General considerations:

Reagent information: All reactions were carried out under air atmosphere in screw cap reaction tubes. All the solvents were bought from Sigma-Aldrich and Merck in sealed bottle and were used as received. Copper acetate monohydrate was obtained from S.D. Fine-Chem Limited. Anilines were bought from Aldrich and Alfa-Aesar. For column chromatography, silica (100–200 mesh) from SRL. A gradient elution-using pet–ether and ethyl acetate were performed, based on Merck aluminium TLC sheets (silica gel 60 F_{254}).

Analytical Information: All isolated compounds were characterized by ¹H NMR, ¹³C NMR spectroscopy and mass spectrometry (MS). Copies of the ¹H NMR and ¹³C NMR can be found in the supporting information. Unless otherwise stated, all Nuclear Magnetic Resonance spectra were recorded on a Bruker 400 MHz instrument. All ¹H NMR experiments were reported in units, parts per million (ppm), and were measured relative to the signals for residual chloroform (7.26 ppm) in the deuterated solvent, unless otherwise stated. All ¹³C NMR spectra were reported in ppm relative to deuterochloroform (77.23 ppm). Mass spectra (HRMS) were recorded on an Agilent TOF/6500 series Q-TOF mass spectrometer. FTIR (Fourier Transform Infrared) spectroscopy data was recorded for the synthesized products using Jasco FTIR-6600 spectrophotometer.

General procedure for copper-catalyzed *o*-thiocyanation of aromatic of amines:

In this experiment, an oven-dried screw cap reaction tube was employed. Inside the reaction tube, a magnetic stir bar was placed to ensure efficient mixing. The tube was then charged with aniline (0.25 mmol), Cu(OAc)₂.H₂O (20 mol%), TBHP (3 equiv) (70 % in water), NH₄SCN (1 equiv) and acetonitrile (2 mL) under air atmosphere. To initiate the reaction, the screw cap was securely closed, and the reaction tube was subjected to vigorous stirring. To maintain optimal conditions, a preheated oil bath was utilized, maintaining a constant temperature of 110 °C for a duration of 2 hours. Upon completion, the mixture was diluted with EtOAc (25 mL) and filtered with a celite pad. Then, the EtOAc layer was concentrated using a rotary evaporator followed by column chromatography using silica (100–200 mesh size) and petroleum ether/ethyl acetate as the eluent.

General procedure for scale-up reaction:

An oven dried round bottom flask was charged with the amine compound (456 μ L or 5 mmol), Cu(OAc)₂.H₂O (798 mg or 20 mol%), TBHP (1445 μ L or 3 equiv) (70 % in water), NH₄SCN (380 mg or 1 equiv) were dissolved in 40 mL of acetonitrile which was then reflux at 110 °C

in a pre-heated oil bath for 2 h, leading to the formation of dark green colour solution. Then, the reaction mixture was allowed to cool down to room temperature. Upon completion, the mixture was diluted with EtOAc and filtered. The filtrate was washed with distilled water. The EtOAc layer was dried over anhydrous Na₂SO₄ and concentrated under a vacuum. The crude mixture was purified by column chromatography using silica (100–200 mesh size) and petroleum ether/ethyl acetate as the eluent.

