On the mechanism of carboxylate elimination from carbohydrate monoester-derived radicals

Supporting Information

Julia A. Turner^a, Hendrik Zipse^{b*} and Mark S. Taylor^{a*}

zipse@cup.uni-muenchen.de, mtaylor@chem.utoronto.ca

^aDepartment of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada ^bDepartment Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany

Table of Contents

1.0 Computational Information
2.0 Reaction Pathways
3.0 Solvent Effects and Benchmarking
4.0 Evaluation of Leaving groups
4.1 Pivaloyl
4.2 Benzoyl
4.3 Chloromethyl
4.5 Trifluoromethyl
4.6 Tosyl
5.0 Calculated Relative pKa Data
6.0 Experimental Results
6.1 General Information
6.2 Preparation of Substrates
6.3 Intramolecular Competition Experiments
6.4 NMR Spectra
7.0 Calculated Structures
7.1 Acetyl
7.2 Pivaloyl
7.3 Benzoyl
7.4 Chloromethyl
7.5 Trichloromethyl

	7.6 Trifluoromethyl	5143
	7.7 Tosyl	S152
8.() References	5163

1.0 Computational Information

Geometry optimizations of all species have been performed with the (U)M06-2X functional suitable for open shell systems in combination with the def2-TZVP basis set.¹⁻³ Gas phase free energies ($G_{298,qh}$) with quasi-harmonic corrections (cutoff: 100 cm⁻¹) and a scaling factor of 0.971 for harmonic frequencies were calculated using GoodVibes v3.0.1⁴ and refer to a standard state of 1 atm. Solution phase results were calculated at the SMD(AcCN)/(U)M06-2X/def2-TZVP level of theory.⁵ Free energies in solution have been corrected to the standard state of 1 mol/l by addition of +7.908 kJ/mol. The NPA charge parameters have been computed with Gaussian 16, rev. A.3, using the build-in NBO 3.1 program. Conformational searching was performed on Schrödinger's Maestro software.⁶ Relative energies are computed relative to the most stable conformer in the conformational stack of energies. For each model system used, a full conformational analysis has been performed for the closed-shell reference system (ex, Ac-I-H, Piv-I-H, etc) and radical conformers have been generated after formal H abstraction.

For benchmarking studies single point energies were calculated using DLPNO-CCSD(T)/CBS(cc-pVTZ/cc-pVQZ) level of theory (ORCA),⁷ ROB2PLYP-D3/cc-pVTZ, and G3B3 based on (U)M06-2X/def2-TZVP geometries.

details for correction of enthalpies and free energies with GoodVibes 3.0.1

for gas phase calculations and gas phase standard state of 1 atm: python -m goodvibes <file>.log > <file>.qh # cutoff: 100 cm⁻¹; scaling factor: 0.971; use Grimme entropic qh treatment

for solution phase calculations and solution phase standard state of 1 mol/l: python -m goodvibes -c 1.0 <file>.log > <file>.qh # cutoff: 100 cm⁻¹; scaling factor: 0.971; use Grimme entropic qh treatment; # add entropy correction of +7.908 kJ/mol or +1.89 kcal/mol or +0.003012 Hartree.

2.0 Reaction Pathways

Following earlier theoretical studies⁸ on small model systems, and more recent studies⁹ on systems closely similar to carbohydrate radical substrates, acyloxy group migration reactions in model substrate **Ac-I** can, in principle, involve the reaction pathways outlined in Scheme S01. Starting from radical **Ac-I**, a stepwise pathway for formation of product radical **Ac-III** can lead through cyclic intermediate **Ac-II** together with the associated transition states for ring closure (**Ac-TS1a**) and ring opening (**Ac-TS1b**). The same product radical **Ac-III** can also be formed through the concerted (single step) pathways involving either the three-membered ring transition state **Ac-TS3** or the five-membered ring transition states such as **Ac-TS4** or **Ac-TS5**. A final pathway involves C-O bond heterolysis to acetate (**Ac-VIII**) and radical cation **VII**, whose interchange of the hydroxyl group proton also leads to product complex **Ac-IV** and (ultimately) radical **V** and acetic acid (**Ac-VI**).

Gas phase results obtained at the (U)M06-2X/def2-TZVP level of theory as summarized in Table S01 and illustrated in Scheme S01 indicate that acyloxy group migration from Ac-I to Ac-III is without notable driving force ($\Delta G_{298} = +0.6 \text{ kJ/mol}$). The most facile pathway for this rearrangement involves 5-membered ring transition state Ac-TS2 with a barrier of $\Delta G_{298} = +86.3 \text{ kJ/mol}$. This is substantially less than the stepwise ring-closure/ring-opening sequence through Ac-TS1a with a barrier of $\Delta G_{298} = +133.0 \text{ kJ/mol}$. Transition state Ac-TS2 is significantly polarized as indicated by the charge of the migrating acyloxy group of -0.55e (Figure S01). A much lower barrier of only $\Delta G_{298} = +28.4 \text{ kJ/mol}$ is found for elimination of acetic acid through transition state Ac-TS5 that is exergonic by $\Delta G_{298} = -46.4 \text{ kJ/mol}$. Formation of the same products (radical V and acetic acid (Ac-VI)) through C-O bond heterolysis and the formation of radical cation VII and acetate Ac-VIII is, at least in the gas phase, much less favorable.

Scheme S01. Acyloxy group migration and elimination pathways for model substrate Ac-I. Gas phase Gibbs free energy differences (ΔG_{298}) relative to radical Ac-I ((U)M06-2X/def2-TZVP results in kJ/mol) are given in brackets.

Figure S01. Selected transition states for the reactions shown in Scheme S01 (gas phase (U)M06-2X/def2-TZVP results). Acyloxy group (O_2CCH_3) charges are shown in red type (NPA/(U)M06-2X/def2-TZVP results) and distances are shown in Angstrom (Å).

3.0 Solvent Effects and Benchmarking

The influence of acetonitrile as a bulk solvent can be assessed through addition of solvation free energies with aid of the SMD continuum solvation model and a standard state of 1 mol/l. Reaction free energies calculated in this manner deviate surprisingly little from the gas phase free energies discussed before (Table S01/Scheme S01). The largest difference is, as expected, seen for the energetics of ions **VII** and **Ac-VIII**, whose formation is now endergonic by only 79.4 kJ/mol (as compared to +564.1 kJ/mol in the gas phase). The energetically most favorable pathway still involves elimination of acetate through transition state **Ac-TS5** with a barrier of +26.9 kJ/mol. From the 1,2-acyloxy group migration pathways it is now 3-membered ring transition state **Ac-TS3** that is preferred.

Reoptimizing all ground and transition states at the SMD(AcCN)/(U)M06-2X/def2-TZVP level of theory we find very similar reaction energies as obtained already with the single point SMD approach (Table S01). For the 1,2-acyloxy group migration reaction transition states Ac-TS2 and Ac-TS3 continue to be quite close at around 70 kJ/mol, and elimination of acetate through Ac-TS5 again shows the lowest overall barrier at +28.0 kJ/mol. Given this rather low barrier we must conclude that the chemistry of radical Ac-I will be dominated by acetic acid elimination and rapid formation of radical V unless an extraordinarily fast bimolecular process traps radical Ac-I (e.g. by hydrogen atom transfer).

Scheme S02. Acyloxy group migration and elimination pathways for model substrate Ac-I. Gibbs free energy differences ($\Delta G_{298,qh,sol}$) relative to radical Ac-I (UM06-2X/def2-TZVP//SMD(acetonitrile) results in kJ/mol) are given in brackets.

Benchmarking studies were conducted by calculating single point energies for species in Scheme S01 at ROB2PLYP-D3/cc-pVTZ, DLPNO-CCSD(T)/CBS, and G3B3 levels of theory. These results vary little from those calculated at (U)M06-2X/def2-TZVP with single point energies in acetonitrile (Table S01).

System	ΔH ₂₉₈ ^[b] ((U)M06- 2X/ def2- TZVP)	ΔG _{298,qh} ^[b] ((U)M06-2X/ def2-TZVP)	Δ <i>G</i> 298,qh,sol ^[b] ((U)M06- 2X/ def2- TZVP)	ΔG _{298,qh,sol} ^[c] ((U)M06-2X/ def2-TZVP)	ΔG ₂₉₈ ^[b] (ROB2PLYP- D3/cc-pVTZ)	$\Delta G_{298}^{[b]}$ (DLPNO- CCSD(T)/CBS)	$\Delta G_{298,qh,sol}^{[b]}$ (DLPNO- CCSD(T)/CBS)	$\Delta G_{298}^{[b]}$ (G3B3)
Ac-I	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ac-TS1a	+127.9	+133.0	+129.7	+129.8	+127.5	+129.9	+126.6	+122.3
Ac-II	+43.8	+51.2	+52.3	+53.0	+66.0	+50.6	+52.2	+47.1
Ac-TS1b	+125.5	+132.1	+132.2	+132.0	+129.3	+127.2	+127.3	+119.7
Ac-III	+0.3	+0.6	+0.5	-0.4	+5.1	+0.4	+0.3	-3.3
Ac-TS2	+86.7	+86.3	+77.3	+69.4	+62.3	+85.8	+76.8	+74.1
Ac-TS3	+93.5	+90.1	+72.3	+67.3	+69.3	+93.1	+78.9	+86.8
Ac-TS4	+79.6	+78.0	+70.7	+67.5	+59.5	+85.1	+77.8	+74.3
Ac-TS5	+27.7	+28.4	+26.9	+28.0	+9.5	+33.1	+31.5	+29.0
Ac-TS6	+41.3	+42.0	+39.3	+39.2	+31.3	+49.0	+45.8	+43.0
Ac-IV	-31.2	-39.7	-45.9	-52.6	-51.4	-41.4	-46.7	-42.8
V + Ac-VI	+10.0	-46.4	-72.1	-64.6	-57.5	-55.2	-80.8	-49.5
VII + Ac- VIII	+621.6	+564.1	+79.4	+89.2	+556.0	+562.9	+78.3	+567.0
					1			

Table S01. Summary of reaction energies for the species shown in Scheme S01 (in kJ/mol).^[a]

[a] Calculated with reference to the best conformer of each species. [b] Using gas phase (U)M06-2X/def2-TZVP geometries.

[c] Using solution phase SMD(AcCN)/(U)M06-2X/def2-TZVP geometries.

Figure S02. Plot of ΔG for calculated using (U)M06-2X/def2-TZVP level of theory with gas phase geometry geometry optimization and single point energies at (U)M06-2X/def2-TZVP/SMD(acetonitrile) vs ΔG calculated using SMD(acetonitrile)/(U)M06-2X/def2-TZVP level of theory with solution phase geometry optimization for stationary points in Scheme S01.

Figure S03. Plot of ΔG for calculated using (U)M06-2X/def2-TZVP level of theory with gas phase geometry geometry optimization and single point energies at (U)M06-2X/def2-TZVP//SMD(acetonitrile) vs ΔG calculated using DLPNO-CCSD(T)/CBS//SMD(acetonitrile) level of theory for stationary points in Scheme S01.

System	<i>E_{tot}</i> ((U)M06-2X/ def2-TZVP)	H ₂₉₈ ((U)M06-2X/ def2-TZVP)	G _{298,qh} ((U)M06-2X/ def2-TZVP)	<i>E</i> tot (SMD(AcCN)/ (U)M06-2X/ def2-TZVP)	q(NPA,AcO)	ΔG _{298,qh} ((U)M06-2X/ def2-TZVP) [kJ/mol]	ΔG298,qh.sol ((U)M06-2X/ def2-TZVP) ^a [kJ/mol]
Ac-I							
aco_024f	-574.2128353	-574.0239376	-574.0727460	-574.2270709	-0.3035	0.0	0.0
aco_005	-574.2093757	-574.0206377	-574.0698982	-574.2250949	-0.3089	+7.5	+3.6
aco_002	-574.2055086	-574.0168421	-574.0663809	-574.2236632	-0.2949	+16.7	+6.4
aco_006	-574.2042959	-574.0156706	-574.0649547	-574.2207620	-0.3100	+20.5	+14.6
aco_003	-574.2033567	-574.0148340	-574.0641671	-574.2204886	-0.2943	+22.5	+14.9
Ac-TS1a							
aco_014	-574.1615865	-573.9752299 (imag=-950 cm ⁻¹)	-574.0221055	-574.1770666	-0.4693	+133.0	+129.7
aco_025	-574.1610416	-573.9747270 (imag=-937 cm ⁻¹)	-574.0215835	-574.1761851	-0.5020	+134.3	+131.9
Ac-II							
aco_015r	-574.1965273	-574.0072482	-574.0532410	-574.2099272	-0.5516	+51.2	+53.4
aco_012	-574.1962317	-574.0069472	-574.0529055	-574.2101639	-0.5502	+52.1	+52.9
aco_008	-574.1954873	-574.0063332	-574.0526034	-574.2099443	-0.5350	+52.9	+52.3
aco_026r	-574.1944476	-574.0053106	-574.0515740	-574.2094460	-0.5353	+55.6	+53.6
aco_013	-574.1908903	-574.0018311	-574.0484196	-574.2072539		+63.9	+58.3
aco_027	-574.1900824	-574.0011160	-574.0478958	-574.2062771		+65.2	+60.1
Ac-TS1b							
aco_015	-574.1619790	-573.9761218 (imag=-950 cm ⁻¹)	-574.0224481	-574.1761732	-0.4250	+132.1	+132.2
aco_026	-574.1596395	-573.9739862 (imag=-1033 cm ⁻¹)	-574.0205680	-574.1752776	-0.4072	+137.0	+133.3

Table S02. Energy values for the species shown in Scheme S01 (gas phase (U)M06-2X/def2-TZVP results).

