Supporting Information

Synthesis of D-glycero-D-manno-heptose-18,7-bisphosphate (HBP) from D-mannurono-2,6-lactone

Yuta Shinotsuka, ${ }^{a}$ Riko Nakajima, ${ }^{a}$ Kohei Ogawa, ${ }^{a}$ Kaede Takise, ${ }^{a}$ Yutaka Takeuchi, ${ }^{\text {b }}$
Hiroshi Tanaka, ${ }^{\text {b }}$ and Kaname Sasaki *a
a. Department of Chemistry, Toho University. 2-2-1 Miyama, Funabashi 274-8510 Japan.
b. Department of Chemical Science and Engineering, Tokyo Institute of Technology. 2-12-1-H101, Ookayama, Muguro-ku Tokyo 152-8552 Japan.

Kaname.sasaki@sci.toho-u.ac.jp

Table of Contents

Experimental procedure
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra of new compounds

General Information

Analytical thin layer chromatography (TLC) was performed using Merck KGaA TLC 60F-254 plates (0.25 mm), and visualization was accomplished by 10% sulfuric acid in EtOH or PMA (Phosphomolybdic acid), followed by heating or UV irradiation (254 nm). Specific rotations were measured on an automatic polarimeter with a path length of 50 mm in the solvent specified. Concentrations are given in $\mathrm{g} / 100 \mathrm{~mL}$. Optical rotations were measured on a JASCO P-2200 photoelectric polarimeter. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a JEOL Ltd. JNM-ECP400 series $(400 \mathrm{MHz})$. Chemical shifts (δ) are reported in parts per million (ppm) downfield or upfield from tetramethylsilane ($\delta 0.00$), $\mathrm{CHCl}_{3}(\delta 7.26)$, or $\mathrm{DHO}(\delta 4.79)$ integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, and $\mathrm{m}=$ multiplet $)$ and coupling constants $(\mathrm{Hz}) .{ }^{13} \mathrm{C}$ chemical shifts are reported in ppm downfield or upfield from $\mathrm{CDCl}_{3}(\delta 77.36)$. High-resolution mass spectra (HRMS) were recorded on a JEOL Ltd. AccuTOFCS JIMS-T100CS with an electrospray ionization (ESI) source coupled. Silica-gel column chromatography was performed on FUJI SILYSIA CHEMICAL Ltd. Silica Gel PSQ60B 46-50 $\mu \mathrm{m}$ (spherical, neutral).

Experimental procedure

Allyl 3-O-benzyl-4-O-tert-butyldimethylsilyl-7-deoxy-7-iodo-6-oxo- α-D-manno-heptopyranoside (2)

Under Ar atmosphere, to a solution of $1(3.6 \mathrm{~g}, 8.6 \mathrm{mmol})$ in anhydrous $\mathrm{PhMe}(43 \mathrm{~mL})$ was added $\mathrm{CH}_{2} \mathrm{I}_{2}(1.4 \mathrm{~mL}, 17 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. Then the mixture was cooled to $-95^{\circ} \mathrm{C}$ and $\mathrm{CH}_{3} \mathrm{Li}$ in $\mathrm{Et}_{2} \mathrm{O}(1.2 \mathrm{M}$, $7.5 \mathrm{~mL}, 10 \mathrm{mmol}$) was added at $-95^{\circ} \mathrm{C}$ and stirred for 2 h at $-95^{\circ} \mathrm{C}$. After the TLC analysis indicated the completion of reaction, the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. $(10 \mathrm{~mL})$ and the mixture was poured to water $(50 \mathrm{~mL})$ and extracted with EtOAc $(20 \mathrm{~mL} \times 3)$. The organic layer was washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel 30 g , hexane/EtOAc $=19 / 1 \rightarrow 4 / 1$, v / v), which gave the title compound $2\left(3.6 \mathrm{~g}, 74 \%\right.$) as a yellow oil. $\mathrm{R}_{f}=0.53$ (hexane $/ \mathrm{EtOAc}=3 / 1, \mathrm{v} / \mathrm{v}$); $[\alpha]^{20}{ }_{\mathrm{D}}=+35.6(c$ 2.6, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.38-7.31(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.98-5.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\beta}\right)$, $5.32\left(\mathrm{dd}, J_{\gamma \text { trans }, \gamma \text { cis }}=1.6 \mathrm{~Hz}, J_{\gamma \text { trans }, \beta}=17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\gamma \text { trans }}\right), 5.25\left(\mathrm{dd}, J_{\gamma \text { cis, } \gamma \text { trans }}=1.6 \mathrm{~Hz}, J_{\gamma \text { cis, }, \beta}=10.4\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{\gamma c i s}\right), 4.96\left(\mathrm{~d}, J_{1,2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.63 \& 4.57\left(\mathrm{ABq}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.46(\mathrm{~d}$, $\left.J_{4,5}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 4.30\left(\mathrm{dd}, J_{\alpha, \alpha}=12.0 \mathrm{~Hz}, J_{\alpha, \beta}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right), 4.14\left(\mathrm{dd}, J_{4,5}=8.4 \mathrm{~Hz}, J_{3,4}=\right.$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.07\left(\mathrm{~d}, J_{7,7}=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 4.06\left(\mathrm{dd}, J_{\alpha, \alpha}=12.0 \mathrm{~Hz}, J_{\alpha, \beta}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{H}_{\alpha}\right), 3.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.96\left(\mathrm{~d}, J_{7,7}=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 3.70\left(\mathrm{dd}, J_{3,4}=8.4 \mathrm{~Hz}, J_{2,3}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-3), 0.85\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right), 0.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$,

TMS) $\delta 198.4,137.6,133.5,128.6,128.1,127.9,118.2,98.9,80.1,74.2,71.8,68.9,68.4,67.5,26.0$, 18.2, 5.0, -4.0, -4.6; HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{ISiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 585.1139, found: 585.1163.

Allyl 7-O-acetyl-3-O-benzyl-4-O-tert-butyldimethylsilyl-6-oxo- α-D-manno-heptopyranoside (3)

Under Ar atmosphere, to a solution of $2(5.1 \mathrm{~g}, 9.1 \mathrm{mmol})$ in anhydrous DMF (18 mL) was added KOAc ($1.8 \mathrm{~g}, 18 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$ and stirred for 1 h at $25^{\circ} \mathrm{C}$. After the TLC analysis indicated the completion of reaction, the mixture was poured to water $(50 \mathrm{~mL})$ and extracted with EtOAc ($20 \mathrm{~mL} x$ 3). The organic layer was washed with brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel 25 g , hexane/EtOAc $=9 / 1 \rightarrow 7 / 3, \mathrm{v} / \mathrm{v}$), which gave the title compound $3(3.8 \mathrm{~g}, 86 \%)$ as a yellow oil. $\mathrm{R}_{f}=0.38$ (hexane/EtOAc $=4 / 1, \mathrm{v} / \mathrm{v}) ;[\alpha]^{20}{ }_{\mathrm{D}}=+31.0\left(c 3.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.27-$ $7.21(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.85-5.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\beta}\right), 5.20\left(\mathrm{dddd}, J_{\gamma_{\text {trans }, \beta}}=17.6 \mathrm{~Hz}, J_{\gamma \text { trans, } \gamma \text { cis }}=1.7 \mathrm{~Hz}, J_{\gamma \text { trans, } \alpha}\right.$ $\left.=1.7 \mathrm{~Hz}, J_{\gamma_{\text {trans }, \alpha}}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\gamma \text { trans }}\right), 5.14\left(\mathrm{dddd}, J_{\gamma \text { cis }, \beta}=10.4 \mathrm{~Hz}, J_{\gamma \text { cis, } \gamma \text { trans }}=1.7 \mathrm{~Hz}, J_{\gamma \text { cis, } \alpha}=1.7\right.$ $\left.\mathrm{Hz}, J_{\gamma c i s, \alpha}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\gamma c i s}\right), 4.85(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-7), 4.84\left(\mathrm{~d}, J_{1,2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.53 \& 4.46(\mathrm{ABq}$, $J=11.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2}$), 4.11 (dddd, $J_{\alpha, \alpha}=12.9 \mathrm{~Hz}, J_{\alpha, \beta}=5.2 \mathrm{~Hz}, J_{\alpha, \gamma}=1.5 \mathrm{~Hz}, J_{\alpha, \gamma}=1.5 \mathrm{~Hz}, 1 \mathrm{H}$, H_{α}), 4.04-4.03 (m, 2H, H-4\&H-5), 3.92 (dddd, $J_{\alpha, \alpha}=12.9 \mathrm{~Hz}, J_{\alpha, \beta}=6.1 \mathrm{~Hz}, J_{\alpha, \gamma}=1.2 \mathrm{~Hz}, J_{\alpha, \gamma}=1.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right), 3.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.60-3.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.74\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right),-0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 199.1,170.1$, $137.6,133.4,128.6,128.0,127.9,118.0,98.8,79.9,76.2,71.8,68.9,67.8,67.5,66.4,25.9,20.5,18.1$, -4.1, -4.9; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 517.2228$, found: 517.2236.