		Catalyst (20 mol%) Oxidant (3 equiv) NH ₄ SCN (1 equiv) Solvent (2 mL),	$\rightarrow \bigcup_{2}^{\mathrm{NH}_{2}} \mathrm{SCN}$		
F (Temp, Time	-	m:	T 1 / 1
Entry	Catalyst	Oxidant	Solvent	Time	Isolated
				(n)	\mathbf{Y} 1eld
1	CuCl	ТЪПЪ	E+OU	2	(%)
1	CuCi			2	<u> </u>
2	Cubr		ElOH EtOU	2	23%
3	Cui		EIOH EtOU	2	10%
4			ElOH EtOU	2	n.a
5			ElOH EtOU	2	50%
0	$CuSO_4.5H_2O$		ELOH	2	45%
/	$Cu(OII)_2$		ELOH	2	33% 47%
8	$CuCl_2.2H_2O$		ELOH	2	4/%
9	$Cu(OAc)_2.H_2O$		ElOH EtOU	2	%00
10	$Cu(OAC)_2.H_2O$		ELOH	2	n.d
11	$Cu(OAc)_2.H_2O$	$\frac{K_2S_2U_8}{(NUL) \subseteq O}$	EtOH	2	n.d
12	$Cu(OAc)_2.H_2O$	$\frac{(\mathrm{NH4})_2\mathrm{S}_2\mathrm{O}_8}{\mathrm{DCD}}$	EtOH	2	n.d
13	$Cu(OAc)_2.H_2O$	DCP	EtOH	2	45%
14	$Cu(OAc)_2.H_2O$	BZ_2O_2	EtOH	2	n.d
15	$Cu(OAc)_2.H_2O$	H_2O_2	EtOH	2	n.d
16	$Cu(OAc)_2.H_2O$	Tert-butyl per	EtOH	2	20%
17		benzoate	БЮЦ	2	1
1/	$Cu(OAc)_2.H_2O$	Cumene	EtOH	2	n.d
10		nyaroperoxiae	MaOII	2	(50/
18	$Cu(OAc)_2.H_2O$		MeOH	2	65% 50%
19	$Cu(OAc)_2.H_2O$	TBHP	<i>i</i> -PrOH	2	59%
20	$Cu(OAc)_2.H_2O$	TBHP	t-BuOH	2	53%
21	$Cu(OAc)_2.H_2O$	TBHP	<i>t</i> -AmOH	2	46%
22	$Cu(OAc)_2.H_2O$	TBHP	H ₂ O	2	n.d
23	$Cu(OAc)_2.H_2O$	TBHP	DMF	2	n.d
24	$Cu(OAc)_2.H_2O$	TBHP	DMSU	2	n.d
25	$Cu(OAc)_2.H_2O$	TBHP		2	n.d
26	$Cu(OAc)_2.H_2O$	TBHP	NMP	2	n.d
27	$Cu(OAc)_2.H_2O$	TBHP	Chloro benzene	2	n.d

Optimization of reaction conditions

28	Cu(OAc) ₂ .H ₂ O	TBHP	THF	2	n.d
29	Cu(OAc) ₂ .H ₂ O	TBHP	1,4 dioxane	2	n.d
30	Cu(OAc) ₂ .H ₂ O	TBHP	Toluene	2	20%
31	Cu(OAc) ₂ .H ₂ O	TBHP	MeCN	2	80%
32	Cu(OAc) ₂ .H ₂ O	TBHP	DCE	2	25%
33	-	TBHP	MeCN	2	n.d
34	Cu(OAc) ₂ .H ₂ O	=	MeCN	2	n.d

Reaction conditions: Compound 1 (0.25 mmol), Cu(OAc)₂.H₂O (20 mol%), TBHP (3 equiv),

NH₄SCN (1 equiv), MeCN (2 mL), 110 °C, 2 h, n.d means not detected

2-thiocynatoaniline (Table 2, 2a): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.4, brown solid (30 mg, isolated yield: 80%), mp: 49-51 °C; ¹H NMR (400 MHz, CDCl₃) δ 5.55 (s, 2H), 7.12 – 7.18 (m, 1H), 7.30 – 7.36 (m, 1H), 7.55 (d, *J* = 8.1 Hz, 1H), 7.60 (d, *J* = 7.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.27, 151.59, 131.31, 126.06, 122.38, 120.98, 119.01. HRMS (ESI) calcd. for C₇H₇N₂S ([M+H]+) is 151.0324 and found 151.0319. IR (neat, cm⁻¹): 3322, 3205, 2053, 1263, 748.

2-fluoro-6-thiocyanatoaniline (Table 2, 2b): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.48, brown solid (25 mg, isolated yield: 59%), mp: 33-34 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.06 (s, 2H), 6.94 – 7.01 (m, 2H), 7.25 – 7.30 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 149.90, 137.66, 129.93, 119.87, 117.47, 111.86, 109.62. ¹⁹F NMR (377 MHz, CDCl₃) δ -135.36. HRMS (ESI) calcd. for C₇H₆FN₂S ([M+H]+) is 169.0235 and found 169.0235. IR (neat, cm⁻¹): 3357, 3322, 2059, 1267 741.

2-chloro-6-thiocyanatoaniline (Table 2, 2c): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.44, brown solid (27.70 mg, isolated yield: 60%), mp: 51-52 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.03 (s, 2H), 6.98 (t, *J* = 7.9, 7.9 Hz, 1H), 7.26 (d, *J* = 7.9 Hz, 1H), 7.41 (d, *J* = 7.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.13, 137.91, 135.47, 116.28, 114.63, 111.22, 108.77. HRMS (ESI) calcd. for C₇H₆ClN₂S ([M+H]+) is 184.9940 and found 184.9940. IR (neat, cm⁻¹): 3453, 3359, 2061, 1263, 744.