Ac-III							
aco_016	-574.2110687	-574.0238378	-574.0725182	-574.2253361	-0.3484	+0.6	+0.5
aco_021f	-574.2092998	-574.0221980	-574.0709712	-574.2234206	-0.3556	+4.7	+5.0
aco_004	-574.2040081	-574.0171445	-574.0662997	-574.2214907	-0.3308	+16.9	+8.4
aco_023r	-574.2017108	-574.0146827	-574.0641254	-574.2176988		+22.6	+18.0
aco_011r	-574.2006972	-574.0137314	-574.0631133	-574.2163413		+25.3	+21.6
aco_028f	-574.1979759	-574.0111355	-574.0604803	-574.2150130		+32.2	+24.8
Ac-TS2							
aco_010	-574.1769633	-573.9909321 (imag=-278 cm ⁻¹)	-574.0398695	-574.1946458	-0.5509	+86.3	+77.3
aco_028	-574.1726703	-573.9867366 (imag=-297 cm ⁻¹)	-574.0358433	-574.1911628	-0.5159	+96.9	+85.7
Ac-TS3							
aco_023	-574.1738495	-573.9883179 (imag=-157 cm ⁻¹)	-574.0384235	-574.1935054	-0.5589	+90.1	+75.9
aco_011	-574.1714675	-573.9854670 (imag=-55 cm ⁻¹)	-574.0352964	-574.1928538	-0.5063	+98.3	+79.5
Ac-TS4							
aco_022	-574.1795821	-573.9936341 (imag=-205 cm ⁻¹)	-574.0430295	-574.1966063	-0.6923	+78.0	+70.7
Ac-TS5							
aco_024	-574.1989292	-574.0134021 (imag=-193 cm ⁻¹)	-574.0619162	-574.2137499	-0.5242	+28.4	+26.9
Ac-TS6							

aco_021	-574.1906569	-574.0074599 (imag=-452 cm ⁻¹)	-574.0557474	-574.2060893	-0.5766	+44.6	+41.5
Ac-IV							
aco 021r	-574.2224544	-574.0358361	-574.0878664	-574.2386047	-0.5518	-39.7	-44.7
aco_022f	-574.2223135	-574.0356896	-574.0882660	-574.2384912	-0.5507	-40.7	-45.8
V							
aco_007	-345.1158220	-344.9975398	-345.0354352	-345.1303555	-		
Ac-VI							
aco_009	-229.0887384	-229.0226012	-229.0549932	-229.0982225	-0.4923		
V + AcVI	-574.2045604	-574.020141	-574.0904284	-574.228578	-	-46.4	-72.1
VII							
aco_019	-345.4496196	-345.3188634	-345.3569734	-345.5527916	-		
Ac-VIII							
aco_018	-228.5209366	-228.4683132	-228.5009275	-228.6165958	-1.0000		
VII + AcVIII	-573.9705562	-573.7871766	-573.8579009	-574.1693874	-	+564.1	+79.4

Fable S03. Er	nergy values for the s	pecies shown in Scheme	S01 at the SMD	(AcCN)/(U)N	A06-2X/def2-TZVP level of	f theory.
---------------	------------------------	------------------------	----------------	-------------	---------------------------	-----------

System	E _{tot}	H_{298}	G298,qh	$\Delta G_{298,qh}$
	(SMD(AcCN)/	(SMD(AcCN)/	(SMD(AcCN)/	(SMD(AcCN)/

	(U)M06-2X/	(U)M06-2X/	(U)M06-2X/	(U)M06-2X/
	def2-TZVP)	def2-TZVP)	def2-TZVP)	def2-TZVP)
			, , , , , , , , , , , , , , , , , , ,	[kJ/mol]
Ac-I				
aco_024fsol	-574.2272928	-574.0390635	-574.0848058	0.0
aco_023solf	-574.2211109	-574.0331646	-574.0794205	+14.1
aco_022solr	-574.2210470	-574.0330286	-574.0792833	+14.5
aco_014solr	-574.2208350	-574.0327621	-574.0790434	+15.1
aco_028solr	-574.2201426	-574.0322116	-574.0785821	+16.3
Ac-TS1a				
aco_014sol	-574.1772364	-573.9914380	-574.0353714	
		$(imag=-985 \text{ cm}^{-1})$		+129.8
aco_025sol	-574.1764948	-573.9908689	-574.0347166	
		$(imag=-992 \text{ cm}^{-1})$		+131.5
Ac-II				
aco_025solf	-574.2103614	-574.0216902	-574.0645866	+53.1
aco_014solf	-574.2102243	-574.0215528	-574.0646078	+53.0
aco_015solr	-574.2101209	-574.0213791	-574.0644223	+53.5
aco_026solr	-574.2099147	-574.0212272	-574.0642907	+53.9
Ac-TS1b				
aco_015sol	-574.1763449	-573.9910110	-574.0345308	
		$(imag=-1103 \text{ cm}^{-1})$		132.0
aco_026sol	-574.1756222	-573.9903400	-574.0339111	
		$(imag=-1116 \text{ cm}^{-1})$		+133.6
Ac-III				
aco_015solf	-574.2255370	-574.0390585	-574.0849449	-0.4

aco_021solf	-574.2236443	-574.0372876	-574.0830968	+4.5
aco_010solf	-574.2218053	-574.0354739	-574.0818405	+7.8
aco_011solr	-574.2168136	-574.0306418	-574.0771707	+20.0
aco 028solf	-574.2155529	-574.0293511	-574.0758827	+23.4
Ac-TS2				
aco 010sol	-574.1967379	-574.0115294	-574.0583923	
_		$(imag=-189 \text{ cm}^{-1})$		+69.4
aco_028sol	-574.1943482	-574.0092215	-574.0563277	
		$(imag=-155 \text{ cm}^{-1})$		+74.8
Ac-TS3				
aco_023sol	-574.1953412	-574.0105058	-574.0580900	
		$(imag=-58 \text{ cm}^{-1})$		+70.1
aco_011sol	-574.1945222	-574.0094768	-574.0568769	
		$(imag=-58 \text{ cm}^{-1})$		+73.3
Ac-TS4				
aco_022sol	-574.1976621	-574.0122772	-574.0590799	+67.5
		$(imag=-161 \text{ cm}^{-1})$		
Ac-TS5				
aco_024sol	-574.2139489	-574.0286752	-574.0741509	+28.0
		$(imag=-217 \text{ cm}^{-1})$		
Ac-TS6				
aco_021sol	-574.2065578	-574.0234399	-574.0689469	+41.6
		$(imag=-352 \text{ cm}^{-1})$		
Ac-IV				
aco_021solr	-574.2407610	-574.0549576	-574.1045295	-51.8

aco_022solf	-574.2404534	-574.0546750	-574.1048372	-52.6
aco_024solr	-574.2404462	-574.0546345	-574.1045980	-52.0
V				
aco_007sol	-345.1305303	-345.0124047	-345.0472302	
Ac-VI				
aco_009sol	-229.0984248	-229.0327659	-229.0621870	
V + Ac-VI			-574.1094172	-64.6
VII				
aco_019sol	-345.5531468	-345.4224408	-345.4574849	
aco_020sol	-345.5523892	-345.4216836	-345.4567290	
Ac-VIII				
aco_018sol	-228.6170295	-228.5641993	-228.5933670	
VII +Ac-				+89.2
VIII			-574.0508519	

Table S04. Energy values for the species shown in Scheme S01 at ROB2PLYP-D3/cc-pVTZ level.^[a]

System	<i>E</i> _{tot} (ROB2PLYP-D3/ cc-pVTZ)	H ₂₉₈ (ROB2PLYP-D3/ cc-pVTZ)	G298 (ROB2PLYP-D3/ cc-pVTZ)	ΔG_{298} (ROB2PLYP-D3/ cc-pVTZ) [kJ/mol]
Ac-I				
aco_024f	-574.0024571	-573.8135594	-573.8623678	0.0
aco_005	-573.9981015	-573.8092277	-573.858624	+9.8
aco_002	-573.9943647	-573.8056982	-573.855237	+18.7

3.9927087	-573.8040834	-573.8533675	+23.6	
3.9914839	-573.8029612	-573.8522943	+26.4	
3.9532856	-573.766929	-573.8138046	+127.5	
3.9529734	-573.7666588	-573.8135153	+128.3	
3.9805221	-573.791243	-573.8372358	+66.0	
3.980322	-573.7910375	-573.8369958	+66.6	
3.9797084	-573.7905543	-573.8368245	+67.1	
3.975017	-573.7859578	-573.8325463	+78.3	
3.9745344	-573.785568	-573.8323478	+78.8	
3.952666	-573.76184	-573.808042	+129.3	
3.9504625	-573.7598495	-573.8062985	+133.8	
3.9989888	-573.8117579	-573.8604383	+5.1	
3.9972895	-573.8101877	-573.8589609	+8.9	
3.9920242	-573.8051606	-573.8543158	+21.1	
3.9892405	-573.8022124	-573.8514551	+28.7	
3.9883327	-573.8013369	-573.8507488	+30.5	
3.9862239	-573.7993835	-573.8487283	+35.8	
3.9757419	-573.7897107	-573.8386481	+62.3	
3.9719098	-573.7859761	-573.8350828	+71.6	
	'3.9927087 '3.9914839 '3.9532856 '3.9529734 '3.9805221 '3.980322 '3.9797084 '3.975017 '3.975017 '3.97504625 '3.992666 '3.99289888 '3.9972895 '3.9920242 '3.9883327 '3.9862239 '3.9757419 '3.9719098	'3.9927087 -573.8040834 '3.9914839 -573.8029612 '3.9532856 -573.766929 '3.9529734 -573.7666588 '3.9805221 -573.791243 '3.980322 -573.7910375 '3.9797084 -573.7859578 '3.975017 -573.7859578 '3.975017 -573.7859578 '3.97504625 -573.7598495 '3.9504625 -573.7598495 '3.9972895 -573.8011877 '3.9972895 -573.8051606 '3.980327 -573.8013369 '3.9883327 -573.7993835 '3.9862239 -573.7897107 '3.9757419 -573.7859761	3.9927087 -573.8040834 -573.8533675 3.9914839 -573.8029612 -573.8522943 3.9532856 -573.766929 -573.8138046 3.9529734 -573.7666588 -573.8138046 3.9529734 -573.791243 -573.8372358 3.9805221 -573.791243 -573.8372358 3.980322 -573.7910375 -573.8369958 '3.975017 -573.7859578 -573.8325463 '3.975017 -573.7859578 -573.8322463 '3.975017 -573.76184 -573.808042 '3.952666 -573.76184 -573.8062985 '3.9989888 -573.8117579 -573.8604383 '3.9972895 -573.8051606 -573.8543158 '3.9920242 -573.802124 -573.8514551 '3.983327 -573.8013369 -573.8487283 '3.9862239 -573.7993835 -573.8487283 '3.9862239 -573.7897107 -573.8350828	3.9927087 -573.8040834 -573.8533675 +23.6 3.9914839 -573.8029612 -573.8522943 +26.4 3.9532856 -573.766929 -573.8138046 +127.5 3.9532856 -573.766588 -573.8138046 +127.5 3.9532856 -573.7666588 -573.8138046 +128.3 3.9532856 -573.791243 -573.8372358 +66.0 3.9805221 -573.791243 -573.8369958 +66.6 3.980322 -573.7910375 -573.8369958 +66.6 3.9797084 -573.7905543 -573.8369458 +78.3 3.975017 -573.7859578 -573.8325463 +78.3 3.9745344 -573.76184 -573.808042 +129.3 3.9504625 -573.76184 -573.8062985 +133.8 73.9952866 -573.8117579 -573.8604383 +5.1 3.9920242 -573.8051606 -573.8543158 +21.1 3.9920242 -573.801369 -573.8507488 +30.5 3.998327 -573.801369 -573.8507488 +30.5 3.9862239 -573.7993835 -573.8386481 +62.3 </td

Ac-TS3					
aco_029	-573.9714725	-573.7854156	-573.8353949	+70.8	
aco_023	-573.9713799	-573.7858483	-573.8359539	+69.3	
aco_011	-573.9699425	-573.783942	-573.8337714	+75.1	
Ac-TS4					
aco_022	-573.9762456	-573.7902976	-573.839693	+59.5	
Ac-TS5					
aco_024	-573.9957751	-573.810248	-573.8587621	+9.5	
Ac-TS6					
aco_021	-573.9853675	-573.8021705	-573.850458	+31.3	
Ac-IV					
aco_021r	-574.0165365	-573.8299182	-573.8819485	-51.4	
aco_022f	-574.0164979	-573.829874	-573.8824504	-52.7	
V					
aco_007	-344.9842656	-344.8659834	-344.9038788		
Ac-VI					
aco_009	-229.0141332	-229.007996	-228.980388		
V + AcVI			-573.8842856	-57.5	
VII					
aco_019	-345.32368	-345.1929238	-345.2310338		

Ac-VIII				
aco_018	-228.4395757	-228.3869523	-228.4195748	
VII + AcVIII			-573.6506086	+556.0

Table S05. Energy values for the species shown in Scheme S01 at DLPNO-CCSD(T)/CBS level.^[a]

System	E_{tot}	H_{298}	G_{298}	ΔG_{298}	$\Delta G_{298,qh,sol}$
	(DLPNO-	(DLPNO-	(DLPNO-	(DLPNO-	(DLPNO-
	CCSD(T)/CBS)	CCSD(T)/CBS)	CCSD(T)/CBS)	CCSD(T)/CBS)	CCSD(T)/CBS)
				[kJ/mol]	[kJ/mol]
Ac-I					
aco_024f	-573.6027267	-573.413829	-573.4626374	0.0	0.0
aco_005	-573.5993231	-573.4104493	-573.4598456	+7.3	+3.4
aco_002	-573.5957068	-573.4070403	-573.4565791	+15.9	+5.6
aco_006	-573.5935945	-573.4049692	-573.4542533	+22.0	+16.2
aco_003	-573.5925121	-573.4039894	-573.4533225	+24.5	+16.9
Ac-TS1a					
aco_014	-573.5526571	-573.3663005	-573.4131761	+129.9	+126.6
aco_025	-573.5523974	-573.3660828	-573.4129393	+130.5	+128.1
Ac-II					
aco_015r	-573.5866482	-573.3973691	-573.4433619	+50.6	+52.8
aco_012	-573.5862836	-573.3969991	-573.4429574	+51.7	+52.5
aco_008	-573.5854133	-573.3962592	-573.4425294	+52.8	+52.2
aco_026r	-573.5845233	-573.3953863	-573.4416497	+55.1	+53.1
aco_013	-573.581099	-573.3920398	-573.4386283	+63.0	+57.4
aco_027	-573.5797266	-573.3907602	-573.43754	+65.9	+60.7

Ac-TS1b					
aco_015	-573.5537356	-573.3678784	-573.4142047	+127.2	+127.3
aco_026	-573.5512673	-573.365614	-573.4121958	+132.4	+128.8
Ac-III					
aco_016	-573.6010316	-573.4138007	-573.4624811	+0.4	+0.3
aco_021f	-573.5993607	-573.4122589	-573.4610321	+4.2	+4.5
aco_004	-573.5940455	-573.4071819	-573.4563371	+16.5	+8.0
aco_023r	-573.5914636	-573.4044355	-573.4536782	+23.5	+18.4
aco_011r	-573.5903847	-573.4033889	-573.4528008	+25.8	+22.1
aco_028f	-573.5880906	-573.4012502	-573.450595	+31.6	+24.3
Ac-TS2					
aco_010	-573.5670426	-573.3810114	-573.4299488	+85.8	+76.8
aco_028	-573.5631769	-573.3772432	-573.4263499	+95.3	+84.1
Ac-TS3					
aco_029					
aco_023	-573.5625897	-573.3770581	-573.4271637	+93.1	+78.9
aco_011	-573.5587237	-573.3727232	-573.4225526	+105.2	+86.5
Ac-TS4					
aco_022	-573.5667764	-573.3808284	-573.4302238	+85.1	+77.8
Ac-TS5					
aco_024	-573.5870526	-573.4015255	-573.4500396	+33.1	+31.5
Ac-TS6					
aco_021	-573.5788909	-573.3956939	-573.4439814	+49.0	+45.8

