Electronic Supporting Information (ESI)

Copper catalyzed dehydrogenative cyclization, alkenylation towards dihydroquinolinones

Keerthana Pari, Nawaz Khan Fazhlur-Rahman *

* Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, Tamil Nadu, India. E-mail: nawaz f@yahoo.co.in;

Table of Contents

1. General Information S2
2. Experimental Procedure and Spectral Data S2-S17
3. References S17
4. Control Experiment S18-S21
5. Reaction Monitoring by ${ }^{1} \mathrm{H}$ NMR Analysis S22-S23
6. Photophysical Studies S24-S25
7. Copies of NMR $\left({ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}\right)$, FT-IR and HRMS Spectra S26-S73
8. X-Ray Crystallography Data S74-S84

1. General Information

Chemicals were purchased from various suppliers including Sigma-Aldrich, Merck, and SRL and utilized without additional purification. Reactions were carried out in oven-dried glass containers. The progress of the reaction was monitored by thin-layer chromatography using pre-coated alumina TLC sheets (silica gel 60 F-254, Merck) and noticed using a UV detection chamber. The synthesized compounds were purified by silica gel (100-200 mesh) column chromatography. Proton $\left({ }^{1} \mathrm{H}\right)$ and carbon- $13\left({ }^{13} \mathrm{C}\right)$ nuclear magnetic resonance (NMR) spectra were recorded at room temperature in CDCl_{3}, utilizing a Bruker AVANCE-III spectrometer operating at 400 MHz for ${ }^{1} \mathrm{H}$ and 101 MHz for ${ }^{13} \mathrm{C}$. Chemical shifts (δ) are reported in parts per million (ppm) and coupling constants (J) are provided in (Hz) by referencing TMS as an internal standard. Infrared (IR) spectra were recorded using a Thermo Nicolet iS50 with an inbuilt ATR (Shimadzu IR Tracer-100) spectrometer. A positive electrospray ionization (ESI ${ }^{+}$) mode was employed for High-resolution mass spectrometry on a WATERS-XEVO G2-XS-QToF. Single-crystal X-ray diffraction was recorded using a D8-QUEST single-crystal XRD diffractometer; all data calculations were executed using the APEX2 program package on the PC version. The UV-visible absorption and emission spectra were recorded using a JASCO V-670 PC spectrophotometer.

2. Experimental Procedure and Spectral Data

2.1 General procedure for the synthesis of compounds 4

The synthesis of alkylated ketone $\mathbf{1}$ was performed according to a previously published procedure. ${ }^{4}$ To an oven-dried reaction vial, added alkylated ketone $1(1.0 \mathrm{mmol}), \mathrm{CuBr}(10 \mathrm{~mol} \%), 2,2$ '-bipyridyl (10 $\mathrm{mol} \%)$, TEMPO $(10 \mathrm{~mol} \%),[\mathrm{BMIM}]^{+}\left[\mathrm{BF}_{4}\right]^{-}(1.5 \mathrm{ml})$ and the reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 3 h in the air atmosphere, resulting in the formation of chalcone $\mathbf{1}^{\prime}$. Then TBAB:PTSA (1:1) (200 mg), 1,3Cyclohexanedione $2(1.5 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{OAc}(10.0 \mathrm{mmol})$ were added and the reaction was continued at $100{ }^{\circ} \mathrm{C}$ for 5 h in the O_{2} atmosphere, to form the cyclized intermediate C . After the formation of the cyclized intermediate \mathbf{C}, alcohol $\mathbf{3}(1.0 \mathrm{mmol})$ was added and the reaction was continued at $100{ }^{\circ} \mathrm{C}$ for 4 h to obtain $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ functionalized quinolinyl quinolinones 4 . The progress of the reaction was monitored by TLC. When the reaction was completed, the reaction mixture was cooled to room temperature, diluted with water $(40 \mathrm{ml})$, and then extracted with DCM $(50 \mathrm{ml} \times 2)$. The combined organic layers were dried over anhydrous MgSO_{4}, and the crude reaction mixture was purified by silica gel column chromatography using $10-15 \% \mathrm{EtOAc} /$ Pet ether as eluent to yield $65-86 \%$ of the desired products $(\mathbf{4 A}-4 \mathrm{P})$.

(E)-6'-chloro-4-(4-methoxyphenyl)-2'-(4-methoxystyryl)-4'-phenyl-7,8-dihydro-[2,3'-biquinolin]-

5(6H)-one (4A). Purification was carried out by column chromatography on silica gel using a 10% ethyl acetate/Pet ether mixture, resulting in the isolation of $\mathbf{4 A}$ as a Pale yellow solid $(84 \%$ yield) mp: 235-237 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 8.05$ (d, $J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.9,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.43 (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 3 \mathrm{H}), 7.19(\mathrm{~s}$, $2 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=13.8,6.7$ $\mathrm{Hz}, 5 \mathrm{H}), 6.75(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{t}, J=5.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.09(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.16-2.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 197.9,164.1,160.1,159.5,159.2,153.6$, $151.3,146.9,146.5,135.8,135.7,132.1,132.0,131.6,131.0,130.9,130.1,129.7,129.3,128.9,128.3$, $128.2,128.1,126.9,125.30,124.4,123.3,114.1,113.4,55.3,55.2, \quad 40.1, \quad 33.6,21.6$. FT-IR: $v=2917$, 1685, 1565, 1525, 1472, 1258, 1147, 1078, 955, 830, 702, $451 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{40} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{3}$ requires $623.2101(\mathrm{M}+\mathrm{H})^{+}$; found: 623.2103 .

(E)-6'-chloro-4-(4-methoxyphenyl)-2'-(3-methoxystyryl)-4'-phenyl-7,8-dihydro-[2,3'-biquinolin]-

$\mathbf{5 (6 H})$-one (4B). Purification was carried out by column chromatography on silica gel using a 10% ethyl acetate/Pet ether mixture, resulting in the isolation of 4 B as a Pale yellow solid (86% yield); mp: 230$232{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 8.05(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=$ 8.9, 2.0 Hz, 1H), $7.43(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 3 \mathrm{H}), 7.19(\mathrm{~s}, 2 \mathrm{H}), 7.09(\mathrm{~s}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=13.8,6.7 \mathrm{~Hz}, 5 \mathrm{H}), 6.75(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{t}, J=5.1$

$\mathrm{Hz}, 6 \mathrm{H}), 3.09(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.08(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.9,164.1,159.7,159.5,158.9$, 153.2, 151.3, 147.0, 146.4, 138.4, 135.7, 132.3, 132.2, 131.5, 131.1, 131.0, 130.1, 129.6, 129.3, 128.4, 128.3, 128.2, 127.1, 125.9, 125.3, 124.4, 124.0, 120.0, 113.9, 113.4, 113.1, 55.2, 40.1, 31.4, 30.2, 21.5. FTIR: $v=2924,1682,1512,1475,1244,1174,1034,955,826,704,53 \mathrm{~cm}^{-}$. HRMS (ESI): $\mathrm{C}_{40} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{3}$ requires $623.2101(\mathrm{M}+\mathrm{H})^{+}$; found: 623.2109.
(E)-6'-chloro-4-(4-methoxyphenyl)-2'-(3-methoxystyryl)-7,7-dimethyl-4'-phenyl-7,8-dihydro-[2,3'-biquinolin]-5(6H)-one (4C). Purification was carried out by column chromatography on silica gel using a 12% ethyl acetate/Pet ether mixture, resulting in the isolation of $\mathbf{4 C}$ as a Pale white solid (83% yield);
 mp: 250-252 ${ }^{\circ}$ C; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$) $\delta 8.07(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.94(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 3 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 2 \mathrm{H}), 7.01-6.91(\mathrm{~m}$, 2H), $6.86-6.71(\mathrm{~m}, 6 \mathrm{H}), 3.73$ (d, $J=5.3 \mathrm{~Hz}, 6 \mathrm{H}$), 2.99 (s, 2H), 2.47 (s, $2 \mathrm{H}), 1.03(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}$ 197.90, 162.82, $159.79,159.55,159.27,153.13,151.02,147.00,146.42,138.32,135.90$, 135.73, 132.32, 131.43, 131.14, 130.99, 130.12, 129.59, 129.34, 128.17, 127.06, 125.88, 125.30, 123.41, 119.92, 113.93, 113.42, 113.20, 55.26, 53.86, 47.62, 32.64, 28.11. FT-IR: $v=2938,2175,1687,1577,1511,1248,1152,1038,966,829,705$, $539 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{42} \mathrm{H}_{35} \mathrm{ClN}_{2} \mathrm{O}_{3}$ requires $651.2414(\mathrm{M}+\mathrm{H})^{+}$; found: 651.2414 .
(E)-6'-chloro-4-(4-methoxyphenyl)-7,7-dimethyl-2'-(4-methylstyryl)-4'-phenyl-7,8-dihydro-[2,3'-
biquinolin]-5(6H)-one (4D). Purification was carried out by column chromatography on silica gel using a 10% ethyl acetate/Pet ether mixture, resulting in the isolation of 4D as
 a White solid (85% yield); mp: $240-242^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 8.16(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J$ $=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 5 \mathrm{H})$, $7.21-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.98-6.80(\mathrm{~m}, 5 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H}), 2.57$ ($\mathrm{s}, 2 \mathrm{H}$), 2.37 ($\mathrm{s}, 3 \mathrm{H}$), 1.10 (d, $J=33.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 198.0,162.8,159.5,159.4,153.4,151.0,146.9,146.5,138.7$, $136.0,135.8,134.1,132.2,132.1,131.4,131.1,130.9,130.1,129.4$,
$129.3,128.2,128.2,128.1,127.4,127.0,125.3,124.5,123.4,113.4,55.3,53.8,47.6,32.6,21.4$. FT-IR: v $=2952,1691,1570,1363,1244,1174,1035,965,828,699,546 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{42} \mathrm{H}_{36} \mathrm{ClN}_{2} \mathrm{O}_{2}$ requires $635.2465(\mathrm{M}+\mathrm{H})^{+}$; found: 635.2466 .
(E)-6'-chloro-2'-(2-ethoxystyryl)-4-(4-methoxyphenyl)-7,7-dimethyl-4'-phenyl-7,8-dihydro-[2,3'-

