Supporting Information

Hydrosilylation of Nitriles and Tertiary Amides to Amines using a Zinc Precursor

Ravi Kumar, Rohan Kumar Meher, Himadri Karmakar, Tarun K. Panda*

Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502 284, Sangareddy, Telangana, India.

E-mail: tpanda@chy.iith.ac.in;

Sl. No.	Details	Page
1	List of starting materials	\$3-\$4
2	General procedure for the synthesis of amides	S4
3	NMR data and spectra of amides	S4-S32
4	General procedure for the hydrosilylation of nitriles	\$33
5	NMR data and spectra of primary ammonium salts	\$33-\$59
6	General procedure for the hydrosilylation of tertiary amides	S60
7	Optimization table for the hydrosilylation of tertiary amides	S60
8	NMR data and spectra of tertiary ammonium salts.	S60-S101
9	Chemoselectivity	S102-S104
10	Stoichiometry reaction	105
11	Synthesis of 1-benzyl-4-(chloromethyl)piperidine	106
11	References	S105-S107

Hydrosilylation of Nitriles and Tertiary Amides to amines using a Zinc precursor

Experimental section

All manipulations involving air- and moisture-sensitive compounds were carried out under argon using the standard Schlenk technique or argon-filled M. Braun glove box. Hydrocarbon solvents such as *n*-hexane, THF, and toluene were degassed using sodium metal and LiAlH₄ under a nitrogen atmosphere and stored inside the glove box. ¹H NMR (400 MHz and 600 MHz,),¹³C{¹H} (100 MHz and 150 MHz) spectra were recorded on the BRUKER ADVANCE III-400 and 600 MHz spectrometer. All nitriles and silanes were purchased from Sigma Aldrich, Alfa Aesar or TCI Chemicals (India) Pvt. Ltd and stored in the glove box and used as received. NMR solvents D₂O, CDCl₃, and C₆D₆ were purchased from Merck, whereas CDCl₃ and C₆D₆ were distilled over molecular sieves, and stored inside the glove box.

1. List of starting materials

1.1. List of nitriles

All nitriles (1a-1u) are commercially available.

1.2. List of tertiary amides

Compounds **3a**, **3be**, **3cd**, **3da**, **3dc**, **3df**, **3ea**, **3i**, **3j**, **3k**, **and 3l** are commercially available and others are synthesized.

2. General procedure for synthesis of tertiary amides

The round bottom flask was loaded with benzoyl chloride or acetyl chloride (3.55 mmol), amine (3.55 mmol) and triethylamine (0.359 g, 3.55 mmol) in 5 ml of dichloromethane and stirred at room temperature for 12 hours. After that, 0.2 ml of 2N HCl was added to the reaction mixture and workup was done using dichloromethane and water. The organic layer was collected after drying over anhydrous sodium sulfate and evaporated using rotary evaporation, and the compound was purified by column chromatography using petroleum ether/ethyl acetate.

3. NMR data and spectra of tertiary amides

N, *N*-Diethylbenzamide (3ba).¹ Following procedure **2**, the round bottom flask was loaded with benzoyl chloride (500 mg, 3.55 mmol), *N*, *N*-diethylamine (260.15 mg, 3.55 mmol), and triethylamine (359.22 mg, 3.55 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 70:30 as eluent (R_f = 0.5). Yield: 598.59 mg (95%, white solid). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.39-7.35 (m, 5H, Ar-*H*), 3.54 (s, 2H, *CH*₂), 3.24 (s, 2H, *CH*₂), 1.24 (s, 3H, *CH*₃), 1.10 (s, 3H, *CH*₃). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm c}$ (ppm) 171.4, 137.3, 129.1, 128.4, 126.3, 43.3, 39.3, 14.2, 12.9.

N, *N*-Diethyl-4-methoxybenzamide (3bb).² Following procedure **2**, the round bottom flask was loaded with 4-methoxybenzoyl chloride (605.59 mg, 3.55 mmol), *N*, *N*-diethylamine (260.15 mg, 3.55 mmol) and triethylamine (359.22 mg, 3.55 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 70:30 as eluent (R_f = 0.3). Yield: 678.25 mg (92%, white solid). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.36-7.33 (m, 2H, Ar-*H*), 6.92-6.88 (m, 2H, Ar-*H*), 3.81 (s, 3H, OC*H*₃), 3.42 (s, 4H, C*H*₂), 1.18 (s, 6H, C*H*₃). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm c}$ (ppm) 171.1, 160.2, 129.4, 128.1, 113.5, 55.2, 43.3, 39.5, 13.1.

N, *N*-Diethyl-4-fluorobenzamide (3bc).² Following procedure 2, the round bottom flask was loaded with 4-fluorobenzoyl chloride (562.88 mg, 3.55 mmol), *N*, *N*-diethylamine (260.15 mg, 3.55 mmol) and triethylamine (359.22 mg, 3.55 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 70:30 as eluent (R_f = 0.2). Yield: 652.77 mg (94%, white solid). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.37-7.34 (m, 2H, Ar-*H*), 7.07-7.03 (m, 2H, CH₂), 3.39 (s, 4H, CH₂), 1.15 (s, 6H, CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm c}$ (ppm) 170.5, 164.4, 161.9, 133.2, 133.2, 128.6, 128.5, 115.6, 115.4.

N, *N*-Diethyl-4-chlorobenzamide (3bd).² Following the procedure 2, the round bottom flask was loaded with 4-chlorobenzoyl chloride (621.28 mg, 3.55 mmol), *N*, *N*-diethylamine (260.15 mg, 3.55 mmol) and triethylamine (359.22 g, 3.55 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 70:30 as eluent (R_f = 0.2). Yield: 715.30 mg (95%, white solid). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.37-7.29 (m, 4H, Ar-*H*), 3.45 (s, 2H, *CH*₂), 3.27 (s, 2H, *CH*₂), 1.16 (s, 6H, *CH*₃). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm c}$ (ppm) 170.4, 135.6, 135.3, 132.7, 129.5, 128.8, 128.0, 43.1, 39.5, 13.1.

N, *N*-Diethyl-4-chlorobenzamide (3bf).² Following procedure 2, the round bottom flask was loaded with 4-nitrobenzoyl chloride (658.73 g, 3.55 mmol), *N*, *N*-diethylamine (260.15 mg, 3.55 mmol), and triethylamine (359.22 mg, 3.55 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 60:40 as eluent (R_f = 0.2). Yield: 711.43 mg (90%, yellow solid). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.27-8.24 (m, 2H, Ar-*H*), 7.55-7.53 (m, 2H, Ar-*H*), 3.55 (s, 2H, C*H*₂), 3.19 (s, 2H, C*H*₂), 1.26 (s, 3H, C*H*₃), 1.11 (s, 3H, C*H*₃). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm c}$ (ppm) 169.2, 148.2, 143.3, 127.5, 124.0, 43.4, 39.7, 14.3, 12.9.

Phenyl(pyrrolidin-1yl)methanone (3ca).³ Following procedure **2**, the round bottom flask was loaded with benzoyl chloride (500 mg, 3.55 mmol), pyrrolidine (252.44 mg, 3.55 mmol) and triethylamine (359.22 mg, 3.55 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 70:30 as eluent (R_f = 0.7). Yield: 584.74 mg (94%, colourless liquid). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.53-7.50 (m, 2H, Ar-

H), 7.41-7.39 (m, 3H, Ar-*H*), 3.67-63 (t, J = 8 Hz, 2H, CH₂), 3.44-3.41 (t, J = 6 Hz, 2H, CH₂), 1.99-1.93 (m, 2H, CH₂), 1.90-1.85 (m, 2H, CH₂). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ_c (ppm) 137.3, 129.8, 128.3, 127.1, 49.7, 46.2, 26.4, 24.5.

4-Methoxyphenyl(pyrrolidin-1yl)methanone (**3cb**).³ Following the procedure **2**, the round bottom flask was loaded with 4-methoxybenzoyl chloride (605.59 mg, 3.55 mmol), pyrrolidine (252.47 mg, 6.83 mmol) and triethylamine (359.22 mg, 6.83 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 70:30 as eluent (R_f = 0.6). Yield: 670.37 mg (92%, colourless liquid). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.50-7.48 (m, 2H, Ar-*H*), 6.88-6.86 (m, 2H, Ar-*H*), 3.80 (s, 3H, OC*H*₃), 3.62-3.58 (t, *J* = 8 Hz, 2H, C*H*₂), 3.46-3.43 (t, *J* = 6 Hz, 2H, C*H*₂), 1.95-1.89 (m, 2H, C*H*₂), 1.87-1.80 (m, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm c}$ (ppm) 169.5, 160.8, 129.5, 129.2, 113.4, 55.4, 49.9, 46.4, 26.6, 24.5.

