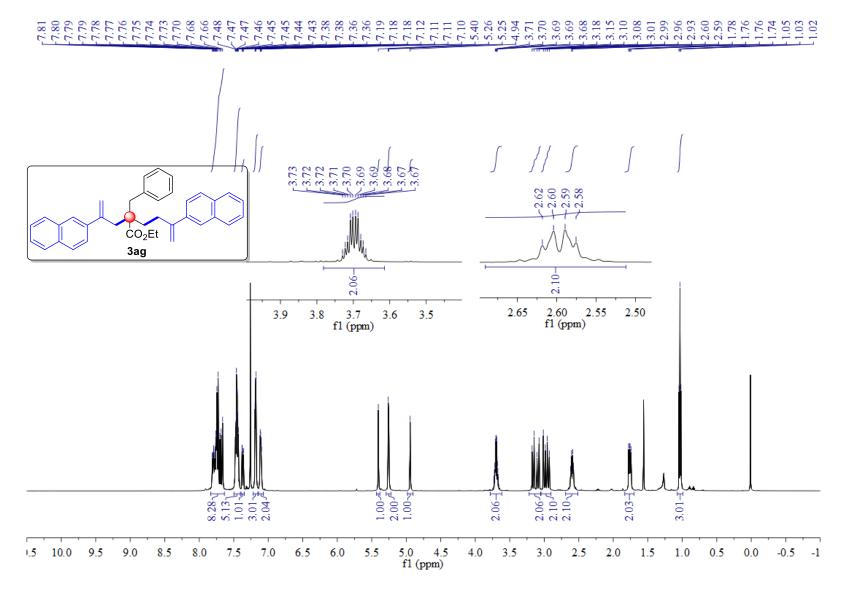


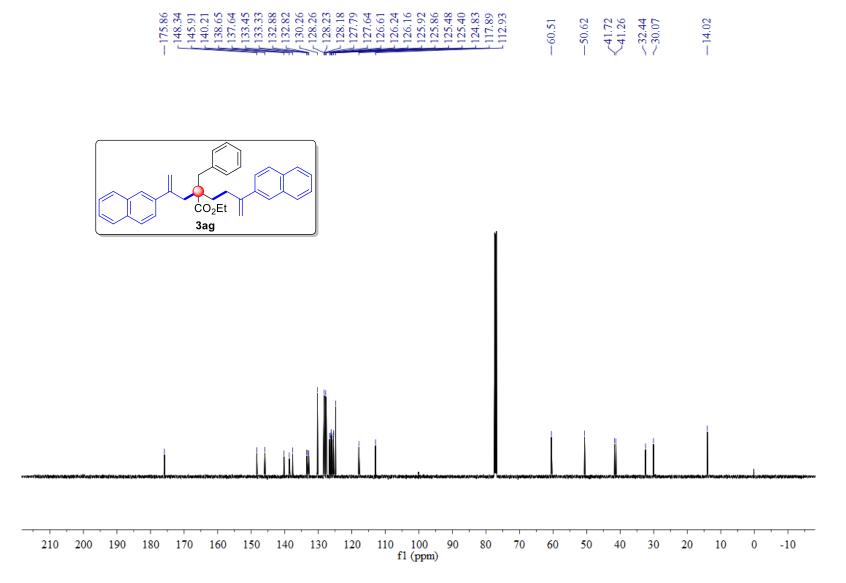












$$\begin{array}{c} -60.44 \\ -50.56 \\ \hline < 41.60 \\ \hline < 41.11 \\ \hline < 32.49 \\ \hline < 29.96 \\ \hline < 21.19 \\ \hline < 21.19 \\ \hline < -14.08 \\ \end{array}$$