Allyl 7-O-acetyl-3-O-benzyl-4-O-tert-butyldimethylsilyl- α-D-glycero-D-manno-heptopyranoside

 (4)

Under Ar atmosphere, to a solution of $3(1.1 \mathrm{~g}, 2.2 \mathrm{mmol})$ in anhydrous THF (11 mL) was added $\mathrm{NaBH}_{4}(85 \mathrm{mg}, 2.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and warmed to $25^{\circ} \mathrm{C}$. After stirring for 1 h , the mixture was poured to water $(20 \mathrm{~mL})$ and extracted with EtOAc $(10 \mathrm{~mL} \times 3)$. The organic layer was washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. The residue was purified by column chromatography (silica gel 10 g , hexane/EtOAc $=2 / 1$, v/v), which gave the title compound $4(0.66 \mathrm{~g}$, 60%) as a colorless viscous syrup. $\mathrm{R}_{f}=0.28$ (hexane/EtOAc $\left.=2 / 1, \mathrm{v} / \mathrm{v}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=+52.2(c 1.5$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.35-7.31(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.94-5.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\beta}\right), 5.28$
(dddd, $J_{\gamma \text { trans }, \beta}=17.6 \mathrm{~Hz}, J_{\gamma \text { trans }, \gamma}$ cis $=1.6 \mathrm{~Hz}, J_{\gamma \text { trans }, \alpha}=1.6 \mathrm{~Hz}, J_{\gamma \text { trans }, \alpha}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\gamma \text { trans }}$), 5.20 (dddd, $\left.J_{\gamma c i s, \beta}=10.4 \mathrm{~Hz}, J_{\gamma c i s, \gamma \text { trans }}=1.3 \mathrm{~Hz}, J_{\gamma c i s, \alpha}=1.3 \mathrm{~Hz}, J_{\gamma c i s, \alpha}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\gamma c i s}\right), 4.85\left(\mathrm{~d}, J_{1,2}=\right.$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.34-4.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7), 4.19$ (dddd, $J_{\alpha, \alpha}=12.8 \mathrm{~Hz}, J_{\alpha, \beta}=3.4$ $\left.\mathrm{Hz}, J_{\alpha, \gamma}=1.2 \mathrm{~Hz}, J_{\alpha, \gamma}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right), 4.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.96$ (dddd, $J_{\alpha, \alpha}=12.8$ $\left.\mathrm{Hz}, J_{\alpha, \beta}=6.4 \mathrm{~Hz}, J_{\alpha, \gamma}=1.2 \mathrm{~Hz}, J_{\alpha, \gamma}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right), 3.88\left(\mathrm{dd}, J_{4,5}=8.7 \mathrm{~Hz}, J_{3,4}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right)$, $3.78\left(\mathrm{dd}, J_{4,5}=8.7 \mathrm{~Hz}, J_{5,6}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.65\left(\mathrm{dd}, J_{3,4}=8.7 \mathrm{~Hz}, J_{2,3}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 2.82$ (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)\right), 0.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 171.4,137.6,133.6,128.6$, $128.0,127.8,117.7,98.4,80.5,73.2,71.3,70.0,69.5,68.2,67.6,64.9,26.0,21.0,18.3,-3.5,-4.7$; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 519.2384$, found: 519.2360 .

Allyl 7-O-acetyl-3-O-benzyl- α-D-glycero-D-manno-heptopyranoside (5)

Under Ar atmosphere, to a solution of $4(0.17 \mathrm{~g}, 0.33 \mathrm{mmol})$ in anhydrous THF $(1.5 \mathrm{~mL})$ was added $\mathrm{AcOH}(28 \mu \mathrm{~L}, 0.49 \mathrm{mmol})$ and TBAF in THF $(0.49 \mathrm{~mL}, 0.49 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. After stirring for 4 days, the mixture was concentrated in vacuo. The residue was purified by column chromatography (silica gel 3 g , hexane/EtOAc $=1 / 1 \rightarrow 1 / 2, \mathrm{v} / \mathrm{v}$), which gave the title compound $5(95 \mathrm{mg}, 75 \%)$ as a colorless viscous syrup. $\mathrm{R}_{f}=0.12$ (hexane/ $\left.\mathrm{EtOAc}=1 / 1, \mathrm{v} / \mathrm{v}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=+54.3\left(c 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.38-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.93-5.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\beta}\right), 5.28\left(\right.$ dddd, $J_{\gamma \text { trans }, \beta}=17.2 \mathrm{~Hz}$,
 cis $_{\boldsymbol{\gamma} \text { trans }}=1.2 \mathrm{~Hz}, J_{\gamma}{ }_{\text {cis, } \alpha}=1.2 \mathrm{~Hz}, J_{\gamma c i s, \alpha}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\gamma}$ cis $), 4.89\left(\mathrm{~d}, J_{1,2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.72 \&$ $4.67\left(\mathrm{ABq}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.39\left(\mathrm{dd}, J_{7,7}=12.0 \mathrm{~Hz}, J_{6,7}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 4.37\left(\mathrm{dd}, J_{7,7}=\right.$ $\left.12.0 \mathrm{~Hz}, J_{6,7}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 4.17$ (dddd, $J_{\alpha, \alpha}=12.8 \mathrm{~Hz}, J_{\alpha, \beta}=5.0 \mathrm{~Hz}, J_{\alpha, \gamma}=1.6 \mathrm{~Hz}, J_{\alpha, \gamma}=1.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{\alpha}\right), 4.11-4.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 4.04-4.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \& \mathrm{H}-5), 3.96\left(\mathrm{dddd}, J_{\alpha, \alpha}=13.2 \mathrm{~Hz}, J_{\alpha, \beta}=6.4\right.$ $\left.\mathrm{Hz}, J_{\alpha, \gamma}=1.6 \mathrm{~Hz}, J_{\alpha, \gamma}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right), 3.74\left(\mathrm{dd}, J_{3,4}=9.4 \mathrm{~Hz}, J_{2,3}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.65\left(\mathrm{dd}, J_{4,5}\right.$ $\left.=9.4 \mathrm{~Hz}, J_{3,4}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.36(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.05(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.40(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 171.6,137.7,133.5,128.6,128.2,128.1$, 117.6, 98.6, 79.5, 72.7, 72.4, 70.2, 68.7, 68.1, 67.9, 65.7, 21.0; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 405.1519$, found: 405.1522 .