biquinolin]-5(6H)-one (4E). Purification was carried out by column chromatography on silica gel using a 10% ethyl acetate/Pet ether mixture, resulting in the isolation of $\mathbf{4 E}$ as a White solid (80% yield); $\mathrm{mp}: 255-257^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\delta 8.23(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.36$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~s}$, $2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.96(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 1 ~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 197.9,162.8,159.5,157.5,153.9,150.9,135.7,132.5,132.1,131.5,130.9,130.1,129.7,129.3$, $129.2,128.1,128.0,127.0,125.8,125.2,123.4,120.5,113.4,112.0,63.8,55.3,53.9,47.6,32.6,14.7$. FTIR: $v=2937,1686,1606,1512,1242,1179,1034,962,830,704,542 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{43} \mathrm{H}_{38} \mathrm{ClN}_{2} \mathrm{O}_{3}$ requires $665.2571(\mathrm{M}+\mathrm{H})^{+}$; found: 665.2578 .
(E)-6'-chloro-2'-(4-(dimethylamino)styryl)-4-(4-methoxyphenyl)-7,7-dimethyl-4'-phenyl-7,8-

dihydro-[2,3'-biquinolin]-5(6H)-one (4F). Purification was carried out by column chromatography on silica gel using a 12% ethyl acetate/Pet ether mixture, resulting in the isolation of 4 F as a Pale brown solid $(82 \%$ yield); mp: 262-264 ${ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $8.13(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, \mathrm{J}=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{~s}, 2 \mathrm{H}), 6.96-6.85(\mathrm{~m}, 6 \mathrm{H}), 6.67$ $(\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 6 \mathrm{H})$, 2.57 ($\mathrm{s}, 2 \mathrm{H}$), $1.13(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 198.0,162.8,159.8,159.5,154.0,150.9$, $150.7,146.7,146.6,136.4,135.9,132.1,131.5,130.9,130.7,130.1,129.4,128.8,128.2,128.1,128.0$, $126.7,125.3,125.0,123.3,120.7,113.4,112.0,55.3,53.9,47.6,40.3,32.6$. FT-IR: $v=2938,2827,2174$, 1685, 1603, 1519, 1362, 1247, 1170, 1033, 646, 831, 694, $520 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{43} \mathrm{H}_{39} \mathrm{ClN}_{3} \mathrm{O}_{2}$ requires $664.2731(\mathrm{M}+\mathrm{H})^{+}$; found: 664.2735 .
(E)-6'-chloro-2'-(2-(furan-2-yl)vinyl)-4-(4-methoxyphenyl)-7,7-dimethyl-4'-phenyl-7,8-dihydro-
[2,3'-biquinolin]-5(6H)-one (4G). Purification was carried out by column chromatography on silica gel using a 10% ethyl acetate/Pet ether mixture, resulting in the isolation of $\mathbf{4 G}$ as a Dark brown solid (78% yield); mp: 222-224 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=15.3 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=19.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=15.3 \mathrm{~Hz}$,
 $1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.78(\mathrm{~m}, 3 \mathrm{H}), 6.46(\mathrm{~d}, J=29.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 2 \mathrm{H}), 1.10(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.1,162.9,159.5,159.2,153.1,153.0,150.9,146.9$, $146.4,143.1,135.8,132.3,132.1,131.5,131.0,130.9,130.1,129.4$, $128.1,127.0,125.3,123.4,123.3,123.0,113.4,112.0,112.0,55.3,53.9$, 47.5, 32.6. FT-IR: $v=2952,1691,1570,1509,1363,1244,1174,1035$, 965, 828, 699, $546 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{39} \mathrm{H}_{32} \mathrm{ClN}_{2} \mathrm{O}_{3}$ requires 611.2101
$(\mathrm{M}+\mathrm{H})^{+} ;$found: 611.2110.
(E)-6'-chloro-2'-(4-chlorostyryl)-4-(4-methoxyphenyl)-4'-phenyl-7,8-dihydro-[2,3'-biquinolin]-

$5(6 H)$-one (4H). Purification was carried out by column chromatography on silica gel using a 12% ethyl acetate/Pet ether mixture, resulting in the isolation of $\mathbf{4 H}$ as a White solid (76% yield); mp: 253-255 ${ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz, CDCl $\mathbf{C l}_{3}$) $\delta 8.06(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{dd}, J=9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.21(\mathrm{~m}$, $7 \mathrm{H}), 7.12-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.84-6.71(\mathrm{~m}, 5 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{t}, J=$ 6.0 Hz, 2H), $2.61(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.03(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 1}$
$\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 197.9,164.1,159.6,158.9,151.4,147.1,146.4,135.7,135.2,134.3,132.6,132.1,131.4$, $131.0,130.1,129.4,129.3,128.6,128.3,128.3,128.2,127.4,127.2,126.8,125.3,124.5,113.4,55.2$, $40.1,33.6,21.5$. FT-IR: $v=2941,1685,1569,1510,1472,1240,1175,1036,958,826,705,659 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{39} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $627.1606(\mathrm{M}+\mathrm{H})^{+}$; found: 627.1600.
(E)-6'-chloro-2'-(4-fluorostyryl)-4-(4-methoxyphenyl)-4'-phenyl-7,8-dihydro-[2,3'-biquinolin]-

$\mathbf{5 (6 H)}$-one (4I). Purification was carried out by column chromatography on silica gel using a 12% ethyl acetate/Pet ether mixture, resulting in the isolation of 4I as a Pale yellow solid (75\% yield); mp: 228-230 ${ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\delta 8.06(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{dd}, J=9.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=$ 8.6, 5.5 Hz, 2H), $7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.75$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{dt}, J=12.8,6.5 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 197.9,164.1,159.6,158.9,153.1,151.3,147.0,146.4,135.7$, 134.8, $133.1,132.3,132.1,131.5,131.1,131.0,129.1,129.0,128.3,128.3,128.2,127.1,125.3,125.3,124.4$,
115.8, 115.6, 113.4, 55.2, 40.1, 33.6, 21.6. FT-IR: $v=2924,1677,1503,1307,1227,1142,979,829$, 702, 607, $499 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{39} \mathrm{H}_{29} \mathrm{ClFN}_{2} \mathrm{O}_{2}$ requires $611.1902(\mathrm{M}+\mathrm{H})^{+}$; found: 611.1905.
(E)-6'-chloro-2'-(2-chlorostyryl)-4-(4-methoxyphenyl)-4'-phenyl-7,8-dihydro-[2,3'-biquinolin]-

$\mathbf{5}(\mathbf{6 H})$-one (4J). Purification was carried out by column chromatography on silica gel using a 10% ethyl acetate/Pet ether mixture, resulting in the isolation of $\mathbf{4 J}$ as a White solid (72% yield); mp: $216-218^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.30(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70(\mathrm{dd}, J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=5.2$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{dd}, J=14.0,9.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.20(\mathrm{~s}$, $2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.19$ $(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.13(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 197.8,164.1,159.5,158.9,153.0,151.3,147.0,146.3,135.6,135.1,134.3,132.5$, $132.3,132.2,131.5,131.4,131.0,130.1,130.0,129.3,129.2,128.5,128.3,128.2,128.1,127.4,127.1$, 126.8, 125.2, 124.4, 113.4, 55.2, 40.1, 33.5, 21.5. FT-IR: $v=2941,1684,1566,1507,1472,1243,1178$, 1041, 956, 830, 704, $549 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{39} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $627.1606(\mathrm{M}+\mathrm{H})^{+}$; found: 627.1603.
(E)-6'-chloro-2'-(2-chlorostyryl)-4-(4-methoxyphenyl)-4'-phenyl-7,8-dihydro-[2,3'-biquinolin]-

$\mathbf{5 (6 H)}$-one (4K). Purification was carried out by column chromatography on silica gel using a 10% ethyl acetate/Pet ether mixture, resulting in the isolation of 4 K as a Pale yellow solid (79% yield); mp: $230-232^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 8.05(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=9.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (dd, $J=8.5,5.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.28 (d, $J=3.0 \mathrm{~Hz}, 3 \mathrm{H}$), 7.06 (t, $J=8.1 \mathrm{~Hz}$, 4H), 6.98 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 3 \mathrm{H}), 3.09(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.06(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathbf{M H z}, \mathbf{C D C l}_{3}$) δ 197.7, 164.1, 164.0, 161.7, 159.0, 153.1, 151.7, 147.1, 146.4, 137.8, 136.5, 135.7, $134.8,133.1,133.1,132.3,132.1,131.1,131.0,130.1,129.1,129.0,128.7,128.3,128.2,127.7,127.1$, $125.3,125.3,125.2,124.5,115.8,115.6,40.0,33.5,21.6,21.3$. FT-IR: $v=2921,1678,1505,1307,1227$, 1143, 977, 828, 704, 607, $504 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{39} \mathrm{H}_{28} \mathrm{ClFN}_{2} \mathrm{O}$ requires $595.1952(\mathrm{M}+\mathrm{H})^{+}$; found: 595.1962.
(E)-6'-chloro-2'-(2-chlorostyryl)-4'-phenyl-4-(p-tolyl)-7,8-dihydro-[2,3'-biquinolin]-5(6H)-one (4L).
 Purification was carried out by column chromatography on silica gel using a 10% ethyl acetate/Pet ether mixture, resulting in the isolation of 4L as a White solid (65% yield); mp: 262-264 ${ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ $\left.\mathbf{C D C l}_{3}\right) \delta 8.19(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J$ $=9.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.27$ $(\mathrm{m}, 3 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.74(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 3.09(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.15$ - $2.06(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 197.7,164.0,159.0,153.0,151.7,147.1,146.4,137.8$, $136.5,135.6,135.2,134.3,132.6,132.4,132.2,131.4,131.0,130.1,130.0,129.4,128.7,128.6,128.3$, $128.2,128.2,127.7,127.4,127.2,126.8,125.3,124.5,40.0,33.5,21.6,21.3$. FT-IR: $v=2921,2170$, 1686, 1527, 1472, 1261, 1081, 958, 826, 705, 660, $513 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{39} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ requires $611.1657(\mathrm{M}+\mathrm{H})^{+}$; found: 611.1665 .
(E)-6'-chloro-2'-(4-fluorostyryl)-4-(4-methoxyphenyl)-7,7-dimethyl-4'-phenyl-7,8-dihydro-[2,3'-