4-Fluorophenyl(pyrrolidin-1yl)methanone (**3cc**).⁴ Following procedure **2**, the round bottom flask was loaded with 4-fluorobenzoyl chloride (562.88 mg, 3.55 mmol), pyrrolidine (252.47 mg, 6.83 mmol), and triethylamine (359.22 mg, 6.83 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 70:30 as eluent (R_f = 0.4). Yield: 644.77 mg (94%, colourless liquid). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.56-7.53 (m, 2H, Ar-*H*), 7.10-7.06 (m, 2H, Ar-*H*), 3.66-3.63 (t, *J* = 6 Hz, 2H, C*H*₂), 3.45-3.42 (t, *J* = 6 Hz, 2H, C*H*₂), 2.00-1.94 (m, 2H, C*H*₂), 1.92-1.85 (m, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm c}$ (ppm) 164.8, 162.3, 133.3, 129.6, 129.5, 115.4, 115.2, 49.8, 46.4, 26.5, 24.5.

4-Chlorophenyl(pyrrolidin-1yl)methanone (3cd).⁵ Following procedure **2**, the round bottom flask was loaded with 4-chlorobenzoyl chloride (621.28 mg, 3.55 mmol), pyrrolidine (252.47 mg, 6.83 mmol) and triethylamine (359.22 mg, 6.83 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 70:30 as eluent (R_f = 0.5). Yield: 744.327 mg (94%, colourless liquid). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.44-7.42 (m, 2H, Ar-*H*), 7.34-7.31 (m, 2H, Ar-*H*), 3.61-3.57 (t, *J* = 8 Hz, 2H, C*H*₂), 3.38-3.35 (t, *J* = 6 Hz, 2H, C*H*₂), 1.95-1.88 (m, 2H, C*H*₂), 1.87-1.80 (m, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, CDCl₃):

4-Nitrophenyl(pyrrolidin-1yl)methanone (**3cf**).⁵ Following procedure **2**, the round bottom flask was loaded with 4-nitrobenzoyl chloride (658.73 g, 3.55 mmol), pyrrolidine (252.47 mg, 3.55 mmol) and triethylamine (359.22 mg, 3.55 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 60:40 as eluent (R_f = 0.2). Yield: 687.99 mg (88%, yellow solid). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.25-8.22 (m, 2H, Ar-*H*), 7.67-7.65 (m, 2H, Ar-*H*), 3.64 (s, 2H, C*H*₂), 3.43-3.37 (t, *J* = 6 Hz, 2H, C*H*₂), 1.96 (s, 2H, C*H*₂), 1.92 (s, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm c}$ (ppm) 167.5, 148.5, 143.1, 128.2, 123.8, 49.6, 46.5, 26.4, 24.4.

4-Methoxyphenyl(piperidin-1yl)methanone (**3db**).⁶ Following procedure **2**, the round bottom flask was loaded with 4-methoxybenzoyl chloride (605.59 mg, 3.55 mmol), piperidine (302.28 mg, 3.55 mmol) and triethylamine (359.22 mg, 3.55 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 70:30 as eluent (R_f = 0.4). Yield: 731.74 mg (94%, colourless). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.38-7.36 (m, 2H, Ar-*H*), 6.91-6.89 (m, 2H, Ar-*H*), 3.82 (s, 2H, OC*H*₃) 3.64 (s, 2H, C*H*₂), 3.44 (s, 2H, C*H*₂), 1.67-158 (m, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm c}$ (ppm) 170.3, 160.5, 128.8, 128.5, 113.6, 55.3, 49.0, 43.3, 26.1, 24.6.

4-Chlorophenyl(piperidin-1yl)methanone (**3dd**).⁶ Following procedure **2**, the round bottom flask was loaded with 4-chlorobenzoyl chloride (621.28 mg, 3.55 mmol), piperidine (302.28 mg, 3.55 mmol) and triethylamine (359.22 mg, 3.55 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 70:30 as eluent (R_f = 0.7). Yield: 730.61 mg (92%, colourless). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.39-7.33 (m, 4H, Ar-*H*), 3.69 (s, 2H, C*H*₂), 3.34 (s, 2H, C*H*₂), 1.72-1.42 (m, 6H, C*H*₂). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm c}$ (ppm) 169.3, 135.4, 134.9, 128.7, 128.4, 53.5, 48.8, 43.3, 26.5, 24.6.

4-Bromophenyl(piperidin-1yl)methanone (**3de**).⁷ Following procedure **2**, the round bottom flask was loaded with 4-bromobenzoyl chloride (779.08 mg, 3.55 mmol), piperidine (302.28 mg, 3.55 mmol) and triethylamine (359.22 mg, 3.55 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 70:30 as eluent (R_f = 0.5). Yield: 875.78 mg (92%, brownish solid). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.55-7.52 (m, 2H, Ar-*H*), 7.29-7.26 (m, 2H, Ar-*H*), 3.69 (s, 2H, C*H*₂), 3.32 (s, 2H, C*H*₂), 1.72-1.52 (m, 6H, C*H*₂). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm c}$ (ppm) 169.4, 135.4, 131.7, 128.7, 123.7, 48.9, 43.3, 26.6, 25.7, 24.6.

MeC

4-Methoxyphenyl(morphlino)methanone (3eb).⁸ Following procedure **2**, the round bottom flask was loaded with 4-methoxybenzoyl chloride (605.59 mg, 3.55 mmol), morpholine (309.27 mg, 3.55 mmol) and triethylamine (359.22 mg, 3.55 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 60:40 as eluent (R_f = 0.3). Yield: 722.62 mg (92%, colourless liquid). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.40-

7.38 (m, 2H, Ar-*H*), 6.93-6.91 (m, 2H, Ar-*H*), 3.83 (s, 3H, OCH₃), 3.70-3.64 (m, 4H, CH₂). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ_c (ppm) 170.5, 161.0, 129.3, 127.3, 113.8, 67.0, 55.4, 43.6.

4-chlorophenyl(morphlino)methanone (3eb).⁹ Following procedure **2**, the round bottom flask was loaded with 4-chlorobenzoyl chloride (621.28 mg, 3.55 mmol), morpholine (309.27 mg, 3.55 mmol) and triethylamine (359.22 mg, 3.55 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 80:20 as eluent (R_f = 0.3). Yield: 729.01 mg (91%, colourless liquid). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.41-7.34 (m, 4H, Ar-*H*), 3.71-3.46 (m, 8H, C*H*₂). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm c}$ (ppm) 169.5, 136.1, 133.7, 128.8, 66.9, 48.3.

Morpholino(**naphthalen-2-yl**)**methanone** (**3f**).⁹ Following procedure **2**, the round bottom flask was loaded with 2-naphthoyl chloride (676.73 mg, 3.55 mmol), morpholine (309.27 mg, 3.55 mmol) and triethylamine (359.22 mg, 3.55 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 80:20 as eluent (R_f = 0.4). Yield: 770.90 mg (90%, colourless solid). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.92-7.85 (m, 2H, Ar-*H*), 7.55-7.48 (m, 2H, Ar-*H*), 3.80-3.51 (m, 8H, CH₂. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm c}$ (ppm) 170.7, 135.9, 133.8, 132.8, 128.5, 127.9, 127.2, 126.9, 125.6, 124.3, 67.0, 53.5.

N, *N*-Dibenzylbenzamide (3g).³ Following procedure 2, the round bottom flask was loaded with benzoyl chloride (500 mg, 3.55 mmol), dibenzylamine (700.34 mg, 3.55 mmol) and triethylamine (359.22 mg, 3.55 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 80:20 as eluent (R_f = 0.6). Yield: 962.93 mg

(90%, colourless solid). ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.52-7.13 (m, 15H, Ar-*H*), 4.71 (s, 2H, C*H*₂), 4.41 (s, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ_c (ppm) 172.4, 136.3, 129.8, 129.0, 128.9, 128.7, 128.5, 127.8, 127.2, 126.8, 51.6, 47.0.

N, *N*-Diallylbenzamide (3ha).¹⁰ Following procedure 2, the round bottom flask was loaded with benzoyl chloride (500 mg, 3.55 mmol), diallylamine (344.91 mg, 3.55 mmol) and triethylamine (359.22 mg, 3.55 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 80:20 as eluent (R_f = 0.6). Yield: 657.34 mg (92%, colourless liquid). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.44-7.36 (m, 5H, Ar-*H*), 5.88 (s, 1H, alkene-C*H*), 5.73 (s, 1H, alkene-C*H*), 5.25-5.17 (m, 4H, alkene-C*H*), 4.14 (s, 2H, C*H*₂), 3.83 (s, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm c}$ (ppm) 171.8, 136.4, 129.7, 128.4, 126.7, 117.7, 50.8, 47.0.