Ac-IV					
aco_021r	-573.6131139	-573.4264956	-573.4785259	-41.7	-46.7
aco_022f	-573.6124497	-573.4258258	-573.4784022	-41.4	-46.5
V					
aco_007	-344.7313273	-344.6130451	-344.6509405		
Ac-VI					
aco_009	-228.8664334	-228.8602962	-228.8326882		
V + AcVI			-573.4836475	-55.2	-80.8
VII					
aco_019	-345.0628669	-344.9321107	-344.9702207		
Ac-VIII					
aco_018	-228.2980208	-228.2453974	-228.2780199		
VII + AcVIII			-573.2482323	+562.9	+78.3

System	E _{tot} (G3B3)	H298 (G3B3)	G298 (G3B3)	⊿G298 (G3B3) [kJ/mol]
Ac-I				
aco_024f	-574.0055819	-573.81668	-573.86549	0.0
aco_005	-574.0023254	-573.81345	-573.86285	+6.9
aco_002	-573.9984928	-573.80983	-573.85937	+16.1

Table S06. Energy values for the species shown in Scheme S01 at G3B3 level.^[a]

aco_006	-573.9970527	-573.80843	-573.85771	+20.4	
aco_003	-573.996128	-573.80761	-573.85694	+22.5	
Ac-TS1a					
aco 014	-573.9583971	-573.77204	-573.81892	+122.3	
aco_025	-573.9581932	-573.77188	-573.81874	+122.8	
Ac-II					
aco 015r	-573,9908544	-573.80158	-573.84757	+47.1	
aco 012	-573.9905827	-573.8013	-573.84726	+47.9	
aco 008	-573.9896809	-573.80053	-573.8468	+49.1	
aco 026r	-573.9886182	-573.79948	-573.84574	+51.8	
aco_013	-573.9851772	-573.79612	-573.84271	+59.8	
aco_027	-573.9840734	-573.79511	-573.84189	+62.0	
Ac-TS1b					
aco 015	-573.9594506	-573.77359	-573.81992	+119.7	
aco_026	-573.9569883	-573.77134	-573.81792	+124.9	
Ac-III					
aco 016	-574.0052918	-573.81806	-573.86674	-3.3	
aco 021f	-574.0033269	-573.81623	-573.865	+1.3	
aco 004	-573.9986142	-573.81175	-573.86091	+12.0	
aco_023r	-573.9954238	-573.8084	-573.85764	+20.6	
aco_011r	-573.9942018	-573.80721	-573.85662	+23.3	
aco_028f	-573.9924977	-573.80566	-573.855	+27.5	
Ac-TS2					
aco 010	-573.9743744	-573.78834	-573.83728	+74.1	
aco_028	-573.9700306	-573.7841	-573.8332	+84.8	

Ac-TS3					
aco_029	-573.9657565	-573.7797	-573.82968	+94.0	
aco_023	-573.9678518	-573.78232	-573.83243	+86.8	
aco_011	-573.9633045	-573.7773	-573.82713	+100.7	
Ac-TS4					
aco_022	-573.9737462	-573.7878	-573.83719	+74.3	
Ac-TS5					
aco_024	-573.9914608	-573.80593	-573.85445	+29.0	
Ac T86					
$\frac{AC-150}{aco}$	-573.9840421	-573.80085	-573.84913	+43.0	
Ac-IV					
aco 021r	-574.0162405	-573.82962	-573.88165	-42.4	
aco_022f	-574.0158263	-573.8292	-573.88178	-42.8	
V					
aco_007	-344.8623419	-344.74406	-344.78196		
Ao VI					
$\frac{AC-VI}{2CO}$	_228 0233183	_228 01718	_228 88957		
aco_009	-228.7255185	-220.91/10	-220.00937		
V + Ac-VI	-573.9984532	-573.81403	-573.88434	-49.5	
VII					
aco_019	-345.1917599	-345.061	-345.09911		

Ac-VIII				
aco_018	-228.3576195	-228.305	-228.33762	
VI + Ac-VIII	-573.7621724	-573.57879	-573.64952	+567.0

4.0 Evaluation of Leaving groups

Scheme S03. Pivaloxy group migration and elimination pathways for model substrate Piv-I. Gibbs free energy differences ($\Delta G_{298,qh,sol}$) relative to radical Piv-I ((U)M06-2X/def2-TZVP//SMD(acetonitrile) results in kJ/mol) are given in brackets.

	0		
System	$\Delta H_{298}^{[b]}$	$\Delta G_{298,qh}^{[b]}$	$\Delta G_{298,qh,sol}^{[b]}$
	((U)M06-2X/	((U)M06-2X/	((U)M06-2X/
	def2-TZVP)	def2-TZVP)	def2-TZVP)
Piv-I	0.0	0.0	0.0
Piv-TS1a	+123.3	+130.2	+127.8
Piv-II	+37.3	+45.4	+46.5
Piv-TS1b	+123.8	+131.4	+131.1
Piv-III	-1.1	-1.0	-1.1
Piv-TS2	+85.3	+85.1	+76.5
Piv-TS3	+93.1	+90.2	+71.7
Piv-TS4	+77.8	+77.4	+71.1
Piv-TS5	+27.7	+28.3	+26.9
Piv-TS6	+43.1	+44.2	+41.0
Piv-IV	-30.9	-39.4	-44.8
V + Piv-VI	+10.4	-47.4	-73.1
VII + Piv-VIII	+605.1	+547.6	+80.0

Table S07. Reaction energies for the species shown in Scheme S03 (in kJ/mol).^[a]

[a] Calculated with reference to the best conformer of each species. [b] Using gas phase (U)M06-2X/def2-TZVP geometries.

System E_{tot} H_{298} $G_{298,qh}$ E_{tot} ((U)M06-2X/ ((U)M06-2X/ ((U)M06-2X/ (SMD(AcCN)/ def2-TZVP) def2-TZVP) def2-TZVP) (U)M06-2X/ def2-TZVP)^a Piv-I -692.1378245 -691.8623286 -691.9193282 -692.152686 pivo 024f

Table S08. Energy values for the species shown in Scheme S03.

pivo_005	-692.1345645	-691.8591817	-691.9163862	-692.1510244
pivo_002	-692.1306495	-691.8554489	-691.9131089	-692.1492834
pivo_006	-692.1299528	-691.8547468	-691.911963	-692.1469051
pivo_003	-692.1284874	-691.8533197	-691.9106593	-692.1462119
Piv-TS1a				
		-691.8143261		
pivo_014	-692.0873726	$(imag=-982 \text{ cm}^{-1})$	-691.8692363	-692.1036378
		-691.8153778		
pivo_025	-692.0884449	$(imag=-945 cm^{-1})$	-691.8697205	-692.1038399
Piv-II				
pivo_015r	-692.1232578	-691.8473452	-691.9014022	-692.1373992
pivo_012	-692.1240628	-691.8481277	-691.9020402	-692.1384856
pivo_008	-692.1223452	-691.8465518	-691.9009082	-692.1376208
pivo_026r	-692.1210242	-691.8452497	-691.8996284	-692.1368019
pivo_013	-692.117978	-691.8423385	-691.8973139	-692.1347778
pivo_027	-692.116933	-691.8414128	-691.8965329	-692.1341568
Piv-TS1a				
		-691.8151613		
pivo_015	-692.0877439	$(imag=-954 \text{ cm}^{-1})$	-691.8692986	-692.1027021
nivo 026		-691.8131097		
prv0_020	-692.0854672	$(imag=-977 cm^{-1})$	-691.8675308	-692.1018074
Piv-III				
pivo_016	-692.1364834	-691.8627483	-691.9196954	-692.1514009
pivo_021f	-692.1347582	-691.8610261	-691.9176746	-692.1494821
pivo_004	-692.1292988	-691.8558593	-691.9132417	-692.1474753
pivo_023r	-692.1267681	-691.8531113	-691.9107757	-692.143399
pivo_011r	-692.1256486	-691.8520699	-691.9096095	-692.1420397

pivo_028f	-692.1233047	-691.8498356	-691.9073656	-692.1409952
Piv-TS2				
		-691.8298437		
pivo_010	-692.1024191	$(imag=-234 \text{ cm}^{-1})$	-691.8869095	-692.1205559
nivo 028		-691.8264992		
prvo_020	-692.0979952	$(imag=-259 \text{ cm}^{-1})$	-691.8814736	
Piv-TS3				
		-691.8268279		
pivo_029	-692.0993457	$(imag=-84 \text{ cm}^{-1})$	-691.8846353	-692.1215944
pivo 023		-691.8268578		
	-692.0989374	$(imag=-146 \text{ cm}^{-1})$	-691.8849716	-692.1193044
pivo 011		-691.8241486		
I _	-692.0966512	$(1mag=-53 \text{ cm}^{-1})$	-691.8824554	-692.1185544
Piv-TS4				
		-691.8326902	(01.0000.100	
pivo_022	-692.1051248	$(imag=-181 \text{ cm}^{-1})$	-691.8898428	-692.1223861
Piv-TS5		(01.0 - 1 - 0.1		
		-691.851784		(0 0 1000001
p1vo_024	-692.1238643	$(1mag=-173 \text{ cm}^{-1})$	-691.9085328	-692.1392881
D' TC (
PIV-150		(01.0450052		
. 021	(02.115(025	-691.8458952	(01.0025000	(02.1217(22
pivo_021	-092.1136833	$(1mag=-43 / cm^{-1})$	-691.9025089	-092.131/023
D . I V				
	(02.1472201	(01.07410(7	(01.02.42.407	(02.1(41401
pivo_021r	-692.1472291	-691.8/4106/	-691.9343485	-692.1641491
p1vo_022f	-692.1471	-691.8738413	-691.9341821	-692.1639583

V				
pivo_007	-345.1158220	-344.9975398	-345.0354352	-345.1303555
Piv-VI				
pivo_009	-347.0136253	-346.8608407	-346.9019646	-347.0237316
VII				
pivo_019	-345.4496196	-345.3188634	-345.3569734	-345.5527916
Piv-VIII				
pivo_018	-346.451875	-346.313001	-346.3537822	-346.5416612

Scheme S04. Benzoyloxy group migration and elimination pathways for model substrate Bz-I. Gibbs free energy differences ($\Delta G_{298,qh,sol}$) relative to radical Bz-I ((U)M06-2X/def2-TZVP//SMD(acetonitrile) results in kJ/mol) are given in brackets.

System	$\Delta H_{298}^{[b]}$	$\Delta G_{298,qh}^{[b]}$	$\Delta G_{298,qh,sol}^{[b]}$
	((U)M06-2X/	((U)M06-2X/	((U)M06-2X/
	def2-TZVP)	def2-TZVP)	def2-TZVP)
Bz-I	0.0	0.0	0.0
Bz-TS1a	+100.2	+104.9	+90.9
Bz-II	+10.0	+15.0	+8.0
Bz-TS1b	+98.2	+104.7	+102.3
Bz-III	-0.2	-0.4	-0.9
Bz-TS2	+84.1	+83.2	+68.9
Bz-TS3	+96.0	+88.4	+68.5
Bz-TS4	+75.3	+74.7	+63.2
Bz-TS5	+25.7	+26.9	+23.7
Bz-TS6	+38.8	+39.7	+34.8
Bz-IV	-33.8	-43.5	-51.0
V + Bz-VI	+9.8	-49.1	-75.2
VII + Bz-VIII	+585.3	+526.5	+59.0

Table S09. Reaction energies for the species shown in Scheme S04 (in kJ/mol).^[a]

^[a] Calculated with reference to the best conformer of each species. [b] Using gas phase (U)M06-2X/def2-TZVP geometries.

System	Etot	H298	G298,qh	Etot
	((U)M06-2X/	((U)M06-2X/	((U)M06-2X/	(SMD(AcCN)/
	def2-TZVP)	def2-TZVP)	def2-TZVP)	(U)M06-2X/
				def2-TZVP) ^a
Bz-I				

Table S10. Energy values for the species shown in Scheme S04.

acob_024fx	-765.9440732	-765.6997800	-765.7551451	-765.9621550
acob_005	-765.9408350	-765.6966932	-765.7524975	-765.9603275
acob_022f	-765.9359106	-765.6918939	-765.7478955	-765.9560205
acob_028r	-765.9342066	-765.6903396	-765.7464355	-765.9553574
acob_010r	-765.9338503	-765.6899009	-765.7463851	-765.9537579
acob_029f	-765.9333355	-765.6895186	-765.7463312	-765.9554004
Bz-TS1a				
acob_014	-765.9032670	-765.6616262	-765.7151871	-765.9266752
		$(imag=-867 \text{ cm}^{-1})$		
acob_025	-765.9046970	-765.6631017	-765.7166388	-765.9254175
		$(imag=-794 \text{ cm}^{-1})$		
Bz-II				
acob_015f	-765.9399376	-765.6959602	-765.7494254	-765.9606935
acob_014f	-765.9390733	-765.6951097	-765.7486223	-765.9612714
Bz-TS1b				
acob_015	-765.9035788	-765.6623722	-765.7152649	-765.9225759
		$(imag=-967 \text{ cm}^{-1})$		
acob_026	-765.9011302	-765.6600780	-765.7132273	-765.9218181
		(imag=-988 cm ⁻¹)		
Bz-III				
acob_015r	-765.9424662	-765.6998707	-765.7552771	-765.9607414
aco0b_021f	-765.9407028	-765.6981030	-765.7533507	-765.9588192
acob_010f	-765.9353186	-765.6930305	-765.7488493	-765.9570118
acob_023f	-765.9333348	-765.6908637	-765.7468646	-765.9532113
acob_011f	-765.9320992	-765.6897599	-765.7458798	-765.9519337
acob_028f	-765.9289920	-765.6867795	-765.7429219	-765.9506040

Bz-TS2				
acob_010	-765.9091424	-765.6677533 (imag=-247 cm ⁻¹)	-765.7234517	-765.9326739
acob_028	-765.9044520	-765.6632199 (imag=-271 cm ⁻¹)	-765.7190224	-765.9290241
Bz-TS3				
acob_023	-765.9060200	-765.6650035 (imag=-119 cm ⁻¹)	-765.7214810	-765.9316827
acob_029	-765.9057507	-765.6643709 (imag=-97 cm ⁻¹)	-765.7206672	-765.9334879
acob_011	-765.9036389	-765.6621798 (imag=-62 cm ⁻¹)	-765.7184788	-765.9308943
Rz-TS4				
acob_022	-765.9125327	-765.6711196 (imag=-168 cm ⁻¹)	-765.7266840	-765.9350232
acob_031	-765.9065197	-765.6662931 (imag=-251 cm ⁻¹)	-765.7228686	-765.9323352
Bz-TS5				
acob_024	-765.9310681	-765.6899828 (imag=-185 cm ⁻¹)	-765.7448970	-765.9503879
Bz-TS6				
acob_032	-765.9242916	-765.6850058 (imag=-316 cm ⁻¹)	-765.7400154	-765.9442450
acob_021	-765.9229836	-765.6841752 (imag=-404 cm ⁻¹)	-765.7389737	-765.9431057

Bz-IV				
acob_031r	-765.9546494	-765.7126471	-765.7717267	-765.9755767
acob_021r	-765.9541307	-765.7121530	-765.7706226	-765.9745463
acob_022r	-765.9540757	-765.7121078	-765.7708915	-765.9745663
acob_024f	-765.9540757	-	-	-
acob_032f	-765.9540757	-	-	-
V				
aco_007	-345.1158220	-344.9975398	-345.0354352	-345.1303555
Bz-VI				
acob_009	-420.8199897	-420.6984864	-420.7384047	-420.8334702
VII				
aco_019	-345.4496196	-345.3188634	-345.3569734	-345.5527916
aco_020	-345.4473655	-345.3167618	-345.3549276	-345.5519952
Bz-VIII				
acob_018	-420.2657923	-420.1579989	-420.1976276	-420.3587779
4.3 Chloromethyl

Scheme S05. Chloroacetyloxy group migration and elimination pathways for model substrate ClAc-I. Gibbs free energy differences ($\Delta G_{298,qh,sol}$) relative to radical ClAc-I ((U)M06-2X/def2-TZVP//SMD(acetonitrile) results in kJ/mol) are given in brackets.

