Supporting information

Biosynthesis of a new skyllamycin analogue in *Streptomyces nodosus*: a cytochrome P450 forms an epoxide in the cinnamoyl chain

Yuhao Song,^a Jose A. Amaya,^b Vidhi C. Murarka,^b Hugo Mendez,^b Mark Hogan,^a Jimmy Muldoon,^c Paul Evans,^c Yannick Ortin,^c Steven L. Kelly,^d David C. Lamb,^d Thomas L. Poulos,^b Patrick Caffrey^{*a}

^aCentre for Synthesis and Chemical Biology and School of Biomolecular and Biomedical Science, University College Dublin, Ireland

^bDepartments of Molecular Biology and Biochemistry, Pharmaceutical Sciences and Chemistry, University of California, Irvine, California, USA

^cCentre for Synthesis and Chemical Biology and School of Chemistry, University College Dublin, Ireland

^dFaculty of Medicine, Health and Life Science, Institute of Life Science, Swansea University, Singleton Park, Swansea, SA2 8PP, UK

Index

Table S1. Biological activities of cinnamate-containing non-ribosomal peptide natural products.

Table S2. Orphan P450s with > 85% sequence identity to P450Sky2.

Table S3. Comparison between NMR spectral data for synthetic skyllamycin A and isolated oxy-skyllamycin A.

Table S4 P450Sky2 crystallographic data collection and refinement statistics

Fig. S1. Overview of propenyl-cinnamoyl-ACP formation in the skyllamycin A producer, *Streptomyces* sp. Acta 2897

Fig. S2. Intermediates synthesized by the skyllamycin A NRPS.

Fig. S3. Structures of skyllamycins A to E

Fig. S4. Organization of propenyl-cinnamoyl biosynthetic genes in different skyllamycin BGCs.

Fig. S5. MS-MS mass spectrometry of skyllamycin A fragment generated by ammonia cleavage of the intact cyclodepsipeptide.

Fig. S6. MS-MS mass spectrometry of oxy-skyllamycin fragment generated by ammonia cleavage of the intact cyclodepsipeptide.

Fig. S7. ¹H-NMR spectrum of oxy-skyllamycin (500 MHz, CD₃OD, 25 °C).

Fig. S8. Expansion 1 (5.7 to 8.4 ppm region) of the ¹H-NMR spectrum of oxy-skyllamycin (500 MHz, CD₃OD, 25 °C). The cinnamoyl β -CH is in the box.

Fig. S9. Expansion 2 (2.6 to 6.0 ppm region) of the ¹H-NMR spectrum of oxy-skyllamycin (500 MHz, CD₃OD, 25 °C).

Fig. S10. Expansion 3 (0.3 to 2.4 ppm region) of the 1 H-NMR spectrum of oxy-skyllamycin (500 MHz, CD₃OD, 25 °C).

Fig. S11. ¹H-¹H-gCOSY NMR spectrum for oxy-skyllamycin (500 MHz, CD₃OD, 25 °C).

Fig. S12. Expansion 1 (6.4 to 8.0 ppm region) of $^{1}H^{-1$

Fig. S13. Expansion 2 (0.5 to 5.5 ppm region) of $^{1}H^{-1$

Fig. S14. ${}^{1}H{}^{13}C{}$ -HSQC NMR spectrum for oxy-skyllamycin (500 MHz, CD₃OD, 25 °C) – blue correlations represent CH₂ groups, red correlations represent CH, or CH₃ groups. Significant ${}^{1}H{}^{-13}C$ connections are indicated in boxes.

Fig. S15. Expansion 1 (6.3-8.0 ppm/100-145 ppm region) of ${}^{1}H{}^{-13}C{}^{-}HSQC$ NMR spectrum for oxy-skyllamycin (500 MHz, CD₃OD, 25 °C).

Fig. S16. Expansion 2 (2.7-5.7 ppm/20-80 ppm region) of ¹H-¹³C-HSQC NMR spectrum for oxy-skyllamycin (500 MHz, CD₃OD).