N, *N*-Diallyl-4-bromobenzamide (3hb).¹⁰ Following procedure 2, the round bottom flask was loaded with 4-bromobenzoyl chloride (779.08 mg, 3.55 mmol), diallylamine (344.91 mg, 3.55 mmol) and triethylamine (359.22 mg, 3.55 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 80:20 as eluent (R_f = 0.2). Yield: 875.25 mg (88%, brownish liquid). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.54-7.51 (m, 2H, Ar-*H*), 7.34-7.28 (m, 2H, Ar-*H*), 5.86 (s, 1H, alkene-C*H*), 5.72 (s, 1H, alkene-C*H*), 5.26-4.92 (m, 4H, alkene-C*H*), 4.12 (s, 2H, C*H*₂), 3.82 (s, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm c}$ (ppm) 170.8, 135.1, 131.7, 128.4, 124.1, 117.9, 50.8, 47.3.

N, *N*-Dibenzylacetamide (3i).¹¹ Following procedure 2, the round bottom flask was loaded with acetyl chloride (278.67 mg, 3.55 mmol), dibenzylamine (700.34 mg, 3.55 mmol) and triethylamine (359.22 mg, 3.55 mmol) in 5ml of dichloromethane and product was isolated by column chromatography using petroleum ether/ethylacetate = 80:20 as eluent (R_f = 0.7). Yield: 722.14 mg (88%, colourless solid). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.39-7.14 (m, 10H, Ar-*H*), 4.60 (s, 2H, C*H*₂), 4.43 (s, 2H, C*H*₂), 2.21(s, 2H, C*H*₃). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm c}$ (ppm) 137.4, 136.5, 129.1, 128.7, 128.4, 127.7, 127.5, 126.5, 50.8, 48.0, 21.8.

Figure S2: ${}^{13}C{}^{1}H$ (100 MHz, 25 °C, CDCl₃) NMR spectra of **3ba**.

Figure S4: ¹³C{¹H} (100 MHz, 25 °C, CDCl₃) NMR spectra of **3bb**.

Figure S6: ¹³C{¹H} (100 MHz, 25 °C, CDCl₃) NMR spectra of **3bc**.

Figure S8: ¹³C{¹H} (100 MHz, 25 °C, CDCl₃) NMR spectra of **3bd**.

Figure S10: ${}^{13}C{}^{1}H$ (100 MHz, 25 °C, CDCl₃) NMR spectra of 3bf.

Figure S11: ¹H NMR (400 MHz, 25 °C, CDCl₃) spectra of 3ca.

Figure S12: ¹³C{¹H} (100 MHz, 25 °C, CDCl₃) NMR spectra of **3ca**.

Figure S14: ¹³C{¹H} (100 MHz, 25 °C, CDCl₃) NMR spectra of **3cb**.

Figure S16: ¹³C{¹H} (100 MHz, 25 °C, CDCl₃) NMR spectra of **3cc**.

Figure S18: ¹³C{¹H} (100 MHz, 25 °C, CDCl₃) NMR spectra of **3cd**.

Figure S20: ¹³C{¹H} (100 MHz, 25 °C, CDCl₃) NMR spectra of **3cf**.

Figure S22: ¹³C{¹H} (100 MHz, 25 °C, CDCl₃) NMR spectra of **3db**.

Figure S24: ¹³C{¹H} (100 MHz, 25 °C, CDCl₃) NMR spectra of **3dd**.

Figure S26: ¹³C{¹H} (100 MHz, 25 °C, CDCl₃) NMR spectra of **3de**.

Figure S28: ${}^{13}C{}^{1}H$ (100 MHz, 25 °C, CDCl₃) NMR spectra of 3eb.

Figure S30: ¹³C{¹H} (100 MHz, 25 °C, CDCl₃) NMR spectra **3ed**.

Figure S32: ${}^{13}C{}^{1}H$ (100 MHz, 25 °C, CDCl₃) NMR spectra of 3f.

Figure S34: ¹³C{¹H} (100 MHz, 25 °C, CDCl₃) NMR spectra of **3g**.

Figure S36: ¹³C{¹H} (100 MHz, 25 °C, CDCl₃) NMR spectra of **3ha**.

Figure S38: ¹³C{¹H} (100 MHz, 25 °C, CDCl₃) NMR spectra of **3hb**.

Figure S40: ¹³C{¹H} (100 MHz, 25 °C, CDCl₃) NMR spectra of 3i.

4. General procedure of hydrosilylation of nitriles

The Schlenk tube was placed inside the glove box and loaded with $[Zn(HMDS)_2]_2$ (9.65, 5 mol%), respective nitriles (0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) and kept in an oil bath at 60 °C for 12 hours. The reaction was then quenched by adding 0.2 mL of 2 N HCl to the Schlenk tube and worked up with water and dichloromethane. Following that, the water layer was collected and evaporated the water through rotatory evaporation to obtain the product.

5. NMR data of ammonium salts

Phenylmethanaminium chloride (2a).¹² Following procedure 4, Zn(HMDS)₂ (9.65 mg, 5 mol%), benzonitrile (51.52 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded 2a as a white solid (64.62 mg, 90%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.46-7.45 (m, 5H, Ar-*H*), 4.16 (s, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 131.6, 128.3, 127.9, 42.2.

o-tolylmethanaminium chloride (2b).¹² Following procedure 4, Zn(HMDS)₂ (9.65 mg, 5 mol%), *o*-tolunitrile (58.57 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **2b** as a white solid (69.36 mg, 88%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.34-7.25 (m, 4H, Ar-*H*), 4.17 (s, 2H, C*H*₂), 2.33 (s, 3H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 138.91, 132.60, 131.12, 130.81, 128.38, 42.19, 19.83.

p-tolylmethanaminium chloride (2c).¹² Following procedure 4, Zn(HMDS)₂ (9.65 mg, 5 mol%), *p*-tolunitrile (58.57 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded 2c as a white solid (70.93 mg, 88%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.34-7.27 (m, 4H, Ar-*H*), 4.11 (s, 2H, C*H*₂), 2.32 (s, 3H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 139.6, 129.8, 129.6, 128.9, 42.9, 20.3.

4-*t***-buylphenylmethanaminium chloride** (**2d**).¹³ Following procedure **4**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-*tert*-butylbenzonitrile (79.61 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **2d** as a white solid (86.87 mg, 87%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.43-7.41 (m, 2H, Ar-*H*), 7.27-7.26 (m, 2H, Ar-*H*), 4.00 (s, 2H, C*H*₂), 1.16 (s, 9H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 152.9, 129.7, 128.7, 126.2, 42.6, 34.0, 30.4.

(4-(methylthio)phenyl)methanaminium chloride (2e).¹² Following procedure 4, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-(methylthio)benzonitrile (74.65 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded 2e as a white solid (83.52 mg, 88%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.38-7.33 (m, 4H, Ar-*H*), 4.12 (s, 2H, C*H*₂), 2.48 (s, 3H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 139.2, 129.6, 129.4, 126.5, 125.9, 42.7, 14.3.

(4-(dimethylamino)phenyl)methanaminium chloride (2f).¹² Following procedure 4, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-(dimethylamino)benzonitrile (73.09 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **2f** as a white solid (84.01 mg, 90%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.68-7.64 (m, 4H, Ar-*H*), 4.25 (s, 2H, C*H*₂), 3.29 (s, 6H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 144.9, 137.5, 133.5, 123.8, 48.9, 44.7.

4-fluorophenylmethanaminium chloride (**2g**).¹² Following procedure **4**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-fluorobenzonitrile (60.55 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **2g** as a white solid (67.87 mg, 84%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.48-7.46 (m, 2H, Ar-

H), 7.22-7.19 (m, 2H, Ar-*H*), 4.18 (s, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O): δ_c (ppm) 131.1, 116.1, 115.9, 42.5.

4-chlorophenylmethanaminium chloride (2h).¹² Following procedure **4**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-chlorobenzonitrile (68.78 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **2h** as a white solid (73.00 mg, 82%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.45-7.38 (m, 4H, Ar-*H*), 4.14 (s, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 138.4, 134.4, 131.1, 130.4, 129.1, 127.1, 126.6, 42.3.