biquinolin]-5(6H)-one (4M). Purification was carried out by column chromatography on silica gel using a 12% ethyl acetate/Pet ether mixture, resulting in the isolation of $\mathbf{4 M}$ as a Pale white solid $(78 \%$ yield) mp : 232-234 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.16(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.4,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~s}, 3 \mathrm{H}), 7.19(\mathrm{~s}$, $2 \mathrm{H}), 7.06(\mathrm{dd}, J=12.1,7.8 \mathrm{~Hz}, 3 \mathrm{H}), 6.94-6.83(\mathrm{~m}, 5 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, $3.09(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 2 \mathrm{H}) 1.14(\mathrm{~s}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathbf{M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 197.9,164.1,162.8,159.6,159.3$, $153.1,151.0,147.0,146.4,135.7,134.7,133.0,132.3,132.2,131.3,131.1,131.0,130.1,129.3,129.1$, 129.0, 128.2, 127.0, 125.3, 125.2, 123.4, 115.8, 115.6, 113.4, 55.3, 53.8, 47.6, 32.7. FT-IR: $v=2924$, 2176, 1688, 1573, 1511, 1248, 1080, 1037, 959, 826, 701, $540 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{41} \mathrm{H}_{33} \mathrm{ClFN}_{2} \mathrm{O}_{2}$ requires $639.2215(\mathrm{M}+\mathrm{H})^{+}$; found: 639.2217.
(E)-6'-chloro-2'-(4-chlorostyryl)-4-(4-methoxyphenyl)-7,7-dimethyl-4'-phenyl-7,8-dihydro-[2,3'-

biquinolin]-5(6H)-one (4N). Purification was carried out by column chromatography on silica gel using a 12% ethyl acetate/Pet ether mixture, resulting in the isolation of $\mathbf{4 N}$ as a White solid (76% yield); mp: 244-246 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ $\left.\mathbf{C D C l}_{3}\right) \delta 8.16(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.70 (dd, $J=9.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~s}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{t}, J=15.0$ $\mathrm{Hz}, 3 \mathrm{H}), 6.89(\mathrm{q}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.09$ (s, 2H), $2.58(\mathrm{~s}, 2 \mathrm{H}), 1.14(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ 197.8, 162.8, 159.6, 159.2, 152.9, 151.1, 147.0, 146.4, 135.7, 135.4, 134.5, 134.3, 132.4, 132.3, 131.4, 131.1, 131.1, 130.1, 129.3, 128.9, 128.5, 128.2, 127.1, 126.1, 125.3, 123.4, 113.4, 55.3, 53.8, 47.6, 32.6, 28.1. FT-IR: $v=2952,1683,1577$, 1509, 1244, 1176, 1087, 1031, 963, 834, 698, $541 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{41} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 655.1919 $(\mathrm{M}+\mathrm{H})^{+}$; found: 655.1915.
(E)-6'-chloro-2'-(4-chlorostyryl)-7,7-dimethyl-4'-phenyl-4-(p-tolyl)-7,8-dihydro-[2,3'-biquinolin]-

5(6H)-one (4O). Purification was carried out by column chromatography on silica gel using a 10% ethyl acetate/Pet ether mixture, resulting in the isolation of $\mathbf{4 O}$ as a White solid (73% yield) mp: 236-238 ${ }^{\circ}$; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 8.06(\mathrm{~d}, ~ J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=9.0,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.47$ (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22 (dd, $J=21.4,13.0 \mathrm{~Hz}, 5 \mathrm{H}), 7.04(\mathrm{t}, J=10.9 \mathrm{~Hz}, 5 \mathrm{H}), 6.75(\mathrm{~d}, J$ $=9.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.99(\mathrm{~s}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.3,168.0,163.2,158.0,156.4,146.0,145.7,136.7,135.2,132.5$, $131.0,130.8,130.3,129.5,129.3,128.7,128.5,128.5,128.4,126.0,125.2,113.8,113.5,61.5,55.4,55.2$, 44.1, 43.5, 39.9, 13.6. FT-IR: $v=2913,1688,1524,1476,1261,1146,1078,956,830,747,706,659 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (ESI): $\mathrm{C}_{41} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ requires $639.1970(\mathrm{M}+\mathrm{H})^{+}$; found: 639.1970.
(E)-6'-chloro-2'-(2-chlorostyryl)-7,7-dimethyl-4'-phenyl-4-(p-tolyl)-7,8-dihydro-[2,3'-biquinolin]-

$\mathbf{5 (6 H})$-one (4P). Purification was carried out by column chromatography on silica gel using a 10% ethyl acetate/Pet ether mixture, resulting in the isolation of $\mathbf{4 P}$ as a White solid (70% yield) mp: 234-236 ${ }^{\circ} \mathbf{C}$, ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.31$ (d, $J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=9.0,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=$ $14.7,7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 4 \mathrm{H})$, $6.85(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.09(\mathrm{~s}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$, $1.12(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 197.7, 162.8, 159.3, 152.9, 151.4, 147.1, 146.4, 137.8, $136.4,135.7,135.1,134.4,132.6,132.3,132.2,131.4,131.0,130.1,130.0,129.4,128.7,128.5,128.2$, 128.1, 127.7, 127.3, 127.1, 126.8, 125.3, 123.5, 53.7, 47.6, 32.6, 21.3. FT-IR: $v=2960,1698,1531$, 1472, 1276, 1143, 1065, 956, 824, 752, 706, $543 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{41} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ requires 639.1970 $(\mathrm{M}+\mathrm{H})^{+}$; found: 639.1975.
2.2 General procedure for the synthesis of compounds 5

To an oven-dried reaction vial, added alkylated ketone $\mathbf{1}$ (1.0 mmol), $\mathrm{CuBr}(10 \mathrm{~mol} \%$), 2, 2'-bipyridyl (10 $\mathrm{mol} \%$), TEMPO ($10 \mathrm{~mol} \%$), and $[\mathrm{BMIM}]^{+}\left[\mathrm{BF}_{4}\right]^{-}(1.5 \mathrm{ml})$ and the reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 3 h in the air atmosphere, resulting in the formation of chalcone $\mathbf{1}^{\prime}$. Then $\operatorname{TBAB}: \operatorname{PTSA}(1: 1)(200 \mathrm{mg})$, 1,3-Cyclohexanedione $2(1.5 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{OAc}(10.0 \mathrm{mmol})$ were added and the reaction was continued at $100^{\circ} \mathrm{C}$ for 5 h in the O_{2} atmosphere, to form the cyclized intermediate \mathbf{C}.After the formation
of the cyclized intermediate \mathbf{C}, alcohol $\mathbf{3}(3.0 \mathrm{mmol})$ was added and the reaction was continued at $100^{\circ} \mathrm{C}$ for 7 h to obtain $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ - H functionalized/ α-alkenylated quinolinyl quinolinones 5 . The progress of the reaction was monitored by TLC. When the reaction was completed, the reaction mixture was cooled to room temperature, diluted with water (40 ml), and then extracted with $\mathrm{DCM}(50 \mathrm{ml} \times 2)$. The combined organic layers were dried over anhydrous MgSO_{4}, and the crude reaction mixture was purified by silica gel column chromatography using $5-7 \% \mathrm{EtOAc} / \mathrm{Pet}$ ether as eluent to yield $71-83 \%$ of the desired products (5A-5F).

6'-chloro-6-((E)-4-methoxybenzylidene)-4-(4-methoxyphenyl)-2'-((E)-4-methoxystyryl)-4'-phenyl-
 7,8-dihydro-[2,3'-biquinolin]-5(6H)-one (5A). Purification was carried out by column chromatography on silica gel using a 7% ethyl acetate/Pet ether mixture, resulting in the isolation of $\mathbf{5 A}$ as a Pale yellow solid (79% yield); mp: 272-274 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C 1 ~} \mathbf{3}_{3}$) $8.13(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.36(\mathrm{~s}, 3 \mathrm{H})$, $7.18(\mathrm{~s}, 2 \mathrm{H}), 7.04-6.93(\mathrm{~m}, 5 \mathrm{H}), 6.92-6.84(\mathrm{~m}, 5 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 3.21(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.12\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H} .{ }^{13} \mathbf{C}\right.$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 187.2,162.5,160.3,160.1,159.6,158.8,154.7$, $151.4,147.0,137.4,135.8,133.3,132.2,132.0,132.0,131.4,131.0,130.9,130.1,129.7,129.4,128.9$, $128.4,128.2,128.1,128.1,127.0,125.4,125.3,123.3,114.2,114.1,113.6,55.4,55.3,55.2,32.3,25.9$. FT-IR: $v=2921,1684,1582,1509,1246,1177,1079,1031,832,695,550 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{48} \mathrm{H}_{38} \mathrm{ClN}_{2} \mathrm{O}_{4}$ requires $741.2520(\mathrm{M}+\mathrm{H})^{+}$; found: 741.2523.

6'-chloro-4-(4-methoxyphenyl)-6-((E)-4-methylbenzylidene)-2'-((E)-4-methylstyryl)-4'-phenyl-7,8-
 dihydro-[2,3'-biquinolin]-5(6H)-one (5B). Purification was carried out by column chromatography on silica gel using a 7% ethyl acetate/Pet ether mixture, resulting in the isolation of 5B as a Pale yellow solid (83% yield) mp: 268-270 ${ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.13(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}$, $7 \mathrm{H}), 7.23(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J=17.3,11.8 \mathrm{~Hz}, 5 \mathrm{H})$, $6.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.84(\mathrm{~m}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, 2H), 2.39 (s, 3H), $2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 187.2,162.7,159.6,158.9,153.6,151.5$, 147.0, 146.4, 139.3, 138.7, 137.6, 136.1, 135.8, 134.5, 134.2, 132.7, 132.3, 132.1, 131.4, 131.1, 130.9, $130.1,129.4,129.4,129.3,128.2,128.1,127.4,127.0,125.3,125.3,124.6,113.6,55.2,32.4,25.9,21.5$,
21.4. FT-IR: $v=2952,1684,1581,1512,1249,1173,1026,966,830,703,532 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{48} \mathrm{H}_{38} \mathrm{ClN}_{2} \mathrm{O}_{2}$ requires 709.2622 $(\mathrm{M}+\mathrm{H})^{+}$; found: 709.2621.
(E)-6'-chloro-4-(4-methoxyphenyl)-4'-phenyl-2'-((E)-2-(thiophen-2-yl)vinyl)-6-(thiophen-2-
 ylmethylene)-7,8-dihydro-[2,3'-biquinolin]-5(6H)-one (5C). Purification was carried out by column chromatography on silica gel using a 5\% ethyl acetate/Pet ether mixture, resulting in the isolation of $\mathbf{5 C}$ as a Pale brown solid (81% yield) mp: 274-276 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 8.07(\mathrm{dd}, J=28.7,12.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.86(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=9.3,3.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 4 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=11.5,4.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.09-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.84(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.16$ $(\mathrm{d}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 186.9,162.5,159.6,158.5,153.1,151.2,146.9$, $146.4,142.6,138.0,135.8,133.6,132.2,132.0,131.3,131.0,130.2,130.0,130.0,129.4,128.7,128.6$, $128.5,128.4,128.2,127.9,127.8,127.0,125.9,125.4,125.1,113.6,55.2,31.7,25.7$. FT-IR: $v=2952$, 1682, $1580,1512,1370,1245,1177,1027,968,830,702,538 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $693.1437(\mathrm{M}+\mathrm{H})^{+}$; found: 693.1431 .