Allyl 7-O-acetyl-3-O-benzyl-4,6-O-benzylidene- α-D-glycero-D-manno-heptopyranoside (6)

Under Ar atmosphere, to a solution of $\mathbf{5}(95 \mathrm{mg}, 0.25 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added $\mathrm{PhCH}(\mathrm{OMe})_{2}(56 \mu \mathrm{~L}, 0.37 \mathrm{mmol})$ and $\mathrm{CSA}(5.8 \mathrm{mg}, 25 \mu \mathrm{~mol})$ at $25^{\circ} \mathrm{C}$. Then the mixture was stirred for 2.5 h . After the TLC analysis indicated the completion of reaction, the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL})$ and the mixture was poured to water (5 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} x 3)$. The organic layer was washed with brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. The residue was purified by column chromatography (silica gel 6 g , hexane $/ \mathrm{EtOAc}=2 / 1, \mathrm{v} / \mathrm{v}$), which gave the title compound $6\left(0.11 \mathrm{~g}\right.$, quant.) as a white foam. $\mathrm{R}_{f}=0.52($ hexane $/ \mathrm{EtOAc}=1 / 1, \mathrm{v} / \mathrm{v})$; $[\alpha]^{20}{ }_{\mathrm{D}}=+56.7\left(c 3.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.53-7.50(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.93-$ $5.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\beta}\right), 5.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}), 5.28\left(\mathrm{dd}, J_{\gamma \text { trans }, \beta}=17.2 \mathrm{~Hz}, J_{\gamma \text { trans }, \gamma \text { cis }}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\gamma \text { trans }}\right)$, $5.22\left(\mathrm{dd}, J_{\gamma c i s, \beta}=10.4 \mathrm{~Hz}, J_{\gamma c i s, \gamma \text { trans }}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\gamma \text { cis }}\right), 4.89\left(\mathrm{~d}, J_{1,2}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.86$ \& 4.71 $\left(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.45\left(\mathrm{dd}, J_{7,7}=12.0 \mathrm{~Hz}, J_{6,7}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 4.26\left(\mathrm{dd}, J_{7,7}=12.0\right.$ $\left.\mathrm{Hz}, J_{6,7}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 4.15\left(\mathrm{dd}, J_{3,4}=9.6 \mathrm{~Hz}, J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 4.14-4.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \&$ $\left.\mathrm{H}_{\alpha}\right), 4.02\left(\mathrm{dd}, J_{1,2}=1.1 \mathrm{~Hz}, J_{2,3}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.97-3.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right), 3.95\left(\mathrm{dd}, J_{2,3}=3.2 \mathrm{~Hz}, J_{3,4}\right.$ $=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.74\left(\mathrm{dd}, J_{4,5}=9.6 \mathrm{~Hz}, J_{5,6}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 2.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.06(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 170.9,138.0,137.3,133.3,129.0,128.5,128.3,128.0$, 127.9, 126.2, 117.8, 101.2, 99.1, 78.0, 77.5, 77.1, 76.8, 75.8, 73.2, 69.9, 68.0, 64.0, 62.9, 20.9; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 493.1832$, found: 493.1819 .

Allyl 2,3-O-dibenzyl-4,6-O-benzylidene- α-D-glycero-D-manno-heptopyranoside (7)

Under Ar atmosphere, to a solution of $6(68 \mathrm{mg}, 0.14 \mathrm{mmol})$ in anhydrous DMF $(1.0 \mathrm{~mL})$ was added $\operatorname{BnBr}(19 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and stirred for 10 min . Then $\mathrm{NaH}(9.1 \mathrm{mg}, 0.21 \mathrm{mmol}$, purity $55 \%)$ was added at $0^{\circ} \mathrm{C}$ and warmed to $25^{\circ} \mathrm{C}$ and stirred for 2 h at $25^{\circ} \mathrm{C}$. After the TLC analysis indicated the completion of reaction, the reaction was quenched with $\mathrm{MeOH}(0.5 \mathrm{~mL})$. After stirring for 2 h , the mixture was poured to water $(10 \mathrm{~mL})$ and extracted with EtOAc $(5 \mathrm{~mL} x 3)$. The organic layer was washed with brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. The residue was purified by column chromatography (silica gel 5 g , hexane $/ \mathrm{EtOAc}=2 / 1, \mathrm{v} / \mathrm{v}$), which gave the title compound $7(57 \mathrm{mg}, 79 \%)$ as a colorless viscous syrup. $\mathrm{R}_{f}=0.33$ (hexane/EtOAc $=3 / 1, \mathrm{v} / \mathrm{v}$) ; $[\alpha]^{20}{ }_{\mathrm{D}}$ $=+53.3\left(c 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.40-7.26(\mathrm{~m}$, $13 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.89-5.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\beta}\right), 5.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}), 5.22\left(\mathrm{dddd}, J_{\gamma \text { trans }, \beta}=17.2 \mathrm{~Hz}, J_{\gamma \text { trans } \gamma \text { cis }}=1.6\right.$ $\left.\mathrm{Hz}, J_{\gamma \text { trans }, \alpha}=1.6 \mathrm{~Hz}, J_{\gamma \text { trans }, \alpha}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\gamma \text { trans }}\right), 5.17\left(\mathrm{dddd}, J_{\gamma \text { cis, }, \beta}=11.6 \mathrm{~Hz}, J_{\gamma \text { cis, } \gamma \text { trans }}=1.3 \mathrm{~Hz}\right.$, $\left.J_{\gamma c i s, \alpha}=1.3 \mathrm{~Hz}, J_{\gamma c i s, \alpha}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\gamma c i s}\right), 4.85\left(\mathrm{~d}, J_{1,2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.82 \& 4.73(\mathrm{ABq}, J=$ $\left.12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.81 \& 4.65\left(\mathrm{ABq}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.29\left(\mathrm{dd}, J_{3,4}=9.6 \mathrm{~Hz}, J_{4,5}=9.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.14$ (dddd, $\left.J_{\alpha, \alpha}=12.8 \mathrm{~Hz}, J_{\alpha, \beta}=5.2 \mathrm{~Hz}, J_{\alpha, \gamma}=1.4 \mathrm{~Hz}, J_{\alpha, \gamma}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right), 4.01-3.97$
(m, 1H, H-6), 3.98 (dd, $\left.J_{2,3}=3.2 \mathrm{~Hz}, J_{3,4}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.95-3.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 3.92$ (dddd, $J_{\alpha, \alpha}$ $\left.=12.8 \mathrm{~Hz}, J_{\alpha, \beta}=6.2 \mathrm{~Hz}, J_{\alpha, \gamma}=1.3 \mathrm{~Hz}, J_{\alpha, \gamma}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right), 3.86\left(\mathrm{dd}, J_{1,2}=1.6 \mathrm{~Hz}, J_{2,3}=3.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-2), 3.82-3.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 3.75\left(\mathrm{dd}, J_{4,5}=9.6 \mathrm{~Hz}, J_{5,6}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 1.92(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 138.7,138.1,137.5,133.4,129.0,128.4,128.3$, $128.28,128.20,127.8,127.6,127.5,126.2,117.8,101.1,98.4,78.8,78.1,76.6,76.2,73.7,73.2,67.9$, 64.6, 62.0; HRMS (ESI) Calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 541.2196 , found: 541.2194 .
(Allyl 2,3-O-dibenzyl-4,6-O-benzylidene- α-D-glycero-D-manno-heptopyranoside)-7-yl o-xylenyl phosphate (8)