4-bromophenylmethanaminium chloride (**2i**).¹² Following procedure **4**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-bromobenzonitrile (91.01 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **2i** as a dark yellow solid (94.56 mg, 85%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.60-7.58 (m, 2H, Ar-*H*), 7.33-7.31 (m, 2H, Ar-*H*), 4.12 (s, 2H, CH₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 146.3, 132.1, 131.7, 130.7, 122.7, 42.5.

4-iodophenylmethanaminium chloride (2j).¹² Following procedure **4**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-iodobenzonitrile (114.51 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **2j** as a white solid (113.19 mg, 84%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.82-7.80 (d, *J* = 8 Hz, 2H, Ar-*H*), 7.21-7.19 (d, *J* = 8 Hz, 2H, Ar-*H*), 4.11 (s, 2H, CH₂). ¹³C{¹H} NMR (100 MHz, D₂O) : $\delta_{\rm c}$ (ppm) 137.9, 131.9, 130.4, 94.3, 42.3.

4-nitrophenylmethanaminium chloride (**2k**).¹² Following procedure **4**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-nitrobenzonitrile (74.06 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **2k** as a yellow solid (75.44 mg, 80%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 8.27-8.25 (d, *J* = 8 Hz, 2H, Ar-*H*), 7.66-7.64 (d, *J* = 8 Hz, 2H, Ar-*H*), 4.31 (s, 2H, CH₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 147.9, 139.8, 129.8, 124.2, 42.2.

4-(trifluormethyl)phenylmethanaminium chloride (**2l**).¹³ Following procedure **4**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-(trifluoromethyl)benzonitrile (85.56 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **2l** as a colourless solid (89.93 mg, 85%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.79-7.78 (d, *J* = 8 Hz, 2H, Ar-*H*), 7.63-7.61 (d, *J* = 8 Hz, 2H, Ar-*H*), 4.27 (s, 2H, CH₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 136.6, 130.5, 129.2, 128.5, 126.0, 42.5.

Naphthylmethanaminium chloride (2m).¹³ Following procedure **4**, Zn(HMDS)₂ (9.65 mg, 5 mol%), naphthalene-2-carbonitrile (76.59 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **2m** as a colourless solid (87.15 mg, 90%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.98-7.93 (m, 5H, Ar-*H*), 7.60-7.58 (m, 5H, Ar-*H*), 7.53-7.51 (m, 5H, Ar-*H*), 4.31 (s, 2H, CH₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 132.9, 132.8, 130.2, 128.9, 128.2, 127.9, 127.7, 127.1, 126.9, 125.9, 43.2.

2-phenylethan-1-aminiumchloride (**2n**).¹² Following procedure **4**, Zn(HMDS)₂ (9.65 mg, 5 mol%), benzylcyanide (58.57 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **2n** as a colourless solid (67.78 mg, 86%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.44-7.41 (m, 2H, Ar-*H*), 7.37-7.33 (m, 3H, Ar-*H*), 3.30-3.27 (t, *J* = 6 Hz, 2H, C*H*₂), 3.02-2.99 (t, *J* = 6 Hz, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 136.6, 129.1, 128.9, 127.3, 40.6, 32.7.

2-(4-methoxyphenyl)ethan-1-aminiumchloride (**2o**).¹² Following procedure **4**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-methoxyphenylacetonitrile (73.58 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **2o** as a colourless solid (82.57 mg, 88%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.25-7.23 (m, 2H, Ar-*H*), 6.98-6.95 (m, 2H, Ar-*H*), 3.79 (s, 3H, OC*H*₃), 3.23-3.19 (t, *J* = 8 Hz, 2H, C*H*₂), 2.93-2.89 (t, *J* = 8 Hz, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 159.4, 131.6, 130.6, 115.9, 56.8, 42.2, 33.3.

2-(4-fluorophenyl)ethan-1-aminiumchloride (**2p**).¹² Following procedure **4**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-fluorophenylacetonitrile (67.57 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **2p** as a colourless solid (79.15 mg, 89%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.32-7.28 (m, 2H, Ar-*H*), 7.13-7.09 (m, 2H, Ar-*H*), 3.26-3.23 (t, *J* = 8 Hz, 2H, C*H*₂), 2.98-2.94 (t, *J* = 8 Hz, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 132.7, 130.9, 130.8, 116.0, 115.8, 40.9, 32.3.

2,2-diphenylethanaminium chloride (**2q**).¹² Following procedure **4**, Zn(HMDS)₂ (9.65 mg, 5 mol%), diphenylacetonitrile (96.62 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **2q** as a colourless solid (93.49 mg, 80%). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.40-7.39 (m, 8H, Ar-*H*), 7.34-7.30 (m, 2H, Ar-*H*), 4.36-4.32 (t, *J* = 8 Hz, 1H, CH₂), 3.72-3.70 (t, *J* = 8 Hz, 2H, CH₂). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm c}$ (ppm) 139.8, 129.0, 127.5, 127.4, 49.3, 42.8.

2-methoxyethan-1-aminium chloride (**2r**).¹² Following procedure **4**, $Zn(HMDS)_2$ (9.65 mg, 5 mol%), methoxyacetonitrile (35.54 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **2r**

as a colourless solid (49.09 mg, 88%). ¹H NMR (600 MHz, D₂O): $\delta_{\rm H}$ (ppm) 3.59-3.57 (t, *J* = 6 Hz, 2H, C*H*₂), 3.30 (s, 3H, OC*H*₃), 3.10-3.08 (t, *J* = 6 Hz, 2H, C*H*₂). ¹³C{¹H} NMR (150 MHz, D₂O): $\delta_{\rm c}$ (ppm) 67.7, 58.2, 38.8.

2-chloroethan-1-aminium chloride (2s).¹² Following procedure **4**, Zn(HMDS)₂ (9.65 mg, 5 mol%), chloroacetonitrile (37.75 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **2s** as a colourless solid (52.19 mg, 90%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 3.85-3.83 (t, *J* = 6 Hz, 2H, CH₂), 3.39-3.37 (t, *J* = 6 Hz, 2H, CH₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 42.3, 41.8.

Pyridine-4-ylmethanaminium chloride (2t).¹⁴ Following procedure **4**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-cyanopyridine (52.05 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **2t** as a colourless solid (57.83 mg, 80%). ¹H NMR (600 MHz, D₂O): $\delta_{\rm H}$ (ppm) 8.64-8.63 (m, 2H, Ar-*H*), 7.61-7.60 (m, 2H, Ar-*H*), 4.33 (s, 2H, CH₂). ¹³C{¹H} NMR (150 MHz, D₂O): $\delta_{\rm c}$ (ppm) 148.1, 144.6, 124.0, 41.7.

1,4-phenylenedimethaminium chloride (**2s**).¹⁵ Following procedure **4**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-cyanopyridine (64.06 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **2t** as a colourless solid (78.41 mg, 75%). ¹H NMR (600 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.41 (s, 4H, Ar-*H*), 4.11 (s, 4H, C*H*₂). ¹³C{¹H} NMR (150 MHz, D₂O): $\delta_{\rm c}$ (ppm) 133.5, 129.5, 42.6.

Figure S42: ${}^{13}C{}^{1}H$ (100 MHz, 25 °C, D₂O) NMR spectra of 2a.

Figure S44: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **2b**.

Figure S46: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **2c**.

Figure S48: ${}^{13}C{}^{1}H$ (100 MHz, 25 °C, D₂O) NMR spectra of 2d.

Figure S50: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **2e**.

Figure S52: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **2f**.

Figure S54: ¹³C{¹H} (150 MHz, 25 °C, D₂O) NMR spectra of **2g**.

Figure S56: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **2h**.

Figure S58: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **2i**.

Figure S60: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **2j**.

Figure S62: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **2k**.

Figure S64: ${}^{13}C{}^{1}H$ (100 MHz, 25 °C, D₂O) NMR spectra of 2l.

Figure S66: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **2m**.

Figure S68: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **2n**.

Figure S70: ${}^{13}C{}^{1}H$ (100 MHz, 25 °C, D₂O) NMR spectra of 20.

Figure S72: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **2p**.

Figure S74: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **2q**.

Figure S76: ${}^{13}C{}^{1}H$ (100 MHz, 25 °C, D₂O) NMR spectra of 2r.

Figure S78: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **2s**.

Figure S80: ${}^{13}C{}^{1}H$ (150 MHz, 25 °C, D₂O) NMR spectra of 2t.

Figure S82: ¹³C{¹H} (150 MHz, 25 °C, D₂O) NMR spectra of **2u**.

6. General procedure of hydrosilylation of tertiary amides.

The Schlenk tube was placed inside the glove box and loaded with $[Zn(HMDS)_2]$ (9.65, 5 mol%), respective tertiary amides (0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) and kept in an oil bath at 60 °C for 12 hours. The reaction was then quenched by adding 0.2 mL of 2 N HCl to the Schlenk tube and worked up with water and dichloromethane. Following that, the water layer was collected and evaporated the water through rotatory evaporation to obtain the product.