2-bromo-6-thiocyanatoaniline (Table 2, 2d): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.4, light brown solid (35.30 mg, isolated yield: 62%), mp: 57-59 °C; ¹H NMR (400 MHz,

CDCl₃) δ 5.95 (s, 2H), 6.96 – 7.04 (m, 1H), 7.53 (dd, J = 8.1, 11.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 146.65, 137.04, 133.42, 116.35, 111.96, 110.19, 109.29. **HRMS (ESI)** calcd. for C₇H₆BrN₂S ([M+H]+) is 228.9435 and found 228.9438. **IR** (neat, cm⁻¹): 3434, 3351, 2059, 1261, 852.

2-methyl-6-thiocyanatoaniline (Table 2, 2e): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.36, red solid (24.80 mg, isolated yield: 60%), mp: 69-71 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.47 (s, 3H), 5.81 (s, 2H), 6.95 (t, *J* = 6.9, 6.9 Hz, 1H), 7.04 (d, *J* = 7.3 Hz, 1H), 7.35 (d, *J* = 7.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.67, 150.99, 131.06, 128.73, 126.86, 122.13, 118.44, 18.57. HRMS (ESI) calcd. For C₈H₉N₂S ([M+H]+) is 165.0486 and found 165.0487. IR (neat, cm⁻¹): 3336, 3207, 2053, 1257, 746.

3-fluoro-2-thiocyanatoaniline (Table 2, 2f): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.48, light brown solid (26.95 mg, isolated yield: 64%), mp: 37-39 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.06 (s, 2H), 6.74 – 6.80 (m, 1H), 7.16 (ddd, J = 1.0, 2.1, 8.4 Hz, 1H), 7.24 (dd, J =2.1, 10.4 Hz, 1H).¹³C NMR (101 MHz, CDCl₃) δ 152.32, 149.90, 137.66, 129.93, 120.08, 117.47, 111.86. ¹⁹F NMR (377 MHz, CDCl₃) δ -113.20. HRMS (ESI) calcd. for C₇H₆FN₂S ([M+H]+) is 169.0235 and found 169.0235. IR (neat, cm⁻¹): 3357, 3322, 2059, 1267, 741.

3-chloro-2-thaiocynatoaniline (Table 2, 2g): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.33, brown solid (30.50 mg, isolated yield: 66%), mp: 56-58 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.92 (s, 2H), 6.57 (dt, *J* = 2.0, 2.0, 8.5 Hz, 1H), 6.77 (t, *J* = 2.0, 2.0 Hz, 1H), 7.41 (dd, *J* = 1.9, 8.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 149.24, 143.30, 134.34, 115.20, 111.93, 110.80, 83.68. HRMS (ESI) calcd. for C₇H₆ClN₂S ([M+H]+) is 184.9940 and found 184.9940. **IR** (neat, cm⁻¹): 3453, 3359, 2061, 1263, 744.

3,5-difluoro-2-thiocyanatoaniline (Table 2, 2h): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.44, yellow solid (30.10 mg, isolated yield: 65%), mp: 46-48 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.22 (s, 2H), 6.21 (d, *J* = 1.5 Hz, 1H), 6.23 (d, *J* = 1.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 152.38, 149.95, 137.66, 129.91, 120.08, 117.49, 111.78. ¹⁹F NMR (377 MHz, CDCl₃) δ -117.22, -108.85. HRMS (ESI) calcd. for C₇H₅F₂N₂S ([M+H]+) is 187.0141 and found 187.0143. IR (neat, cm⁻¹): 3357, 3322, 2059, 1267, 741.

3,5-dimethyl-2-thiocyanatoaniline (Table 2, 2i): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.43, dark red solid (26.73 mg, isolated yield: 60%), mp: 123-124 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.31 (d, *J* = 3.3 Hz, 6H), 5.48 (s, 2H), 6.71 (s, 1H), 7.13 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.27, 140.72, 133.53, 122.83, 114.19, 112.51, 110.93, 18.44, 13.98. **HRMS (ESI)** calcd. for C₉H₁₁N₂S ([M+H]+) is 179.0642 and found 179.0637. **IR** (neat, cm⁻¹): 3336, 3207, 2053, 1257, 746.