Under Ar atmosphere, to a solution of $7(40 \mathrm{mg}, 77 \mu \mathrm{~mol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ were added XylPOCl $(0.10 \mathrm{~g}, 0.46 \mathrm{mmol})$ and DMAP $(56 \mathrm{mg}, 0.46 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. After stirring for 3 days, the mixture was poured to water (5 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} x \mathrm{3})$. The organic layer was washed with brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. The residue was purified by column chromatography (silica gel 7 g , hexane/EtOAc $=2 / 1 \rightarrow 1 / 1$, v / v), which gave the title compound $8(34 \mathrm{mg}, 63 \%)$ as a white foam and 7 was recovered ($13 \mathrm{mg}, 32 \%$). $\mathrm{R}_{f}=0.40$ (hexane/EtOAc $=1 / 1, \mathrm{v} / \mathrm{v}) ;[\alpha]^{20}{ }_{\mathrm{D}}=+20.6\left(c 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.50-$ 7.48 (m, 2H, Ar-H), 7.38-7.26 (m, 16H, Ar-H), 7.23-7.17 (m, 1H, Ar-H), 5.86-5.77 (m, 1H, H ${ }_{\beta}$), 5.77 $(\mathrm{s}, 1 \mathrm{H}, \mathrm{PhCH}), 5.29-5.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 5.07-4.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 5.22\left(\mathrm{~d}, J_{\gamma c i s, \beta}=17.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{H}_{\gamma \text { trans }}\right), 5.14\left(\mathrm{~d}, J_{\gamma c i s, \beta}=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\gamma}\right.$ cis $) 4.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 4.82 \& 4.73(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{ArCH}_{2}\right), 4.81 \& 4.64\left(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.50\left(\mathrm{ddd}, J_{6,7}=6.0 \mathrm{~Hz}, J_{7,7}=12.8 \mathrm{~Hz}, J_{\mathrm{H}, \mathrm{P}}=\right.$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 4.40\left(\mathrm{dd}, J_{6,7}=5.6 \mathrm{~Hz}, J_{7,7}=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 4.31\left(\mathrm{dd}, J_{3,4}=9.6 \mathrm{~Hz}, J_{4,5}=9.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.18-4.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \& \mathrm{H}_{\alpha}\right), 3.99\left(\mathrm{dd}, J_{2,3}=3.2 \mathrm{~Hz}, J_{3,4}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.92(\mathrm{dd}$, $\left.J_{\alpha, \alpha}=12.8 \mathrm{~Hz}, J_{\alpha, \beta}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right), 3.86\left(\mathrm{dd}, J_{1,2}=1.2 \mathrm{~Hz}, J_{2,3}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.75\left(\mathrm{dd}, J_{4,5}=\right.$ $\left.9.6 \mathrm{~Hz}, J_{5,6}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 138.6,138.0,137.4,135.5$, $135.3,133.3,129.2,129.1,129.0,128.9,128.5,128.3,128.2,128.1,127.9,127.6,127.5,126.1,117.5$, $101.0,98.4,78.2,77.3,77.2,77.1,76.5,76.2,73.7,73.2,68.7,68.0,65.8,64.1 ;{ }^{31} \mathrm{P}$ NMR (161 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-0.7$; HRMS (ESI) Calcd for $\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{O}_{10} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 723.2329$, found: 723.2312.

(2,3-O-dibenzyl-4,6-O-benzylidene- α-D-glycero-D-manno-heptopyranoside)-7-yl-o-xylenyl

 phosphate (9)

Under Ar atmosphere, to $\operatorname{Ir}\left[(\operatorname{cod})\left(\mathrm{PPh}_{2} \mathrm{Me}_{2}\right] \mathrm{PF}_{6}(0.20 \mathrm{mg}, 0.21 \mu \mathrm{~mol})\right.$ was added anhydrous THF $(0.50 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. The mixture was degassed under sonication, and the atmosphere was replaced with H_{2} at the temperature. After observing the color change of the solution from yellow to colorless, the atmosphere was replaced with Ar. The solution was then transferred to a solution of $\mathbf{8}(29 \mathrm{mg}, 42$ $\mu \mathrm{mol})$ in anhydrous THF $(0.50 \mathrm{~mL})$, and the mixture was stirred for 2 h , before being concentrated in vacuo. Upon confirmation of complete migration of the double bond via ${ }^{1} \mathrm{H}$ NMR spectroscopy, the mixture was diluted with $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}=4 / 1(0.50 \mathrm{~mL})$ and $\mathrm{I}_{2}(21 \mathrm{mg}, 83 \mu \mathrm{~mol})$ was added. After stirring for 20 min , the TLC analysis indicated the completion of reaction. The reaction was quenched with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq. $(2 \mathrm{~mL})$ and the mixture was poured to water $(5 \mathrm{~mL})$ and extracted with EtOAc (2 $\mathrm{mL} x$ 3). The organic layer was washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. The residue was purified by column chromatography (silica gel 4 g , $\left.\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{EtOAc}=9 / 1, \mathrm{v} / \mathrm{v}\right)$, yielding the title compound $9(21 \mathrm{mg}, 76 \%)$ as a white foam. $\mathrm{R}_{f}=0.25$ (hexane/EtOAc $=1 / 2, \mathrm{v} / \mathrm{v}) ;[\alpha]^{20}{ }_{\mathrm{D}}=-3.0\left(c 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.53-$ 7.51 (m, 2H, Ar-H), 7.39-7.25 (m, 17H, Ar-H), 5.74 (s, 1H, PhCH), 5.36-5.30 (m, 1H, ArCH 2), 5.26$5.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 5.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 5.06-4.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.80 \& 4.73(\mathrm{ABq}, J=12.4 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.79 \& 4.64\left(\mathrm{ABq}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.64-4.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 4.37-4.31(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-7), 4.31\left(\mathrm{dd}, J_{3,4}=9.6 \mathrm{~Hz}, J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 4.12\left(\mathrm{dd}, J_{4,5}=9.6 \mathrm{~Hz}, J_{5,6}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right)$, $4.09\left(\mathrm{dd}, J_{2,3}=3.2 \mathrm{~Hz}, J_{3,4}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.08-4.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.89\left(\mathrm{dd}, J_{1,2}=1.2 \mathrm{~Hz}, J_{2,3}=\right.$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right.$) $\delta 138.7,138.2,137.5,135.3,135.2,129.4,129.2$, $129.1,129.0,128.4,128.3,128.2,127.7,127.59,127.53,126.3,101.4,94.5,78.2,77.3,76.9,76.8$, $76.6,76.5,73.7,73.1,69.1,68.7,65.5,63.0 ;{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-1.0 ;$ HRMS (ESI) Calcd for $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{O}_{10} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 683.2016$, found: 683.2006 .