7. Optimization table for the Zn-catalyzed hydrosilylation of tertiary amides

v	Cat.	Cat.	Silane	Temn.	Time	Isolated
	N I	+ PhSiH ₃	Zn{N(SiMe r.t., Neat,	e₃)}₂ (5 mol%) 1.5 h		∕_N∕

Entry	Cat.	Cat.	Silane	Temp.	Time	Isolated					
		(mol %)		(°C)	(h)	Yield (%)					
1	-	-	PhSiH ₃	90	12	-					
2	Zn(HMDS) ₂	5	PhSiH ₃	60	1.5	92					
3	Zn(HMDS) ₂	5	PhSiH ₃	r.t.	6	90					
4	Zn(HMDS) ₂	5	PhSiH ₃	r.t.	1.5	90					
5	Zn(HMDS) ₂	5	PhSiH ₃	r.t.	1	80					
6	Zn(HMDS) ₂	5	PhMeSiH ₂	r.t.	1.5	75					
7	Zn(HMDS) ₂	5	Ph ₂ SiH ₂	r.t.	1.5	72					
8	Zn(HMDS) ₂	5	Ph ₃ SiH	r.t.	1.5	50					
9	$ZnCl_2$	5	PhSiH ₃	r.t.	12	-					
10	ZnBr ₂	5	PhSiH ₃	r.t.	12	-					
11	ZnI_2	5	PhSiH ₃	r.t.	12	-					
12	Zn(HMDS) ₂	5	Et ₃ SiH	r.t.	1.5	40					
^a Reaction conditions: Zn(HMDS) ₂ (5 mol%), N, N-dimethylbenzamide (0.5 mmol)											
followed by PhSiH ₃ (1 mmol) at room temperature under neat condition for 1.5h. ^b Isolated											
Yield.											

8. NMR data of tertiary ammonium salts

 \sim

N,*N*-dimethyl-1-phenylmethanaminium chloride (4a).¹⁶ Following procedure 6, Zn(HMDS)₂ (9.65 mg, 5 mol%), *N*,*N*-dimethylbenzamide (74.59 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded 2a as a colourless solid (77.25 mg, 90%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm)

7.42-7.39 (m, 5H, Ar-*H*), 4.19 (s, 2H, C*H*₂), 2.73 (s, 2H, C*H*₃). ${}^{13}C{}^{1}H$ NMR (100 MHz, D₂O): δ_c (ppm) 130.8, 130.2, 129.3, 61.1, 42.1.

N-benzyl-*N*-ethyl-ethanaminium chloride (4ba).¹⁶ Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), *N*, *N*-diethylbenzamide (88.62 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4ba** as a colourless solid (84.88 mg, 85%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.40-7.35 (m, 5H, Ar-*H*), 4.19 (s, 2H, C*H*₂), 3.11-3.04 (m, 4H, C*H*₂), 1.20-1.16 (t, *J* = 8 Hz, 6H, C*H*₃). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 130.8, 129.9, 129.3, 55.9, 46.7, 8.07.

N-ethyl-*N*-(4-methoxybenzyl)ethanaminium chloride (4bb).¹⁶ Follozwing procedure 6, Zn(HMDS)₂ (9.65 mg, 5 mol%), *N*, *N*-diethylbenzamide (103.63 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded 4bb as a white solid (101.09 mg, 85%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.33-7.31 (t, 2H, Ar-*H*), 6.96-6.94 (t, 2H, Ar-*H*), 4.14 (s, 2H, *CH*₂), 3.73 (s, 3H, OC*H*₃), 3.10-3.03 (m, 4H, *CH*₂), 1.21-1.17 (t, *J* = 8 Hz, 6H, *CH*₃). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 159.9, 132.5, 121.6, 114.6, 55.4, 55.3, 46.5, 8.1.

N-ethyl-*N*-(4-fluorobenzyl)ethanaminium chloride (4bc).¹⁶ Following procedure 6, Zn(HMDS)₂ (9.65 mg, 5 mol%), *N*, *N*-diethyl-4-fluorobenzamide (97.62 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded 4bb as a white solid (97.96 mg, 90%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.41-7.37 (t, 2H, Ar-*H*), 7.12-7.08 (t, 2H, Ar-*H*), 4.19 (s, 2H, *CH*₂), 3.13-3.03 (m, 3H, *CH*₂), 1.20-1.17 (t, *J* = 8 Hz, 6H, *CH*₃). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 164.5, 162.1, 133.1, 132.9, 125.3, 116.3, 116.0, 55.10, 46.6, 8.1.

N-(4-chlorobenzyl)-*N*-ethylethanaminium chloride (4bd).¹⁶ Following procedure 6, Zn(HMDS)₂ (9.65 mg, 5 mol%), *N*, *N*-diethyl-4-chlorobenzamide (105.84 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded 4bd as a white solid (103.03 mg, 88%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.38-7.32 (m, 4H, Ar-*H*), 4.17 (s, 2H, C*H*₂), 3.12-3.02 (m, 3H, C*H*₂), 1.20-1.16 (t, *J* = 8 Hz, 6H, C*H*₃). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 135.5, 132.4, 129.3, 127.9, 55.1, 46.8, 8.1.

N-(**4**-bromobenzyl)-*N*-ethylethanaminium chloride (4be).¹⁶ Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), *N*, *N*-diethyl-4-bromobenzamide (105.84 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4be** as a white solid (119.80 mg, 86%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.40-7.38 (d, 2H, Ar-*H*), 7.26-7.23 (d, 2H, Ar-*H*), 4.10 (s, 2H, *CH*₂), 3.03-2.96 (m, 3H, *CH*₂), 1.15-1.11 (t, *J* = 8 Hz, 6H, *CH*₃). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 132.7, 132.3, 128.4, 123.8, 55.1, 46.8, 8.3.

N-ethyl-*N*-(4-nitrobenzyl)ethanaminium chloride (4bf).¹⁶ Following procedure 6, Zn(HMDS)₂ (9.65 mg, 5 mol%), *N*, *N*-diethyl-4-nitrobenzamide (111.14 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded 4bf as a yellow solid (97.90 mg, 80%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 8.16-8.13 (d, 2H, Ar-*H*), 7.61-7.59 (d, 2H, Ar-*H*), 4.32 (s, 2H, *CH*₂), 3.12-3.02 (m, 3H, *CH*₂), 1.21-1.17 (t, *J* = 8 Hz, 6H, *CH*₃). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 148.3, 136.5, 132.0, 124.3, 54.9, 47.2, 8.1.

1-benzylpyrrolidin-1-ium chloride (**4ca**).¹⁷ Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), phenyl(pyrrolidin-1-yl)methanone (87.63 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4ca** as a colourless semisolid (83.05 mg, 84%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.39-7.35 (d, 5H, Ar-*H*), 4.21 (s, 2H, C*H*₂), 3.37-3.32 (m, 2H, C*H*₂), 3.07-3.00 (m, 2H, C*H*₂), 3.07-3.00 (m, 2H, C*H*₂), 2.03-1.99 (m, 2H, C*H*₂), 1.85-1.80 (m, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 130.5, 130.2, 129.9, 129.3, 57.9, 53.6, 22.4.

1-(4-methoxybenzyl)pyrrolidin-1-ium chloride (**4cb**).¹⁷ Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-methoxyphenyl(pyrrolidin-1-yl)methanone (102.63 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4cb** as a colourless semisolid (93.36 mg, 82%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.32-7.28 (m, 2H, Ar-*H*), 6.93-6.89 (m, 2H, Ar-*H*), 4.16 (s, 2H, CH₂), 3.70 (s, 3H, OCH₃), 3.36-3.30 (m, 2H, CH₂), 3.05-2.98 (m, 2H, CH₂), 2.05-1.96 (m, 2H, CH₂), 1.88-1.80 (m, 2H, CH₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 159.9, 131.9, 122.9, 114.6, 57.3, 55.4, 53.3, 22.3.

1-(4-fluorobenzyl)pyrrolidin-1-ium chloride (**4cc**).¹⁸ Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-fluorophenyl(pyrrolidin-1-yl)methanone (96.61 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4cc** as a colourless semisolid (86.28 mg, 80%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.40-7.36 (m, 2H, Ar-*H*), 7.11-7.06 (m, 2H, Ar-*H*), 4.22 (s, 2H, C*H*₂), 3.39-3.34 (m, 2H, C*H*₂), 3.07-3.00 (m, 2H, C*H*₂), 2.05-1.98 (m, 2H, C*H*₂), 1.87-1.81 (m, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 164.5, 162.0, 132.4, 132.3, 126.5, 116.2, 115.9, 57.1, 53.5, 22.3.