6'-chloro-6-((E)-4-methylbenzylidene)-2'-((E)-4-methylstyryl)-4,4'-diphenyl-7,8-dihydro-[2,3'-

biquinolin]-5(6H)-one (5D). Purification was carried out by column chromatography on silica gel using a 5\% ethyl acetate/Pet ether mixture, resulting in the isolation of 5D as a Pale yellow solid (74% yield) $\mathrm{mp}: 252-254{ }^{\circ} \mathrm{C}^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) δ 1H NMR (400 MHz, CDCl3) $\delta 8.14(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03$ (d, J $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{dd}, \mathrm{J}=9.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ $(\mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, \mathrm{J}=11.6,5.2 \mathrm{~Hz}, 10 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.13(\mathrm{dd}, \mathrm{J}=20.3,11.7 \mathrm{~Hz}$, $5 \mathrm{H}), 7.01(\mathrm{dd}, \mathrm{J}=6.6,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.36$ (s, 3H). ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 187.0,162.6,153.5,151.9,139.4,138.8,137.8,136.1,135.7$, $134.3,134.1,132.6,132.2,131.1,131.0,130.1,130.0,129.4,129.3,128.7,128.4,128.3,128.3,128.2$, 128.1, 128.0, 127.8, 127.4, 127.0, 125.3, 125.2, 124.5, 32.4, 25.9, 21.5, 21.4. FT-IR: $v=2956,1681$, 1577, 1512, 1366, 1244, 1174, 1075, 1024, $964,830,700,539 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{47} \mathrm{H}_{36} \mathrm{ClN}_{2} \mathrm{O}$ requires $679.2516(\mathrm{M}+\mathrm{H})^{+}$; found: 679.2515 .

6'-chloro-6-((E)-2-chlorobenzylidene)-2'-((E)-2-chlorostyryl)-4-(4-methoxyphenyl)-4'-phenyl-7,8-
 dihydro-[2,3'-biquinolin]-5(6H)-one (5E). Purification was carried out by column chromatography on silica gel using a 12% ethyl acetate/Pet ether mixture, resulting in the isolation of $\mathbf{5 E}$ as a White solid (71\% yield); mp: 268-270 ${ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $8.37-8.17(\mathrm{~m}, 2 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=31.2 \mathrm{~Hz}$, $4 \mathrm{H}), 7.40(\mathrm{~s}, 4 \mathrm{H}), 7.33(\mathrm{~s}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 5 \mathrm{H}), 6.95(\mathrm{~d}, J$ $=20.8 \mathrm{~Hz}, 5 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~d}, J=31.8 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR
($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 186.46,163.00,159.65,159.04,153.03,152.10,147.11,146.42,136.67,135.65$, $135.16,135.04,134.42,134.33,134.10,132.57,132.37,132.21,131.45,131.42,131.03,130.21,130.11$, $130.04,129.92,129.32,128.61,128.33,128.24,127.45,127.16,126.86,126.44,125.30,124.89,113.61$, 55.23, 32.62, 25.96. FT-IR: $v=2915,1605,1513,1250,1176,1089,953,834,704 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{46} \mathrm{H}_{32} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $749.1529(\mathrm{M}+\mathrm{H})^{+}$; found: 749.1531.

6'-chloro-6-((E)-4-fluorobenzylidene)-2'-((E)-4-fluorostyryl)-4'-phenyl-4-(p-tolyl)-7,8-dihydro-[2,3'-
 biquinolin]-5(6H)-one (5F). Purification was carried out by column chromatography on silica gel using a 5\% ethyl acetate/Pet ether mixture, resulting in the isolation of $\mathbf{5 F}$ as a Pale yellow solid (73% yield); mp: $258-620{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right.$) $8.07(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H})$, $7.60(\mathrm{dd}, \mathrm{J}=9.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{ddd}$, $\mathrm{J}=8.4,5.6,2.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 4 \mathrm{H})$, $7.05(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, \mathrm{J}=9.9,7.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.10(\mathrm{~d}, \mathrm{~J}=$ $5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 186.5,163.0,159.7$, $159.0,153.0,152.1,147.1,146.4,136.7,135.7,135.2,135.0,134.4,134.3,134.1,132.6,132.4,132.2$, $131.5,131.4,131.0,130.2,130.1,130.0,129.9,129.3,128.6,128.3,128.2,127.5,127.2,126.9,126.4$, $125.3,124.9,113.6,55.2,32.6,26.0$. FT-IR: $v=2933,1686,1529,1478,1243,1157,1076,1071,832$, $758,698,653,535 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{46} \mathrm{H}_{32} \mathrm{ClF}_{2} \mathrm{~N}_{2} \mathrm{O}$ requires $701.2171(\mathrm{M}+\mathrm{H})^{+}$; found: 701.2172 .

2.3 The gram-scale synthesis of 4 A

To an oven-dried reaction vial, added alkylated ketone $\mathbf{1}$ (10 mmol), $\mathrm{CuBr}(10 \mathrm{~mol} \%$), TEMPO (10 $\mathrm{mol} \%)$, and $[\mathrm{BMIM}]^{+}\left[\mathrm{BF}_{4}\right]^{-}(15 \mathrm{ml})$, and the reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 3 h in the air atmosphere, resulting in the formation of chalcone $\mathbf{1 A} \mathbf{A}^{\prime}$. Then TBAB:PTSA (1:1) (2000mg), 1,3Cyclohexanedione 2A (15 mmol) and $\mathrm{NH}_{4} \mathrm{OAc}(100 \mathrm{mmol})$, were added and the reaction was continued at $100{ }^{\circ} \mathrm{C}$ for 5 h in the O_{2} atmosphere, to form the cyclized intermediate \mathbf{C}. After the formation of the cyclized intermediate \mathbf{C}, alcohol $\mathbf{3 A}$ was added and the reaction was continued at $100^{\circ} \mathrm{C}$ for 4 h to obtain $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-H functionalized quinolinyl quinolinone $\mathbf{4 A}$. The progress of the reaction was monitored using TLC. After the reaction was completed, the reaction mixture was cooled to room temperature, diluted with water (400 ml) and then extracted with $\mathrm{DCM}(500 \mathrm{ml} \times 2)$. The combined organic layers were dried over anhydrous MgSO_{4}, and the crude reaction mixture was purified by silica gel column chromatography using $10 \% \mathrm{EtOAc} /$ Pet ether as eluent, to yield the desired product of $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ functionalized quinolinyl dihydroquinolinone $\mathbf{4 A}$ in a slightly decreased yield of 78%.

2.4 Product functionalization

2.4.1 Synthesis of the heterocyclic containing $\mathbf{C}\left(\mathbf{s p}^{3}\right)-\mathbf{H}$ functionalized quinolinyl quinolinone (4Q)

The synthesis of (1,3-diphenyl-1H-pyrazol-4-yl) methanol $\mathbf{3 H}$ was performed according to previously published procedures ${ }^{1,2}$. To an oven-dried reaction vial, added alkylated ketone $\mathbf{1}(1 \mathrm{mmol}), \mathrm{CuBr}(10$ $\mathrm{mol} \%)$, TEMPO ($10 \mathrm{~mol} \%$), and $[\mathrm{BMIM}]^{+}\left[\mathrm{BF}_{4}\right]^{-}(1.5 \mathrm{ml})$, and the reaction mixture was stirred at 100 ${ }^{\circ} \mathrm{C}$ for 3 h in the air atmosphere, resulting in the formation of chalcone $\mathbf{1 A} \mathbf{A}^{\prime}$. Then TBAB:PTSA (1:1) (200 mg), 1,3-Cyclohexanedione $\mathbf{2 A}(1.5 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{OAc}(10 \mathrm{mmol})$ were added and the reaction was continued at $100^{\circ} \mathrm{C}$ for 5 h in the O_{2} atmosphere, to form the cyclized intermediate \mathbf{C}. After the formation of the cyclized intermediate \mathbf{C}, alcohol $\mathbf{3 Q}$ was added and the reaction was continued at $100{ }^{\circ} \mathrm{C}$ for 4 h to obtain $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-H functionalized quinolinyl quinolinone 4 Q . The progress of the reaction was monitored using TLC. After the reaction was completed, the reaction mixture was cooled to room temperature, diluted with water (40 ml), and then extracted with DCM ($50 \mathrm{ml} \times 2$). The combined organic layers were dried over anhydrous MgSO_{4}, and the crude reaction mixture was purified by silica gel column chromatography using $15 \% \mathrm{EtOAc} / \mathrm{Pet}$ ether as eluent, to yield the desired product of $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-H functionalized quinolinyl quinolinone 4Q.
(E)-6'-chloro-2'-(2-(1,3-diphenyl-1H-pyrazol-4-yl)vinyl)-4-(4-methoxyphenyl)-7,7-dimethyl-4'-

phenyl-7,8-dihydro-[2,3'-biquinolin]-5(6H)-one (4Q). Purification was carried out by column chromatography on silica gel using a 15% ethyl acetate/Pet ether mixture, resulting in the isolation of $\mathbf{4 Q}$ as a Dark brown solid (80% yield); mp: 274-276 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 8.15$ - $8.01(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.65(\mathrm{dd}, J=9.0$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.38$ (dd, $J=14.8,7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.31$ (dd, $J=13.9,7.5$ $\mathrm{Hz}, 4 \mathrm{H}$), 7.13 (s, 2H), 6.90 (dt, $J=14.9,12.2 \mathrm{~Hz}, 5 \mathrm{H}$), 6.79 $(\mathrm{s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~s}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 197.9$, $162.7,159.6,153.2,152.5,150.9,139.6,135.7,133.1132 .2,132.0,131.4,131.0,130.0,129.5,129.4$, $128.7,128.5,128.2,128.1,128.0,126.9,126.8,125.3,123.4,119.9,119.1,113.5,55.3,53.9,47.5,32.7$, 29.7. FT-IR: $v=2931,2141,1692,1510,1364,1242,1145,959,830,701,543 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{51} \mathrm{H}_{40} \mathrm{ClN}_{3} \mathrm{O}_{2}$ requires $763.2840(\mathrm{M}+\mathrm{H})^{+}$; found: 763.2849.