	0		
System	$\Delta H_{298}^{[b]}$	$\Delta G_{298,qh}^{[b]}$	$\Delta G_{298,qh,sol}^{[b]}$
	((U)M06-2X/	((U)M06-2X/	((U)M06-2X/
	def2-TZVP)	def2-TZVP)	def2-TZVP)
ClAc-I	0.0	0.0	0.0
ClAc-TS1a	+105.1	+110.4	+105.6
ClAc-II	+7.4	+15.4	+20.2
ClAc-TS1b	+103.6	+111.4	+114.7
ClAc-III	-2.6	-1.8	-1.9
ClAc-TS2	+73.1	+72.7	+59.6
ClAc-TS3	+80.3	+77.8	+56.8
ClAc-TS4	+65.7	+65.6	+54.7
ClAc-TS5	+20.8	+21.8	+20.3
ClAc-TS6	+34.6	+36.5	+32.6
ClAc-IV	-37.1	-45.3	-50.8
V + ClAc-VI	+9.3	-47.6	-74.3
VII + ClAc-			
VIII	+991.2	+932.9	+49.8

Table S11. Reaction energies for the species shown in Scheme S05 (in kJ/mol).^[a]

^[a] Calculated with reference to the best conformer of each species. [b] Using gas phase (U)M06-2X/def2-TZVP geometries.

Table S12. Energy values for the species shown in Scheme S05.

System	E_{tot} ((U)M06-2X/ def2-TZVP)	H ₂₉₈ ((U)M06-2X/ def2-TZVP)	G _{298,qh} ((U)M06-2X/ def2-TZVP)	E_{tot} (SMD(AcCN)/ (U)M06-2X/ def2-TZVP) ^a
ClAc-I				

mcl_024f-b	-1033.805972	-1033.624257	-1033.676031	-1033.822682
mcl_024f-c	-1033.805971	-1033.624255	-1033.676047	
mcl_024f-a	-1033.806229	-1033.624818	-1033.676468	-1033.824326
mcl_005-a	-1033.802851	-1033.621641	-1033.673794	-1033.822904
mcl_005-b	-1033.804418	-1033.622863	-1033.674621	-1033.821635
mcl_005-c	-1033.802557	-1033.622034	-1033.671916	-1033.821139
mcl_002-a	-1033.800046	-1033.618838	-1033.671005	-1033.822039
mcl_002-b	-1033.798806	-1033.617264	-1033.669834	-1033.820219
mcl_002-c	-1033.7997	-1033.618191	-1033.670663	-1033.82044
mcl_006-a	-1033.798201	-1033.617051	-1033.668949	-1033.819023
mcl_006-b	-1033.797886	-1033.616432	-1033.668537	-1033.81733
mcl_006-c	-1033.80066	-1033.619155	-1033.67056	-1033.817783
mcl_003-a	-1033.798407	-1033.617305	-1033.669239	-1033.819298
mcl_003-b	-1033.797077	-1033.615749	-1033.66807	-1033.817517
mcl_003-c	-1033.797651	-1033.616245	-1033.668588	-1033.817566
ClAc-TS1a				
mcl_014-a	-1033.760861	-1033.581755		
		$(imag=-868 \text{ cm}^{-1})$	-1033.631436	-1033.781923
mcl_014-b	-1033.763964	-1033.584795		
		$(imag=-886 \text{ cm}^{-1})$	-1033.634415	-1033.783889
CIAC-II				
mcl_015r-a	-1033.801725	-1033.619704	-1033.668605	-1033.81904
mcl_015r-b	-1033.793112	-1033.611246	-1033.660343	-1033.810989
mcl_015r-c	-1033.793178	-1033.611349	-1033.660528	-1033.810983
mcl_012-a	-1033.793083	-1033.611142	-1033.660187	-1033.811364
mcl_012-b	-1033.792753	-1033.61081	-1033.659874	-1033.811272
mcl_012-c	-1033.803953	-1033.622012	-1033.670598	-1033.819929

mcl_008-a	-1033.803953	-1033.622013	-1033.6706	-1033.819932
mcl_008-b	-1033.793346	-1033.611477	-1033.660581	-1033.811738
mcl_008-c	-1033.792847	-1033.610992	-1033.660168	-1033.811684
mcl_026r-a	-1033.791122	-1033.609319	-1033.658602	-1033.810912
mcl_026r-b	-1033.791996	-1033.610195	-1033.659381	-1033.810997
mcl_026r-c	-1033.801106	-1033.619185	-1033.668262	-1033.819697
mcl_013-a	-1033.793346	-1033.611479	-1033.660586	-1033.811739
mcl_013-b	-1033.803953	-1033.622012	-1033.670597	-1033.819932
mcl_013-c	-1033.788485	-1033.606778	-1033.656513	-1033.808763
mcl_027-a	-1033.787473	-1033.605808	-1033.655632	-1033.808306
mcl_027-b	-1033.787951	-1033.60631	-1033.656087	-1033.808196
mcl_027-c	-1033.795349	-1033.613766	-1033.663813	-1033.815462
ClAc-TS1b				
mcl_015-a	-1033.764165	-1033.585345		
		$(imag=-996 \text{ cm}^{-1})$	-1033.63405	-1033.78089
mcl_015-b	-1033.758696	-1033.580329		
		$(imag=-957 \text{ cm}^{-1})$	-1033.62966	-1033.774436
mcl_015-c	-1033.764165	-1033.585343		
		$(imag=-996 \text{ cm}^{-1})$	-1033.634044	-1033.780889
mcl_026-a	-1033.762649	-1033.584018		
		$(imag=-234 \text{ cm}^{-1})$	-1033.632969	-1033.780574
mcl_026-c	-1033.762649	-1033.584019		
		$(imag=-1011 \text{ cm}^{-1})$	-1033.632966	-1033.780569
ClAc-III				
mcl_016-a	-1033.805169	-1033.625533	-1033.676974	-1033.823496
mcl_016-b	-1033.805857	-1033.62582	-1033.677138	-1033.822376
mcl_016-c	-1033.805857	-1033.62582	-1033.67714	-1033.822375

mcl_021f-a	-1033.804073	-1033.624983	-1033.674161	-1033.820344
mcl_021f-b	-1033.804073	-1033.624984	-1033.674163	-1033.820344
mcl_021f-c	-1033.80347	-1033.62382	-1033.675391	-1033.821568
mcl_004-a	-1033.79955	-1033.61982	-1033.671658	-1033.819317
mcl_004-b	-1033.798804	-1033.619109	-1033.671206	-1033.818567
mcl_004-c	-1033.798554	-1033.619162	-1033.671049	-1033.820366
mcl_023r-a	-1033.796206	-1033.616676	-1033.668813	-1033.816351
mcl_023r-b	-1033.795621	-1033.615763	-1033.667984	-1033.814694
mcl_023r-c	-1033.796359	-1033.61649	-1033.668487	-1033.814798
mcl_011r-a	-1033.79526	-1033.615804	-1033.668273	-1033.815147
mcl_011r-b	-1033.795491	-1033.615663	-1033.667951	-1033.813581
mcl_011r-c	-1033.794399	-1033.615607	-1033.665622	-1033.81333
mcl_028f-a	-1033.792153	-1033.61252	-1033.664678	-1033.812683
mcl_028f-b	-1033.793007	-1033.613322	-1033.665694	-1033.812334
mcl_028f-c	-1033.79288	-1033.613524	-1033.665763	-1033.814156
ClAc-TS-2				
mcl_010-a	-1033.774829	-1033.596232		
		$(imag=-247 \text{ cm}^{-1})$	-1033.648196	-1033.798504
mcl_010-b	-1033.775559	-1033.596967		
		$(imag=-246 \text{ cm}^{-1})$	-1033.648779	-1033.798539
mcl_028-a	-1033.770457	-1033.591991		
		$(imag=-266 \text{ cm}^{-1})$	-1033.6438	-1033.795121
mcl_028-c	-1033.77101	-1033.592552		
		$(imag=-268 \text{ cm}^{-1})$	-1033.644383	-1033.794901
ClAc-TS3				
mcl_029-a	-1033.77288	-1033.594191	-1033.646658	-1033.799005

		$(imag=-96 \text{ cm}^{-1})$		
mcl 029-c	-1033.771951	-1033.593243		
		$(imag=-94 \text{ cm}^{-1})$	-1033.645391	-1033.799495
mcl 023-a	-1033.771999	-1033.593796		
_		$(imag=-120 \text{ cm}^{-1})$	-1033.646407	-1033.79756
mcl 023-b	-1033.772423	-1033.594219		
_		$(imag=-125 \text{ cm}^{-1})$	-1033.646854	-1033.79664
mcl 011-a	-1033.769649	-1033.590992		
_		$(imag=-66 \text{ cm}^{-1})$	-1033.643266	-1033.796995
mcl 011-c	-1033.768639	-1033.589753		
_		$(imag=-65 \text{ cm}^{-1})$	-1033.642278	-1033.794983
ClAc-TS4				
mcl 022-a	-1033.777839	-1033.598824		
_		$(imag=-181 \text{ cm}^{-1})$	-1033.650755	-1033.798793
mcl 022-b	-1033.778523	-1033.5998		
—		$(imag=-162 \text{ cm}^{-1})$	-1033.651475	-1033.800788
mcl 022-c	-1033.778162	-1033.599202		
_		$(imag=-156 \text{ cm}^{-1})$	-1033.651096	-1033.79934
ClAc-TS5				
mcl 024-a	-1033.795231	-1033.616628		
_		$(imag=-163 \text{ cm}^{-1})$	-1033.667592	-1033.814454
mcl 024-b	-1033.795539	-1033.616879		
_		$(imag=-177 \text{ cm}^{-1})$	-1033.668166	-1033.813891
mcl_024-c	-1033.795539	-1033.61688		
		$(imag=-177 \text{ cm}^{-1})$	-1033.668165	-1033.813891
ClAc-TS6				
mcl_021-a	-1033.788067	-1033.611653		
		$(imag=-342 \text{ cm}^{-1})$	-1033.662576	-1033.807225

mcl_021-b	-1033.787057	-1033.610665		
_		$(imag=-343 \text{ cm}^{-1})$	-1033.661939	-1033.807283
mcl_021-c	-1033.786055	-1033.609393		
		$(imag=-356 \text{ cm}^{-1})$	-1033.660559	-1033.805435
ClAc-IV				
mcl_021r-a	-1033.817873	-1033.638959	-1033.6936	-1033.83775
mcl_021r-b	-1033.816961	-1033.637605	-1033.691974	-1033.836226
mcl_021r-c	-1033.816201	-1033.637855	-1033.690433	-1033.835767
mcl_022f-a	-1033.817791	-1033.638834	-1033.693718	-1033.83797
mcl_022f-b	-1033.816033	-1033.636749	-1033.69223	-1033.836133
mcl_022f-c	-1033.817253	-1033.638846	-1033.691056	-1033.835619
V				
mcl_007	-345.1158220	-344.9975398	-345.0354352	-345.1303555
ClAc-VI				
(mcl_009)-a	-688.6816379	-688.6236986	-688.6574387	-688.6941852
(mcl_009)-b	-688.6816379	-688.6236986	-688.6574387	-688.6941852
(mcl_009)-c	-688.6823292	-688.6237543	-688.6591453	-688.6960723
VII				
mcl_019	-345.4496196	-345.3188634	-345.3569734	-345.5527916
ClAc-VIII				
mcl_018-a	-687.9743041	-687.9284094	-687.9641289	-688.2255878
mcl_018-b	-687.9743041	-687.9284094	-687.9641289	-688.2255878
mcl_018-c	-687.9742846	-687.9284096	-687.9641609	-688.2255755

^[a] Using gas phase (U)M06-2X/def2-TZVP geometries.

4.4 Trichloromethyl

Scheme S06. Trichloroacetyloxy group migration and elimination pathways for model substrate Cl₃Ac-I. Gibbs free energy differences ($\Delta G_{298,qh,sol}$) relative to radical Cl₃Ac-I ((U)M06-2X/def2-TZVP//SMD(acetonitrile) results in kJ/mol) are given in brackets.

	U		
System	$\Delta H_{298}^{[b]}$	$\Delta G_{298,qh}^{[b]}$	$\Delta G_{298,qh,sol}^{[b]}$
	((U)M06-2X/	((U)M06-2X/	((U)M06-2X/
	def2-TZVP)	def2-TZVP)	def2-TZVP)
Cl ₃ Ac-I	0.0	0.0	0.0
Cl ₃ Ac-TS1a	+92.5	+97.8	+82.7
Cl ₃ Ac-II	+0.1	+8.3	+7.2
Cl ₃ Ac-TS1b	+97.3	+104.7	+100.8
Cl ₃ Ac-III	-9.5	-8.6	-7.2
Cl ₃ Ac-TS2	+54.5	+54.1	+25.1
Cl ₃ Ac-TS3	+59.6	+58.3	+24.6
Cl ₃ Ac-TS4	+45.4	+45.2	+23.6
Cl ₃ Ac-TS5	+11.0	+11.9	+5.9
Cl ₃ Ac-TS6	+21.8	+24.0	+13.2
Cl ₃ Ac-IV	-44.4	-53.0	-62.0
V + Cl ₃ Ac-VI	+6.8	-51.0	-75.9
VII + Cl ₃ Ac-VIII	+986.7	+927.6	+0.8

Table S13. Reaction energies for the species shown in Scheme S06 (in kJ/mol).^[a]

^[a] Calculated with reference to the best conformer of each species. ^[b] Using gas phase (U)M06-2X/def2-TZVP geometries.