1-(4-chlorobenzyl)pyrrolidin-1-ium chloride (**4cd**).⁷ Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-chlorophenyl(pyrrolidin-1-yl)methanone (104.83 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4cd** as a colourless semisolid (95.17 mg, 82%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.37-7.32 (m, 5H, Ar-*H*), 4.22 (s, 2H, C*H*₂), 3.39-3.33 (m, 2H, C*H*₂), 3.07-3.01 (m, 2H, C*H*₂), 2.05-2.01 (m, 2H, C*H*₂), 1.87-1.82 (m, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 135.3, 131.8, 129.3, 129.1, 57.1, 53.6, 22.4.

1-(4-bromobenzyl)pyrrolidin-1-ium chloride (**4ce**).¹⁹ Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-bromophenyl(pyrrolidin-1-yl)methanone (127.06 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4ce** as a colourless semisolid (110.64 mg, 80%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.47-7.45 (m, 2H, Ar-*H*), 7.25-7.23 (m, 2H, Ar-*H*), 4.18 (s, 2H, *CH*₂), 3.36-3.30 (m, 2H, *CH*₂), 3.04-2.97 (m, 2H, *CH*₂), 2.03-1.97 (m, 2H, *CH*₂), 1.87-1.79 (m, 2H, *CH*₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 132.3, 132.1, 129.5, 123.6, 57.2, 53.6, 22.4.

1-(4-nitrobenzyl)pyrrolidin-1-ium chloride (**4cf**).¹⁹ Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-nitrophenyl(pyrrolidin-1-yl)methanone (110.11 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4cf** as a yellow semisolid (94.65 mg, 78%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 8.23-8.20 (m, 2H, Ar-*H*), 7.65-7.63 (m, 2H, Ar-*H*), 4.42 (s, 2H, CH₂), 3.48-3.42 (m, 2H, CH₂), 3.15-3.08 (m, 2H, CH₂), 2.11-2.04 (m, 2H, CH₂), 1.92-1.86 (m, 2H, CH₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 148.4, 137.5, 131.4, 124.3, 56.9, 54.0, 22.4.

1-benzylpiperidin-1-ium chloride (**4da**).¹⁷ Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), phenyl(piperdin-1-yl)methanone (94.63 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4da** as a colourless solid (86.80 mg, 82%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.38-7.34 (m, 5H, Ar-*H*), 4.10 (s, 2H, C*H*₂), 3.32-3.27 (m, 2H, C*H*₂), 2.83-2.76 (m, 2H, C*H*₂), 1.78-1.72 (m, 2H, C*H*₂), 1.67-1.62 (m, 1H, C*H*), 1.58-1.46 (m, 2H, C*H*₂), 1.35-1.25 (m, 1H, C*H*). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 131.2, 130.0, 129.2, 128.7, 60.5, 52.7, 22.6, 21.1.

1-(4-methoxybenzyl)piperidin-1-ium chloride (**4db**).¹⁷ Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-methoxyphenyl(piperdin-1-yl)methanone (109.64 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4da** as a colourless solid (97.91 mg, 81%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.29-7.25 (m, 2H, Ar-*H*), 6.91-6.87 (m, 2H, Ar-*H*), 4.04 (s, 2H, CH₂), 3.69 (s, 2H, CH₃), 3.30-3.25 (m, 2H, CH₂), 2.79-2.72 (m, 2H, CH₂), 1.78-1.73 (m, 2H, CH₂), 1.67-1.62 (m, 1H, CH), 1.57-1.45 (m, 2H, CH₂), 1.33-1.26 (m, 1H, CH). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 159.9, 132.8, 121.1, 114.5, 59.9, 55.4, 52.4, 22.7, 21.1.

1-(4-fluorobenzyl)piperidin-1-ium chloride (**4dc**).²⁰ Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-fluorophenyl(piperdin-1-yl)methanone (103.62 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4da** as a colourless solid (91.88 mg, 80%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.39-7.35 (m, 2H, Ar-*H*), 7.11-7.06 (m, 2H, Ar-*H*), 4.12 (s, 2H, C*H*₂), 3.34-3.29 (m, 2H, C*H*₂), 2.85-2.78 (m, 2H, C*H*₂), 1.82-1.75 (m, 2H, C*H*₂), 1.69-1.63 (m, 1H, C*H*), 1.60-1.48 (m, 2H, C*H*₂), 1.37-1.27 (m, 1H, C*H*). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 164.6, 162.1, 133.4, 133.3, 124.7, 116.1, 115.9, 59.7, 52.6, 22.7, 21.1.

1-(4-chlorobenzyl)piperidin-1-ium chloride (**4dd**).²¹ Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-chlorophenyl(piperdin-1-yl)methanone (112.85 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4dd** as a colourless solid (101.83 mg, 82%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.39-7.32 (m, 4H, Ar-*H*), 4.13 (s, 2H, C*H*₂), 3.34-3.31 (m, 2H, C*H*₂), 2.86-2.76 (m, 2H, C*H*₂), 1.82-1.77 (m, 2H, C*H*₂), 1.70-1.65 (m, 1H, C*H*), 1.61-1.50 (m, 2H, C*H*₂), 1.37-1.30 (m, 1H, C*H*). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 135.5, 132.7, 129.2, 127.3, 59.7, 52.7, 22.6, 21.1.

1-(4-bromobenzyl)piperidin-1-ium chloride (**4de**).²⁰ Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-bromophenyl(piperdin-1-yl)methanone (134.07 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4de** as a colourless solid (116.25 mg, 80%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.51-7.48 (m, 2H, Ar-*H*), 7.25-7.22 (m, 2H, Ar-*H*), 4.09 (s, 2H, C*H*₂), 3.32-3.27 (m, 2H, C*H*₂), 2.83-2.76 (m, 2H, C*H*₂), 1.79-1.74 (m, 2H, C*H*₂), 1.67-1.62 (m, 1H, C*H*), 1.57-1.47 (m, 2H, C*H*₂), 1.35-1.28 (m, 1H, C*H*). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 132.9, 132.2, 127.8, 123.8, 59.7, 52.8, 22.6, 21.0.

1-(4-nitrobenzyl)piperidin-1-ium chloride (**4df**).²¹ Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), 4-bromophenyl(piperdin-1-yl)methanone (117.07 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4df** as a yellow solid (96.27 mg, 75%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 8.14-8.12 (m, 2H, Ar-*H*), 7.60-7.58 (m, 2H, Ar-*H*), 4.27 (s, 2H, C*H*₂), 3.37-3.32 (m, 2H, C*H*₂), 2.92-2.85 (m, 2H, C*H*₂), 1.83-1.77 (m, 2H, C*H*₂), 1.70-1.62 (m, 1H, C*H*), 1.61-1.52 (m, 2H,

CH₂), 1.39-1.31 (m, 1H, CH). ¹³C{¹H} NMR (100 MHz, D₂O): δ_c (ppm) 148.4, 135.9, 132.4, 124.1, 59.2, 53.1, 22.7, 20.9.

4-benzylmorpholin-4-ium chloride (4ea).²² Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), morpholino(phenyl)methanone (95.61 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4ea** as a colourless solid (91.89 mg, 86%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.44-7.41 (m, 2H, Ar-*H*), 4.27 (s, 2H, C*H*₂), 4.02-3.98 (m, 2H, C*H*₂), 3.71-3.64 (m, 2H, C*H*₂), 3.36-3.32 (m, 2H, C*H*₂), 3.18-3.11 (m, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 131.3, 130.4, 129.3, 127.9, 63.7, 60.9, 51.2.

4-(4-methoxybenzyl)morpholin-4-ium chloride (4eb).²² Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), morpholino(4-methoxyphenyl)methanone (110.63 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4eb** as a colourless solid (107.24 mg, 88%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.35-7.33 (m, 2H, Ar-*H*), 6.94-6.92 (m, 2H, Ar-*H*), 4.19 (s, 2H, CH₂), 4.00-3.96 (m, 2H, CH₂), 3.72 (s, 3H, OCH₃), 3.70-3.63 (m, 2H, CH₂), 3.32-3.28 (m, 2H, CH₂), 3.13-3.06 (m, 2H, CH₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 160.2, 132.9, 120.2, 114.6, 63.7, 60.3, 55.5, 51.0.