2.4.2 Selective reduction of ketone

A previously established procedure was used for the selective reduction of the keto compound $\mathbf{4 D}$. ${ }^{3}$ In a round-bottom flask Compound 4D (1.0 mmol) was added and dissolved using methanol (10 ml), allowed to stir at room temperature for 5 mins . Then, sodium borohydride (0.5 mmol) was slowly added to the dissolved solution of $\mathbf{4 D}$, and the reaction was continued to be stirred at RT for 1 h . The progress of the reaction was monitored using TLC. After the reaction was completed, water was added to the reaction mixture. However, a white precipitate appeared, which was then completely filtered and dried under ambient air conditions to obtain the pure product $\mathbf{4 D}^{\prime}{ }^{\prime}$ in 81% yield.
(E)-6'-chloro-4-(4-methoxyphenyl)-7,7-dimethyl-2'-(4-methylstyryl)-4'-phenyl-5,6,7,8-tetrahydro-
[2,3'-biquinolin]-5-ol (4D'). Purification was carried out by column chromatography on silica gel using a
 12% ethyl acetate/Pet ether mixture, resulting in the isolation of 4D' as a Dark brown solid (81% yield); mp: $256-258{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.12(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, 1H), $7.40-7.28$ (m, 5H), 7.15 (dd, $J=15.4,11.9 \mathrm{~Hz}, 4 \mathrm{H}$), 7.04 (dd, $J=21.3,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.91$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H})$, 5.11 (d, $J=40.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82$ (s, 3H), 2.93 (d, $J=16.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.73$ (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ (s, 3H), 1.94 (dd, $J=13.4,6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.71$ (dd, $J=13.6,6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.14$ (s, 3H), 1.01 (s, 3H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 159.6,156.8,155.2,154.0,149.3,146.8,146.3,138.5,136.2,135.5$, $134.3,132.8,131.9,131.1,130.9,130.6,130.4,129.3,129.1,128.9,127.8,127.4,127.1,126.6,125.3$, 125.1, 114.4, 65.1, 55.3, 47.3, 44.2, 30.5, 30.1, 27.4, 21.4. FT-IR: $v=2952,1681,1577,1511,1366$, 1244, 1175, 1024, 834, 701, $538 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{C}_{42} \mathrm{H}_{38} \mathrm{ClN}_{2} \mathrm{O}_{2}$ requires $637.2622(\mathrm{M}+\mathrm{H})^{+}$; found: 637.2632 .

3. References

1 Y. Zhan, Q. Wei, J. Zhao and X. Zhang, RSC Adv, 2017, 7, 48777-48784.
2 M. M. R. Badal, H. M. Ashekul Islam, M. Maniruzzaman and M. Abu Yousuf, ACS Omega, 2020, 5, 22978-22983.

3 X. Lin, X. Wang, R. Li, Z. Wang, W. Liu, L. Chen, N. Chen, S. Sun, Z. Li, J. Hao, B. Lin and L. Xie, ACS Omega, 2022, 7, 10994-11001.

4. Control Experiment

Scheme S1 Control experiment study for the synthesis of $\mathbf{4}$ and $\mathbf{5}$

Reaction condition 1:

As illustrated in Scheme S1, a model reaction was examined using alkylated ketone $\mathbf{1 A}$ as a starting material
followed by the addition of $\mathrm{CuBr}(10 \mathrm{~mol} \%)$, TEMPO ($10 \mathrm{~mol} \%$), 2,2-bipyridyl ($10 \mathrm{~mol} \%$), and $[\mathrm{BMIM}]^{+}\left[\mathrm{BF}_{4}\right]^{-}(1.5 \mathrm{ml})$ which resulted in a 93% yield of the chalcone intermediate $\left(\mathbf{1} \mathbf{A}^{\mathbf{\prime}}\right)$ Similarly, this reaction was also conducted in a DES medium but the formation of $\mathbf{1} \mathbf{A}^{\boldsymbol{\prime}}$ was unsuccessful (Reaction condition 1, Step 1). From this observation, we found the crucial role of an ionic liquid in facilitating the formation of $\mathbf{1 A}$ ' from the alkylated ketone $\mathbf{1 A}$. In addition, the chalcone intermediate was isolated and confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Spectra are given on page 17). However, when $\mathbf{1 A} \mathbf{A}^{\prime}$ was treated with, diketone $\mathbf{3 A}, \mathrm{NH}_{4} \mathrm{OAc}$ in the O_{2} atmosphere in the absence of DES, $4 \mathrm{~A}^{\prime}$ ' was observed in a 45% yield. Conversely, when the same reaction was conducted in the presence of DES, the yield of $\mathbf{4 A}{ }^{\prime}$ increased to 88%. In this context, it was found that DES significantly enhanced the reaction (Reaction condition 1, Step 2). Formation of $\mathbf{4 A}$ ' was characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Spectra are given on page 18).
(E)-1-(6-chloro-2-methyl-4-phenylquinolin-3-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (1A'). White solid
 (93% yield); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$) $\delta 8.06$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.68(\mathrm{dd}, J=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 197.1,162.1,155.5,147.0,146.1,144.5,134.6,133.6,132.4,130.9,130.5,130.23$, $129.9,128.8,128.5,126.6,126.2,125.5,125.1,114.5,55.4,23.9$.
(6'-chloro-4-(4-methoxyphenyl)-2'-methyl-4'-phenyl-7,8-dihydro-[2,3'-biquinolin]-5(6H)-one (4'). Pale
 brown solid (88% yield); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.97(\mathrm{~d}, \mathrm{~J}=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, \mathrm{J}=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~s}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 4 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 3.10(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.62-2.56(\mathrm{~m}, 5 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 197.9,164.1,159.6,159.5,157.2$, $151.5,146.2,145.9,135.6,132.8,132.0,131.6,130.7,130.5,130.0$, $129.2,128.3,128.2,127.4,126.7,125.3,124.5,113.4,55.2,40.1,33.5$,
25.0, 21.5.

Reaction condition 2:

Meanwhile, the reaction was also performed by adding 3A to intermediate 4A' under DES condition and continued the reaction at $100{ }^{\circ} \mathrm{C}$ for 4 h , resulting in the formation of $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ functionalized quinolinyl quinolinone 4A in 84% yield (Reaction condition 2, Step 3). Furthermore, by adding 3.0 mmol of $\mathbf{3 A}$ under the same DES condition, the α-alkenylated product 5A was formed in 86% yield (Reaction condition 2, Step 4). Notably, when similar reactions were carried out by adding $\mathbf{3 A} \mathbf{A}^{\prime}$ instead of $\mathbf{3 A}$, the desired products $\mathbf{4 A} \& \mathbf{5 A}$ were obtained in 75% and 78% yields, respectively (Reaction condition 2, Steps 3 and 4).

1A ${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{1 A},{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3})

$\mathbf{4 A} \mathbf{A}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Signature SIF VIT VELLORE
SC4OME

$\mathbf{4 A},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5. Reaction Monitoring by ${ }^{1} \mathrm{H}$ NMR Analysis

5.1 Reaction monitoring by ${ }^{1} \mathrm{H}$ NMR analysis for the synthesis of $4 \& 5$

Fig S1 Reaction monitoring by ${ }^{1} \mathrm{H}$ NMR analysis in different time intervals for the synthesis of $\mathbf{4} \& 5$
The ${ }^{1} H$ NMR studies have been conducted to elucidate the mechanism of the sequential reaction in the synthesis of compounds $\mathbf{4}$ and $\mathbf{5}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of \mathbf{A} was taken for the alkylated ketone $\mathbf{1 A}$, before the initiation of the reaction, revealing the aliphatic CH_{2} protons in the range of 2.4-2.6 ppm. The Spectrum \mathbf{B} recorded after 2 h shows the formation of the chalcone intermediate $\mathbf{1 A}^{\boldsymbol{\prime}}$ as well as alkylated ketone $\mathbf{1 A}$, evidenced by the appearance of $\mathrm{H}-\mathrm{C}=\mathrm{C}-\mathrm{H}$ protons at 6.8 and 7.7 ppm . The Spectrum \mathbf{C}, recorded over a period of 3 h , revealed the exclusive formation of the chalcone intermediate $\mathbf{1} \mathbf{A}^{\prime}$, confirmed by the disappearance of the aliphatic CH_{2} peaks. The Spectrum D and Spectrum E were recorded at 6 h and 8 h time intervals, shows the formation of 7,8-dihydro-[2,3'-biquinolin]-5(6H)-one $\mathbf{4} \mathbf{A}^{\boldsymbol{\prime}}$, as evidenced by the appearance of aliphatic CH_{2} peaks in the range of $2.0-2.1 \mathrm{ppm}$. Spectrum \mathbf{F} was recorded after the addition of 4-methoxy benzyl alcohol $\mathbf{3 A}$ to intermediate $\mathbf{4 A}$ ', represented by the benzylic CH_{2} appearing at 4.6 ppm . The spectrum \mathbf{G} was recorded after 10 h , showing the formation of dehydrogenation of benzyl alcohol $\mathbf{3 A}$ '. This was confirmed by the appearance of -CHO proton at 10 ppm along with $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-H functionalized 7,8 -dihydro-[2,3'-biquinolin]-5(6H)-one 4A. Spectrum \mathbf{H} was recorded over a period of 12 h , showing that the reaction was completed with the formation of $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ functionalized 7,8-dihydro-[2,3'-biquinolin]-5(6H)-one 4A, confirmed by the disappearance of aliphatic methyl protons in $\mathbf{4 A ^ { \prime }}$ and the appearance of $\mathbf{4 A}$ olefinic protons at 7.2 and 7.6 ppm. Similarly, by adding
an excess amount (3.0 mmol) of alcohol $\mathbf{3 A}$ and continuing the reaction for 15 h , the formation of the Knoevenagel product $\mathbf{5 A}$ was observed. This is confirmed by the disappearance of aliphatic CH_{2} protons adjacent to the keto group and the appearance of $-\mathrm{C}=\mathrm{C}-\mathrm{H}$ protons at 7.1 ppm and $\mathrm{H}-\mathrm{C}=\mathrm{C}-\mathrm{H}$ protons at 7.3 and 7.7 ppm . All spectra ($\mathbf{F i g} \mathbf{S 1}$) were recorded by performing the reactions according to the standard reaction procedure.