Table S14. Energy values for the species shown in Scheme S06.

System	E_{tot} ((U)M06-2X/ def2-TZVP)	H ₂₉₈ ((U)M06-2X/ def2-TZVP)	G _{298,qh} ((U)M06-2X/ def2-TZVP)	E_{tot} (SMD(AcCN)/ (U)M06-2X/ def2-TZVP) ^a
Cl ₃ Ac-I				

ccl3o_024f	-1952.981988	-1952.818536	-1952.874048	-1952.996947
ccl3o_005	-1952.986414	-1952.821939	-1952.879142	-1953.001933
ccl3o_002	-1952.982276	-1952.817857	-1952.875514	-1953.001664
ccl3o_006	-1952.982818	-1952.818432	-1952.875465	-1952.998119
ccl3o_003	-1952.980907	-1952.81659	-1952.874225	-1952.999716
Cl ₃ Ac-TSIa	10.50 0.400.6			10.50 0.500.001
ccl3o_014	-1952.94886	-1952.78669	-1952.841888	-1952.970391
		$(1mag=-861 \text{ cm}^{-1})$		
Cl ₃ Ac-II				
ccl3o_015r	-1952.984732	-1952.819636	-1952.873959	-1953.0018
ccl3o_012	-1952.98697	-1952.821919	-1952.875985	-1953.002762
ccl3o_008	-1952.984194	-1952.819211	-1952.873673	-1953.002695
ccl3o_026r	-1952.984439	-1952.819377	-1952.873803	-1953.002716
ccl3o_013	-1952.984194	-1952.819211	-1952.873673	-1953.002692
ccl3o_027	-1952.980062	-1952.815321	-1952.870575	-1953.000562
Cl ₃ Ac-1S1b				10.50 0 (0010
ccl3o_015	-1952.946547	-1952.784871	-1952.839277	-1952.963312
12 02(1052.0452(5	$(1mag=-9/0 \text{ cm}^{-1})$	1052 020507	1052 0(21(2
cc130_026	-1952.945265	-1952./83/63 (imag= 1005 gm ⁻¹)	-1952.838597	-1952.963163
		(imag1003 cm)		
Cl ₃ Ac-III				
ccl3o_016	-1952.988426	-1952.82556	-1952.882424	-1953.003649
ccl3o_021f	-1952.986579	-1952.823746	-1952.880699	-1953.001583
ccl3o_004	-1952.983312	-1952.820645	-1952.877835	-1953.001733
ccl3o_023r	-1952.979296	-1952.816562	-1952.8742	-1952.996642

ccl3o 011r	-1952.978478	-1952.815888	-1952.873931	-1952.995559
 ccl3o_028f	-1952.976545	-1952.814001	-1952.871644	-1952.995369
Cl ₃ Ac-TS2				
ccl30 010	-1952.962914	-1952.801182	-1952.858526	-1952.989716
_		$(imag=-195 \text{ cm}^{-1})$		
ccl3o_028	-1952.957438	-1952.795899	-1952.854013	-1952.985641
		$(imag=-219 \text{ cm}^{-1})$		
Cl ₃ Ac-TS3				
ccl3o_029	-1952.960897	-1952.79902	-1952.856485	-1952.989925
		$(imag=-95 \text{ cm}^{-1})$		
ccl3o_023	-1952.960585	-1952.799231	-1952.856922	-1952.987971
		$(imag=-50 \text{ cm}^{-1})$		
ccl3o_011	-1952.958766	-1952.79676	-1952.853821	-1952.987459
		$(imag=-42 \text{ cm}^{-1})$		
ChAc-TS4				
	1052 06660	1052 804650	1052 961014	1052 000705
022	-1932.90009	$(imag=-115 \text{ cm}^{-1})$	-1952.001914	-1932.990703
		(iiiiag115 ciii)		
Cl ₃ Ac-TS5				
ccl3o 024	-1952.98004	-1952.81775	-1952.874613	-1952.998082
_		$(imag=-152 \text{ cm}^{-1})$		
Cl ₃ Ac-TS6				
ccl3o 021	-1952.973926	-1952.813626	-1952.870014	-1952.993804
		$(imag=-256 \text{ cm}^{-1})$		
Cl ₃ Ac-IV				

ccl3o_022f	-1953.000732	-1952.838844	-1952.899331	-1953.019908
V				
ccl3o_007	-345.1158220	-344.9975398	-345.0354352	-345.1303555
Cl ₃ Ac-VI				
ccl3o_009	-1607.863585	-1607.821802	-1607.863141	-1607.874287
VII				
ccl3o_019	-345.4496196	-345.3188634	-345.3569734	-345.5527916
Cl ₃ Ac-VIII				
ccl3o_018	-1607.156186	-1607.127257	-1607.168872	-1607.421771

^[a] Using gas phase (U)M06-2X/def2-TZVP geometries.

4.5 Trifluoromethyl 0= ℃F₃ F₃Ac-TS3 (+24.4) H~<mark>O</mark> H-O ‡ VII VII H CF₃ ĊF₃ ĊF₃ F₃Ć ĊF₃ °o⊖ F₃Ac-I Θ F₃C² F₃C² F₃Ac-III F₃Ac-II (0.0)F₃Ac-TS1a F₃Ac-VIII F₃Ac-TS1b F₃Ac-VIII (-5.8) (+12.9) (+87.4) (+104.7) (-1.3) (-1.3) H CF₃ `CF₃ CF_3 ĊF₃ F₃Ac-TS2 F₃Ac-TS6 F₃Ac-TS5 F₃Ac-TS4 (+24.6) (+12.6) (+5.3) (+23.2) F₃C໌ <mark>`O</mark>H **_F₃Ac-VI** (-75.3) CF3 CF3 F₃Ac-IV F₃Ac-IV (-62.7) (-62.7)

Scheme S07. Trifluoroacetyloxy group migration and elimination pathways for model substrate F_3Ac-I . Gibbs free energy differences ($\Delta G_{298,qh,sol}$) relative to radical F_3Ac-I ((U)M06-2X/def2-TZVP//SMD(acetonitrile) results in kJ/mol) are given in brackets.

System	$\Delta H_{298}^{[b]}$	$\Delta G_{298,qh}^{[b]}$	$\Delta G_{298,qh,sol}^{[b]}$
	((U)M06-2X/	((U)M06-2X/	((U)M06-2X/
	def2-TZVP)	def2-TZVP)	def2-TZVP)
F ₃ Ac-I	0.0	0.0	0.0
F ₃ Ac-TS1a	+96.2	+98.0	+87.4
F ₃ Ac-II	+9.8	+17.8	+12.9
F ₃ Ac-TS1b	+101.9	+108.9	+104.7
F ₃ Ac-III	-5.3	-5.0	-5.8
F ₃ Ac-TS2	+55.6	+54.5	+24.6
F ₃ Ac-TS3	+61.9	+59.2	+24.4
F ₃ Ac-TS4	+47.0	+46.6	+23.2
F ₃ Ac-TS5	+12.1	+12.0	+5.3
F3Ac-TS6	+25.1	+26.0	+12.6
F ₃ Ac-IV	-42.9	-51.8	-62.7
$V + F_3Ac-VI$	+9.3	-48.3	-75.3
VII + F ₃ Ac-VIII	+516.7	+458.8	-1.3

Table S15. Reaction energies for the species shown in Scheme S07 (in kJ/mol).^[a]

^[a] Calculated with reference to the best conformer of each species. ^[b] Using gas phase (U)M06-2X/def2-TZVP geometries.

Table S16. Energy values for the species shown in Scheme S07.

System	Etot	H298	G298,qh	Etot
	((U)M06-2X/	((U)M06-2X/	((U)M06-2X/	(SMD(AcCN)/
	def2-TZVP)	def2-TZVP)	def2-TZVP)	(U)M06-2X/
	,		· ·	def2-TZVP) ^a

F3Ac-I				
cf3o_024f	-871.9754764	-871.8066551	-871.8603783	-871.9866529
cf3o_005	-871.9737848	-871.8050774	-871.858999	-871.9863961
cf3o_002	-871.9705136	-871.8018975	-871.8561909	-871.9862664
cf3o_006	-871.9698767	-871.8012146	-871.8551244	-871.9832658
cf3o_003	-871.9692225	-871.8006447	-871.8548174	-871.9844424
F ₃ Ac-TS1a				
cf3o_014	-871.936265	-871.769774 (imag=-842 cm ⁻¹)	-871.82138	-871.9535418
cf3o_025	-871.938213	-871.771791 (imag=-780 cm ⁻¹)	-871.823067	-871.9519496
F ₃ Ac-II				
cf3o_015r	-871.9712265	-871.8018324	-871.852589	-871.9840268
cf3o_012	-871.9722843	-871.8029234	-871.8535979	-871.9843843
cf3o_008	-871.9707019	-871.8014352	-871.8524888	-871.9852363
cf3o_026r	-871.970777	-871.8014442	-871.8522907	-871.9848634
cf3o_013	-871.9707018	-871.8014345	-871.852489	-871.9852298
cf3o_027	-871.9663774	-871.7972922	-871.8488439	-871.9827735
F ₃ Ac-TS1b				
cf3o_015	-871.933739	-871.767841 (imag=-950 cm ⁻¹)	-871.818883	-871.9468529
cf3o_026	-871.932497	-871.766688 (imag=-965 cm ⁻¹)	-871.817776	-871.9467982
F3Ac-III				

cf3o_016	-871.9758084	-871.8086579	-871.8622656	-871.9876934
cf3o_021f	-871.9741279	-871.8070165	-871.8603714	-871.9859001
cf3o_004	-871.9708503	-871.803983	-871.8578137	-871.9859393
cf3o_023r	-871.9673148	-871.8003222	-871.854447	-871.9812529
cf3o_011r	-871.9666438	-871.799835	-871.8541202	-871.9802929
cf3o_028f	-871.9644219	-871.797591	-871.8517858	-871.9797664
F ₃ Ac-TS2				
cf3o_010	-871.951503	-871.785469 (imag=-201 cm ⁻¹)	-871.839631	-871.9744422
cf3o_028	-871.946562	-871.780736 (imag=-219 cm ⁻¹)	-871.834971	-871.9708178
F3Ac-TS3				
cf3o_029	-871.948998	-871.782836 (imag=-99 cm ⁻¹)	-871.837195	-871.9744456
cf3o_023	-871.948748	-871.783077 (imag=-86 cm ⁻¹)	-871.837839	-871.9727427
cf3o_011	-871.946156	-871.780013 (imag=-70 cm ⁻¹)	-871.834729	-871.9721898
F ₃ Ac-TS4				
cf3o_022	-871.955057	-871.788748 (imag=-127 cm ⁻¹)	-871.842629	-871.9755341
F3Ac-TS5				
cf3o_024	-871.968618	-871.802049 (imag=-153 cm ⁻¹)	-871.855571	-871.9829721

F3Ac-TS6				
cf3o_021	-871.961688	-871.797078	-871.850493	-871.9783358
		$(imag=-263 \text{ cm}^{-1})$		
F ₃ Ac-IV				
cf3o_021r	-871.9889742	-871.8228224	-871.8793383	-872.0038835
cf3o_022f	-871.9890951	-871.8230136	-871.8801027	-872.0048235
F ₃ Ac-V				
cf3o_007	-345.1158220	-344.9975398	-345.0354352	-345.1303555
Г 3АС- V 1				
cf3o_009	-526.851572	-526.805578	-526.8433206	-526.8589014
F3Ac-VII				
cf3o_019	-345.4496196	-345.3188634	-345.3569734	-345.5527916
1'3AC-VIII				
cf3o_018	-526.3238902	-526.2910025	-526.3286389	-526.4075287

^[a] Using gas phase (U)M06-2X/def2-TZVP geometries.

Scheme S08. Tosyl group migration and elimination pathways for model substrate Ts-I. Gibbs free energy differences ($\Delta G_{298,qh,sol}$) relative to radical Ts-I ((U)M06-2X/def2-TZVP//SMD(acetonitrile) results in kJ/mol) are given in brackets.

System	$\Delta H_{298}^{[b]}$	$\Delta G_{298,qh}^{[b]}$	$\Delta G_{298,qh,sol}^{[b]}$	$\Delta G_{298,qh,sol}^{[c]}$
	(M06-2X/	(M06-2X/	(M06-2X/	(M06-2X/
	def2-TZVP)	def2-TZVP)	def2-TZVP)	def2-TZVP)
Ts-I	0.0	0.0	0.0	0.0
Ts-TS1a	-	-	-	-
Ts-II	-	-	-	-
Ts-TS1b	-	-	-	-
Ts-III	-0.4	+1.2	+4.5	+3.1
Ts-TS2	+48.4	+49.0	+16.5	-
Ts-TS3	+54.0	+54.2	+21.2	-
Ts-TS4	-	-	-	-
Ts-TS5	+8.5	+8.9	+2.7	+5.5
Ts-TS6	+15.0	+16.7	+12.5	-
Ts-IV	-39.3	-46.1	-56.1	-61.6
V + Ts-VI	+20.9	-39.5	-64.5	-57.0
VII + Ts-VIII	+496.2	+436.4	-14.4	-4.0

Table S17. Reaction energies for the species shown in Scheme S08 (in kJ/mol).^[a]

^[a] Calculated with reference to the best conformer of each species.
 ^[b] Using gas phase (U)M06-2X/def2-TZVP geometries.
 ^[c] Using solution phase SMD(AcCN)/(U)M06-2X/def2-TZVP geometries.

Table S18. Energy values for the species shown in Scheme S08.