4-(4-fluorobenzyl)morpholin-4-ium chloride (4ec).¹⁹ Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), morpholino(4-fluorophenyl)methanone (104.61 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4eb** as a colourless solid (104.26 mg, 90%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.42-7.38 (m, 2H, Ar-*H*), 7.13-7.08 (m, 2H, Ar-*H*), 4.24 (s, 2H, CH₂), 3.99-3.95 (m, 2H,

CH₂), 3.68-3.61 (m, 2H, CH₂), 3.33-3.29 (m, 2H, CH₂), 3.15-3.08 (m, 2H, CH₂). ${}^{13}C{}^{1}H$ NMR (100 MHz, D₂O): δ_c (ppm) 164.8, 162.3, 133.5, 133.4, 123.9, 116.3, 116.0, 63.6, 59.9, 51.1.

4-(4-chlorobenzyl)morpholin-4-ium chloride (**4ed**).²² Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), morpholino(4-chlorophenyl)methanone (112.83 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4eb** as a colourless solid (105.46 mg, 85%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.40-7.34 (m, 4H, Ar-*H*), 4.71 (s, 2H, C*H*₂), 4.00-3.96 (m, 2H, C*H*₂), 3.69-3.62 (m, 2H, C*H*₂), 3.33-3.30 (m, 2H, C*H*₂), 3.16-3.10 (m, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 135.8, 132.8, 129.3, 126.4, 63.6, 59.9, 51.2.

4-(naphthalene-2-ylmethyl)morpholin-4-ium chloride (**4f**).²³ Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), morpholino(naphthalen-1-yl)methanone (120.64 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4f** as a colourless solid (110.78 mg, 85%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.77-7.70 (m, 4H, Ar-*H*), 7.44-7.40 (m, 2H, Ar-*H*), 7.30-7.26 (m, 1H, Ar-*H*), 4.19 (s, 2H, CH₂), 3.88-3.81 (m, 2H, CH₂), 3.60-3.53 (m, 2H, CH₂), 3.19-3.14 (m, 2H, CH₂), 3.03-2.96 (m, 2H, CH₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 133.3, 132.6, 131.4, 128.9, 128.2, 127.7, 127.6, 127.4, 127.1, 125.2, 63.5, 60.7, 51.1, 43.1.

tribenzylammonium chloride (4g).²⁴ Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), *N*, *N*-dibenzylbenzamide (150.69 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **4g** as a colourless solid (113.35 mg, 70%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.44-7.33 (m, 15H, Ar-*H*), 4.15 (s, 6H, C*H*₂).¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 131.3, 130.6, 129.6, 129.7, 129.3, 50.5.

N-allyl-*N*-benzylprop-2-en-1-aminium chloride (4ha).²⁵ Following procedure 6, Zn(HMDS)₂ (9.65 mg, 5 mol%), *N*, *N*-diallylbenzamide (100.63 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded 4hb as a colourless solid (91.73mg, 82%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.44-7.39 (m, 4H, Ar-*H*), 5.91-5.78 (m, 2H, C*H*), 5.55-5.47 (m, 4H, C*H*₂), 4.25 (s, 2H, C*H*₂), 3.69-3.67 (dd, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 130.9, 129.3, 126.7, 125.5, 108.1, 56.3, 54.4.

N-allyl-*N*-(4-bromobenzyl)prop-2-en-1-aminium chloride (4hb).²⁵ Following procedure 6, Zn(HMDS)₂ (9.65 mg, 5 mol%), *N*, *N*-diallyl-4-bromobenzamide (140.08 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded 4hb as a brownish solid (121.05 mg, 80%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.55-7.53 (d, 2H, Ar-*H*), 7.28-7.26 (d, 2H, Ar-*H*), 5.88-5.78 (m, 2H, C*H*), 5.54-5.46 (m, 4H, C*H*₂), 4.18 (s, 2H, C*H*₂), 3.66-3.64 (dd, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 133.7, 132.4, 128.2, 126.9, 125.4, 123.9, 55.5, 54.5.

trimethylammonium chloride (4i).²⁶ Following procedure 6, Zn(HMDS)₂ (9.65 mg, 5 mol%), *N*, *N*-dimethylformamide (36.54 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded 4i as a colourless semisolid (42.05 mg, 88%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 2.81 (s, 9H, *CH*₃). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 44.7.

triethylammonium chloride (4j).¹⁶ Following procedure 6, Zn(HMDS)₂ (9.65 mg, 5 mol%), *N*, *N*-diethylacetamide (57.55 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded 4j as a colourless semisolid (61.94 mg, 90%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 3.14-3.08 (q, *J* = 8 Hz, 6H, *CH*₂), 1.20-1.17 (t, *J* = 8 Hz, 9H, *CH*₃). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 46.7, 8.3.

N,*N*-dimethylpropan-1-aminium chloride (4k).¹⁶ Following procedure 6, Zn(HMDS)₂ (9.65 mg, 5 mol%), *N*, *N*-dimethylpropionamide (50.52 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded 4k as a colourless semisolid (52.48 mg, 85%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 3.02-2.98 (t, *J* = 8 Hz, 2H, *CH*₂), 2.77 (s, 6H, *CH*₂), 1.68-1.59 (m, 2H, *CH*₃), 0.89-0.85 (t, 3H, *CH*₃). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 59.3, 42.6, 17.6, 9.9.

N,*N*-dibenzylethanaminium chloride (41).²⁷ Following procedure **6**, Zn(HMDS)₂ (9.65 mg, 5 mol%), *N*, *N*-dibenzylacetamide (119.66 mg, 0.5 mmol) and PhSiH₃ (108.22 mg, 1 mmol) afforded **41** as a colourless semisolid (109.95 mg, 84%). ¹H NMR (400 MHz, D₂O): $\delta_{\rm H}$ (ppm) 7.41-7.38 (m, 8H, Ar-*H*), 7.33-7.30 (m, 2H, Ar-*H*), 4.18 (s, 2H, C*H*₂), 4.13 (s, 2H, C*H*₂), 3.10-3.04 (q, *J* = 8 Hz, 6H, C*H*₂), 1.27-1.24 (t, *J* = 8 Hz, 3H, C*H*₃), 0.89-0.85 (t, 3H, C*H*₃). ¹³C{¹H} NMR (100 MHz, D₂O): $\delta_{\rm c}$ (ppm) 130.9, 130.6, 130.1, 129.9, 129.7, 129.3, 129.2, 129.1,50.2, 50.5, 47.5, 8.1.

Figure S84: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of 4a.

Figure S85: ¹H NMR (400 MHz, 25 $^{\circ}$ C, D₂O) spectra of 4ba.

Figure S86: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **4ba**.

Figure S88: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **4bb**.

Figure S90: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **4bc**.

Figure S91: ¹H NMR (400 MHz, 25 °C, D₂O) spectra of **4bd**.

Figure S92: ${}^{13}C{}^{1}H$ (100 MHz, 25 °C, D₂O) NMR spectra of 4bd.

Figure S94: ${}^{13}C{}^{1}H$ (100 MHz, 25 °C, D₂O) NMR spectra of 4be.

Figure S95: ¹H NMR (400 MHz, 25 °C, D₂O) spectra of **4bf**.

Figure S96: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **4bf**.

Figure S97: ¹H NMR (400 MHz, 25 °C, D₂O) spectra of **4ca**.

Figure S98: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **4ca**.

Figure S100: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of 4cb.

Figure S102: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **4cc**.

Figure S103: ¹H NMR (400 MHz, 25 $^{\circ}$ C, D₂O) spectra of 4cd.

Figure S104: ${}^{13}C{}^{1}H$ (100 MHz, 25 °C, D₂O) NMR spectra of 4cd.

Figure S105: ¹H NMR (400 MHz, 25 $^{\circ}$ C, D₂O) spectra of 4ce

Figure S106: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **4ce**.

Figure S108: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **4cf**.

Figure S110: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **4da**.

77.29 77.25 77.26 66.91 66.91 66.99 66.89 66.89 77.25 66.91 77.25 66.93 77.25 66.93 77.25 66.93 77.25 77.25 77.25 72.25 73.33 73.36 66.83 73.33 73.56 66.83 73.33 73.56 66.83 73.55 73.25 72.77 73.25 72.77 72.75 72.75 73.25 72.75 7

Figure S111: ¹H NMR (400 MHz, 25 $^{\circ}$ C, D₂O) spectra of 4db.

Figure S112: ${}^{13}C{}^{1}H{}$ (100 MHz, 25 °C, D₂O) NMR spectra of 4db.

Figure S114: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **4dc**.

Figure S115: ¹H NMR (400 MHz, 25 °C, D₂O) spectra of **4dd**.

Figure S116: ${}^{13}C{}^{1}H$ (100 MHz, 25 °C, D₂O) NMR spectra of 4dd.

