Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

A pyridine-*N*-oxide catenane for cation recognition

Sean R. Barlow, Nathan R. Halcovitch and Nicholas H. Evans*

Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK

Email: n.h.evans@lancaster.ac.uk

Contents:

Part 1: Spectral Data for Main Article	S2
Part 2: ¹ H NMR Binding Studies	
Part 3: Crystallographic Data	S16
Part 4: References	S20

¹³C NMR (100 MHz, CDCl₃)

MS (ES +ve)

¹³C NMR (400 MHz, CDCl₃)

MS (ES +ve)

¹³C NMR (400 MHz, CDCl₃)

MS (ES +ve)

Inter-component through-space cross-peaks are circled.

Part 2: ¹H NMR Binding Studies

General Procedures

(a) Trifluoroacetic Acid Titration Procedure

A 0.25 M solution of TFA was added to 500 μ L of a 2.50 mM CDCl₃ solution of PNO [2]catenane **4** at 298 K. The volumes added were 5, 5, 15, 25, 50, 50, 50 & 50 μ L (i.e. in total 50 equivalents of TFA). A ¹H NMR spectrum was acquired after each addition. Then 50 equivalents of base (*d*₅-pyridine, dissolved in 125 μ L of CDCl₃) was added and a final ¹H NMR spectrum acquired.

On BindFit,¹ attempts were made at fitting to both $1:1^2$ and $1:2^3$ binding models using the chemical shift values (and thus $\Delta\delta_H$) for protons 1 and 13 of PNO [2]catenane 4. However, the data did not reasonably fit either model (see below).

(b) Alkali Metal Titration Procedure

A 0.15 M solution of alkali metal salt (LiClO₄ or NaBArF) was added to 500 μ L of a 2.50 mM solution of PNO [2]catenane **4** in 4:1 CDCl₃/CD₃CN at 298 K. A ¹H NMR spectrum was acquired after each addition. The volumes added were 2, 2, 2, 2, 2, 5, 10, 20, 50, 100, 100, 100 and 100 μ L (i.e. in total 50 equivalents of M⁺).

In both cases, the data was fitted globally on BindFit¹ using the chemical shift values (and thus $\Delta\delta_{H}$) for protons 2, 4, 7, 13 and 14 of PNO [2]catenane **4.** The models fitted to were:

- 1:2 binding model for LiClO₄.⁴
- 1:1 binding model for NaBArF.⁵

Ion Binding ¹H NMR Titration Experimental Data

PNO [2]catenane 4 + TFA

Stacked NMR spectra (400 MHz, $CDCl_3$, 298 K) of PNO [2]catenane **4** upon addition of increasing equivalents of TFA followed by a single addition of 50 equivalents of d_5 -pyridine.

NB: Extra aromatic peaks in top spectrum attributed to trace quantities of protic pyridine.

Globally fitted data (by Bindfit) for a 1:1 binding isotherm using change in peak positions against a ratio of initial TFA and catenane concentration.

Globally fitted data (by Bindfit) for a 1:2 binding isotherm using change in peak positions against a ratio of initial TFA and catenane concentration.

PNO [2]catenane 4 + LiClO₄

Stacked NMR spectra (400 MHz, 4:1 CDCl₃:CD₃CN, 298 K) of PNO [2]catenane **4** upon addition of increasing equivalents of LiClO₄.

Globally fitted data (by Bindfit) for a 1:2 binding isotherm using change in peak positions against a ratio of initial LiClO₄ and catenane concentration.

PNO [2]catenane 4 + NaBArF

Stacked NMR spectra (400 MHz, 4:1 CDCl₃:CD₃CN, 298 K) of PNO [2]catenane **4** upon addition of increasing equivalents of NaBArF.

Globally fitted data (by Bindfit) for a 1:1 binding isotherm using change in peak positions against a ratio of initial NaBArF and catenane concentration.

Part 3: Crystallographic Data

Pyridyl [2]catenane 2

Single crystals of pyridyl [2]catenane **2** were grown by slow evaporation of a chloroform solution. A suitable crystal was selected and studied using an Agilent SuperNova AtlasS2 diffractometer. Using Olex2⁶ the structure was solved with the ShelXS⁷ structure solution program using Direct Methods and refined with the ShelXL⁸ refinement package using Least Squares minimisation.

X-ray crystal structure of [2]catenane **2**. Thermal ellipsoids are displayed at 50% probability.