1-Bis(benzyloxy)phosphoryl-2,3-O-dibenzyl-4,6-O-benzylidene- α-D-glycero-d-manno-heptopyranos-7-yl o-xylenyl phosphate (11α) and 1-bis(benzyloxy)phosphoryl-2,3-O-dibenzyl-4,6-O-benzylidene- β-d-glycero-d-manno-heptopyranos-7-yl o-xylenyl phosphate (11 β)

Under Ar atmosphere, to a solution of $9(29 \mathrm{mg}, 44 \mu \mathrm{~mol})$, 3-fluorophthalic anhydride $(8.8 \mathrm{mg}, 53$ $\mu \mathrm{mol})$ and MS4A $(100 \mathrm{mg})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ was added DBU $(7.9 \mu \mathrm{~L}, 53 \mu \mathrm{~mol})$ at 25 ${ }^{\circ} \mathrm{C}$ and stirred for 15 min . Then TTBP ($36 \mathrm{mg}, 0.15 \mathrm{mmol}$) was added at $25^{\circ} \mathrm{C}$ and the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. After that, to the mixture was added $\mathrm{Tf}_{2} \mathrm{O}(11 \mu \mathrm{l}, 66 \mu \mathrm{~mol})$ at $-78{ }^{\circ} \mathrm{C}$ and stirred at 15 min. $\mathrm{PO}(\mathrm{OBn})_{2} \mathrm{O} \cdot \mathrm{N}^{n} \mathrm{Bu}_{4}(0.11 \mathrm{~g}, 0.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added at $-78{ }^{\circ} \mathrm{C}$ and the mixture was warmed to $25^{\circ} \mathrm{C}$. After the TLC analysis indicated the completion of reaction, the reaction was quenched with sat. NaHCO_{3} aq. $(2 \mathrm{~mL})$. The mixture was filtrated with celite pad, and poured to water (5 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} x 3)$. The organic layer was washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. The residue was purified by column chromatography (silica gel $14 \mathrm{~g}, \mathrm{CHCl}_{3} /$ acetone $/ \mathrm{PhMe}=4 / 1 / 1, \mathrm{v} / \mathrm{v}$), which gave the title compound $\mathbf{1 1} \boldsymbol{\alpha}(2.2 \mathrm{mg}, 5.3 \%)$ and $\mathbf{1 1} \boldsymbol{\beta}(14 \mathrm{mg}, 35 \%)$ both as white solid.
$11 \alpha: \mathrm{R}_{f}=0.53\left(\mathrm{CHCl}_{3} /\right.$ acetone $\left./ \mathrm{PhMe}=4 / 1 / 1, \mathrm{v} / \mathrm{v}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=+21.5\left(c 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta$ 7.51-7.48 (m, 2H, Ar-H), 7.35-7.28 (m, 25H, Ar-H), 7.16-7.14 (m, 2H, Ar-H), $5.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}), 5.59\left(\mathrm{dd}, J_{1,2}=2.0 \mathrm{~Hz}, J_{\mathrm{H}, \mathrm{P}}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 5.18\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=12.5 \mathrm{~Hz}, J_{\mathrm{H}, \mathrm{P}}=\right.$ $\left.13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 5.14\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.5 \mathrm{~Hz}, J_{\mathrm{H}, \mathrm{P}}=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 5.00\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.5\right.$ $\left.\mathrm{Hz}, J_{\mathrm{H}, \mathrm{P}}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.98\left(\mathrm{~d}, J_{\mathrm{H}, \mathrm{P}}=9.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.95\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.5 \mathrm{~Hz}, J_{\mathrm{H}, \mathrm{P}}=\right.$ $\left.10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.92\left(\mathrm{~d}, J_{\mathrm{H}, \mathrm{P}}=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.73 \& 4.55\left(\mathrm{ABq}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right)$, $4.70 \& 4.61\left(\mathrm{ABq}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.45\left(\mathrm{ddd}, J_{6,7}=2.1 \mathrm{~Hz}, J_{7,7}=11.6 \mathrm{~Hz}, J_{\mathrm{H}, \mathrm{P}}=7.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-7), 4.27$ (dd, $\left.J_{3,4}=9.6 \mathrm{~Hz}, J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 4.19$ (ddd, $J_{6,7}=6.0 \mathrm{~Hz}, J_{7,7}=11.6 \mathrm{~Hz}, J_{\mathrm{H}, \mathrm{P}}$ $=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 4.15-4.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.83\left(\mathrm{dd}, J_{2,3}=3.2 \mathrm{~Hz}, J_{3,4}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.73(\mathrm{~d}$, $\left.J_{2,3}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.72\left(\mathrm{dd}, J_{4,5}=9.6 \mathrm{~Hz}, J_{5,6}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS)
$138.3,137.5,137.1,135.49,135.43,129.1,129.08,129.01,128.9,128.89,128.81,128.79,128.73,1$ $28.5,128.4,128.3,128.19,128.14,128.0,127.7,127.5,126.1,101.0,96.7,77.2,76.9,76.0,75.9,75$ $.1,73.8,73.2,69.8,69.7,68.6,66.2,66.1 ;{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.5,-2.3$; HRMS (ESI) Calcd for $\mathrm{C}_{50} \mathrm{H}_{50} \mathrm{O}_{13} \mathrm{P}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 943.2618$, found: 943.2601.

11ß: $\mathrm{R}_{f}=0.48\left(\mathrm{CHCl}_{3} /\right.$ acetone $\left./ \mathrm{PhMe}=4 / 1 / 1, \mathrm{v} / \mathrm{v}\right) ;[\alpha]^{20}=-12.5\left(c 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.38-7.27(\mathrm{~m}, 25 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.71$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{PhCH}), 5.20\left(\mathrm{~d}, J_{\mathrm{H}, \mathrm{P}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 5.16 \& 5.03\left(\mathrm{ABq}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 5.13 \&$ $4.99\left(\mathrm{ABq}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 5.10 \& 5.05\left(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 5.08 \& 5.00(\mathrm{ABq}$, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.71 \& 4.59\left(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.41\left(\mathrm{ddd}, J_{6,7}\right.$ $\left.=6.8 \mathrm{~Hz}, J_{7,7}=10.8 \mathrm{~Hz}, J_{\mathrm{H}, \mathrm{P}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 4.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 4.23\left(\mathrm{dd}, J_{3,4}=9.6 \mathrm{~Hz}, J_{4,5}=9.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.85\left(\mathrm{~d}, J_{2,3}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.58\left(\mathrm{dd}, J_{2,3}=1.6 \mathrm{~Hz}, J_{3,4}=9.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-3), 3.26\left(\mathrm{dd}, J_{4,5}=9.6 \mathrm{~Hz}, J_{5,6}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right)$ $\delta 138.0,137.0,135.6,135.5,135.4,129.0,128.99,128.94,128.74,128.72,128.70,128.49,128.41,1$ $28.3,128.2,127.9,127.86,127.81,127.6,126.2,101.1,97.1,77.2,75.4,72.9,69.96,69.90,69.7,69$
$.6,68.66,68.60,68.0,65.9,65.8 ;{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.1,-2.2$; HRMS (ESI) Calcd for $\mathrm{C}_{50} \mathrm{H}_{50} \mathrm{O}_{13} \mathrm{P}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 943.2618$, found: 943.2612 .

1,7-O-Bisphosphoryl- β-D-glycero-D-manno-heptopyranose (HBP)

A mixture of $11 \beta(5.3 \mathrm{mg}, 5.8 \mu \mathrm{~mol})$ and $10 \%(\mathrm{w} / \mathrm{w}) \mathrm{Pd} / \mathrm{C}(2.1 \mathrm{mg})$ in 1,4 -dioxane $/ \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL}, 4: 1)$ was stirred at $25^{\circ} \mathrm{C}$ under $\mathrm{H}_{2}(1 \mathrm{~atm})$. After stirring for 1 h , the mixture was filtered through celite pad. The filtrate was concentrated under reduced pressure. A mixture of $\mathbf{1 1} \boldsymbol{\beta}^{\prime}$ and $10 \%(\mathrm{w} / \mathrm{w}) \mathrm{Pd} / \mathrm{C}$ $(2.6 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ was stirred at $25{ }^{\circ} \mathrm{C}$ under $\mathrm{H}_{2}(1 \mathrm{~atm})$. After stirring for 17 h at this temperature, the mixture was filtered through celite pad. The filtrate was concentrated under reduced pressure, which gave the HBP (2.1 mg , quant.) as white solid. $[\alpha]^{20}{ }_{\mathrm{D}}=+3.8\left(c 0.1, \mathrm{H}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 5.12\left(\mathrm{~d}, J_{\mathrm{H}, \mathrm{P}}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.19-4.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 4.10-4.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7)$, 4.01-3.92 (m, 2H, H-2 \& H-7), 3.73 (dd, $\left.J_{3,4}=9.6 \mathrm{~Hz}, J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.66\left(\mathrm{dd}, J_{2,3}=3.2 \mathrm{~Hz}\right.$, $\left.J_{3,4}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.50\left(\mathrm{~d}, J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ $\delta 95.7,76.8,72.9,70.9,70.7,67.1,65.6 ;{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 4.7,3.1$; HRMS (ESI) Calcd for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{O}_{13} \mathrm{P}_{2}[\mathrm{M}-\mathrm{H}]-: 368.9993$, found: 369.0022 .