Figure S118: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **4de**.

8.14 (1.15)(1.15) (1

Figure S120: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **4df**.

Figure S122: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of 4ea.

Figure S124: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of 4eb.

Figure S126: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **4ec**.

Figure S128: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **4ed**.

Figure S130: ${}^{13}C{}^{1}H$ (100 MHz, 25 °C, D₂O) NMR spectra of 4f.

Figure S131: ¹H NMR (400 MHz, 25 °C, D₂O) spectra of **4g**.

Figure S132: ${}^{13}C{}^{1}H$ (100 MHz, 25 °C, D₂O) NMR spectra of 4g.

Figure S134: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **4ha**.

Figure S135: ¹H NMR (400 MHz, 25 °C, D₂O) spectra of **4hb**.

Figure S136: ${}^{13}C{}^{1}H{}$ (100 MHz, 25 °C, D₂O) NMR spectra of 4hb.

Figure S138: ${}^{13}C{}^{1}H$ (100 MHz, 25 °C, D₂O) NMR spectra of 4i.

Figure S140: ${}^{13}C{}^{1}H$ (100 MHz, 25 °C, D₂O) NMR spectra of 4j.

Figure S142: ${}^{13}C{}^{1}H$ (100 MHz, 25 °C, D₂O) NMR spectra of 4k.

Figure S144: ¹³C{¹H} (100 MHz, 25 °C, D₂O) NMR spectra of **4**l.

Figure S145: ¹H NMR (400 MHz, 25 °C, DMSO-d₆) spectra of hydrosilylation of 4acetylbenzonitrile.

Figure S146: ¹³C{¹H} (100 MHz, 25 °C, DMSO-d₆) NMR spectra of hydrosilylation of 4-acetylbenzonitrile.

Figure S147: ¹H NMR (400 MHz, 25 °C, CDCl₃) spectra of hydrosilylation of *N*,*N*-dimethylbenzamide in presence of benzonitrile.

Figure S148: ¹³C{¹H} (100 MHz, 25 °C, CDCl₃) NMR spectra of hydrosilylation of *N*,*N*-dimethylbenzamide in presence of benzonitrile.

- 0.10

Figure S149: ¹H NMR (400 MHz, 25 °C, CDCl₃) spectra of hydrosilylation of benzonitrile in presence of phenylacetylene.

Figure S150: ¹³C{¹H} (100 MHz, 25 °C, , CDCl₃) NMR spectra of hydrosilylation of benzonitrile in presence of phenylacetylene.

Figure S147: ¹H NMR (400 MHz, 25 °C, CDCl₃) spectra of 1:1 reaction of Zn(HMDS)₂ and phenylsilane.

Figure S150: ¹³C{¹H} (100 MHz, 25 °C, CDCl₃) NMR spectra of 1:1 reaction of Zn(HMDS)₂ and phenylsilane.

Synthesis of 1-benzyl-4-(chloromethyl)piperidine

Firstly, Piperdine-4-methanol (1 g, 8.68 mmol), triethylamine (0.88 g, 8.68 mmol) and benzoyl chloride (1.22 g, 8.68 mmol) were taken in round bottom flask containing dichloromethane solvent and stirred it for 12 hours at room temperature. After that, workup with water and dichloromethane and dichloromethane layer was collected for rotatory evaporation to obtain the product I (1.40g, 90%). In second step, product I (1.40 g, 6.40 mmol) was transfer in dichloromethane solvent containing thionyl chloride (1.52 g, 12.8 mmol) and reflux it for 48 hours. Then, worked up with water and dichloromethane and dichlormethane layer was collected for rotatory evaporation. After that, purify the crude compound with column chromatography using hexane/ethylacetate as eluent to obtain the product II (0.913, 60%). In third step, Schlenk tube was charged with product II (0.913, 3.84 mmol) and phenylsilane (0.83g, 7.68 mmol) under inert atmosphere and solvent-free condition and kept for stirring at room temperature for 1.5 hours. After that, reaction was quenched by 0.5 ml 0.1N HCl and worked up with water and dichloromethane and aqueous layer was collected. Then, neutralize the aqueous layer by 0.1N NaOH solution and worked up with dichloromethane. The dichloromethane layer was collected and evaporated the solvent using rotatory evaporation to obtain the product III (0.687 g, 80%).

Figure 1: ¹H NMR (600 MHz, 25 °C, CDCl₃) spectra of 1-benzyl-4-(chloromethyl)piperidine.

Figure S28: ¹³C{¹H} (150 MHz, 25 °C, CDCl₃) NMR spectra of **1-benzyl-4-**(chloromethyl)piperidine.

References

- 1. M. S. Carle, G. K. Shimokura and G. K. Murphy, Eur. J. Org. Chem., 2016, 2016, 3930-3933.
- 2. S.-M. Wang, C. Zhao, X. Zhang and H.-L. Qin, Org. Biomol. Chem., 2019, 17, 4087–4101.
- 3. K. D. Hesp, R. G. Bergman and J. A. Ellman, Org. Lett., 2012, 14, 2304–2307.
- 4. T. W. Bousfield, K. P. R. Pearce, S. B. Nyamini, A. Angelis-Dimakis and J. E. Camp, *Green Chem.*, 2019, **21**, 3675–3681.
- 5. Y. Zhu, L. Chuanzhao, A. O. Biying, M. Sudarmadji, A. Chen, D. T. Tuan and A. M. Seayad, *Dalton Trans.*, 2011, **40**, 9320–9325.
- 6. W. Xie, M. Zhao and C. Cui, Organometallics, 2013, 32, 7440-7444.
- 7. O. O. Kovalenko, A. Volkov and H. Adolfsson, Org. Lett., 2015, 17, 446-449.
- 8. R. Ramkumar and S. Chandrasekaran, Synthesis, 2019, 51, 921–932.
- 9. A. R. Jeon, M. E. Kim, J. K. Park, W. K. Shin and D. K. An, *Tetrahedron*, 2014, **70**, 4420–4424.
- 10. W. Chen, Y.-L. Zhang, H.-J. Li, X. Nan, Y. Liu and Y.-C. Wu, *Synthesis*, 2019, **51**, 3651–3666.
- 11. R. Pelagalli, I. Chiarotto, M. Feroci and S. Vecchio, Green Chem., 2012, 14, 2251-2255.
- 12. R. Kumar, R. K. Meher, J. Sharma, A. Sau and T. K. Panda, Org. Lett., 2023, 25, 7923–7927.
- S. Das, H. S. Das, B. Singh, R. K. Haridasan, A. Das and S. K. Mandal, *Inorg. Chem.*, 2019, 58, 11274–11278.
- 14. C. Li, S. Song, Y. Li, C. Xu, Q. Luo, Y. Guo and X. Wang, Nat. Commun., 2021, 12, 3813.
- 15. J. A. Garduño and J. J. García, ACS Catal., 2019, 9, 392-401.
- 16. S. Das, H. Karmakar, J. Bhattacharjee and T. K. Panda, *Dalton Trans.*, 2019, 48, 11978–11984.
- 17. S. Hwang, H. Park, Y. Kwon and S. Kim, RSC Adv., 2014, 4, 60017–60024.
- 18. X. Yang, J. Kuziola, V. A. Béland, J. Busch, M. Leutzsch, J. Burés and J. Cornella, *Angew. Chem. Int. Ed.*, 2023, **62**, e202306447.
- 19. E. L. Stoll, T. Tongue, K. G. Andrews, D. Valette, D. J. Hirst and R. M. Denton, *Chem. Sci.*, 2020, **11**, 9494–9500.
- 20. S. Das, D. Addis, K. Junge and M. Beller, Chem. Eur. J., 2011, 17, 12186–12192.
- 21. T. V. Q. Nguyen, W.-J. Yoo and S. Kobayashi, Adv. Synth. Catal., 2016, 358, 452–458.
- 22. R. Savela, D. Vogt and R. Leino, Eur. J. Org. Chem., 2020, 2020, 3030-3040.
- 23. C. Edinger and S. R. Waldvogel, Eur. J. Org. Chem., 2014, 2014, 5144-5148.
- 24. F. Zhang, C. Guo, M. Gong, H. Xie and Y. Luo, New J. Chem., 2022, 46, 779-791.
- 25. D. Bézier, G. T. Venkanna, J.-B. Sortais and C. Darcel, ChemCatChem, 2011, 3, 1747–1750.
- 26. B. Yan, X. Ma, Z. Pang and Z. Yang, New J. Chem., 2023, 47, 3202–3206.
- 27. R. Kuwano, M. Takahashi and Y. Ito, Tetrahedron Lett., 1998, 39, 1017–1020.