6. Optical Spectral Data of Products $\mathbf{4}$ and 5

Table S1 Photophysical properties of $\mathbf{4} \& 5$

Compound	$\lambda_{\text {abs }}(\mathrm{nm})$	$\lambda_{\text {em }}(\mathrm{nm})$	Stoke shift (nm)	$\Phi_{F}(\%)$
4A	305	442	137	2.48
4B	297	426	129	1.17
4C	298	420	122	0.72
4D	303	430	127	0.33
4E	288	445	157	0.26
4F	298	528	117	1.19
4G	304	441	137	0.50
4H	302	507	205	0.23
4I	300	510	210	0.49
4J	298	439	141	2.88
4K	299	360	61	0.32
4L	297	417	120	0.53
4M	300	414	114	0.29
4N	302	414	112	0.32
40	301	415	114	0.41
4P	297	411	114	0.31
4Q	278	448	170	0.58
5A	289	440	151	5.73
5B	329	438	109	1.36
5C	361	442	81	0.22
5D	316	438	122	0.62
5E	324	426	102	0.42
5F	317	510	193	0.15

The spectral data were measured in DCM solutions at RT, in concentrations ranging from $\left(1.0 \times 10^{-5} \mathrm{M}\right.$ to 5.0×10^{-6} M) for absorption and emission. The Fluorescence quantum yield ($\pm 10 \%$) was determined relative to quinine sulfate in $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}\left(\Phi_{F}=0.54\right)$ as the standard.

Fig S2 Normalized UV/vis and emission spectra of compounds 4A-4G and 4Q

Fig S3 Normalized UV/vis and emission spectra of compounds 4H-4P

Fig S4 Normalized UV/vis and emission spectra of compounds 5A-5F

4. Copies of NMR ($\left.{ }^{\mathbf{1}} \mathrm{H} \&{ }^{\mathbf{1 3}} \mathrm{C}\right)$, FT-IR and HRMS Spectra

4A ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{4 A}{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Signature SIF VIT VELLORE
SC4040ME2
SC4040ME2

4A FTIR

4A HRMS (ESI)

4B ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
Signature
SC4030MC2

miriririririoooooo

4B ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4B FTIR

4B HRMS (ESI)

4C ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Signature SIF VIT VELLORE SCDM4030ME

4C ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, CDCl_{3})

4C FTIR

4C ESI (HRMS)

4D ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Signature SIF VIT VELLORE SCDMO4PT

4D ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
Signature SIF VIT VELLORE
SCDM4OPT

4D FTIR

4D ESI (HRMS)

4D ${ }^{\text {, }}{ }^{\mathbf{H}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
Signat
SOPTR

4D ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4D' FTIR

4D' HRMS (ESI)

4E ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4E ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4E FTIR

4E HRMS (ESI)

4F ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4F ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Signature SIF VIT VELLORE SCDM40
$\stackrel{\circ}{\stackrel{\circ}{\circ}}$

$\left|\left.\right|^{m i n} \stackrel{0}{\circ} \stackrel{m}{\circ} \stackrel{\sim}{\infty}\right.$

4F FTIR

4F HRMS (ESI)

4G ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{4 G}{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}$ (101 MHz, CDCl_{3})

4G FTIR

4G HRMS man

4H ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Signature SIF VIT VELLORE
SC404CL2

$\mathbf{4 H}{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Signature SIF VIT VELLORE SC404CL

4H FTIR

4H HRMS (ESI)

4I ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 $\mathbf{~ M H z}, \mathrm{CDCl}_{3}$)
Signature SIF VIT VEllore
SCPT4F2

4I ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4I FTIR

4I HRMS (ESI)

4J ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Signature SIF VIT VELLORE SC402CL2 sc402CL2

4J ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4J FTIR

4J HRMS (ESI)

4K ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Signature SIF VIT VELLORE
 SCPT4F2

4K ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
Signature SIF VIT VELLORE
Signatur
SCPT4F2

$\left.i^{\circ}\right|^{\circ} \mathrm{N}^{n}$

4K FTIR

4K HRMS (ESI)

4L ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl_{3})

Signature SIF VIT VELLORE

SCPT2CL2

$\mathbf{4 L}{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4L FTIR

4L HRMS (ESI)

$\mathbf{4} \mathbf{M ~}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Signature SIF VIT VELLORE
SCDM4OFH

¢్m	ฐ	$\stackrel{\infty}{\sim}$
๓	$\stackrel{\sim}{1}$	$\stackrel{\text { i }}{ }$

$\mathbf{4 M}{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Signature SIF VIT VELLORE SCDM4OFH

4M FTIR

4M HRMS (ESI)

4N ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{4 N}{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, CDCl_{3})

Signature SIF VIT VELLORE
SCDM404CL

$\left.\left.\left.\right|^{m i n}\right|^{m}\right|^{\circ}$

4N FTIR

4N ESI (HRMS)

$4 \mathbf{O}^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Signature SIF VIT VELLORE
SCDNPT4CL

4O ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
Signature SIF VIT VELLORE SC DMP7HCL

40 FTIR

40 HRMS (ESI)

$\mathbf{4 P}{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Signature SIF VIT VELLORE SCOM2CL

$\mathbf{4 P}{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Signature SIF VIT VELLORE
sCom2CL

4P FTIR

4P HRMS (ESI)

4Q ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4Q ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4Q FTIR

4Q HRMS (ESI)

5A ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Signature SIF VIT VELLORE
SC4040

$\mathbf{5 A}{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5A FTIR

5A HRMS (ESI)

5B ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Signature SIF VIT VELLORE

5B ${ }^{13} \mathbf{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
Signature SIF VIT VELLORE
SC40PT1

5B FTIR

5B HRMS (ESI)

5C ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Signature SIF VIT VELLORE
SC40SH
C40SH

in

Q ${ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Signature SIF VIT VELLORE SC40SH
 SC40SH

5C HRMS (ESI)

5D ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5D ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5D FTIR

5D HRMS (ESI)

5E ${ }^{\mathbf{1}} \mathbf{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

Signature SIF VIT VELLORE

から心ríriririo．

$\mathbf{5 E}{ }^{\mathbf{1 3}} \mathbf{C}$ NMR（101 MHz， $\left.\mathrm{CDCl}_{3}\right)$

Signature SIF VIT VELLORE Signatur
SC402CL

5E FTIR

5E HRMS (ESI)

5F ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Signature SIF VIT VELLORE SCPT4F1

5F ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
Signature SIF VIT VELLORE
Signatur
3CPT4F1

$\left.\left.\right|^{m}\right|^{m}$

5F FTIR

5F HRMS (ESI)

3. X-Ray Crystallography for Data 4D': (2264822)

Compound 4D' crystals were grown from a solution consisting of CDCl_{3} and ethyl acetate at 25 ${ }^{\circ}$ C. The X-ray diffraction data were collected utilizing D8- QUEST Single Crystal XRD diffractometer with X-ray intensity data were measured ($\lambda=0.71073 \AA$). A crystal 4D' with approximate dimensions of $0.100 \mathrm{~mm} \times 0.140 \mathrm{~mm} \times 0.193 \mathrm{~mm}$, was employed for the X-ray crystallographic analysis.

ORTEP diagram:

Fig S4 ORTEP diagram of the compound 4D'

Eclipsed

 diagram:

Fig S4 Eclipsed diagram of the compound 4D'

Crystal Structure Report for 4D'

A specimen of $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{O}$, approximate dimensions $0.100 \mathrm{~mm} \times 0.140 \mathrm{~mm} \times 0.193 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured ($\lambda=0.71073 \AA$).

Table S2. Sample and crystal data for 4D’.

Identification code	SCDMPT^{2}	
Chemical formula	$\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{O}$	
Formula weight	$517.04 \mathrm{~g} / \mathrm{mol}$	
Temperature	$300(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal size	$0.100 \times 0.140 \times 0.193 \mathrm{~mm}$	
Crystal system	monoclinic	
Space group	$\mathrm{P} 121 / \mathrm{c} 1$	$\alpha=90^{\circ}$
Unit cell dimensions	$\mathrm{a}=13.6720(11) \AA$	$\beta=103.345(3)^{\circ}$
	$\mathrm{b}=11.8313(9) \AA$	$\gamma=90^{\circ}$
	$\mathrm{c}=17.7342(12) \AA$	
Volume	$2791.2(4) \AA^{3}$	
Z	4	
Density (calculated)	$1.230 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$0.166 \mathrm{~mm}^{-1}$	
F(000)	1088	

Table S3. Data collection and structure refinement for 4D'.

Theta range for data collection

Index ranges

Reflections collected
Independent reflections
Max. and min. transmission
Structure solution technique
Structure solution program
Refinement method
Refinement program
2.09 to 25.70°
$-16<=\mathrm{h}<=16,-14<=\mathrm{k}<=14,-21<=1<=21$
32805
$5305[\mathrm{R}(\mathrm{int})=0.0661]$
0.9840 and 0.9690
direct methods
SHELXT 2018/2 (Sheldrick, 2018)
Full-matrix least-squares on F^{2}
SHELXL-2018/3 (Sheldrick, 2018)

Function minimized	$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
Data / restraints / parameters	5305 / 0 / 347
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$	1.030
Final R indices	$\begin{aligned} & 2950 \\ & \text { data; } \quad \mathrm{R} 1=0.0549, \mathrm{wR} 2=0.1147 \\ & \mathrm{I}>2 \sigma(\mathrm{I}) \end{aligned}$
	all data $\mathrm{R} 1=0.1192, \mathrm{wR} 2=0.1524$
Weighting scheme	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0511 \mathrm{P})^{2}+1.4451 \mathrm{P}\right] \\ & \text { where } \mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3 \end{aligned}$
Largest diff. peak and hole	0.221 and -0.394 e^{-3}
R.M.S. deviation from mean	$0.043 \mathrm{e}^{-3}$

Table S4. Atomic coordinates and equivalent isotropic atomic displacement parameters ($\AA^{\mathbf{2}}$) for 4D'.