Experiments concerning 4'

The reduction of ketone $\mathbf{3}$ yielded the desired D-glycero adduct D-4, isolable along with a challenging-to-isolate mixture of diastereomer L-4 and products of acetyl migrations D/L-4'. Immediately postreduction, an acetylation experiment resulted in two products, revealing acetyl group migration. The one not matching acetylated D-4, assumed to be L-SI1, was converted to L-SI2 through deprotection, benzylidene formation, and acetylation. Indeed, ${ }^{3} J_{\mathrm{H} 5-\mathrm{H} 6}$ indicated a gauche conformation at 3.6 Hz . The D-SI1:L-SI1 ratio confirmed the stereoselectivity of the reduction reaction as D-4:L-4 $=9: 1$.

Allyl 2,6,7-O-triacetyl-3-O-benzyl-4-O-tert-butyldimethylsilyl- α-D-glycero-D-manno-

 heptopyranoside (D-SII)

Under Ar atmosphere, to a solution of $\mathbf{4}(70 \mathrm{mg}, 0.14 \mathrm{mmol})$ in anhydrous pyr. (0.70 mL) were added $\mathrm{Ac}_{2} \mathrm{O}(33 \mu \mathrm{~L}, 0.35 \mathrm{mmol})$ and DMAP $(2.0 \mathrm{mg}, 14 \mu \mathrm{~mol})$ at $25^{\circ} \mathrm{C}$ and stirred for 15 h . After the TLC analysis indicated the completion of reaction, the mixture was poured to water (5 mL) and extracted with EtOAc ($5 \mathrm{~mL} \times 3$). The organic layer was washed with 10% citric acid aq. (10 mL) and brine (10 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. The residue was purified by column chromatography (silica gel 5 g , hexane/EtOAc $=3 / 1, \mathrm{v} / \mathrm{v}$), which gave the title compound D-SI1 (56 $\mathrm{mg}, 70 \%)$ as colorless syrup. $\mathrm{R}_{f}=50($ hexane/EtOAc $=4 / 1, \mathrm{v} / \mathrm{v}) ;[\alpha]^{20}{ }_{\mathrm{D}}=+54.9\left(c 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.32-7.24$ (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $5.94-5.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\beta}\right), 5.60$ (ddd, $J_{5,6}=$ $\left.0.8 \mathrm{~Hz}, J_{6,7}=2.8 \mathrm{~Hz}, J_{6,7}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 5.32\left(\mathrm{dd}, J_{1,2}=1.6 \mathrm{~Hz}, J_{2,3}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.27$ (dddd, $J_{\gamma \text { trans }, \beta}=17.6 \mathrm{~Hz}, J_{\gamma \text { trans } \gamma, \gamma \text { cis }}=1.6 \mathrm{~Hz}, J_{\gamma \text { trans }, \alpha}=1.6 \mathrm{~Hz}, J_{\gamma \text { trans }, \alpha}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\gamma \text { trans }}$), 5.22 (dddd, $\left.J_{\gamma c i s, \beta}=10.5 \mathrm{~Hz}, J_{\gamma c i s, \gamma \text { trans }}=1.4 \mathrm{~Hz}, J_{\gamma c i s, \alpha}=1.4 \mathrm{~Hz}, J_{\gamma c i s, \alpha}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\gamma c i s}\right), 4.79\left(\mathrm{~d}, J_{1,2}=\right.$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.63$ \& $4.40\left(\mathrm{ABq}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.42\left(\mathrm{dd}, J_{6,7}=2.8 \mathrm{~Hz}, J_{7,7}=12.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-7), 4.29\left(\mathrm{dd}, J_{6,7}=8.4 \mathrm{~Hz}, J_{7,7}=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 4.14\left(\mathrm{dddd}, J_{\alpha, \alpha}=12.2 \mathrm{~Hz}, J_{\alpha, \beta}=5.3 \mathrm{~Hz}\right.$, $\left.J_{\alpha, \gamma}=1.8 \mathrm{~Hz}, J_{\alpha, \gamma}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right), 3.97\left(\mathrm{dddd}, J_{\alpha, \alpha}=12.2 \mathrm{~Hz}, J_{\alpha, \beta}=6.2 \mathrm{~Hz}, J_{\alpha, \gamma}=1.4 \mathrm{~Hz}, J_{\alpha, \gamma}=1.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{\alpha}$), $3.84\left(\mathrm{dd}, J_{3,4}=9.7 \mathrm{~Hz}, J_{4,5}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.69\left(\mathrm{dd}, J_{2,3}=3.2\right.$ $\left.\mathrm{Hz}, J_{3,4}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.88(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right.$), $-0.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 170.8,170.2,169.9,137.7,133.3,128.2,127.8,127.6,117.9,96.8,78.2,73.8,70.9,70.4,68.28,68$.21, 67.9, 62.1, 25.9, 21.04, 21.02, 20.8, 18.3, -3.7, -5.0 ; HRMS (ESI) Calcd for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{10} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 603.2595$, found: 603.2604.

Allyl 2,6,7-O-triacetyl-3-O-benzyl-4-O-tert-butyldimethylsilyl- α-L-glycero-D-manno-

 heptopyranoside (L-SI1)