System	Etot	1	H298	G298,qh	E_{tot}

	((U)M06-2X/	((U)M06-2X/	((U)M06-2X/	(SMD(AcCN)/
	def2-TZVP)	def2-TZVP)	def2-TZVP)	UM06-2X/
				def2-TZVP) ^a
Ts-I				
acoc_034r	-1240.5352481	-1240.2605480	-1240.323089	-1240.5600523
acoc_025fo	-1240.5351436	-1240.2605516	-1240.3232717	-1240.5585967
acoc_003r	-1240.5339315	-1240.2590468	-1240.3211663	-1240.5576437
acoc_002	-1240.5331516	-1240.2583994	-1240.3210744	-1240.5559220
acoc 001	-1240.5331266	-1240.2583542	-1240.3213057	-1240.5558915
acoc 011	-1240.5308510	-1240.2565312	-1240.3185414	-1240.5541248
acoc 020	-1240.5279146	-1240.2530400	-1240.3157632	-1240.5503152
acoc 027fo	-1240.5255547	-1240.2510769	-1240.3134502	-1240.5514554
acoc_022re	-1240.5222934	-1240.2479421	-1240.3115957	-1240.5463931
Ts-III				
acoc_021re	-1240.5338039	-1240.2607124	-1240.3223993	-1240.5576006
acoc_023fo	-1240.5330710	-1240.2600041	-1240.3228110	-1240.5551594
acoc_013	-1240.5330702	-1240.2600046	-1240.3225041	-1240.5551609
acoc_006fo	-1240.5330702	-	-	-
acoc_014f	-1240.5274505	-1240.2545329	-1240.3164226	-1240.5543606
acoc_022fo	-1240.5257373	-1240.2529527	-1240.3160464	-1240.5514617
acoc_026re	-1240.5233328	-1240.2504399	-1240.3129462	-1240.5474182
acoc_027re	-1240.5205693	-1240.2476380	-1240.3100134	-1240.5470817
Ts-TS2				
acoc_022	-1240.5144494	-1240.2421058	-1240.3045958	-1240.5514798
		$(imag=-45.8 \text{ cm}^{-1})$		
Ts-TS3				
acoc_006	-1240.5138515	-1240.2416967	-1240.3047152	-1240.5495724
		$(imag=-46.2 \text{ cm}^{-1})$		

5494994
502042
5679202
5078292
5186437
5254363
5139180
5333296
5159222
728096
705354
774564
720761
728249
372767

V				
aco_007	-345.1158220	-344.9975398	-345.0354352	-345.1303555
TS-VI				
acoc_004	-895.4067935	-895.2550492	-895.3028841	-895.42640624
VII				
aco_019	-345.4496196	-345.3188634	-345.3569734	-345.5527916
aco_020	-345.4473655	-345.3167618	-345.3549276	-345.5519952
Ts-VIII				
acoc_018	-894.8920480	-894.7527043	-894.8000807	-894.98518355

^[a] Using gas phase (U)M06-2X/def2-TZVP geometries.

The influence of solvation was assessed for tosyl group migration and elimination pathways through reoptimization of intermediates and transition states at the SMD(AcCN)/(U)M06-2X/def2-TZVP level of theory. These results show minimal deviation to those calculated with the gas phase geometries.

Table S19. Energy values for the species shown in Scheme S08.

System	E _{tot}	H298	G298,qh
	(SMD(AcCN)/	(SMD(AcCN)/	(SMD(AcCN)/
	M06-2X/	M06-2X/	M06-2X/
	def2-TZVP) ^[a]	def2-TZVP) ^[a]	def2-TZVP) ^[a]
Ts-I			
acocsol_034r	-1240.56074420	-1240.286866	-1240.346148
acocsol_001	-1240.55896252	-1240.285272	-1240.345063
acocsol_017	-1240.55817853	-1240.284066	-1240.343187
acocsol_012r	-1240.55817852	-1240.284067	-1240.343188
acocsol_019	-1240.55627242	-1240.282272	-1240.341776

acocsol_018	-1240.55626904	-1240.282293	-1240.342708	
acocsol_010f	-1240.55626449	-1240.282265	-1240.341896	
acocsol_020	-1240.55487658	-1240.281557	-1240.340964	
acocsol_021	-1240.55152069	-1240.277924	-1240.338204	
acocsol_022	-1240.55264485	-1240.278721	-1240.338167	
acocsol_023	-1240.55262799	-1240.278730	-1240.338438	
Ts-TS5				
acocsol_034	-1240.55758248	-1240.285218	-1240.344068	
		$(imag=-293 \text{ cm}^{-1})$		
acocsol_035	-1240.55758243	-	-	
acocsol_024	-1240.55692210	-1240.284675 (imag=-	-1240.343864	
		284 cm ⁻¹)		
acocsol_012	-1240.55290323	-1240.280390	-1240.339776	
		$(imag=-271 \text{ cm}^{-1})$		
acocsol_011	-1240.55290324	-1240.280392	-1240.339786	
		$(imag=-270 \text{ cm}^{-1})$		
acocsol_010	-1240.55203131	-1240.279605	-1240.339011	
		$(imag=-242 \text{ cm}^{-1})$		
-				
Ts-IV				
acocsol_034f	-1240.58038213	-1240.309560	-1240.369608	
acocsol_007	-1240.57967219	-1240.308923	-1240.369131	
acocsol_024r	-1240.57639881	-1240.305984	-1240.368473	
acocsol_005	-1240.57639634	-1240.305971	-1240.368466	
acocsol_033	-1240.57635796	-1240.306941	-1240.367568	
acocsol_014f	-1240.57631397	-1240.305967	-1240.368826	
acocsol_032	-1240.57612064	-1240.305610	-1240.368187	
acocsol_013r	-1240.57612054	-1240.306556	-1240.366685	
acocsol_015r	-1240.57612057	-1240.305614	-1240.368240	

V			
aco_007sol	-345.1305303	-345.0124047	-345.0472302
Ts-VI			
acocsol_009	-895.427339880	-895.276134	-895.320630
acocsol_016	-895.427301315	-895.277122	-895.320010
VII			
aco_019sol	-345.5531468	-345.4224408	-345.4574849
aco_020sol	-345.5523892	-345.4216836	-345.4567290
Ts-VIII			
acocsol_008	-894.985926190	-894.846514	-894.890176

^[a] Using solution phase SMD(AcCN)/M06-2X/def2-TZVP geometries.

5.0 Calculated Relative pKa Data

Relative pK_a values in acetonitrile were calculated ((U)M06-2X/def2-TZVP//SMD(acetonitrile) level of theory) for acid leaving groups according to the proton exchange with acetonitrile solvent as depicted:

$$PK_{a(calc)} = \frac{\Delta G}{2.303*RT}$$
 (Eq. S01)

Calculated pK_a values were adjusted by benchmarking against experimental pK_a data in acetonitrile for acids where it was available (acetic acid, benzoic acid, toluenesulfonic acid).¹⁰ The equation resulting from the linear relationship between calculated and experimental data for these acids (Equation S01) was then used to adjust the calculated values to obtain relative pK_a data.

Acid	Experimental pK _a (acetonitrile)	Calculated pK _a (unadjusted)	Calculcated pKa (adjusted)
AcOH	23.5	34.3	23.8
PivOH	-	34.5	24.0
BzOH	21.5	31.2	21.2
Cl ₃ CCO ₂ H	-	21.1	12.6
F ₃ CCO ₂ H	-	20.7	12.2
TsOH	8.5	16.5	8.6

Table S20. Experimental and calculated ((U)M06-2X/def2-TZVP//SMD(acetonitrile) level of theory) pK_a data for leaving groups in acetonitrile.

Figure S04. Calculated vs experimental pK_a for acetic acid, benzoic acid, and toluenesulfonic acid.

$$pK_{a(calc,adjusted)} = 0.8558 * (pK_{a(calc)}) - 5.5582$$
 (Eq. S02)

A linear relationship between the free energy of activation of **TS5** and the calculated pK_a of the leaving group in acetonitrile was observed (Figure S05a.)

Figure S05a. Free energy of activation (ΔG^{\ddagger} , kJ/mol) for **TS5** vs the calculated p K_a of the leaving group in acetonitrile for leaving groups acetyl, pivaloyl, benzoyl, trichloroacetyl, trifluoroacetyl, and tosyl.

A similarly good correlation is observed between the free energy of activation of **TS5** and the reaction energy for heterolytic dissociation $\Delta G(VII + VIII)$, again in full support of the charge-separating character in the elimination transition state **TS5**.

Figure S05b. Free energy of activation (ΔG^{\ddagger} , kJ/mol) for **TS5** vs the reaction energy for heterolytic dissociation $\Delta G(VII + VIII)$ in acetonitrile for leaving groups acetyl, pivaloyl, benzoyl, trichloroacetyl, trifluoroacetyl, and tosyl.

6.0 Experimental Results 6.1 General Information

Materials

Stainless steel needles and syringes were used to transfer air and moisture sensitive liquids. Schlenk flasks and 4 Å molecular sieves were stored at 140 °C for at least 24 hours before use. Acetonitrile was HPLC grade and purified using a solvent purification system equipped with columns of activated alumina under nitrogen (Innovative Technology, Inc.). Other solvents and reagents were used without further purification. Flash column chromatography was performed using neutral silica gel (60 Å, 230 – 400 mesh, Silicycle). Thin-layer chromatography (TLC) was performed using aluminum backed silica gel plates (details), and compounds were visualized by UV irradiation at 254 nm and by staining with KMnO₄ solution.

Instrumentation

Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C) spectra were recorded on a 500 MHz Agilent DD2 Spectrometer or a 400 MHz Bruker Spectrometer. Chemical shifts for protons are recorded in parts per million (ppm) relative to tetramethylsilane and are referenced to residual protium in the solvent (CDCl₃: δ 7.26). Chemical shifts for carbons are recorded in parts per million (ppm) relative to tetramethylsilane and are referenced to residual carbon in the solvent (CDCl₃: δ 77.16). Data are represented in the following order: chemical shift (δ , ppm); multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br s, broad singlet); coupling constant (J, Hz); number of protons; assignment. Proton assignments were made based on coupling constants and 2D NMR spectra. High-resolution mass spectra (HRMS) were obtained on a JEOL AccuTOF JMS- T1000LC mass spectrometer equipped with a DART (direct analysis in real time) ion source. Infrared (IR) spectra were obtained on a Perkin-Elmer Spectrum 100 instrument equipped with a singlebounce diamond/ZnSe ATR accessory as neat samples. Spectral features are tabulated as follows: wavenumber (cm⁻¹); intensity (s-strong, m- medium, w-weak).

6.2 Preparation of Substrates

General Preparation of Substrates

OH PivO_____OH

Prepared according to adapted literature procedures.¹¹

Glycerol (1 equiv.) and phenylboronic acid (1 equiv.) in a round bottom flask equipped with a magnetic stir bar were dissolved in toluene (5 mL/mmol). The reaction flask was sealed and stirred at 110 °C for 16 hours. After 16 hours, the reaction mixture was cooled to room temperature then solvent was removed under reduced pressure, azeotroped three times with toluene, followed by drying under high vacuum to dryness. Boronic ester intermediate was dissolved in pyridine (2 mL/mmol) and cooled to 0 °C. Trimethylacetyl chloride (1.2 equiv.) was added and the reaction was warmed to room temperature and stirred for 1 hour. Reaction was dilute with toluene and filtered through Celite, then concentrated under reduced pressure. Crude reaction residue was dissolved in ethyl acetate (40 mL/mmol), poured into a separatory funnel containing 1M sorbitiol:1M Na₂CO₃ (40 mL/mmol) and shaken for 5 minutes. Aqueous layer was extracted with ethyl acetate (3 x 40 mL/mmol), combined organic layers dried over MgSO₄, filtered, and concentrated under reduced pressure. Crude residue was purified by flash column chromatography on silica (75% ethyl acetate in hexanes) to yield (**S1**) as a clear, colourless oil (77%).

Spectral data were in agreement with those previously reported.¹²

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 4.14 (dt, *J* = 5.4, 0.9 Hz, 2H), 3.94–3.87 (m, 1H), 3.72 – 3.63 (m, 1H), 3.61–3.53 (m, 1H), 1.20 (s, 9H).

General Procedure A

Adapted according to literature procedures.¹³

To a solution of 1-O-(trimethylacetyl)glycerol (1 equiv.) and 2-aminoethyl diphenylborinate (10 mol%) in acetonitrile (5 mL/mmol) was added the acid chloride (1.2 equiv.) followed by DIPEA (1.2 equiv.). The reaction was stirred at room temperature for 4 hours (or until reaction was indicated complete by TLC) then dilute with ethyl acetate. Reaction mixture was extracted with water, then aqueous layer was extracted twice more with ethyl acetate. Combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. Crude residue was purified by flash column chromatography on silica.

(1a) – 1-O-acetyl-3-O-pivaloylglycerol

Prepared according to General Procedure A with acetyl chloride to yield (1a) as a clear oil (89%). Purified by flash column chromatography on silica (20% to 30% ethyl acetate in hexanes).

Spectral data were in agreement with those previously reported.¹⁴

 $\mathbf{R}\mathbf{f} = 0.36$ (30% ethyl acetate in hexanes)

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 4.26–4.06 (m, 5H), 2.10 (s, 3H), 1.22 (s, 9H).

(1b) - 1-O-benzoyl-3-O-pivaloylglycerol

Prepared according to General Procedure A with benzoyl chloride to yield (**1b**) as a light yellow oil (59%). Purified by flash column chromatography on silica (20% to 30% ethyl acetate in hexanes).

 $\mathbf{R}\mathbf{f} = 0.30 \ (30\% \text{ ethyl acetate in hexanes})$

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.06–8.02 (m, 2H, Ar-H), 7.59–7.53 (m, 1H, Ar-H), 7.46–7.44 (m, 2H, Ar-H), 4.46 – 4.36 (m, 2H, H-1), 4.28 – 4.21 (m, 3H, H-2, H-3), 1.22 (s, 9H, -C(CH₃)₃).

¹³C NMR (126 MHz CDCl₃): δ (ppm) = 178.8, 166.7, 133.4, 129.8, 129.7, 128.6, 68.6, 65.8, 65.3, 39.0, 27.3.

IR (neat, cm⁻¹): 3472 (w), 2968 (w), 1716 (s), 1602 (w), 1481 (m), 1453 (m), 1268 (s), 1156 (s), 1109 (s), 1070 (s), 1027 (m), 710 (s).

HRMS (DART⁺, m/z): calculated for $C_{15}H_{21}O_5$ [M+H]⁺: 281.13835; found: 281. 13928.

(1c) - 1-O-chloroacetyl-3-O-pivaloylglycerol

Prepared according to General Procedure A with chloroacetyl chloride to yield (1c) as a clear oil (69%). Purified by flash column chromatography on silica (20% to 30% ethyl acetate in hexanes).

 $\mathbf{R}f = 0.35$ (30% ethyl acetate in hexanes)

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 4.31 – 4.09 (m, 7H),

¹³C NMR (126 MHz CDCl₃): δ (ppm) = 178.9, 167.4, 68.3, 66.7, 65.0, 40.8, 39.0, 27.2.

IR (neat, cm⁻¹): 3461 (w), 2969 (w), 1727 (s), 1482 (m), 1396 (m), 1284 (m), 1152 (s), 1038 (m), 940 (w), 781 (m).

HRMS (DART⁺, m/z): calculated for $C_{10}H_{18}O_5Cl [M+H]^+$: 253.08373; found: 253.08424.