$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U (\mathbf { e q })}$
C11	$0.48103(7)$	$0.08011(10)$	$0.24765(5)$	$0.1014(4)$
O1	$0.05683(18)$	$0.7240(2)$	$0.72289(15)$	$0.0933(8)$
N1	$0.53137(17)$	$0.7053(2)$	$0.47000(14)$	$0.0614(7)$
N2	$0.26311(17)$	$0.63032(18)$	$0.54919(12)$	$0.0500(6)$
C1	$0.4319(2)$	$0.8662(2)$	$0.40976(14)$	$0.0482(7)$
C2	$0.5133(2)$	$0.7911(3)$	$0.41707(16)$	$0.0542(7)$
C3	$0.5816(2)$	$0.8064(3)$	$0.36855(18)$	$0.0677(9)$
C4	$0.5703(3)$	$0.8937(3)$	$0.31708(18)$	$0.0747(10)$
C5	$0.4909(2)$	$0.9684(3)$	$0.31169(16)$	$0.0672(9)$
C6	$0.4224(2)$	$0.9564(3)$	$0.35621(15)$	$0.0576(8)$
C7	$0.36111(19)$	$0.8463(2)$	$0.45654(14)$	$0.0436(6)$
C8	$0.37823(19)$	$0.7567(2)$	$0.50705(14)$	$0.0449(6)$
C9	$0.4670(2)$	$0.6892(2)$	$0.51417(16)$	$0.0452(7)$
C10	$0.27065(19)$	$0.9196(2)$	$0.44884(14)$	$0.0603(8)$
C11	$0.2797(2)$	$0.0959(3)$	$0.47019(19)$	$0.0747(10)$

C13	0.1018(3)	0.0530(3)	0.4384(2)	0.0848(11)
C14	0.0921(3)	0.9439(3)	0.4119(2)	0.0827(10)
C15	0.1758(2)	0.8772(3)	0.41754(17)	0.0612(8)
C16	0.30743(19)	0.7318(2)	0.55744(14)	0.0449(6)
C17	0.1972(2)	0.6080(2)	0.59294(15)	0.0485(7)
C18	0.17264(19)	0.6849(2)	0.64554(14)	0.0461(7)
C19	0.22364(19)	0.7893(2)	0.65660(14)	0.0452(6)
C20	0.2907(2)	0.8106(2)	0.61074(14)	0.0480(7)
C21	0.4921(2)	0.5994(3)	0.57473(19)	0.0806(10)
C22	0.1501(2)	0.4922(2)	0.58065(16)	0.0629(8)
C23	0.1070(2)	0.4496(2)	0.64696(16)	0.0552(7)
C24	0.0413(2)	0.5421(3)	0.66715(19)	0.0698(9)
C25	0.0894(2)	0.6562(3)	0.68366(17)	0.0579(8)
C26	0.21388(19)	0.8780(2)	0.71370 (14)	0.0442(6)
C27	0.1815(2)	0.9850(2)	0.68935(16)	0.0546(7)
C28	0.1823(2)	0.0706(2)	$0.74229(18)$	0.0595(8)
C29	0.2173(2)	0.0531(2)	0.82068(17)	0.0545(7)
C30	0.2494(2)	0.9467(2)	0.84463(16)	0.0587(8)
C31	0.2480(2)	0.8601(2)	0.79261(15)	0.0552(7)
C32	0.1915(3)	0.4225(3)	0.71713(19)	0.0822(10)
C33	0.0447(3)	0.3428(3)	0.6219(2)	0.0810(10)
C34	0.2201(3)	0.1491(3)	0.8771(2)	0.0818(10)

Table S5. Bond lengths ((\AA) for 4D'.

Cl1-C5	$1.727(3)$	$\mathrm{O} 1-\mathrm{C} 25$	$1.211(3)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.320(3)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.366(4)$
$\mathrm{N} 2-\mathrm{C} 16$	$1.338(3)$	$\mathrm{N} 2-\mathrm{C} 17$	$1.344(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.405(4)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.415(4)$
C1-C7	$1.432(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.420(4)$
C3-C4	C3-H3	0.930000	
C4-C5	$1.363(4)$	$\mathrm{C} 4-\mathrm{H} 4$	0.930000

C5-C6	1.364(4)	C6-H6	0.930000
C7-C8	1.373(3)	C7-C10	1.490(4)
C8-C9	1.434(4)	C8-C16	1.490(3)
C9-C21	1.493(4)	C10-C11	1.378(4)
C10-C15	1.382(4)	C11-C12	1.381(4)
C11-H11	0.930000	C12-C13	$1.370(5)$
C12-H12	0.930000	C13-C14	$1.369(5)$
C13-H13	0.930000	C14-C15	1.375(4)
C14-H14	0.930000	C15-H15	0.930000
C16-C20	1.384(3)	C17-C18	$1.398(3)$
C17-C22	1.508(4)	C18-C19	1.410(4)
C18-C25	1.491(4)	C19-C20	1.382(3)
C19-C26	1.486(3)	C20-H20	0.930000
C21-H21A	0.960000	C21-H21B	0.960000
C21-H21C	0.960000	C22-C23	1.518(4)
C22-H22A	0.970000	C22-H22B	0.970000
C23-C24	1.509(4)	C23-C32	1.524(4)
C23-C33	1.531(4)	C24-C25	1.501(4)
C24-H24A	0.970000	C24-H24B	0.970000
C26-C27	1.377(4)	C26-C31	1.386(4)
C27-C28	1.380(4)	C27-H27	0.930000
C28-C29	1.378(4)	C28-H28	0.930000
C29-C30	1.368(4)	C29-C34	1.508(4)
C30-C31	1.376(4)	C30-H30	0.930000
C31-H31	0.930000	C32-H32A	0.960000
C32-H32B	0.960000	C32-H32C	0.960000
C33-H33A	0.960000	C33-H33B	0.960000
C33-H33C	0.960000	C34-H34A	0.960000
C34-H34B	0.960000	C34-H34C	0.960000

Table S6. Bond angles $\left({ }^{\circ}\right)$ for 4D'.

C9-N1-C2	118.4(2)	C16-N2-C17	117.4(2)
C2-C1-C6	119.1(2)	C2-C1-C7	118.0(2)
C6-C1-C7	122.9(3)	N1-C2-C1	123.2(2)
N1-C2-C3	118.1(3)	C1-C2-C3	118.8(3)
C4-C3-C2	120.9(3)	C4-C3-H3	119.600000
C2-C3-H3	119.600000	C3-C4-C5	119.7(3)
C3-C4-H4	120.200000	C5-C4-H4	120.200000
C6-C5-C4	121.7(3)	C6-C5-Cl1	120.0(3)
C4-C5-Cl1	118.3(2)	C5-C6-C1	119.9(3)
C5-C6-H6	120.100000	C1-C6-H6	120.100000
C8-C7-C1	117.9(2)	C8-C7-C10	121.5(2)
C1-C7-C10	120.6(2)	C7-C8-C9	120.1(2)
C7-C8-C16	120.5(2)	C9-C8-C16	119.4(2)
N1-C9-C8	122.3(3)	N1-C9-C21	117.1(3)
C8-C9-C21	120.6(3)	C11-C10-C15	118.7(3)
C11-C10-C7	120.7(2)	C15-C10-C7	120.5(2)
C10-C11-C12	120.5(3)	C10-C11-H11	119.800000
C12-C11-H11	119.800000	C13-C12-C11	120.1(3)
C13-C12-H12	119.900000	C11-C12-H12	119.900000
C14-C13-C12	119.9(3)	C14-C13-H13	120.100000
C12-C13-H13	120.100000	C13-C14-C15	120.2(3)
C13-C14-H14	119.900000	C15-C14-H14	119.900000
C14-C15-C10	120.6(3)	C14-C15-H15	119.700000
C10-C15-H15	119.700000	N2-C16-C20	122.5(2)
N2-C16-C8	116.9(2)	C20-C16-C8	120.6(2)
N2-C17-C18	123.6(2)	N2-C17-C22	114.6(2)
C18-C17-C22	121.8(2)	C17-C18-C19	118.4(2)
C17-C18-C25	118.7(2)	C19-C18-C25	122.8(2)
C20-C19-C18	116.9(2)	C20-C19-C26	116.6(2)
C18-C19-C26	126.5(2)	C19-C20-C16	121.0(2)
C19-C20-H20	119.500000	C16-C20-H20	119.500000

C9-C21-H21A	109.500000	C9-C21-H21B	109.500000
H21A-C21-H21B	109.500000	C9-C21-H21C	109.500000
H21A-C21-H21C	109.500000	H21B-C21-H21C	109.500000
C17-C22-C23	114.8(2)	C17-C22-H22A	108.600000
C23-C22-H22A	108.600000	C17-C22-H22B	108.600000
C23-C22-H22B	108.600000	H22A-C22-H22B	107.600000
C24-C23-C22	107.6(2)	C24-C23-C32	109.8(3)
C22-C23-C32	110.2(3)	C24-C23-C33	110.2(2)
C22-C23-C33	109.8(2)	C32-C23-C33	109.2(3)
C25-C24-C23	116.2(2)	C25-C24-H24A	108.200000
C23-C24-H24A	108.200000	C25-C24-H24B	108.200000
C23-C24-H24B	108.200000	H24A-C24-H24B	107.400000
O1-C25-C18	122.0(3)	O1-C25-C24	120.4(3)
C18-C25-C24	117.5(3)	C27-C26-C31	117.8(2)
C27-C26-C19	120.6(2)	C31-C26-C19	121.2(2)
C26-C27-C28	120.7(3)	C26-C27-H27	119.700000
C28-C27-H27	119.700000	C29-C28-C27	121.5(3)
C29-C28-H28	119.300000	C27-C28-H28	119.300000
C30-C29-C28	117.7(3)	C30-C29-C34	122.0(3)
C28-C29-C34	120.4(3)	C29-C30-C31	121.6(3)
C29-C30-H30	119.200000	C31-C30-H30	119.200000
C30-C31-C26	120.8(3)	C30-C31-H31	119.600000
C26-C31-H31	119.600000	C23-C32-H32A	109.500000
C23-C32-H32B	109.500000	H32A-C32-H32B	109.500000
C23-C32-H32C	109.500000	H32A-C32-H32C	109.500000
H32B-C32-H32C	109.500000	C23-C33-H33A	109.500000
C23-C33-H33B	109.500000	H33A-C33-H33B	109.500000
C23-C33-H33C	109.500000	H33A-C33-H33C	109.500000
H33B-C33-H33C	109.500000	C29-C34-H34A	109.500000
C29-C34-H34B	109.500000	H34A-C34-H34B	109.500000
C29-C34-H34C	109.500000	H34A-C34-H34C	109.500000

Table S7. Torsion angles $\left({ }^{\circ}\right)$ for $4 D$.