4-fluoro-2-thaiocynatoaniline (Table 2, 2j): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.44, brown solid (29.40 mg, isolated yield: 70%), mp: 42-44 °C; ¹H NMR (400 MHz, CDCl₃) δ 5.22 (s, 2H), 6.96 (td, J = 2.6, 9.0, 9.0 Hz, 1H), 7.23 (dd, J = 2.7, 8.1 Hz, 1H), 7.39 (dd, J = 4.7, 8.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.36, 119.80, 119.70, 113.90, 113.66, 107.83, 107.56. ¹⁹F NMR (377 MHz, CDCl₃) δ -126.87. HRMS (ESI) calcd. for C₇H₆FN₂S ([M+H]+) is 169.0235 and found 169.0236. IR (neat, cm⁻¹): 3357, 3322, 2059, 1267, 741.

4-chloro-2-thiocyanatoaniline (Table 2, 2k): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.37, white solid (34.50 mg, isolated yield: 75%), mp: 70-72 °C; ¹H NMR (400 MHz, CDCl₃) δ 5.54 (s, 2H), 7.38 (dd, *J* = 8.6, 13.9 Hz, 2H), 7.48 (d, *J* = 2.1 Hz, 1H) ¹³C NMR (101 MHz, CDCl₃) δ 145.50, 133.95, 132.77, 119.79, 116.58, 111.90, 109.99. HRMS (ESI) calcd.

For C₇H₆ClN₂S ([M+H]+) is 184.9940 and found 184.9937. **IR** (neat, cm⁻¹): 3453, 3359, 2061, 1263, 744.

4-bromo-2-thiocyanatoaniline (Table 2, 2l): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.42, yellow solid (38.50 mg, isolated yield: 67%), mp: 76-78 °C; ¹H NMR (400 MHz, CDCl₃) δ 5.46 (s, 2H), 7.24 (s, 1H), 7.42 (dd, *J* = 1.6, 8.6 Hz, 1H), 7.55 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.50, 133.95, 132.77, 119.79, 116.58, 111.90, 109.99. **HRMS (ESI)** calcd. For C₇H₆BrN₂S ([M+H]+) is 228.9435 and found 228.9434. **IR** (neat, cm⁻¹): 3434, 3351, 2059, 1261, 852.

4-(difluoromethoxy)-2-thaiocynatoaniline (Table 2, 2m): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.44, brown liquid (32.80 mg, isolated yield: 61%); ¹**H** NMR (400 MHz, CDCl₃) δ 5.73 (s, 2H), 6.56 (d, *J* = 74.0 Hz, 1H), 7.09 (d, *J* = 7.3 Hz, 1H), 7.37 (s, 1H), 7.47 (d, *J* = 8.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.39, 138.48, 137.24, 116.95, 115.95, 111.12, 110.48, 97.51. ¹⁹F NMR (377 MHz, CDCl₃) δ -80.10. **HRMS (ESI)** calcd. for C₈H₇F₂N₂OS ([M+H]+) is 217.0247 and found 217.0242. **IR** (neat) cm-1: 3356, 2970, 2160, 1373, 732.

4-methyl-2-thiocyanatoaniline (Table 2, 2n): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.375, red solid (31.65 mg, isolated yield: 77%) mp: 79-81°C; ¹H NMR (400 MHz, CDCl₃) δ 2.32 (s, 3H), 5.50 (s, 2H), 7.03 (dd, J = 1.8, 8.0 Hz, 1H), 7.29 – 7.38 (m, 2H).¹³C NMR (101 MHz, CDCl₃) δ 149.77, 132.15, 129.51, 127.19, 121.01, 120.04, 118.77, 21.27. HRMS (ESI) calcd. For C₈H₉N₂S ([M+H]+) is 165.0486 and found 165.0487. IR (neat, cm⁻¹): 3336, 3207, 2053, 1257, 746.

2,3-dimethyl-6-thaiocynatoaniline (entry 2, 20): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.43, dark red solid (25.57 mg, isolated yield: 57%), mp: 75-77 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.26 (s, 3H), 2.41 (s, 3H), 5.46 (s, 2H), 6.87 (d, *J* = 8.0 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.34, 139.07, 129.32, 122.90, 120.77, 117.88, 115.61, 29.74, 21.45. HRMS (ESI) calcd. for C₉H₁₁N₂S ([M+H]+) is 179.0642 and found 179.0637. **IR** (neat, cm⁻¹): 3336, 3207, 2053, 1257, 746.