CCDC Number	23052568
Empirical formula	C ₃₁ H ₂₉ N ₃ O ₄
Formula weight	507.57
Temperature/K	99.93(16)
Crystal system	Monoclinic
Space group	P2 ₁ /c
a/Å	21.5269(2)
b/Å	11.10560(10)
c/Å	21.8729(2)
α/°	90
β/°	99.4400(10)
γ/°	90
Volume/Å ³	5158.32(8)
Ζ	8
ρ _{calc} g/cm ³	1.307
μ/mm⁻¹	0.704
F(000)	2144.0
Crystal size/mm ³	$0.09 \times 0.07 \times 0.04$
Radiation	Cu Kα (λ = 1.54184)
20 range for data collection/°	8.196 to 148.694
Index ranges	-26 ≤ h ≤ 25, -12 ≤ k ≤ 13, -19 ≤ l ≤ 27
Reflections collected	32736
Independent reflections	10318 [R _{int} = 0.0224, R _{sigma} = 0.0230]
Data/restraints/parameters	10318/0/701
Goodness-of-fit on F ²	1.059
Final R indexes [I>=2σ (I)]	R ₁ = 0.0372, wR ₂ = 0.0907
Final R indexes [all data]	R ₁ = 0.0439, wR ₂ = 0.0948
Largest diff. peak/hole / e Å ⁻³	0.54/-0.21

Crystal data and structural refinement for pyridyl [2]catenane 2:

PNO [2]catenane 4

Single crystals of PNO [2]catenane **4** were grown by slow evaporation of a chloroform solution. A suitable crystal was selected and studied using an Agilent SuperNova AtlasS2 diffractometer. Using Olex2⁶ the structure was solved with the ShelXT⁷ structure solution program using Direct Methods and refined with the olex2.refine⁹ refinement package using Gauss-Newton minimisation.

X-ray crystal structure of [2]catenane 4. Thermal ellipsoids are displayed at 50% probability.

CCDC Number	2305367
Empirical formula	C ₃₁ H ₂₉ N ₃ O ₆
Formula weight	523.57
Temperature/K	139.9(4)
Crystal system	Triclinic
Space group	P-1
a/Å	14.6339(5)
b/Å	15.1689(5)
c/Å	16.0492(3)
α/°	102.718(2)
β/°	111.425(3)
γ/°	105.578(3)
Volume/Å ³	2986.62(17)
Z	4
ρ _{calc} g/cm ³	1.164
µ/mm ⁻¹	0.649
F(000)	1104.0
Crystal size/mm ³	0.08 × 0.06 × 0.02
Radiation	Cu Kα (λ = 1.54184)
20 range for data collection/°	7.02 to 154.532
Index ranges	-18 ≤ h ≤ 17, -17 ≤ k ≤ 18, -20 ≤ l ≤ 19
Reflections collected	48309
Independent reflections	12420 [R _{int} = 0.0811, R _{sigma} = 0.0660]
Data/restraints/parameters	12420/0/712
Goodness-of-fit on F ²	1.038
Final R indexes [I>=2σ (I)]	R ₁ = 0.0664, wR ₂ = 0.1880
Final R indexes [all data]	R ₁ = 0.0876, wR ₂ = 0.2122
Largest diff. peak/hole / e Å ⁻³	0.31/-0.22

Crystal data and structural refinement for PNO [2]catenane 4:

Part 4: References

- (a) "Supramolecular.org Binding Constant Calculators" can be found under http://supramolecular.org (accessed 15th July 2023); (b) D. B. Hibbert and P. Thordarson, *Chem. Commun.*, 2016, **52**, 12792-12805; (c) P. Thordarson, *Chem. Soc. Rev.*, 2011, **40**, 1305-1323.
- Attempt to fit titration data for 4 with TFA for a 1:1 binding isotherm can be found under http://app.supramolecular.org/bindfit/view/57e295c3-57ca-410e-8d49-72bcf343dada (accessed 22nd June 2023).
- 3 Attempt to fit titration data for **4** with TFA for a 2:1 binding isotherm can be found under http://app.supramolecular.org/bindfit/view/034b92d0-c048-4fa1-87e1-1601c5fe91c1 (accessed 15th July 2023).
- Fitted titration data for 4 with LiClO₄ can be found under http://app.supramolecular.org/bindfit/view/29ae08eb-c98c-4e4a-8538d83822d473a7 (accessed 22nd June 2023).
- Fitted titration data for 4 with NaBArF can be found under http://app.supramolecular.org/bindfit/view/e26fdd6b-e548-42a4-80fada019c6239f5 (accessed 22nd June 2023).
- 6 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. *Appl. Cryst.*, 2009, **42**, 339-341.
- 7 G. M. Sheldrick, *Acta Cryst. A*, 2015, **71**, 3-8.
- 8 G. M. Sheldrick, *Acta Cryst. C*, 2015, **71**, 3-8.
- 9 L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, *Acta Cryst. A*, 2015, **71**, 59-75.