Fig. S17. Expansion 3 (0.4-2.2 ppm/0-50 ppm region) of ${}^{1}H{}^{-13}C{}$ -HSQC NMR spectrum for oxy-skyllamycin (500 MHz, CD₃OD, 25 °C).

Fig. S18. ¹H-¹H-TOCSY NMR spectrum for oxy-skyllamycin (500 MHz, CD₃OD, 25 $^{\circ}$ C) – epoxide spin system indicated in the box.

Fig. S19. Expansion 1 (6.3-8.0 ppm region) of ¹H⁻¹H-TOCSY NMR spectrum.

Fig. S20. Expansion 2 (0.4-5.6 ppm region) of ¹H⁻¹H-TOCSY NMR spectrum.

Fig. S21. Chiral epoxides formed during biosynthesis of cinnamoyl chains of CCNPs

Fig. S22. Epoxy-cinnamoyl-threonine made by Streptomyces HS-NF-1222A

Fig. S23. Alignment of P450sky2 with Avm43, EpcF and DmlF.

Table S1. Biological activities of cinnamate-containing non-ribosomal peptide natural products.

CCNP	Biological activity	Reference
Skyllamycin	Inhibit PDGF pathway, antibacterial, biofilm inhibition and dispersal	13
WS9326A	Tachykinin receptor agonist, inhibits asparaginyl tRNA synthetase from parasite <i>Brugia malayi</i> , inhibits transcription in <i>Clostridium perfringens</i>	6
Mohangamide A	Inhibits Candida albicans isocitrate lyase	7
Coprisimides A and B	Inducers of quinone reductase, a phase II detoxification enzyme that protects against cancer	4
Pepticinnamin E	Inhibits farnesyltransferase	
Atrovimycin	Antitubercular, antifungal	
Atratumycin	Antitubercular	
Kitacinnamycins	Activates stimulator of interferon gene (STING) protein	
Nyuzenamides A and B	Antifungal, cytotoxic	8
Nyuzenamide C	Anti-angiogenic, induces quinone reductase in murine Hepa 1c1c7 cells	30

Table S2. Orphan P450s with > 85% sequence identity to P450sky2.

Microorganism	Genome accession number	P450sky2 homologue, % identity	NRPS
Streptomyces sp SID2888	WWKB01000082	99%	Incomplete
Streptomyces CB01373	NNBK01000012	88%	Skyllamycin
Streptomyces sp 6- 11-2	BJOR01000001	88%	Skyllamycin
Streptomyces scopuliridis	NZ_JOEI01000022.1	85%	Skyllamycin
Streptomyces sp. CoT10	NZ_JAIQYX010000027.1	88%	10-module NRPS, skyllamycin-related

Table S3. Comparison between NMR spectral data for synthetic skyllamycin A (11) and isolated oxy-skyllamycin A.