(1d) - 1-O-trichloroacetyl-3-O-pivaloylglycerol

Prepared according to General Procedure A with trichloroacetyl chloride to yield (1d) as a colourless oil (48%). Purified by flash column chromatography on silica (20% to 30% ethyl acetate in hexanes). Material was isolated as a 3:1 mixture of (#) and 2-trichloroacetoxy-1-pivaloyloxypropan-3-ol due to trichloroacetoxy migration.

 $\mathbf{R}\mathbf{f} = 0.45$ (30% ethyl acetate in hexanes)

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) = 4.47–4.37 (m, 2H, H-1), 4.25–4.19 (m, 3H, H2, H3), 1.22 (s, 9H, -C(CH₃)₃).

¹³C NMR (126 MHz CDCl₃): δ (ppm) = 178.9, 162.0, 77.7, 69.2, 68.0, 64.8, 39.1, 27.3.

IR (neat, cm⁻¹): 3459 (w), 2972 (w), 1768 (s), 1719 (m), 1481 (m), 1368 (w), 1236 (s), 1155 (s), 1003 (m), 826 (s), 679 (s).

HRMS (DART⁺, m/z): calculated for $C_{10}H_{16}O_5Cl_3$ [M+H]⁺: 321.00578; found: 321.00636.

NMR peaks for the acyl migrated product: 2-trichloroacetoxy-1-pivaloyloxypropan-3-ol:

¹**H** NMR (500 MHz, CDCl₃): δ (ppm) = 5.28 – 5.24 (m, 1H), 4.55 – 4.53 (m, 1H), 4.31 (dd, J = 12.4, 6.5 Hz, 1H), 3.86 (d, J = 5.2 Hz, 2H), 3.81 – 3.77 (m, 1H), 1.20 (s, 9H).

¹³C NMR (126 MHz CDCl₃): δ (ppm) = 178.5, 161.6, 66.7, 61.8, 60.9, 40.1, 39.0, 27.2.

(1e) - 1-O-tosyl-3-O-pivaloylglycerol

OH PivO_____OTs

Prepared according to General Procedure A with tosyl chloride (1.5 equiv.) and DIPEA (1.5 equiv.) to yield (1e) as a white solid (34%). Purified by flash column chromatography on silica (20% to 30% ethyl acetate in hexanes).

 $\mathbf{R}\mathbf{f} = 0.15$ (30% ethyl acetate in hexanes)

¹**H** NMR (500 MHz, CDCl₃): δ (ppm) = 7.82–7.78 (m, 2H, Ar-H), 7.38–7.34 (m, 2H, Ar-H), 4.13 (dd, *J* = 4.8, 1.7 Hz, 2H, H-1), 4.11–4.01 (m, 3H, H-2, H-3), 2.53 (d, *J* = 4.5 Hz, 1H, -OH), 2.45 (s, 3H, -CH₃), 1.17 (s, 9H, -C(CH₃)₃).

¹³C NMR (126 MHz CDCl₃): δ (ppm) = 178.8, 145.4, 132.6, 130.1, 128.2, 70.2, 68.2, 64.5, 39.0, 27.2, 21.8.

IR (neat, cm⁻¹): 3497 (w), 2976 (w), 1717 (s), 1596 (m), 1458 (m), 1354 (s), 1290 (m), 1175 (s), 1162 (s), 1096 (m), 983 (s), 928 (s), 833 (s), 812 (s), 664 (s).

HRMS (DART⁺, m/z): calculated for $C_{15}H_{23}O_6S$ [M+H]⁺: 331.12194; found: 331.12099.

6.3 Intramolecular Competition Experiments

General Procedure B

Substrate (1) (1 equiv.), tetrabutylammonium decatungstate (5 mol%) and a small magnetic stir bar were added to a 1 dram vial. A rubber septum was used to seal the vial, which was then evacuated and backfilled with argon three times on a Schlenk line. Dry, degassed acetonitrile (0.125 M) was added to the vial under a balloon of argon. The rubber septum was removed and quickly replaced with the vial cap which was sealed with Teflon tape and parafilm. The vial was placed 5 inches from a UV LED Kessil lamp and stirred at 1050 rpm for 24 hours at 25 °C. After 24 hours the crude reaction was concentrated under reduced pressure and analyzed by ¹H NMR spectroscopy.

Competition experiment with 1-O-acetyl-3-O-pivaloylglycerol (1a)

1-O-acetyl-3-O-pivaloylglycerol (1a) was subjected to General Procedure B. ¹H NMR spectra analysis of the crude reaction mixture reveals the formation of products (2) and (3a) in a 1.1:1 ratio. ¹H NMR spectra for (2)¹⁵ and (3a)¹⁶ are consistent with literature reports.

Figure S06. ¹H NMR spectra (prior to purification) of intramolecular competition experiment of 1-*O*-acetyl-3-*O*-pivaloylglycerol (1a) to form products (2) and (3a).
Competition experiment with 1-O-benzoyloxy-3-O-pivaloylglycerol (1b)

1-O-benzoyl-3-O-pivaloylglycerol (1b) was subjected to General Procedure B. ¹H NMR spectra analysis of the crude reaction mixture reveals the formation of products (2) and (3b) in a 1.7:1 ratio. ¹H NMR spectra for (2)¹⁵ and (3b)¹⁷ are consistent with literature reports.

Figure S07. ¹H NMR spectra (prior to purification) of intramolecular competition experiment of 1-*O*-benzoyl-3-*O*-pivaloylglycerol (**1b**) to form products (**2**) and (**3b**).

Competition experiment with 1-O-chloroacetyl-3-O-pivaloylglycerol (1c)

1-O-chloroacteyl-3-O-pivaloylglycerol (1c) was subjected to General Procedure B. ¹H NMR spectra analysis of the crude reaction mixture reveals the formation of products (2) and (3c) in a 5.4:1 ratio. ¹H NMR spectra for (2)¹⁵ is consistent with literature reports.

Figure S08. ¹H NMR spectra (prior to purification) of intramolecular competition experiment of 1-*O*-chloroacetyl-3-*O*-pivaloylglycerol (1c) to form products (2) and (3c).

Competition experiment with 1-O-trichloroacetyl-3-O-pivaloylglycerol (1d)

1-O-trichloroacteyl-3-O-pivaloylglycerol (1d) was subjected to General Procedure B. ¹H NMR spectra analysis of the crude reaction mixture reveals the formation of product (2). Product (3d) was not observed. ¹H NMR spectra for (2)¹⁵ is consistent with literature reports.

Figure S09. ¹H NMR spectra (prior to purification) of intramolecular competition experiment of 1-*O*-trichloroacetyl-3-*O*-pivaloylglycerol (1d) to form products (2) and (3d).

Competition experiment with 1-O-tosyl-3-O-pivaloylglycerol (1e)

1-O-tosyl-3-O-pivaloylglycerol (1e) was subjected to General Procedure B. ¹H NMR spectra analysis of the crude reaction mixture reveals the formation of product (2). Product (3e) was not observed. ¹H NMR spectra for (2)¹⁵ and (3e)¹⁸ (not observed) are consistent with literature reports.

Figure S10. ¹H NMR spectra (prior to purification) of intramolecular competition experiment of 1-O-tosyl-3-O-pivaloylglycerol (1e) to form products (2) and (3e).

6.4 NMR Spectra (1b) – 1-O-benzoyl-3-O-pivaloylglycerol

¹H NMR (500 MHz, CDCl₃)

(1b) – 1-*O*-benzoyl-3-*O*-pivaloylglycerol ¹³C NMR (126 MHz, CDCl₃)

(1b) – 1-*O*-benzoyl-3-*O*-pivaloylglycerol COSY NMR (500 MHz, CDCl₃)

S79

(1c) – 1-O-chloroacetyl-3-O-pivaloylglycerol

¹H NMR (500 MHz, CDCl₃)

S80

(1c) – 1-*O*-chloroacetyl-3-*O*-pivaloylglycerol ¹³C NMR (126 MHz, CDCl₃)

(1c) – 1-*O*-chloroacetyl-3-*O*-pivaloylglycerol COSY NMR (500 MHz, CDCl₃)

(1d) – 1-*O*-trichloroacetyl-3-*O*-pivaloylglycerol ¹H NMR (500 MHz, CDCl₃)

(1d) – 1-*O*-trichloroacetyl-3-*O*-pivaloylglycerol ¹³C NMR (126 MHz, CDCl₃)

(1d) – 1-*O*-trichloroacetyl-3-*O*-pivaloylglycerol

(1e) – 1-O-tosyl-3-O-pivaloylglycerol

¹H NMR (500 MHz, CDCl₃)

(1e) – 1-*O*-tosyl-3-*O*-pivaloylglycerol ¹³C NMR (126 MHz, CDCl₃)

(1e) – 1-*O*-tosyl-3-*O*-pivaloylglycerol COSY NMR (500 MHz, CDCl₃)

7.0 Calculated Structures

Cartesian coordinates for intermediates and transitions states identified. Optimized at (U)M062X/def2TZVP level, best conformer only.

7.1 Acetyl

Ac-I			
0	-2.36600	-1.20861	-0.49703
С	-1.02764	-1.51208	-0.21932
С	-0.10821	-0.30100	-0.39589
С	-0.69773	0.92346	0.21677
С	-2.18248	1.07139	0.26452
С	-2.87483	-0.26948	0.43123
0	1.12947	-0.73386	0.23958
С	2.26052	-0.09414	-0.04043
С	3.45340	-0.79535	0.53711
0	-0.05477	2.10430	0.05622
0	2.31434	0.92651	-0.68455
Η	-2.73248	-0.65291	1.44981
Η	-2.52299	1.53836	-0.66973
Η	0.84865	1.94313	-0.26663
Η	-0.72108	-2.31055	-0.89311
Η	-0.91882	-1.86506	0.81427
Η	3.56412	-1.76764	0.05723
Η	4.34176	-0.19399	0.37435
Η	3.29535	-0.96781	1.60072
Η	-3.94268	-0.18593	0.23762
Н	-2.45806	1.75278	1.07369
Н	0.12374	-0.13384	-1.45604

Ac-TS1a

O 0.84974 0.29931 1.10658

С	1.69878	-0.41963	0.50159
0	1.18592	-1.13294	-0.53432
С	-0.12305	-0.59885	-0.87348
С	-0.18525	0.79795	-0.35849
С	-1.44323	1.35360	0.21888
С	-2.29425	0.24605	0.82647
0	-2.41890	-0.83061	-0.07775
С	-1.18893	-1.49520	-0.23494
0	0.59720	1.63511	-1.09495
С	3.16638	-0.15883	0.44153
Н	-1.84076	-0.10373	1.76055
Η	-2.00619	1.84817	-0.58086
Η	0.59669	2.51177	-0.69430
Η	-1.36806	-2.36924	-0.85820
Н	-0.80749	-1.82748	0.73720
Н	3.48748	0.33027	1.35773
Н	3.71452	-1.09200	0.31758
Η	3.39893	0.48428	-0.41524
Η	-3.30068	0.60479	1.03479
Н	-1.20338	2.10659	0.97732
Η	-0.16550	-0.61088	-1.96230

Ac-II

0	-0.79711	0.57011	-0.85166
С	0.21243	0.91605	0.09377
С	0.08012	-0.26174	1.06629
0	-1.32111	-0.52693	1.04093
С	-1.82741	0.02859	-0.11964
С	1.55960	1.03801	-0.57839
С	2.11450	-0.32130	-0.96778
0	2.13319	-1.18929	0.14889

С	0.82809	-1.49948	0.56634
0	-0.07965	2.14050	0.69274
С	-2.82547	-0.76782	-0.87369
Η	1.51385	-0.76648	-1.77064
Η	2.23272	1.51749	0.13314
Η	-0.97651	2.10367	1.04956
Η	0.90193	-2.24312	1.35821
Η	0.25317	-1.93138	-0.26388
Η	-3.62412	-1.08281	-0.20506
Η	-3.24762	-0.16710	-1.67688
Η	-2.36232	-1.66177	-1.31005
Η	3.14297	-0.23183	-1.31305
Η	1.45379	1.69294	-1.44427
Н	0.37845	0.02137	2.07433

Ac-TS1b

0	-0.80311	0.55467	-0.89220
С	0.29870	0.97284	-0.02249
С	0.20676	0.08672	1.19010
0	-1.58850	0.04799	1.09704
С	-1.74671	-0.06820	-0.15798
С	1.57951	0.76980	-0.80619
С	1.88404	-0.71454	-0.94515
0	1.95461	-1.34304	0.31810
С	0.70562	-1.31404	0.98774
0	0.15582	2.31872	0.27516
С	-2.56358	-1.10866	-0.84334
Η	1.11458	-1.20036	-1.55996
Η	2.38526	1.26612	-0.26461
Η	-0.63989	2.42570	0.81114

Η	0.84355	-1.82392	1.93833
Η	-0.03165	-1.88042	0.39666
Η	-3.14121	-1.65322	-0.10059
Η	-3.24978	-0.64771	-1.55559
Η	-1.92895	-1.80194	-1.40426
Η	2.85141	-0.86490	-1.42162
Η	1.47122	1.24543	-1.78219
Η	0.38884	0.56495	2.14179

Ac-III

С	1.61166	-0.79608	1.29376
С	0.66968	0.35565	1.21544
С	0.18342	0.76662	-0.13408
0	-0.37228	2.02910	-0.17852
С	1.31174	0.69060	-1.14713
С	2.08547	-0.61047	-0.99264
0	2.62253	-0.73023	0.30762
0	-0.79946	-0.22898	-0.61245
Η	1.43457	-1.46745	-1.20971
Η	1.97366	1.53640	-0.95894
С	-1.96698	-0.29783	0.03085
Η	-1.07988	2.05925	0.48081
0	-2.26202	0.40769	0.96391
С	-2.86187	-1.35025	-0.55624
Η	2.11377	-0.82362	2.25997
Η	1.06003	-1.74659	1.17894
Η	-3.78606	-1.39670	0.01075
Η	-3.06976	-1.10511	-1.59748
Η	-2.35443	-2.31415	-0.53898
Η	2.92974	-0.63748	-1.67969
Η	0.88998	0.78710	-2.14810

С	-1.35424	-1.40635	-0.74118
С	-0.60395	-0.19451	-1.20794
С	-0.58220	0.95539	-0.42331
0	-0.13898	2.07278	-0.99975
С	-1.41583	1.05018	0.81385
С	-1.73370	-0.35124	1.31566
0	-2.29380	-1.11585	0.27070
0	1.47191	-0.93203	-0.84623
Η	-0.81835	-0.82159	1.69167
Η	-2.34497	1.56689	0.55280
С	1.85917	-0.26366	0.13212
Н	0.00570	2.74917	-0.32641
0	1.17061	0.58766	0.75082
С	3.28801	-0.47065	0.61369
Η	-1.91617	-1.83580	-1.57082
Η	-0.63239	-2.15581	-0.39470
Н	3.32416	-0.42235	1.69947
Η	3.67909	-1.41611	0.24972
Н	3.89413	0.34441	0.21653
Η	-2.47249	-0.31911	2.11420
Η	-0.88726	1.62983	1.57173
Η	-0.25301	-0.13494	-2.22594