Reduction of $\mathbf{3}$ ($3.3 \mathrm{~g}, 6.6 \mathrm{mmol}$) gave $\mathbf{4}(1.3 \mathrm{~g}, 39 \%)$ and residue $(0.42 \mathrm{~g})$. Under Ar atmosphere, to a solution of the residue in anhydrous pyr. (4.0 mL) were added $\mathrm{Ac}_{2} \mathrm{O}(0.20 \mathrm{~mL}, 2.1 \mathrm{mmol})$ and DMAP $(9.7 \mathrm{mg}, 85 \mu \mathrm{~mol})$ at $25^{\circ} \mathrm{C}$ and stirred for 15 h . After the TLC analysis indicated the completion of reaction, the mixture was poured to water $(10 \mathrm{~mL})$ and extracted with EtOAc $(5 \mathrm{~mL} x 3)$. The organic
layer was washed with 10% citric acid aq. (20 ml), brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. The residue was purified by column chromatography (silica gel 15 g , hexane/EtOAc $=4 / 1, \mathrm{v} / \mathrm{v}$), which gave the title compound D-SI1 $(0.30 \mathrm{~g}, 61 \%)$ as a colorless syrup and compound L-SI1 ($0.15 \mathrm{~g}, 30 \%$) as white solid.
L-SI1: $\mathrm{R}_{f}=0.31$ (hexane/EtOAc $\left.=4 / 1, \mathrm{v} / \mathrm{v}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=+12.1\left(c 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta 7.32-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.92-5.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\beta}\right), 5.36\left(\mathrm{~d}, J_{2,3}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.37-5.32$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6), 5.28$ (dddd, $J_{\gamma \text { trans }, \beta}=17.0 \mathrm{~Hz}, J_{\gamma \text { trans } \gamma, \gamma \text { cis }}=1.3 \mathrm{~Hz}, J_{\gamma \text { trans, } \alpha}=1.3 \mathrm{~Hz}, J_{\gamma \text { trans, } \alpha}=1.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{\gamma \text { trans }}$), $5.22\left(\mathrm{dddd}, J_{\gamma \text { cis }, \beta}=10.4 \mathrm{~Hz}, J_{\gamma \text { cis, } \gamma \text { trans }}=1.3 \mathrm{~Hz}, J_{\gamma \text { cis, } \alpha}=1.3 \mathrm{~Hz}, J_{\gamma \text { cis, } \alpha}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\gamma}\right.$ $\left.{ }_{c i s}\right), 4.92\left(\mathrm{~d}, J_{1,2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.64 \& 4.40\left(\mathrm{ABq}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.27\left(\mathrm{~d}, J_{6,7}=4.3\right.$, $2 \mathrm{H}, \mathrm{H}-7), 4.14$ (dddd, $J_{\alpha, \alpha}=13.0 \mathrm{~Hz}, J_{\alpha, \beta}=5.2 \mathrm{~Hz}, J_{\alpha, \gamma}=1.2 \mathrm{~Hz}, J_{\alpha, \gamma}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\alpha}$), 3.96 (dddd, $\left.J_{\alpha, \alpha}=13.0 \mathrm{~Hz}, J_{\alpha, \beta}=6.4 \mathrm{~Hz}, J_{\alpha, \gamma}=1.2 \mathrm{~Hz}, J_{\alpha, \gamma}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right), 3.87\left(\mathrm{dd}, J_{3,4}=9.2 \mathrm{~Hz}, J_{4,5}=9.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.80-3.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.75$ (dd, $\left.J_{2,3}=3.2 \mathrm{~Hz}, J_{3,4}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 2.12(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.84\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-0.02\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 170.4,170.2,170.1,137.7,132.2,128.2,127.8,127.6,118.1,96.8,78.0$, $71.0,70.6,68.9,68.5,67.6,67.0,61.5,26.0,21.04,21.00,20.8,18.3,-3.3,-5.4$; HRMS (ESI) Calcd for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{10} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 603.2595$, found:603.2600.

Allyl 2,7-diacetyl-3-O-benzyl-4,6-O-benzylidene- α-L-glycero-D-manno-heptopyranoside (SI2)

Under Ar atmosphere, to a solution of L-SI1 ($89 \mathrm{mg}, 0.15 \mathrm{mmol}$) in anhydrous MeOH (1.0 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(4.2 \mathrm{mg}, 30 \mu \mathrm{~mol})$ at $25^{\circ} \mathrm{C}$ and stirred for 4 h . After the TLC analysis indicated the completion of reaction, the mixture was concentrated in vacuo, to give a yellow oily residue, which was used without further purification. Under Ar atmosphere, to a solution of the residue in anhydrous THF (0.50 mL) was added TBAF $(2.0 \mathrm{~mL}, 0.20 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$ and stirred for 4 days. After the TLC analysis indicated the completion of reaction, the mixture was concentrated in vacuo. The residue was purified by preparative thin-layer chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=9 / 1\right.$, $\left.\mathrm{v} / \mathrm{v}\right)$, to give a colorless oily residue. Deprotection of TBS and acetyl groups was confirmed by ${ }^{1} \mathrm{H}$ NMR. Under Ar atmosphere, to a solution of the residue in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.50 \mathrm{~mL})$ were added $\mathrm{PHCH}(\mathrm{OMe})_{2}(46 \mu \mathrm{~L}, 0.31$ mmol) and CSA $(9.0 \mathrm{mg}, 38 \mu \mathrm{~mol})$ at $25^{\circ} \mathrm{C}$ and stirred for 15 h . After the TLC analysis indicated the completion of reaction, the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~mL})$ and the mixture was poured to water (5 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \mathrm{x} 3)$. The organic layer was washed with brine (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. The residue was purified by column chromatography (silica gel 4 g , hexane/EtOAc $=1 / 1, \mathrm{v} / \mathrm{v}$), to give a colorless syrupy residue. Under Ar atmosphere, to a solution of the residue in anhydrous pyr. $(0.25 \mathrm{~mL})$ were added $\mathrm{Ac}_{2} \mathrm{O}(7 \mu \mathrm{~L}, 77$ $\mu \mathrm{mol})$ and DMAP $(0.6 \mathrm{mg}, 5 \mu \mathrm{~mol})$ at $25^{\circ} \mathrm{C}$ and stirred for 15 h . After the TLC analysis indicated the completion of reaction, the mixture was concentrated in vacuo. The residue was purified by column chromatography (silica gel 3 g , hexane $/ \mathrm{EtOAc}=3 / 1, \mathrm{v} / \mathrm{v}$), which gave the title compound SI2 (12 mg , 15% in 4 steps) as colorless syrup. $\mathrm{R}_{f}=0.38$ (hexane/EtOAc $\left.=3 / 1, \mathrm{v} / \mathrm{v}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=-1.0\left(c 0.2, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.47-7.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.38-7.26(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{PhCH}), 5.94-5.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\beta}\right), 5.48\left(\mathrm{dd}, J_{3,4}=9.6 \mathrm{~Hz}, J_{4,5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.37\left(\mathrm{dd}, J_{1,2}=2.0 \mathrm{~Hz}\right.$, $\left.J_{2,3}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.29\left(\mathrm{dddd}, J_{\gamma \text { trans }, \beta}=17.6 \mathrm{~Hz}, J_{\gamma \text { trans }, \gamma \text { cis }}=1.2 \mathrm{~Hz}, J_{\gamma \text { trans }, \alpha}=1.2 \mathrm{~Hz}, J_{\gamma \text { trans }, \alpha}=\right.$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\gamma \text { trans }}$), $5.24\left(\mathrm{dddd}, J_{\gamma \text { cis, } \beta}=10.4 \mathrm{~Hz}, J_{\gamma \text { cis, } \gamma \text { trans }}=1.2 \mathrm{~Hz}, J_{\gamma \text { cis, } \alpha}=1.2 \mathrm{~Hz}, J_{\gamma c i s, \alpha}=1.2 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{H}_{\gamma \text { cis }}\right), 4.94\left(\mathrm{~d}, J_{1,2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.66 \& 4.42\left(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.31$ (ddd, $\left.J_{5,6}=3.6 \mathrm{~Hz}, J_{6,7}=6.8 \mathrm{~Hz}, J_{6,7}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 4.18\left(\mathrm{dddd}, J_{\alpha, \alpha}=12.8 \mathrm{~Hz}, J_{\alpha, \beta}=5.2 \mathrm{~Hz}, J_{\alpha, \gamma}=1.6\right.$ $\left.\mathrm{Hz}, J_{\alpha, \gamma}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right), 4.13\left(\mathrm{dd}, J_{6,7}=6.8 \mathrm{~Hz}, J_{7,7}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 4.03\left(\mathrm{dddd}, J_{\alpha, \alpha}=12.8 \mathrm{~Hz}\right.$, $\left.J_{\alpha, \beta}=6.0 \mathrm{~Hz}, J_{\alpha, \gamma}=1.2 \mathrm{~Hz}, J_{\alpha, \gamma}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right), 3.97\left(\mathrm{dd}, J_{6,7}=6.8 \mathrm{~Hz}, J_{7,7}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 3.89$ (dd, $\left.J_{2,3}=3.2 \mathrm{~Hz}, J_{3,4}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.76\left(\mathrm{dd}, J_{4,5}=9.6 \mathrm{~Hz}, J_{5,6}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 2.14(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 170.5,169.4,138.0,137.9,133.2$, $129.1,128.4,128.3,127.7,126.5,117.9,104.4,97.0,77.2,74.9,74.2,71.2,70.3,68.6,68.28,68.21$, 66.2, 21.1, 21.0; HRMS (ESI) Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{9} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 535.1944 , found: 535.1927.