Residue	Position	¹ H-NMR (500 MHz, CD ₃ OD, 25 °C) δ _H ppm (mult., <i>J</i> = Hz) ^a	¹³ C-NMR δ _c ppm {from HSQC}	Synthetic skyllamycin A ¹ H-NMR (600 MHz, CD₃OD) δ _H ppm
Thr	C=O	-	-	-
	α-CH	5.08-5.12 (m)	60.5	5.08
	β-CH	5.46-5.53 (m)	68.9	5.48
	CH₃	1.37 (d, <i>J</i> = 6.5 Hz)	15.9	1.35
Ala	C=O	-	-	-
	α–CH	4.06-4.10 (m)	51.3	4.06
	CH₃	1.49 (d, <i>J</i> = 7.0 Hz)	15.5	1.48
β -Me-Asp	C=O	-	-	
	α-CH	5.15-5.21 (m)	52.9	5.21
	β-CH	3.25-3.32 (m)	47.8	3.26
	CH₃	1.27 (d(br), <i>J</i> = 5.0 Hz)	13.1	1.30
	C=O	-	-	-
Gly	C=O	-	-	-
	α-CH ₂	3.65-3.74 (m)	46.7	3.66/3.74
β- OH-Phe	C=O	-	-	-
	β-CH	4.56-4.60 (m)	71.5	4.54
	α-CH	4.61-4.66 (m)	53.9	4.63
	C-1	-	-	-
	CH-2/6	7.45	-	7.43
	CH-3/5	7.37	-	7.36
	CH-4	7.25	-	7.24
Pro	C=O	-	-	-
	α-CH	4.32-4.38 (m)	59.8	4.35
	β-CH ₂	1.57-1.62 (m)/1.85-1.92 (m)	39.9	1.64/1.96
	γ-CH ₂	1.25-1.35 (m)/1.72-1.77 (m)	29.0/22.6	1.37/1.76
	δ-CH₂	3.46-3.51 (m)/4.07-4.13 (m)	42.3	3.47/4.14
β- OH - <i>O</i> -Me-	C=O	-	-	-
Tyr	α-CH	4.81-4.85 (m)	57.8/57.6 ^b	4.76
	β-CΗ	4.52 (d, <i>J</i> = 6.0 Hz)	73.4	4.50
	C-1	-	-	-
	CH-2/6	6.46-6.54 (m)	113.0/127.6	6.71/6.59
	CH-3/5	6.46-6.54 (m)	127.6/113.0	6.59/6.71
	C-4	-	-	-
	OCH ₃	3.67 (s)	54.3	3.67
D-Trp	C=O	-	-	-
	α-CH	4.81-4.85 (m)	57.6/57.8 ^b	4.72
	β-CH ₂	3.10-3.16 (m) 3.37-3.42 (m)	27.8	3.16
	CH-2	7.15 (s)	123.5	7.18

-			
C-3	-	-	-
C-3a	-	-	-
CH-4	7.46-7.49 (m)	118.2	7.60
CH-5	6.85 (t(br), <i>J</i> = 7.5 Hz)	118.8	6.94
CH-6	7.05 (t, <i>J</i> = 7.5 Hz)	121.0	7.07
CH-7	7.25-7.30 (m)	-	7.30
C-7a	-	-	-
C=O	-	-	-
α-CH	5.34-5.38 (m)	73.6	5.44
C=O	-	-	-
α-CH	4.28-4.34 (m)	55.1	4.35
β-CH ₂	1.57-1.62 (m)/1.80-1.85 (m)	23.5	1.63/1.82
γ-CH	1.85-1.89 (m)	24.8	1.86
CH ₃	0.91 (d, <i>J</i> = 6.5 Hz)	20.3	0.93
CH ₃	1.01 (d, <i>J</i> = 6.5 Hz)	21.8	0.99
C=O	-	-	-
α-CH	4.45-4.48 (m)	54.8	4.46
β-CH	3.81 (d, <i>J</i> = 9.0 Hz)	75.5	3.81
γ-CH	1.70-1.75 (m)	31.1	1.72
CH ₃	0.85 (d, <i>J</i> = 7.0 Hz)	17.6	0.85
CH ₃	1.06 (d, <i>J</i> = 6.5 Hz)	18.2	1.04
C=O	-	-	-
CH-2	7.30 (d, <i>J</i> = 15.0 Hz)	123.0	7.19
CH-3	7.81 (d, <i>J</i> = 15.0 Hz)	136.0	7.85
C-4	-	-	-
CH-5	7.95 (d, <i>J</i> = 7.5 Hz)	126.6	7.90
CH-6	7.25-7.30 (m)		7.29
CH-7	7.25-7.30 (m)		7.29
CH-8	7.25-7.30 (m)		7.15
C-9	-	-	-
CH-10	3.95 (s(br))	55.5	6.39
CH-11	2.76-2.79 (m)	54.6	5.77
CH ₃ -12	0.49 (m(br))	11.9	1.51
	C-3 C-3a CH-4 CH-5 CH-6 CH-7 C-7a C=0 α -CH β -CH2 γ -CH CH3 C=0 α -CH β -CH2 γ -CH CH3 C=0 α -CH β -CH3 C=0 α -CH CH3 C=0 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH-13 CH-2 CH-3 CH-4 CH-5 CH-6 CH-7 CH-8 C-9 CH-10 CH-11 CH3-12	C-3-C-3a-CH-47.46-7.49 (m)CH-56.85 (t(br), $J = 7.5$ Hz)CH-67.05 (t, $J = 7.5$ Hz)CH-77.25-7.30 (m)C-7a-C=O- α -CH5.34-5.38 (m)C=O- α -CH4.28-4.34 (m) β -CH21.57-1.62 (m)/1.80-1.85 (m) γ -CH1.85-1.89 (m)CH30.91 (d, $J = 6.5$ Hz)CH31.01 (d, $J = 6.5$ Hz)CH31.01 (d, $J = 6.5$ Hz)C=O- α -CH4.45-4.48 (m) β -CH3.81 (d, $J = 9.0$ Hz) γ -CH1.70-1.75 (m)CH30.85 (d, $J = 7.0$ Hz)CH31.06 (d, $J = 6.5$ Hz)C=O-CH-27.30 (d, $J = 15.0$ Hz)CH37.81 (d, $J = 15.0$ Hz)CH-37.81 (d, $J = 15.0$ Hz)CH-57.95 (d, $J = 7.5$ Hz)CH-67.25-7.30 (m)CH-77.25-7.30 (m)CH-87.25-7.30 (m)CH-103.95 (s(br))CH-112.76-2.79 (m)CH3-120.49 (m(br))	C-3C-3aCH-47.46-7.49 (m)118.2CH-56.85 (t(br), $J = 7.5$ Hz)118.8CH-67.05 (t, $J = 7.5$ Hz)121.0CH-77.25-7.30 (m)-C-7aC=O α -CH5.34-5.38 (m)73.6C=O α -CH4.28-4.34 (m)55.1 β -CH21.57-1.62 (m)/1.80-1.8523.5(m)(m)24.8CH30.91 (d, $J = 6.5$ Hz)20.3CH31.01 (d, $J = 6.5$ Hz)21.8C=O α -CH4.45-4.48 (m)54.8 β -CH3.81 (d, $J = 9.0$ Hz)75.5 γ -CH1.70-1.75 (m)31.1CH30.85 (d, $J = 7.0$ Hz)17.6CH31.06 (d, $J = 6.5$ Hz)18.2C=OCH-27.30 (d, $J = 15.0$ Hz)123.0CH-37.81 (d, $J = 15.0$ Hz)136.0C-4CH-57.95 (d, $J = 7.5$ Hz)126.6CH-67.25-7.30 (m)-CH-77.25-7.30 (m)-CH-77.25-7.30 (m)55.5CH-103.95 (s(br))55.5CH-112.76-2.79 (m)54.6CH3-120.49 (m(br))11.9

^amult. = signal multiplicity (m = multiplet, s = singlet (br = broad), d = doublet, t = triplet, J = coupling constant, value given in Hertz); ^bSignals coincident and under HDO signal in ¹H-NMR spectrum.

Table S4 P450Sky2 crystallographic data collection and refinement statistics

Parameter	Value
PDB entry	8FZ8
Wavelength (Å)	0.97946
Resolution range (Å)	35.84 - 1.43 (1.481 - 1.43)
Space group	P 1 2 ₁ 1
Unit cell (Å and degrees)	35.98 97.8501 52.5 90 95.12 90
Total reflections	253782 (25702)
Unique reflections	64328 (6466)
Multiplicity	3.9 (4.0)
Completeness (%)	96.44 (97.29)
Mean I/sigma(I)	11.94 (2.90)
Wilson B-factor	15.55
R-merge	0.05438 (0.366)
R-meas	0.06255 (0.4233)
R-pim	0.0303 (0.209)
CC1/2	0.998 (0.896)
CC*	1 (0.972)
Reflections used in refinement	64284 (6465)
Reflections used for R-free	2000 (201)
R-work	0.1750 (0.2198)
R-free	0.1889 (0.2505)
CC(work)	0.966 (0.900)
CC(free)	0.970 (0.855)
Number of non-hydrogen atoms	3503
macromolecules	3162
ligands	54
solvent	287
Protein residues	392
RMS(bonds)	0.006
RMS(angles)	0.93
Ramachandran favored (%)	96.38
Ramachandran allowed (%)	2.84
Ramachandran outliers (%)	0.78
Rotamer outliers (%)	1.45
Clashscore	10.19
Average B-factor	21.88
macromolecules	21.31
ligands	16.53
solvent	29.16

Values in () are for statistics in the highest resolution shell. Statistics generated using by the "Table 1" utility in Phenix.

Fig. S1. Biosynthesis of the propenyl-cinnamoyl chain of skyllamycin A. An all-trans polyene polyketide intermediate undergoes trans-cis isomerization of double bonds, followed by electrocyclization and oxidation to give the aromatic ring. The cyclase involved in skyllamycin biosynthesis has not been identified but at least two classes of electrocyclase have been identified in biosynthetic pathways to other cinnamoyl-containing natural products (20).

Fig. S2 Lipopeptide intermediates synthesized by the skyllamycin A NRPS.

Fig. S3 Structures of skyllamycins A to E (10, 13, 14, 15).

Fig. S4 Organization of propenyl-cinnamoyl biosynthetic genes in different skyllamycin BGCs (See also Table S2). *Streptomyces* sp Acta 2897 produces skyllamycins A and B and does not have the gene for P450Sky2 (black box). Abbreviations are as follows: ACP, acyl carrier protein; KS, ketosynthase; H, hydrolase; TE, thioesterase; DH, dehydratase; KR, ketoreductase; I, isomerase; D, dehydrogenase; Fd, ferredoxin. MbtH proteins stimulate the A domains of non-ribosomal peptide synthetases. The product of the LuxR gene (blue) activates the silent skyllamycin cluster in *S. nodosus*.

Fig. S5 Mass spectrometry of skyllamycin A fragment generated by ammonia cleavage of the intact cyclodepsipeptide. (A) Detection of acyl-octapeptide fragment, $[M + H]^+ = 1185.5285$. (B) MS-MS spectrum obtained with collision energy of 20 eV. (C) MS-MS spectrum obtained with collision energy of 40 eV.

Fig. S6 Mass spectrometry of oxy-skyllamycin A fragment generated by ammonia cleavage of the intact cyclodepsipeptide. (A) Detection of acyl-octapeptide fragment, $[M + H]^+ = 1201.5227$. (B) MS-MS spectrum obtained with collision energy of 20 eV. (C) MS-MS spectrum obtained with collision energy of 40 eV.

	Parameter	Value
1	Title	YS1_PROTON_20220512_01
2	Solvent	CD₃OD
3	Temperature	25.0 °C
4	Experiment	1D
5	Number of Scans	128
6	Relaxation Delay	2.0000 sec
7	Acquisition Time	3.6000 sec
8	Spectrometer Frequency	500.03 MHz
9	Acquired Size	28846
10	Spectral Size	65536

Fig. S7 ¹H-NMR spectrum of oxy-skyllamycin (500 MHz, CD₃OD, 25 °C).

Fig. S8 Expansion 1 (5.7 to 8.4 ppm region) of the ¹H-NMR spectrum of oxy-skyllamycin (500 MHz, CD₃OD, 25 °C). The cinnamoyl β -CH is in the box.

Fig. S9 Expansion 2 (2.6 to 6.0 ppm region) of the ¹H-NMR spectrum of oxy-skyllamycin (500 MHz, CD₃OD, 25 °C).

Fig. S10 Expansion 3 (0.3 to 2.4 ppm region) of the ¹H-NMR spectrum of oxy-skyllamycin (500 MHz, CD₃OD, 25 °C).

	Parameter	Value
1	Title	YS1_gCOSY_20220512_01
2	Solvent	CD₃OD
3	Temperature	25.0 °C
4	Experiment	COSY
5	Number of Scans	16
6	Relaxation Delay	1.0000 sec
7	Acquisition Time	0.1500 sec
8	Spectrometer Frequency	(500.03 MHz, 500.03 MHz)
9	Acquired Size	(597, 400)
10	Spectral Size	(1024, 1024)

Fig. S11 ¹H-¹H-gCOSY NMR spectrum for oxy-skyllamycin (500 MHz, CD₃OD, 25 °C).

Fig. S12 Expansion 1 (6.4 to 8.0 ppm region) of $^1\text{H-}^1\text{H-gCOSY}$ NMR spectrum for oxy-skyllamycin (500 MHz, CD_3OD, 25 °C).

Fig. S13 Expansion 2 (0.5 to 5.5 ppm region) of $^{1}H^{-1}$

	Parameter	Value
1	Title	YS1_HSQCAD_20220513_01
2	Solvent	CD ₃ OD
3	Temperature	25.0 °C
4	Experiment	HSQC-EDITED
5	Number of Scans	32
6	Relaxation Delay	1.0000 sec
7	Acquisition Time	0.1500 sec
8	Spectrometer Frequency	(500.03 MHz, 125.74 MHz)
9	Acquired Size	(597, 400)
10	Spectral Size	(1024, 1024)

Fig. S14 ¹H-¹³C-HSQC NMR spectrum for oxy-skyllamycin (500 MHz, CD₃OD, 25 °C) – blue correlations represent CH₂ groups, red correlations represent CH, or CH₃ groups. Significant ¹H-¹³C connections are indicated in boxes.

Fig. S15 Expansion 1 (6.3-8.0 ppm/100-145 ppm region) of $^{1}H^{-13}C^{-}HSQC$ NMR spectrum for oxy-skyllamycin (500 MHz, CD₃OD, 25 °C).

Fig. S16 Expansion 2 (2.7-5.7 ppm/20-80 ppm region) of ${}^{1}H{}^{-13}C{}^{-}HSQC$ NMR spectrum for oxy-skyllamycin (500 MHz, CD₃OD).

Fig. S17 Expansion 3 (0.4-2.2 ppm/0-50 ppm region) of ${}^{1}H{}^{-13}C{}$ -HSQC NMR spectrum for oxy-skyllamycin (500 MHz, CD₃OD, 25 °C).

	Parameter	Value
1	Title	YS1_TOCSY_20220512_01
2	Solvent	CD₃OD
3	Temperature	25.0 °C
4	Experiment	TOCSY
5	Number of Scans	16
6	Relaxation Delay	1.0000 sec
7	Acquisition Time	0.1500 sec
8	Spectrometer Frequency	(500.03, 500.03)
9	Acquired Size	(597, 400)
10	Spectral Size	(1024, 1024)

Fig. S18 1 H- 1 H-TOCSY NMR spectrum for oxy-skyllamycin (500 MHz, CD₃OD, 25 °C) – epoxide spin system indicated in the box.

Fig. S19 Expansion 1 (6.3-8.0 ppm region) of ¹H ⁻¹H-TOCSY NMR spectrum.

Fig. S20 Expansion 2 (0.4-5.6 ppm region) of ${}^{1}H{}^{-1}H$ -TOCSY NMR spectrum.

Atrovimycin

Nyuzenamide C

Fig. S21 A. Chiral epoxides formed during biosynthesis of cinnamoyl chains of CCNPs. X represents the remainder of the peptide macrocycle. The reported structures of nyuzenamide C, the epoxide-containing atrovimycin intermediate, epoxinnamide and NC1 suggest that the epoxide-forming P450s give all four possible stereochemical outcomes. B. Complete structures of atrovimycin and nyuzenamide C. The epoxide in the atrovimycin cinnamate is hydrolyzed in the final peptide.

Fig. S22 Epoxy-cinnamoyl-threonine made by Streptomyces HS-NF-1222A

Avm43 P450Sky2 DmlF EpcF	MRGENTMEQRKISKYWMLTDDFTQNPYPVLERVREEQPVCELSLPDGGRAWVVTRHEDAK MAAGGALSKYWMFSDEYTQNPYPIFSTLRSEQPVTMVQTPDGARAWVITRHEDVR MTHTGTLSRYWMFSDEYTQDPYPFLAQLREEQPVCRVETPDGVRAWVVSRYDDVR :*:***::*::*::*::*::*::*::*::*::*::*::*	60 55 55 55
Avm43 P450Sky2 DmlF EpcF	AALSDPRLSRDINVHFDLVSRLTGTTLTPPPEHANHLANLEPPRHTPLRKAISSAFTPRR NALADPRLSRDIGNLYQALGRQIGKELKPTDEITHHLANSDPPRHTRLRKALVFAFTPKR DALSDPRLGRDIGKLYAALGRQLGQDIKPADEISNHLANSDPPRHTPLRKALTFAFTPKR **:****.***. : :.: * :.* * ::**** :***** ****:	120 115 115 115
Avm43 P450Sky2 DmlF EpcF	ADALRPQIETVADELLDRMAGAGGADLIAAYADPLPVIVIATLMGVPAAAWPDFLRWSTQ VANMRPRLEQVVEGLLDELAAQHQPDLLEGLAEPLPIIAIAQLLGVPDSDWRQFKIWSNT VRGLRDGWGKVVDDLLDEMVRTGNRDLVSGLNEPLPIITIAQLMGVPDTDWPRFLVWTNT VRGLRDGWEKVVDDLLDEMVRTGNRDLVSGLNEPLPIITIAQLMGVPDADWPRFLVWTNT . :* *: ***.: ***: :*** :* * *:	180 175 175 175
Avm43 P450Sky2 DmlF EpcF	LRAVQATDPAADGTVKELSSYMSALIAEKEREPGDDLISALIHADPDRRLTGTEILST MRSTDAADPTGLLAEHTRELSAYMADLIAEKERHPTDDLISAMVHAEGDKQLTPKEILST LRRVDASDPTGIIAEHTRQLSDYLKALIAAKQRDPQDDLISALVHADEDRRLTAAEALST LRRVDASDPTGIIAEHTRQLSDYLKALIATKQRTPQDDLISALVHADEDKRLTAAEALST :* .:*:**:::** *: *** *:* * ******::**: *::** * ****	238 235 235 235
Avm43 P450Sky2 DmlF EpcF	SFALMTGGNDTTASLLGGVLHALLTHPGERAELLAAPGRWVAEMDELIRYVSPITNTLQR AFALMTGGNETTTALVTGCFAALLTHPEQAKRLKADLDRLPQVVDELIRFSSPMLYTLQR AFALMTGGNDTTTSLLNGSFAALLTHTGEADKIRADWSLLPNAVEELLRYTSPLINSLQR AFALMTGGNDTTTSLLNGSFAALLTHTGEADKIRADWSLLPNAVEELLRFTNPLINSLQR :************************************	298 295 295 295
Avm43 P450Sky2 DmlF EpcF	VTLEPVEIGGVTIPADEVVIISVISTNRDRCPFPERPDELDLKRPKPAHLSFGHGIHYCS LTLEDVEIAGTTIPAGEILMLSPASANHDPEALPDRPDELDIDRPRPVHLTFGHGIHYCI VTLEPVELCGVKIPKDEIIIISLAGANHDPHAFPDRPAELDITRPRPAHMSFGHGIHYCL VTLEPVELCGVKIPKDEIIIISLAGANHDPHAFADRAAELDITRPKPAHVSFGYGIHYCL :*** **: *** .*:::* .:*: :* :* **: **:	358 355 355 355
Avm43 P450Sky2 DmlF EpcF	GAHLAKLMTEVAVRRFFERFPDARLAVDPSALRHTQSMVVRPWESLPVVW* 408 GSHLARAQAEISIRRVLERFPDVRLAVHPSELRYRPALLARAPVALPVRL- 405 GSHMSKALTELAIRRVFERFPDIRLAVHPSEVRYRPGLMVRPMIDLPVRF- 405 GSHMSKALTELAIRRVYERFPGIRLAVHPSEVRYRPGLMVRPMIDLPVRF- 405 *:*::: :*:::**. ****. ****.** :*: .::.* ***	

Fig. S23 Alignment of P450Sky2 with Avm43, DmIF and EpcF epoxidases. P450Sky2 shows 63% sequence identity with EpcF and DmIF and 53% sequence identity with Avm43 P450. Active site residues identified from the P450Sky2 structure are coloured red. All are conserved or conservatively substituted in the other epoxidases except Tyr-291.