2,4-dimethyl-6-thiocyanatoaniline (Table 2, 2p): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.44, brown solid (26.30 mg, isolated yield: 59%), mp: 78-80 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.27 (s, 3H), 2.41 (s, 3H), 5.87 (s, 2H), 6.85 (s, 1H), 7.14 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.84, 131.81, 131.14, 130.98, 128.87, 128.17, 118.43, 21.20, 18.50. HRMS (ESI) calcd. for C₉H₁₁N₂S ([M+H]+) is 179.0642 and found 179.0642. IR (neat, cm⁻¹): 3336, 3207, 2053, 1257, 746.

4-bromo-2-methyl-6-thiocyanatoaniline (Table 2, 2q): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf :0.35, light yellow solid (37.65 mg, isolated yield: 62%), mp: 84-86 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.43 (s, 3H), 6.14 (s, 2H), 7.14 (s, 1H), 7.44 (d, *J* = 2.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 152.32, 149.90, 137.66, 129.93, 119.87, 117.47, 111.86, 29.85. HRMS (ESI) calcd. for C₈H₈BrN₂S ([M+H]+) is 242.9591 and found 242.9588. IR (neat, cm⁻¹): 3336, 3207, 2053, 1257, 746.

2,4-difluoro-6-thaiocynatoaniline (entry 2, 2r): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.4, brown solid (28 mg, isolated yield: 60%), mp: 48-49 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.06 (s, 2H), 6.78 (t, *J* = 8.7, 8.7 Hz, 1H), 7.15 – 7.25 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 152.37, 149.94, 137.66, 129.94, 120.10, 117.48, 111.79. ¹⁹F NMR (377 MHz, CDCl₃) δ -130.74, -123.89. HRMS (ESI) calcd. For C₇H₅F₂N₂S ([M+H]+) is 187.0141 and found 187.0144. IR (neat, cm⁻¹): 3357, 3322, 2059, 1267, 741.

3-bromo-6-methyl-2-thiocyanatoaniline (Table 2, 2s): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.35, red solid (36 mg, isolated yield: 59%), mp: 88-90 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.42 (s, 3H), 5.43 (s, 2H), 6.94 (d, *J* = 7.9 Hz, 1H), 7.08 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.65, 137.04, 133.42, 116.35, 111.96, 110.19, 109.29, 29.83. HRMS (ESI) calcd. for C₈H₈BrN₂S ([M+H]+) is 242.9591 and found 242.9588. IR (neat, cm⁻¹): 3336, 3207, 2053, 1257, 746.

3,6-dimethyl-2-thiocyanatoaniline (Table 2, 2t): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.4, dark red solid (28.85 mg, isolated yield: 65%), mp: 79-80 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.30 (s, 3H), 2.41 (s, 3H), 5.99 (s, 2H), 6.74 (d, *J* = 7.5 Hz, 1H), 6.94 (d, *J* = 7.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.74, 150.64, 131.30, 128.29, 126.95, 125.84, 122.57, 21.12, 18.32. HRMS (ESI) calcd. for C₉H₁₁N₂S ([M+H]+) is 179.0642 and found 179.0638. IR (neat, cm⁻¹): 3336, 3207, 2053, 1257, 746.

2,6-dimethyl-4-thiocyanatoaniline (Table 2, 2u): eluent petroleum ether / ethyl acetate (4:1, v/v), Rf: 0.4, red solid (31.10 mg, isolated yield: 70%), mp: 82-83 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.16 (s, 6H), 3.72 (s, 2H), 7.16 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 145.39, 132.98, 123.32, 112.88, 108.64, 17.60. HRMS (ESI) calcd. for C₉H₁₁N₂S ([M+H]+) is 179.0642 and found 179.0638. IR (neat, cm⁻¹): 3336, 3207, 2053, 1257, 746.

NMR Data:

(Table 2, entry 2a)

-50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

(Table 2, entry 2c)

(Table 2, entry 2d)

						· ·						· ·												- I.
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-2:
												f1 (ppm)												

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

(Table 2, entry 2j)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

(Table 2, entry 2k)

(Table 2, entry 2l)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