C9-N1-C2-C1	2.9(4)	C9-N1-C2-C3	-178.6(2)
C6-C1-C2-N1	176.5(2)	C7-C1-C2-N1	-4.5(4)
C6-C1-C2-C3	-2.0(4)	C7-C1-C2-C3	177.1(2)
N1-C2-C3-C4	-176.9(3)	C1-C2-C3-C4	1.6(4)
C2-C3-C4-C5	-0.3(5)	C3-C4-C5-C6	-0.7(5)
C3-C4-C5-Cl1	178.3(2)	C4-C5-C6-C1	0.3(4)
C11-C5-C6-C1	-178.7(2)	C2-C1-C6-C5	1.1(4)
C7-C1-C6-C5	-177.9(2)	C2-C1-C7-C8	1.5(3)
C6-C1-C7-C8	-179.5(2)	C2-C1-C7-C10	-177.1(2)
C6-C1-C7-C10	1.9(4)	C1-C7-C8-C9	2.6(4)
C10-C7-C8-C9	-178.8(2)	C1-C7-C8-C16	179.9(2)
C10-C7-C8-C16	-1.5(4)	C2-N1-C9-C8	1.5(4)
C2-N1-C9-C21	-176.4(3)	C7-C8-C9-N1	-4.4(4)
C16-C8-C9-N1	178.4(2)	C7-C8-C9-C21	173.5(3)
C16-C8-C9-C21	-3.8(4)	C8-C7-C10-C11	110.8(3)
C1-C7-C10-C11	-70.7(3)	C8-C7-C10-C15	-67.6(3)
C1-C7-C10-C15	111.0(3)	C15-C10-C11-C12	1.0(4)
C7-C10-C11-C12	-177.3(3)	C10-C11-C12-C13	-1.6(5)
C11-C12-C13-C14	$0.9(5)$	C12-C13-C14-C15	0.4(5)
C13-C14-C15-C10	-0.9(5)	C11-C10-C15-C14	0.2(4)
C7-C10-C15-C14	178.6(3)	C17-N2-C16-C20	2.7(4)
C17-N2-C16-C8	-178.3(2)	C7-C8-C16-N2	120.3(3)
C9-C8-C16-N2	-62.4(3)	C7-C8-C16-C20	-60.7(3)
C9-C8-C16-C20	116.6(3)	C16-N2-C17-C18	0.3(4)
C16-N2-C17-C22	180.0(2)	N2-C17-C18-C19	-3.6(4)
C22-C17-C18-C19	176.8(2)	N2-C17-C18-C25	172.6(2)
C22-C17-C18-C25	-7.0(4)	C17-C18-C19-C20	3.7(4)
C25-C18-C19-C20	-172.3(2)	C17-C18-C19-C26	-175.2(2)

C25-C18-C19-C26	8.9(4)	C18-C19-C20-C16	-0.9(4)
C26-C19-C20-C16	178.0(2)	N2-C16-C20-C19	-2.4(4)
C8-C16-C20-C19	178.6(2)	N2-C17-C22-C23	158.8(2)
C18-C17-C22-C23	-21.5(4)	C17-C22-C23-C24	49.5(3)
C17-C22-C23-C32	-70.1(3)	C17-C22-C23-C33	169.5(3)
C22-C23-C24-C25	-53.3(3)	C32-C23-C24-C25	66.7(3)
C33-C23-C24-C25	-173.0(3)	C17-C18-C25-O1	-171.5(3)
C19-C18-C25-O1	4.4(4)	C17-C18-C25-C24	4.1(4)
C19-C18-C25-C24	-179.9(3)	C23-C24-C25-O1	-156.5(3)
C23-C24-C25-C18	27.8(4)	C20-C19-C26-C27	61.1(3)
C18-C19-C26-C27	-120.1(3)	C20-C19-C26-C31	-111.1(3)
C18-C19-C26-C31	67.7(4)	C31-C26-C27-C28	-0.7(4)
C19-C26-C27-C28	-173.3(3)	C26-C27-C28-C29	1.6(4)
C27-C28-C29-C30	-1.6(4)	C27-C28-C29-C34	178.2(3)
C28-C29-C30-C31	0.8(4)	C34-C29-C30-C31	-179.0(3)
C29-C30-C31-C26	0.0(4)	C27-C26-C31-C30	-0.1(4)
C19-C26-C31-C30	172.4(3)		

Table S8. Anisotropic atomic displacement parameters $\left(\AA^{2}\right)$ for 4D'.

The anisotropic atomic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k a^{*} b^{*} U_{12}\right]$

	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
Cl1	$0.0916(7)$	$0.1387(9)$	$0.0777(6)$	$0.0373(6)$	$0.0274(5)$	$-0.0276(6)$
O1	$0.0937(18)$	$0.0846(17)$	$0.123(2)$	$-0.0346(15)$	$0.0686(16)$	$-0.0255(14)$
N1	$0.0516(15)$	$0.0656(17)$	$0.0690(16)$	$-0.0064(14)$	$0.0183(13)$	$0.0013(13)$
N2	$0.0594(15)$	$0.0448(14)$	$0.0485(13)$	$-0.0012(10)$	$0.0177(11)$	$-0.0058(11)$
C1	$0.0460(16)$	$0.0588(18)$	$0.0404(15)$	$-0.0067(13)$	$0.0111(13)$	$-0.0132(14)$
C2	$0.0476(17)$	$0.065(2)$	$0.0514(17)$	$-0.0137(15)$	$0.0150(14)$	$-0.0097(15)$
C3	$0.0513(19)$	$0.089(2)$	$0.069(2)$	$-0.0206(19)$	$0.0253(16)$	$-0.0086(17)$
C4	$0.063(2)$	$0.108(3)$	$0.060(2)$	$-0.013(2)$	$0.0279(17)$	$-0.025(2)$
C5	$0.060(2)$	$0.097(2)$	$0.0477(17)$	$0.0022(16)$	$0.0179(15)$	$-0.0264(19)$

C6	0.0511(17)	0.072(2)	0.0504(16)	0.0011(15)	0.0129(14)	-0.0122(15)
C7	0.0423(15)	0.0477(16)	0.0415(14)	-0.0072(12)	0.0109(12)	-0.0097(12)
C8	0.0457(16)	$0.0463(16)$	0.0430(14)	-0.0047(13)	0.0109(12)	-0.0040(13)
C9	0.0554(19)	$0.0559(18)$	0.0585(18)	-0.0019(14)	0.0155(15)	-0.0007(15)
C10	0.0484(17)	0.0470(17)	0.0430(14)	0.0018(12)	0.0161(12)	-0.0042(13)
C11	0.070(2)	0.0486(18)	0.0625(18)	0.0005(15)	0.0164(16)	-0.0060(16)
C12	0.103(3)	0.0424(18)	0.085(2)	0.0062(16)	0.034(2)	0.007(2)
C13	0.075(3)	0.078(3)	0.106(3)	0.019(2)	0.029(2)	0.026(2)
C14	0.052(2)	0.078(3)	0.115(3)	0.000(2)	0.0143(19)	$0.0053(19)$
C15	0.0480(19)	0.0608(19)	0.075(2)	-0.0042(16)	0.0149(16)	-0.0033(15)
C16	0.0491(16)	0.0449(16)	0.0422(14)	0.0003(12)	0.0134(12)	-0.0018(13)
C17	0.0537(17)	$0.0464(16)$	$0.0463(15)$	0.0016(13)	0.0135(13)	-0.0064(13)
C18	0.0504(16)	$0.0452(16)$	0.0444(15)	0.0018(12)	0.0149(13)	-0.0031(13)
C19	0.0505(16)	$0.0433(16)$	0.0417(14)	0.0013(12)	0.0105(12)	0.0010(13)
C20	0.0541(17)	$0.0442(16)$	0.0472(15)	-0.0019(12)	0.0150(13)	-0.0075(13)
C21	0.074(2)	0.079(2)	0.090(2)	0.021(2)	0.0235(19)	0.0204(19)
C22	0.077(2)	$0.0535(18)$	0.0605(18)	-0.0040(15)	0.0212(16)	-0.0177(16)
C23	0.0593(18)	0.0504(18)	0.0586(18)	0.0030(14)	0.0191(15)	-0.0086(14)
C24	0.062(2)	0.067(2)	0.087(2)	0.0006(17)	0.0285(18)	-0.0135(17)
C25	0.0535(18)	$0.0602(19)$	0.0639(19)	-0.0012(15)	0.0216(15)	-0.0043(15)
C26	0.0457(16)	$0.0415(16)$	0.0477(15)	0.0006(12)	0.0154(12)	-0.0021(12)
C27	0.0599(18)	$0.0500(18)$	0.0544(16)	0.0074(14)	0.0144(14)	0.0080(14)
C28	0.0626(19)	$0.0435(17)$	0.075(2)	0.0017(15)	0.0223(16)	0.0081(14)
C29	0.0507(17)	$0.0532(19)$	$0.0633(19)$	-0.0125(15)	0.0207(14)	-0.0040(14)
C30	0.068(2)	0.061(2)	0.0476(17)	-0.0030(15)	0.0123(14)	$0.0017(16)$
C31	0.067(2)	0.0467(17)	0.0524(17)	0.0053(14)	$0.0148(15)$	$0.0063(14)$
C32	0.088(3)	0.073(2)	0.079(2)	0.0145(19)	0.006(2)	-0.0015(19)
C33	0.092(3)	0.060(2)	0.095(3)	0.0020(18)	0.031(2)	-0.0254(19)
C34	0.083(2)	0.072(2)	0.095(3)	-0.031(2)	0.030(2)	-0.0067(19)

Table S9. Hydrogen atomic coordinates and isotropic atomic displacement parameters (\AA^{2}) for 4D'.

	x/a	y/b	z/c	U(eq)
H3	0.6348	0.7561	0.3719	0.081000
H4	0.6157	0.9031	0.2858	0.090000
H6	0.3696	1.0075	0.3514	0.069000
H11	0.3431	1.0600	0.4950	0.072000
H12	0.2020	1.1696	0.4889	0.090000
H13	0.0451	1.0978	0.4348	0.102000
H14	0.0286	0.9149	0.3901	0.099000
H15	0.1685	0.8029	0.4001	0.073000
H20	0.3252	0.8790	0.6158	0.058000
H21A	0.4924	0.6313	0.6245	0.121000
H21B	0.5572	0.5687	0.5752	0.121000
H21C	0.4427	0.5403	0.5634	0.121000
H22A	0.2004	0.4389	0.5723	0.075000
H22B	0.0967	0.4937	0.5339	0.075000
H24A	-0.0173	0.5497	0.6246	0.084000
H24B	0.0179	0.5183	0.7123	0.084000
H27	0.1590	0.9997	0.6367	0.065000
H28	0.1585	1.1418	0.7247	0.071000
H30	0.2726	0.9326	0.8973	0.070000
H31	0.2702	0.7886	0.8107	0.066000
H32A	0.1633	0.3985	0.7593	0.123000
H32B	0.2318	0.4888	0.7322	0.123000
H32C	0.2326	0.3632	0.7041	0.123000
H33A	0.0181	0.3159	0.6642	0.122000
H33B	0.0866	0.2856	0.6074	0.122000
H33C	-0.0096	0.3600	0.5785	0.122000
H34A	0.2316	1.1195	0.9288	0.123000
H34B	0.1571	1.1886	0.8649	0.123000
H34C	0.2734	1.2002	0.8735	0.123000