Allyl 3-O-benzyl-4-O-tert-butyldimethylsilyl-7-deoxy-7-iodo-6-oxo- $\boldsymbol{\alpha}$-D-manno-heptopyranoside (2) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Allyl 3-O-benzyl-4-O-tert-butyldimethylsilyl-7-deoxy-7-iodo-6-oxo- $\boldsymbol{\alpha}$-D-manno-heptopyranoside (2) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\circ}{7}$
∞
∞
-

Allyl 7-O-acetyl-3-O-benzyl-4-O-tert-butyldimethylsilyl-6-oxo- $\boldsymbol{\alpha}$-D-manno-heptopyranoside (3) ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Allyl 7-O-acetyl-3-O-benzyl-4-O-tert-butyldimethylsilyl-6-oxo- $\boldsymbol{\alpha}$-D-manno-heptopyranoside (3) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Allyl 7-O-acetyl-3-O-benzyl-4-O-tert-butyldimethylsilyl- α-d-glycero-d-manno-heptopyranoside (4) ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

Allyl 7-O-acetyl-3-O-benzyl-4-O-tert-butyldimethylsilyl- $\boldsymbol{\alpha}$-d-glycero-D-manno-heptopyranoside (4) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^0]Allyl 7-O-acetyl-3-O-benzyl- $\boldsymbol{\alpha}$-D-glycero-D-manno-heptopyranoside (5) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Allyl 7-O-acetyl-3-O-benzyl- α-d-glycero-d-manno-heptopyranoside (5) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Allyl 7-O-acetyl-3-O-benzyl-4,6-O-benzylidene- $\boldsymbol{\alpha}$-d-glycero-D-manno-heptopyranoside (6) ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Allyl 7-O-acetyl-3-O-benzyl-4,6-O-benzylidene- $\boldsymbol{\alpha}$-D-glycero-D-manno-heptopyranoside (6) ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3})

Allyl 2,3-O-dibenzyl-4,6-O-benzylidene- $\boldsymbol{\alpha}$-D-glycero-D-manno-heptopyranoside (7) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Allyl 2,3-O-dibenzyl-4,6-O-benzylidene- α-D-glycero-D-manno-heptopyranoside (7) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	$\stackrel{\circ}{\circ} \mathrm{O}$	
	-	
- 1	11	

(Allyl 2,3-O-dibenzyl-4,6-O-benzylidene- $\boldsymbol{\alpha}$-d-glycero-D-manno-heptopyranoside)-7-yl \boldsymbol{o}-xylenyl phosphate (8) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(Allyl 2,3- \boldsymbol{O}-dibenzyl-4,6- \boldsymbol{O}-benzylidene- $\boldsymbol{\alpha}$-D-glycero-d-manno-heptopyranoside)-7-yl \boldsymbol{o}-xylenyl phosphate (8) ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(Allyl 2,3-O-dibenzyl-4,6-O-benzylidene- $\boldsymbol{\alpha}$-d-glycero-D-manno-heptopyranoside)-7-yl \boldsymbol{o}-xylenyl phosphate (8) ${ }^{31} \mathrm{P}$ NMR (161 MHz, CDCl_{3})
∞
∞

i
1
1

(2,3-O-dibenzyl-4,6-O-benzylidene- $\boldsymbol{\alpha}$-d-glycero-D-manno-heptopyranoside)-7-yl-o-xylenyl phosphate (9) ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(2,3-O-dibenzyl-4,6-O-benzylidene- $\boldsymbol{\alpha}$-D-glycero-d-manno-heptopyranoside)-7-yl-o-xylenyl phosphate (9) ${ }^{13} \mathrm{C} \mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	¢̧	$\stackrel{\circ}{\circ}$	
	$\stackrel{\square}{\square}$	+	
	I	I	+1/2

(2,3-O-dibenzyl-4,6-O-benzylidene- α-D-glycero-d-manno-heptopyranoside)-7-yl-o-xylenyl phosphate (9) ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
®o
$\stackrel{\circ}{\circ}$
1
1

1-Bis(benzyloxy)phosphoryl-2,3-O-dibenzyl-4,6-O-benzylidene- α-D-glycero-D-manno-heptopyranos-7-yl o-xylenyl phosphate (11 $\boldsymbol{\alpha}$) ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$)

1-Bis(benzyloxy)phosphoryl-2,3-O-dibenzyl-4,6-O-benzylidene- α-d-glycero-d-manno-heptopyranos-7-yl o-xylenyl phosphate (11 $\boldsymbol{\alpha}$) ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$)

1-Bis(benzyloxy)phosphoryl-2,3-O-dibenzyl-4,6-O-benzylidene- α-D-glycero-d-manno-heptopyranos-7-yl o-xylenyl phosphate (11 $\boldsymbol{\alpha}$) ${ }^{31} \mathrm{P}$ NMR (161 $\mathrm{MHz}, \mathrm{CDCl}_{3}$)

1-bis(benzyloxy)phosphoryl-2,3-O-dibenzyl-4,6-O-benzylidene- $\boldsymbol{\beta}$-d-glycero-D-manno-heptopyranos-7-yl o-xylenyl phosphate (11 $\boldsymbol{\beta}$) ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$)

1-bis(benzyloxy)phosphoryl-2,3-O-dibenzyl-4,6-O-benzylidene- $\boldsymbol{\beta}$-d-glycero-D-manno-heptopyranos-7-yl o-xylenyl phosphate (11 $\boldsymbol{\beta}$) ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$)

1-bis(benzyloxy)phosphoryl-2,3-O-dibenzyl-4,6-O-benzylidene- $\boldsymbol{\beta}$-d-glycero-D-manno-heptopyranos-7-yl o-xylenyl phosphate (11 $\boldsymbol{\beta}){ }^{31} \mathrm{P}$ NMR (161 $\mathrm{MHz}, \mathrm{CDCl}_{3}$)

1,7-O-Bisphosphoryl- $\boldsymbol{\beta}$-d-glycero-D-manno-heptopyranose (HBP) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$)

1,7-O-Bisphosphoryl- $\boldsymbol{\beta}$-d-glycero-D-manno-heptopyranose (HBP) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$)

Allyl 2,6,7-O-triacetyl-3-O-benzyl-4-O-tert-butyldimethylsilyl- $\boldsymbol{\alpha}$-D-glycero-D-manno-heptopyranoside (D-SI1) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Allyl 2,6,7-O-triacetyl-3-O-benzyl-4-O-tert-butyldimethylsilyl- $\boldsymbol{\alpha}$-D-glycero-D-manno-heptopyranoside (D-SI1) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Allyl 2,6,7-O-triacetyl-3-O-benzyl-4-O-tert-butyldimethylsilyl- $\boldsymbol{\alpha}$-L-glycero-d-manno-heptopyranoside (L-SI1) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Allyl 2,6,7-O-triacetyl-3-O-benzyl-4-O-tert-butyldimethylsilyl- $\boldsymbol{\alpha}$-L-glycero-D-manno-heptopyranoside (L-SI1) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\circ
∞
$\dot{\circ}$
$\dot{8}$
I
 $\mathfrak{\infty}-\infty$ I $\rightarrow 1$

 Ň
ल.

1
1
1
1

Allyl 2,7-diacetyl-3-O-benzyl-4,6-O-benzylidene- $\boldsymbol{\alpha}$-L-glycero-D-manno-heptopyranoside (SI2) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Allyl 2,7-diacetyl-3-O-benzyl-4,6-O-benzylidene- $\boldsymbol{\alpha}$-L-glycero-d-manno-heptopyranoside (SI2) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\text { Beg }}{\stackrel{-}{\sigma}}$

[^0]:

