Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

# Supporting information

# Dess-Martin Periodinane-mediated oxidation of the primary alcohol of cytidine into a carboxylic acid

Alexandra Serre<sup>1</sup>, Vibhu Jha<sup>2,3</sup>, Adèle Rivault<sup>1</sup>, Leif A. Eriksson<sup>2</sup>, Goreti Ribeiro Morais<sup>1</sup>, Robert A. Falconer<sup>1\*</sup>

<sup>1</sup>Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, U.K.

<sup>2</sup>Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden.

<sup>3</sup>Current address: Institute of Cancer Therapeutics, University of Bradford.

Email: r.a.falconer1@bradford.ac.uk

## Table of contents

| Table S1 Oxidation of compound 1a. Detected masses and AUC of products by LCMS                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------|
| chromatogram under different conditions                                                                                                      |
| Figure S1 LCMS chromatogram of products of oxidation of compound 1a                                                                          |
| <b>Table S2</b> Oxidation of compound <b>1a</b> with 2 eq. of DMP. Detected masses and AUC ofproducts by LCMS chromatogram before extraction |
| <b>Figure S2</b> LCMS chromatogram of products of oxidation of compound <b>1a</b> before extraction                                          |
| Figure S3 <sup>1</sup> H NMR spectra of DMP from different batchesS8                                                                         |
| Figure S4 Oxidation of compound 1a with DMP under different conditions                                                                       |
| Table S3 Oxidation of compound 1a with 2 eq. DMP. Detected masses and AUC of products by LCMS chromatogram after extraction                  |

| Figure S5 LCMS chromatogram of products of oxidation of compound 1a after         extraction                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Figure S6</b> LCMS chromatogram of products of oxidation of compound <b>1a</b> with 2 eq. DMP and modification of mobile phaseS11                                                                                                                                                                                       |
| <b>Figure S7</b> Comparision between initial coordinates and the coordinates after DFT calculation of <b>1a</b> and hydrate intermediate <b>3a</b> showing conformational changesS12                                                                                                                                       |
| Figure S8 RMSD analysis from the 200 ns MD simulations of 1a and the hydrate         intermediate of 3a       S12                                                                                                                                                                                                          |
| Figure S9 MD simulation analysis of <b>1a</b> S13                                                                                                                                                                                                                                                                          |
| Figure S10 MD simulation analysis of the hydrate intermediate of 3aS13                                                                                                                                                                                                                                                     |
| <b>Table S4</b> Oxidation of compound <b>2.</b> Detected masses and AUC of products by LCMSchromatogram under different conditionsS14                                                                                                                                                                                      |
| Figure S11 LCMS chromatogram of products of oxidation of compound 2S14                                                                                                                                                                                                                                                     |
| <b>Table S5</b> Oxidation of compound <b>1c</b> . Detected masses and AUC of products by LCMSchromatogram under different conditionsS15                                                                                                                                                                                    |
| Figure S12 LCMS chromatogram of products of oxidation of compounds 1cS15                                                                                                                                                                                                                                                   |
| Figure S13A <sup>1</sup> H NMR spectra of aldehyde 3cS16                                                                                                                                                                                                                                                                   |
| Figure S13B <sup>1</sup> H NMR spectra of mixture aldehyde 3c and methyl hemiacetal 4cS16                                                                                                                                                                                                                                  |
| Figure S14 Comparision between initial coordinates of cytidine analogue 1c and its                                                                                                                                                                                                                                         |
| coordinate after DFT calculation; superposed initial coordinates and the coordinates after the DFT calculation of <b>1c</b>                                                                                                                                                                                                |
| coordinate after DFT calculation; superposed initial coordinates and the coordinates after the DFT calculation of <b>1c</b>                                                                                                                                                                                                |
| coordinate after DFT calculation; superposed initial coordinates and the coordinates after the DFT calculation of 1cS17 Table S6 Oxidation of compound 1b. Detected masses and AUC of products by LCMS chromatogram under different conditionsS18 Figure S15 LCMS chromatogram of products of oxidation of compounds 1bS18 |
| coordinate after DFT calculation; superposed initial coordinates and the coordinates after the DFT calculation of 1c                                                                                                                                                                                                       |
| coordinate after DFT calculation; superposed initial coordinates and the coordinates<br>after the DFT calculation of 1c                                                                                                                                                                                                    |

| Figure S18 LCMS chromatogram of products of oxidation of methyl ri | boside <b>12</b> S21 |
|--------------------------------------------------------------------|----------------------|
| Figure S19 LCMS gradient                                           | S22                  |
| Figure S20 Characterisation of compound 5a                         | S23                  |
| Figure S21 Characterisation of compound 6a                         | S25                  |
| Figure S22 Characterisation of compound 2                          | S27                  |

#### **General information**

All chemicals were provided by Sigma Aldrich or Fluorochem. All reactions were monitored by thin-layer chromatography (TLC silica gel 60  $F_{254}$ , aluminium) and/or by LC/MS (Waters Alliance e2695 separation modules, Waters 2998 photodiode array (PDA) detector 280 nm, Waters Acquity QDA mass detector, Hichrom C<sub>18</sub> 3.5  $\mu$ M, 2.1 x 150 mm) according to the following methods (**Figure S19**, supporting data). Novel compound **2** was synthesized similarly to compound **1a**.<sup>25</sup> NMR spectra were recorded on a Bruker AMX 400 NMR spectrometer and are reported in parts per million (ppm) on the  $\delta$  scale relative to residual CDCl<sub>3</sub> ( $\delta$  7.25 or  $\delta$  77.0), CD<sub>3</sub>OD ( $\delta$  3.31 or  $\delta$  49.00) or DMSO-*d*6 ( $\delta$  2.50 or  $\delta$  39.52). Spectral assignments were accomplished using 2D COSY and HSQC experiments. High-resolution mass spectrometry was recorded using a Thermo scientific, LTQ Orbitrap no. 01289B, Electrospray. Column chromatography was performed using silica gel (230-400 mesh)

**General Procedure for the oxidation of 5'-hydroxy cytidine to 5'-aldehyde cytidine:** To a stirred solution of alcohol (25 mg, 1 eq.) in dry  $CH_2CI_2$  (2.5 mL) was added DMP (2 eq.) and the mixture was stirred at room temperature. After 2 hours, the mixture was diluted with  $CH_2CI_2$  (20 mL) and washed with sodium thiosulfate (2 x 20 mL), water (2 x 20 mL) and brine (2 x 20 mL). The organic phases were combined and dried over anhydrous  $Mg_2SO_4$ , filtered, and concentrated under reduced pressure. LCMS analysis of the crude indicated the following yields of **3a** 68%; **3b** 93%; **3c** > 95%; **7** 59%.

## **General Procedure for the oxidation of 5'-hydroxy cytidine to 5'-carboxylic acid cytidine**: To a stirred solution of protected 5'-hydroxy cytidine (25 mg, 1 eq.) in dry CH<sub>2</sub>Cl<sub>2</sub> (2.5 mL) was

S3

added DMP (4 eq.) and the mixture was stirred at room temperature. After 2 hours, the mixture was further diluted with  $CH_2Cl_2$  (20 mL) and washed with sodium thiosulfate (2 x 20 mL), water (2 x 20 mL) and brine (2 x 20 mL). The organic phases were combined and dried over anhydrous  $Mg_2SO_4$ , filtered, and concentrated under reduced pressure. LCMS analysis of the crude indicated the following yields of **5a** 79%; **5b** 96%; **5c** 42%; **8** 95%.

(2S,3S,4R,5R)-5-(4-(((benzyloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)-3,4bis(((benzyloxy)carbonyl)oxy)tetrahydrofuran-2-carboxylic acid (5a) – Column chromatography on silica gel CH<sub>2</sub>Cl<sub>2</sub>/MeOH/AcOH (97/2/1) afforded 5a as white solid,  $\eta = 67\%$ ; <sup>1</sup>H NMR (400 MHz, DMSO-*d*6)  $\delta$  10.98 (s, 1H), 8.37 (d, 1H, H<sub>6</sub>, *J* = 7.6 Hz, 1H), 7.44 – 7.30 (m, 15H, Cbz-Ph), 7.09 (d, 1H, H<sub>5</sub>, *J* = 7.6 Hz, 1H), 6.06 (d, 1H, H<sub>1'</sub>, *J* = 4.1 Hz), 5.74 (dd, 1H, H<sub>3'</sub>, *J* = 5.7, 4.7 Hz), 5.54 (dd, 1H, H<sub>2'</sub>, *J* = 5.7, 4.1 Hz), 5.20 (s, 2H, Cbz-(N)-CH<sub>2</sub>), 5.17 (s, 2H, Cbz-(O)-CH<sub>2(1)</sub>), 5.10 (s, 2H, Cbz-(O)-CH<sub>2(2)</sub>), 4.74 (d, 1H, H<sub>4'</sub>, *J* = 4.7 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO)  $\delta$  169.8 (s, C<sub>5'</sub>), 146.7 (s, C<sub>6</sub>), 128.5 (m, Cbz-Ph), 95.1 (s, C<sub>5</sub>), 90.7 (s, C<sub>1'</sub>), 79.7 (s, C<sub>4'</sub>), 76.4 (s, C<sub>2'</sub>), 75.6 (s, C<sub>3'</sub>), 69.8 (s, Cbz-(O)CH2), 69.7 (s, Cbz-(O)CH<sub>2</sub>), 66.7 (s, Cbz-(N)CH<sub>2</sub>); Rt = 19.97 min (method 1, UV 254 nm, [M+H]<sup>+</sup> = 660); HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>33</sub>H<sub>29</sub>N<sub>3</sub>O<sub>12</sub> 660.1830; found 660.1849.

## Synthesis of methyl (2S,3S,4R,5R)-5-(4-(((benzyloxy)carbonyl)amino)-2oxopyrimidin-1(2H)-yl)-3,4-bis(((benzyloxy)carbonyl)oxy)tetrahydrofuran-2-

*carboxylate* (6a) – crude of compound 5a (25 mg) was dissolved in methanol (2 ml) and stirred with Amberlite IR-120 at room temperature overnight. Then the resin was filtered, and the filtrate evaporated. Column chromatography on silica gel afford 6a as a white solid,  $\eta = 91\%$ ; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.43 (d, 1H, H<sub>6</sub>, *J* = 7.5 Hz, 1H), 7.42 – 7.29 (m, 16H, Cbz-Ph and H<sub>5</sub>), 6.27 (d, 1H, H<sub>1</sub>', *J* = 3.4 Hz), 5.45 (m, 2H, H<sub>2</sub>' and H<sub>3</sub>'), 5.23 (s, 2H, Cbz-(N)-CH<sub>2</sub>), 5.14 (s, 2H, Cbz-(O)CH<sub>2(1)</sub>), 5.12 (m, 2H, Cbz-(O)CH<sub>2(2)</sub>), 4.75 (d, 1H, H<sub>4</sub>', *J* = 3.9 Hz), 3.81 (s, 3H, OCH<sub>3</sub>); <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.7 (s, C<sub>5</sub>'), 145.3 (s, C<sub>6</sub>), 128.7 (m, Cbz-Ph), 95.5 (s, C<sub>5</sub>), 89.9 (s, C<sub>1</sub>'), 79.7 (s, C<sub>4</sub>'), 77.4 (s, C<sub>2</sub>'), 75.6 (s, C<sub>3</sub>'), 70.9 (s, Cbz-(O)CH<sub>2</sub>), 70.8 (s, Cbz-(O)CH<sub>2</sub>), 68.3 (s, Cbz-(N)CH<sub>2</sub>); Rt = 11.69 min (method 2, UV 254 nm, [M+H]<sup>+</sup> = 674); HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>34</sub>H<sub>31</sub>N<sub>3</sub>O<sub>12</sub> 674.1986; found 674.1979.

# Benzyl (1-((2R,4S,5R)-4-(((benzyloxy)carbonyl)oxy)-5-

## (hydroxymethyl)tetrahydrofuran-2-yl)-2-oxo-1,2-dihydropyrimidin-4-

*yl)carbamate* (2) - Column chromatography on silica gel afford 2 as a white solid, overall η = 59% (3 steps); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>/MeOD) δ 8.31 (d, 1H, H<sub>6</sub>, *J* = 7.5 Hz, 1H), 7.40 – 7.25 (m, 11H, Cbz-Ph and H<sub>5</sub>), 6.22 (dd, 1H, H<sub>1'</sub>, *J* = 7.9, 5.8 Hz), 5.24 – 5.20 (m, 2H, H<sub>2'</sub>), 4.26 – 4.19 (m, 1H, H<sub>3'</sub>), 5.18 (s, 2H, Cbz-(N)-CH<sub>2</sub>), 5.14 (s, 2H, Cbz-(O)CH<sub>2</sub>), 3.81 (m, 1H, H<sub>4'</sub>), 2.67 (m, 1H, H<sub>5'</sub>), 2.25 (m, 1H, H<sub>5'</sub>); <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ 144.9 (s, C<sub>6</sub>), 128.8 (m, Cbz-Ph), 96.3 (s, C<sub>5</sub>), 87.8 (s, C<sub>1'</sub>), 86.2 (s, C<sub>4'</sub>), 79.0 (s, C<sub>2'</sub>), 78.0 (s, C<sub>3'</sub>), 70.4 (s, Cbz-(O)CH<sub>2</sub>), 68.1 (s, Cbz-(N)CH<sub>2</sub>), 62.0 (s, C<sub>5'</sub>); Rt = 10.70 min (method 2, UV 254 nm, [M+H]<sup>+</sup> = 496); HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>25</sub>H<sub>25</sub>N<sub>3</sub>O<sub>3</sub> 496.1720; found 496.1708.

**Table S1**. Oxidation of compound **1a**. Detected masses and AUC of products by LCMS chromatogram under different conditions. **A**) 2 eq. of previously opened DMP (>3 months); **B**) 2 eq. of new DMP or 4 eq. of previously opened DMP; **C**) 4 eq. of new DMP

| HO<br>CbzO | ( ) $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( ) $ $( )$ | X<br>O<br>CbzO<br>O<br>CbzO<br>O<br>CbzO<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>Soco<br>S<br>S<br>S<br>S | HCbz MeO<br>+ HO<br>CbzO | NHCbz<br>N N<br>OCbz<br>4a |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|
| Figure     | Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Retention time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [M+H]⁺                   | % AUC <sup>1</sup>         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (min.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                            |
| Α          | 1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 646                      | 20                         |
|            | 4a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.77, 21.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 676                      | 80                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                            |
| В          | 5a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 660                      | 31                         |
|            | 1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 646                      | 3                          |
|            | 4a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.78, 21.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 676                      | 66                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                            |
| с          | 5a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 660                      | 79                         |
|            | 4a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.78, 20.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 676                      | 15                         |

<sup>1</sup>Conversion was calculated based on the area under curve (AUC) of compounds from the HPLC chromatogram below and method 1 (**Figure S19**).

**Figure S1**. LCMS chromatogram (diode array detection, method 1, UV 280 nm) of products of oxidation of compound **1a** under different conditions



**Table S2**. Oxidation of compound **1a** with 2 eq. of DMP. Detected masses and AUC of products by LCMS chromatogram before extraction. LCMS sample prepared in **A**) MeOH; **B**) MeCN

| HOCL   | NHCbz<br>N N<br>N<br>N<br>N<br>N<br>N | X<br>O<br>O<br>CbzO<br>O<br>CbzO<br>O<br>CbzO | MeO<br>HO<br>CbzO | NHCbz<br>N N<br>OCbz |
|--------|---------------------------------------|-----------------------------------------------|-------------------|----------------------|
|        | 1a                                    | 3a: X = H<br>5a: X = OH<br>6a: X = OMe        |                   | 4a                   |
| Figure | Compound                              | <b>Retention time</b>                         | [M+H]⁺            | % AUC <sup>1</sup>   |
|        |                                       | (min.)                                        |                   |                      |
| Α      | 5a                                    | 20.12                                         | 660               | 18                   |
|        | 4a                                    | 21.11, 21.37                                  | 676               | 67                   |
|        | 6a                                    | 22.44                                         | 674               | 15                   |
|        |                                       |                                               |                   |                      |
| в      | 5a                                    | 20.12                                         | 660               | 36                   |
|        | 4a                                    | 21.11, 21.36                                  | 676               | 64                   |

<sup>1</sup>Conversion was calculated based on the area under curve (AUC) of compounds from the HPLC chromatogram below and method 1 (**Figure S19**).

**Figure S2**. LCMS chromatogram (diode array detection, method 1, UV 280 nm) of products of oxidation of compound **1a** before extraction. LCMS sample prepared in **A**) MeOH; **B**) MeCN





Figure S3. <sup>1</sup>H NMR (400 MHz, DMSO-*d*6) spectra of DMP from different batches



Figure S4. Oxidation of compound 1a with DMP under different conditions.

**Table S3.** Oxidation of compound **1a** with 2 eq. DMP. Detected masses and AUC of products by LCMS chromatogram after extraction. LCMS sample prepared in **A**) MeOH; **B**) MeCN

| HO     |          |                                        | HCbz MeO<br>+ HO<br>CbzO |                    |
|--------|----------|----------------------------------------|--------------------------|--------------------|
|        | 1a       | 3a: X = H<br>5a: X = OH<br>6a: X = OMe |                          | 4a                 |
| Figure | Compound | Retention time<br>(min)                | [M+H]⁺                   | % AUC <sup>1</sup> |
| Α      | 5a       | 20.01                                  | 660                      | 37                 |
|        | 4a       | 20.98, 21.24                           | 676                      | 62                 |
| В      | 5a       | 20.14                                  | 660                      | 39                 |
|        | 4a       | 21.00, 21.24                           | 676                      | 61                 |

<sup>1</sup>Conversion was calculated based on the area under curve (AUC) of compounds from the HPLC chromatogram below and method 1 (**Figure S19**).

 $B = \begin{pmatrix} 5a & 4a \\ 4a \\ 5a & 4a \\ 5a & 4a \\ 6 & 5a \\ 19.5 & 20.9 & 20.5 & 21.9 & 22.9 & 22.5 & 23.9 \\ 19.0 & 19.5 & 20.9 & 20.5 & 21.9 & 21.5 & 22.0 & 22.5 & 23.9 \\ 19.0 & 19.5 & 20.9 & 20.5 & 21.9 & 21.5 & 22.0 & 22.5 & 23.9 \\ 19.0 & 19.5 & 20.9 & 20.5 & 21.9 & 21.5 & 22.0 & 22.5 & 23.9 \\ 19.0 & 19.5 & 20.9 & 20.5 & 21.9 & 21.5 & 22.0 & 22.5 & 23.9 \\ 19.0 & 19.5 & 20.9 & 20.5 & 21.9 & 21.5 & 22.0 & 22.5 & 23.9 \\ 19.0 & 19.5 & 20.9 & 20.5 & 21.9 & 21.5 & 22.0 & 22.5 & 23.9 \\ 19.0 & 19.5 & 20.9 & 20.5 & 21.9 & 21.5 & 22.0 & 22.5 & 23.9 \\ 19.0 & 19.5 & 20.9 & 20.5 & 21.9 & 21.5 & 22.0 & 22.5 & 23.9 \\ 19.0 & 19.5 & 20.9 & 20.5 & 21.9 & 21.5 & 22.0 & 22.5 & 23.9 \\ 19.0 & 19.5 & 20.9 & 20.5 & 21.9 & 21.5 & 22.0 & 22.5 & 23.9 \\ 19.0 & 19.5 & 20.9 & 20.5 & 20.9 & 21.5 & 22.0 & 22.5 & 23.9 \\ 19.0 & 19.5 & 20.9 & 20.5 & 20.9 & 21.5 & 22.0 & 22.5 & 23.9 \\ 19.0 & 19.5 & 20.9 & 20.5 & 20.9 & 21.5 & 22.0 & 22.5 & 23.9 \\ 19.0 & 19.5 & 20.9 & 20.5 & 20.9 & 21.5 & 22.0 & 22.5 & 23.9 \\ 19.0 & 19.5 & 20.9 & 20.5 & 20.9 & 20.5 & 21.9 & 21.5 & 22.0 & 22.5 & 23.9 \\ 19.0 & 19.5 & 20.9 & 20.5 & 20.9 & 20.5 & 20.9 & 20.5 & 20.9 & 20.5 & 20.9 & 20.5 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 & 20.9 &$ 

**Figure S5.** LCMS chromatogram (diode array detection, method 1, UV 280 nm) of products of oxidation of compound **1a** after extraction. LCMS sample prepared in **A**) MeOH; **B**) MeCN

**Figure S6**. LCMS chromatogram of oxidation of compound **1a** with 2 eq. DMP using mobile phase A: 90%water, 10% acetonitrile, 0.1% formic acid; mobile phase B: 10% water, 90% acetonitrile, 0.1% formic acid (diode array detection, method 2, Figure S19, UV 280 nm).



**Figure S7.** Comparison between initial coordinates (low-energy 3D structures) and the coordinates after DFT calculation of **1a** and hydrate intermediate of **3a** showing conformational changes. Initial coordinates of **A**) **1a** (green); **B**) hydrate intermediate of **3a** (cyan); Coordinates after DFT calculation of **C**) **1a** (magenta); **D**) hydrate intermediate of **3a** (purple). Superposed initial coordinates and the coordinates after DFT calculation of **E**) **1a**; **F**) hydrate intermediate of **3a**.



**Figure S8.** RMSD analysis from the 200 ns MD simulations of **1a** (magenta) and the hydrate intermediate of **3a** (purple).



**Figure S9.** MD simulation analysis of **1a** (magenta). **A)** MD pose at the 85<sup>th</sup> ns showing  $\pi$ - $\pi$  stacking between the cytidine ring and one of the Cbz-phenyl rings; **B)** MD pose at the 145<sup>th</sup> ns showing  $\pi$ - $\pi$  stacking between the two phenyl rings of Cbz.



**Figure S10.** MD simulation analysis of the hydrate intermediate of **3a** (purple). MD poses at the **A**) 96<sup>th</sup> ns; **B**) 116<sup>th</sup> ns, showing  $\pi$ - $\pi$  stacking between the two phenyl rings of Cbz.





**Table S4.** Oxidation of compound **2.** Detected masses and AUC of products by LCMS chromatogram under different conditions. **A**) 2 eq. of new DMP, **B**) 4 eq. of new DMP

<sup>1</sup>Conversion was calculated based on the area under curve (AUC) of compounds from the HPLC chromatogram below and method 2 (**Figure S19**).

**Figure S11**. LCMS chromatogram (diode array detection, method 2, UV 280 nm) of products of oxidation of compound **2** under different conditions



**Table S5.** Oxidation of compound **1c**. Detected masses and AUC of products by LCMS chromatogram under different conditions. **A**) 2 eq. of new DMP, **B**) 4 eq. of new DMP



<sup>1</sup>Conversion was calculated based on the area under curve (AUC) of compounds from the HPLC chromatogram below and method 1 (**Figure S19**).

**Figure S12**. LCMS chromatogram (diode array detection, method 1, UV 280 nm) of products of oxidation of compounds **1c** under different conditions.



**Figure S13A**. <sup>1</sup>H NMR spectra (400 MHz,  $CDCI_3$ ) of aldehyde **3c** (purified by column chromatogram; residue of org. phase added directly to the column chromatography on silica gel)



**Figure S13B**. <sup>1</sup>H NMR spectra (400 MHz, CDCl<sub>3</sub>) of mixture aldehyde **3c** and methyl hemiacetal **4c** (purified by column chromatogram; residue of org. phase redissolved in dichloromethane and methanol with silica gel before addition to the column chromatographic on silica gel)



**Figure S14.** Comparison between **A**) initial coordinates (low-energy 3D structures) of cytidine analogue **1c** and B) its coordinate after DFT calculation; C) superposed initial coordinates and the coordinates after DFT calculation of **1c**.



|        |          | →              | HeO<br>HO<br>TBSO <sup>S</sup> OTE | ∽y_NH₂<br>γ<br>₽<br>₽ |
|--------|----------|----------------|------------------------------------|-----------------------|
| Figure | Compound | Retention time | [M+H]⁺                             | % AUC <sup>1</sup>    |
|        |          | (min)          |                                    |                       |
| Α      | 3b       | 11.96          | 470                                | 50                    |
|        | 5b       | 12.14          | 486                                | 7                     |
|        | 4b       | 12.23          | 502                                | 43                    |
|        |          |                |                                    |                       |
| В      | 5b       | 12.05          | 486                                | 96                    |
|        | 4b       | 12.30          | 502                                | 4                     |

**Table S6**. Oxidation of compound **1b**. Detected masses and AUC of products by LCMS chromatogram under different conditions **A**) 2 eq. of new DMP, **B**) 4 eq. of new DMP

<sup>1</sup>Conversion was calculated based on the area under curve (AUC) of compounds from the HPLC chromatogram below and method 2 (**Figure S19**).

**Figure S15**. LCMS chromatogram (diode array detection, method 2, UV 280 nm) of products of oxidation of compounds **1b** under different conditions.



Figure S16. Representative structures from the MD simulations of A) cytidine analogue 1a;B) hydrate intermediate of 3a; C) cytidine analogue 1c







|        | HO O OMe<br>CbzO OCbz | X<br>CbzÖ OCbz<br>14. x = H<br>16. x = OH<br>17. x = OMe | + HO<br>CbzO<br>18 | DMe<br>Ibz         |
|--------|-----------------------|----------------------------------------------------------|--------------------|--------------------|
| Figure | Compound              | Retention time<br>(min)                                  | [M+H]*             | % AUC <sup>1</sup> |
| Α      | 18                    | 18.86, 19.28                                             | 463                | 43                 |
|        | 16                    | 19.13                                                    | 447                | 57                 |
|        |                       |                                                          |                    |                    |
| В      | 18                    | 18.83                                                    | 463                | 9                  |
|        | 16                    | 19.04                                                    | 447                | 81                 |

**Table S7**. Oxidation of methyl riboside **12**. Detected masses and AUC of products by LCMS chromatogram under different conditions **A**) 2 eq. of new DMP, **B**) 4 eq. of new DMP

<sup>1</sup>Conversion was calculated based on the area under curve (AUC) of compounds from the HPLC chromatogram below and method 1 (Figure S19)

**Figure S18**. LCMS chromatogram (diode array detection, method 1, UV 280 nm) of products of oxidation of methyl riboside **12** under different conditions.



Figure S19. LCMS gradient

mobile phase A: 90% water, 10% MeOH, 0.1% formic acid; mobile phase B: 90% MeOH, 10% water, 0.1% Formic acid; flow: 0.25 ml/min;

#### Method 1:

| Time (min) | Mobile Phase A (%) | Mobile Phase B (%) |
|------------|--------------------|--------------------|
| 0          | 95                 | 5                  |
| 5          | 95                 | 5                  |
| 10         | 30                 | 70                 |
| 20         | 10                 | 90                 |
| 25         | 0                  | 100                |
| 30         | 0                  | 100                |
| 32         | 95                 | 5                  |
| 35         | 95                 | 5                  |

### Method 2:

| Time (min) | Mobile Phase A (%) | Mobile Phase B (%) |
|------------|--------------------|--------------------|
| 0          | 95                 | 5                  |
| 3          | 95                 | 5                  |
| 5          | 0                  | 100                |
| 30         | 0                  | 100                |
| 32         | 95                 | 5                  |
| 35         | 95                 | 5                  |

Figure S20 Characterisation of compound 5a



<sup>1</sup>H NMR spectra of compound **5a** (400 MHz, DMSO-*d*6)

<sup>13</sup>C{<sup>1</sup>H} NMR of compound **5a** (100 MHz, DMSO-*d*6)



LC chromatogram and MS spectrum of compound 5a



HRMS spectrum of compound 5a



Figure S21 Characterisation of compound 6a



<sup>1</sup>H NMR spectra of compound **6a** (400 MHz, CDCl<sub>3</sub>)

<sup>13</sup>C{<sup>1</sup>H} NMR of compound **6a** (100 MHz, CDCl<sub>3</sub>)



LC chromatogram and MS spectrum of compound 6a



HRMS spectrum of compound 6a



Figure S22 Characterisation of compound 2



<sup>1</sup>H NMR spectra of compound **2** (400 MHz, CDCl<sub>3</sub>)

<sup>13</sup>C{<sup>1</sup>H} NMR of compound 2 (100 MHz, CDCl<sub>3</sub>)



LC chromatogram and MS spectrum of compound 2



#### HRMS spectrum of compound 2