С	1.37553	-1.07261	1.16249
С	0.84289	0.32014	1.22374
С	0.82577	1.11927	0.09768

0	0.59417	2.42480	0.11992
С	1.35042	0.61761	-1.20221
С	1.49925	-0.89945	-1.16654
0	2.16895	-1.28619	0.01958
0	-1.30556	0.74452	0.06605
Η	0.51721	-1.37643	-1.21479
Н	2.31871	1.09720	-1.37404
С	-1.95885	-0.37074	-0.02837
Н	0.08686	2.66156	0.90753
0	-1.48095	-1.49040	0.02330
С	-3.45289	-0.15226	-0.21736
Η	2.01726	-1.24860	2.02881
Η	0.53708	-1.77864	1.19867
Н	-3.86232	0.31785	0.67655
Н	-3.62780	0.52056	-1.05548
Н	-3.93689	-1.10976	-0.38885
Н	2.11310	-1.24225	-1.99700
Н	0.67101	0.94312	-1.99097
Η	0.46012	0.70174	2.16223

С	-1.32118	-1.11031	-1.11990
С	-0.60811	0.19856	-1.22502
С	-0.63471	1.06846	-0.13915
0	0.12934	2.12843	-0.10357
С	-1.58292	0.87655	0.98875
С	-2.03590	-0.58186	1.05080
0	-2.41273	-1.03968	-0.23275
0	1.74938	0.21083	-0.99610
Н	-1.22313	-1.19295	1.44954
Η	-2.44261	1.53380	0.82231

С	1.91007	-0.32776	0.14820
Η	0.90462	1.92626	-0.67354
0	1.01107	-0.52644	0.97393
С	3.33763	-0.73854	0.47947
Η	-1.72029	-1.40601	-2.08937
Η	-0.59736	-1.87057	-0.79371
Η	3.38897	-1.16181	1.47816
Η	3.67311	-1.46677	-0.25837
Η	3.98962	0.13061	0.40136
Η	-2.91568	-0.67935	1.68354
Η	-1.08887	1.18179	1.91070
Н	-0.17409	0.50920	-2.16159

Ο	-2.57875	-1.06099	-0.26766
С	-1.29765	-1.39505	-0.75101
С	-0.36303	-0.21547	-0.81117
С	-0.73379	0.99049	-0.20227
С	-1.98810	1.09956	0.59845
С	-2.51446	-0.29485	0.91469
0	1.12829	-0.85666	0.31278
С	2.19668	-0.19178	0.11381
С	3.47489	-0.83215	0.59955
0	0.04811	2.03034	-0.24632
0	2.25713	0.90812	-0.46853
Н	-1.86268	-0.78763	1.64720
Н	-2.73247	1.65843	0.02341
Н	1.00627	1.68657	-0.46911
Н	-1.44285	-1.80359	-1.75075
Η	-0.83889	-2.17001	-0.12578
Η	3.90846	-1.38659	-0.23439

4.17973	-0.06196	0.90208
3.27644	-1.52604	1.41176
-3.52352	-0.25089	1.32025
-1.77934	1.66907	1.50593
0.32344	-0.15834	-1.64500
	4.17973 3.27644 -3.52352 -1.77934 0.32344	4.17973-0.061963.27644-1.52604-3.52352-0.25089-1.779341.669070.32344-0.15834

С	-2.31216	-0.43532	-1.06086
С	-1.31589	0.66397	-1.15620
С	-0.40865	0.90229	-0.07269
0	0.37798	1.92686	-0.15390
С	-0.79787	0.35352	1.27275
С	-1.62400	-0.91609	1.12654
0	-2.72044	-0.69277	0.26007
0	2.32196	0.72570	0.59647
Н	-0.99867	-1.72808	0.74173
Η	-1.40594	1.13103	1.74673
С	2.03270	-0.30893	-0.05677
Н	1.28325	1.61005	0.33680
0	0.87174	-0.57809	-0.48654
С	3.13417	-1.28822	-0.37079
Н	-3.20925	-0.19576	-1.63330
Η	-1.86768	-1.34210	-1.50695
Η	3.84668	-1.31332	0.45061
Н	2.72924	-2.27633	-0.57151
Н	3.65537	-0.93299	-1.26122
Η	-2.04505	-1.21505	2.08452
Н	0.09233	0.20320	1.88253
Η	-1.14009	1.17826	-2.09054

Ac-IV

-2.70094	-0.24099	-1.01562
-1.75119	0.89772	-0.92097
-0.83866	1.04006	0.17258
-0.00734	1.95037	0.18807
-0.93829	0.02201	1.28194
-1.59250	-1.25576	0.77729
-2.84409	-0.95305	0.18442
2.50426	0.90448	0.39859
-0.93593	-1.74801	0.05106
-1.55080	0.45671	2.07743
2.40727	-0.28047	-0.19630
1.62006	1.34032	0.42369
1.36316	-0.75661	-0.57253
3.74352	-0.95052	-0.33897
-3.69520	0.11095	-1.30335
-2.35499	-0.91059	-1.82247
4.22055	-1.02530	0.63764
3.61641	-1.93465	-0.77804
4.38556	-0.33600	-0.96990
-1.79624	-1.94564	1.59385
0.05832	-0.16226	1.68165
-1.67091	1.60070	-1.73972
	$\begin{array}{c} -2.70094\\ -1.75119\\ -0.83866\\ -0.00734\\ -0.93829\\ -1.59250\\ -2.84409\\ 2.50426\\ -0.93593\\ -1.55080\\ 2.40727\\ 1.62006\\ 1.36316\\ 3.74352\\ -3.69520\\ -2.35499\\ 4.22055\\ 3.61641\\ 4.38556\\ -1.79624\\ 0.05832\\ -1.67091\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

V

С	-1.16357	-1.18390	0.03550
С	0.32207	-1.23784	0.06893
С	1.13944	-0.06134	-0.02161
0	2.36224	-0.12685	0.00045
С	0.41000	1.26207	-0.14443
С	-1.03345	1.13435	0.31925

0	-1.67015	0.06671	-0.35569
Н	-1.07579	0.96484	1.40395
Н	0.43139	1.56121	-1.19538
Н	-1.55855	-1.92242	-0.66716
Η	-1.55264	-1.45764	1.03195
Н	-1.60650	2.03173	0.09337
Η	0.95819	2.01255	0.42567
Η	0.82020	-2.18916	0.20362

Ac-VI

С	0.00000	0.15473	0.00000
0	0.18833	1.33761	0.00000
0	-1.23826	-0.37849	0.00000
Н	-1.86478	0.35940	0.00000
С	1.05840	-0.90692	0.00000
Η	0.93783	-1.53912	0.87918
Н	0.93783	-1.53912	-0.87918
Η	2.03812	-0.44103	0.00000

VII

С	-1.21093	-1.17363	0.02761
С	0.26069	-1.24480	0.08727
С	1.02771	-0.06751	-0.01590
0	2.31202	-0.21492	-0.00672
С	0.37255	1.25854	-0.12354
С	-1.09172	1.14586	0.31492
0	-1.69727	0.07086	-0.36650
Н	-1.15809	1.00392	1.39971
Η	0.41745	1.56216	-1.17749
Η	2.80281	0.62286	-0.07285

-1.58864	-1.92835	-0.67121
-1.59393	-1.47242	1.02314
-1.63823	2.04540	0.04632
0.92499	2.00032	0.45947
0.76588	-2.19208	0.23647
	-1.58864 -1.59393 -1.63823 0.92499 0.76588	-1.58864-1.92835-1.59393-1.47242-1.638232.045400.924992.000320.76588-2.19208

Ac-VIII

С	0.00000	0.21141	0.00000
0	1.10288	0.79312	0.00000
0	-1.14823	0.70058	0.00000
С	0.04425	-1.34416	0.00000
Η	-0.48581	-1.71839	0.87899
Η	-0.48581	-1.71839	-0.87899
Η	1.06891	-1.71635	0.00000

7.2 Pivaloyl

Piv-I

0	-3.11856	-1.36595	-0.48174
С	-1.73599	-1.49939	-0.30410
С	-0.99591	-0.17271	-0.48903
С	-1.69165	0.93953	0.21865
С	-3.17669	0.89196	0.36326
С	-3.67911	-0.53280	0.51543
0	0.32996	-0.45826	0.03838
С	1.34915	0.32669	-0.29988
С	2.68625	-0.23094	0.16144
0	-1.21281	2.19824	0.07725
0	1.21284	1.36453	-0.90573
Η	-3.42032	-0.92851	1.50605

Η	-3.63567	1.34221	-0.52760
Н	-0.32492	2.16597	-0.31958
Н	-1.37650	-2.22787	-1.02931
Н	-1.51125	-1.86903	0.70487
С	2.91181	-1.58514	-0.52217
С	3.79096	0.74700	-0.22318
С	2.64309	-0.41590	1.68311
Н	-4.75951	-0.58274	0.39277
Н	-3.48274	1.50337	1.21618
Н	-0.86887	0.06131	-1.55437
Н	3.82321	0.89824	-1.30177
Н	4.75351	0.35148	0.10418
Н	3.63533	1.71840	0.24557
Η	2.91789	-1.48024	-1.60866
Η	2.13829	-2.29998	-0.24400
Η	3.87985	-1.98418	-0.21527
Η	1.87018	-1.12652	1.97215
Η	2.44978	0.53201	2.18818
Н	3.60885	-0.79221	2.02408

Piv-TS1a

0	0.09181	0.33611	0.97463
С	0.91450	-0.35188	0.30119
0	0.35137	-1.03899	-0.72635
С	-1.00707	-0.56439	-0.93391
С	-1.09830	0.81346	-0.37520
С	-2.31928	1.27567	0.34787
С	-3.04467	0.10342	0.99477
0	-3.20141	-0.94894	0.06706
С	-1.95988	-1.53822	-0.23153

0	-0.46132	1.71669	-1.17043
С	2.40089	-0.09465	0.19329
Н	-2.48220	-0.25007	1.86604
Η	-2.98658	1.76313	-0.37186
Η	-0.48800	2.58716	-0.75723
Н	-2.15237	-2.40000	-0.86774
Н	-1.46949	-1.88095	0.68680
С	2.90838	0.42478	1.53587
С	3.10915	-1.40221	-0.16868
С	2.66139	0.94934	-0.90380
Н	-4.04285	0.39760	1.31427
Н	-2.04393	2.01563	1.10727
Н	-1.14509	-0.55141	-2.01471
Н	2.23233	0.62887	-1.85363
Н	3.73753	1.08734	-1.03433
Н	2.21988	1.90914	-0.63504
Н	3.97708	0.63671	1.46915
Н	2.74971	-0.31385	2.32330
Н	2.38801	1.33907	1.82065
Н	2.76249	-1.78115	-1.12980
Н	2.92364	-2.16631	0.58834
Н	4.18558	-1.23186	-0.22991

Piv-II

С	-1.83736	-1.56251	-0.31182
С	-1.01357	-0.48322	-1.02246
С	-1.00219	0.83354	-0.24998
0	-0.62079	1.83955	-1.14468
С	-2.29096	1.17077	0.47526
С	-2.90653	-0.06563	1.10906

0	-3.07853	-1.07468	0.13500
0	0.36008	-0.84425	-1.00039
Η	-2.27086	-0.43698	1.92236
Η	-2.98534	1.58059	-0.25935
С	0.86652	-0.39382	0.19378
Н	-0.46704	2.64867	-0.64333
0	0.03670	0.59880	0.69107
С	2.34859	-0.14315	0.23367
Н	-2.03556	-2.39003	-0.99059
Н	-1.24624	-1.93785	0.53372
С	2.75419	0.16280	1.67524
С	3.06695	-1.39929	-0.25875
С	2.69090	1.04784	-0.67273
Н	-3.89370	0.15594	1.51123
Н	-2.08491	1.93767	1.22626
Н	-1.32078	-0.33236	-2.05475
Н	2.80831	-2.25924	0.36162
Η	4.14687	-1.24924	-0.20914
Η	2.79609	-1.62596	-1.28990
Н	2.20858	1.95702	-0.31154
Н	2.35524	0.86497	-1.69401
Η	3.77061	1.21109	-0.68143
Н	2.52336	-0.68057	2.32831
Н	2.22885	1.04148	2.05060
Η	3.82753	0.35534	1.72427

Piv-TS1b

0	-0.02657	0.78748	-0.71757
С	1.29571	0.95830	-0.11122
С	1.22590	0.25369	1.21546

0	-0.50772	0.68734	1.41455
С	-0.92732	0.50619	0.23941
С	2.29395	0.33173	-1.06350
С	2.16557	-1.18460	-1.03616
0	2.33565	-1.68992	0.27115
С	1.31350	-1.23866	1.14675
0	1.56299	2.31341	0.00264
С	-2.19577	-0.19954	-0.17147
Н	1.18442	-1.48515	-1.42752
Н	3.29320	0.62768	-0.74326
Η	0.96541	2.68500	0.66322
Н	1.52515	-1.66633	2.12407
Η	0.34653	-1.64070	0.79753
С	-2.86306	-0.78399	1.07011
С	-3.12004	0.84515	-0.82034
С	-1.90421	-1.30480	-1.19440
Η	2.93692	-1.64591	-1.65087
Η	2.11802	0.72547	-2.06602
Η	1.68826	0.76109	2.04940
Η	-3.80123	-1.26292	0.78599
Н	-3.07505	-0.00677	1.80400
Η	-2.22312	-1.52902	1.54510
Н	-1.38133	-0.90497	-2.06290
Н	-2.84477	-1.74581	-1.53015
Н	-1.29616	-2.09907	-0.75831
Н	-2.64503	1.29217	-1.69454
Η	-3.36173	1.63949	-0.11281
Η	-4.04959	0.36833	-1.13691

Piv-III

С	2.19755	-0.79468	1.38868
С	1.63484	0.56410	1.15049
С	1.16452	0.88075	-0.23001
0	0.97296	2.22532	-0.47418
С	2.13907	0.32759	-1.25508
С	2.52349	-1.10417	-0.91046
0	3.10407	-1.18134	0.37396
0	-0.08594	0.13996	-0.48588
Н	1.64118	-1.75599	-0.96168
Н	3.02562	0.96211	-1.23665
С	-1.16498	0.48322	0.22224
Η	0.35244	2.55446	0.19134
0	-1.17459	1.39493	1.01395
С	-2.35795	-0.41166	-0.07986
Η	2.74227	-0.83372	2.33087
Η	1.38230	-1.53900	1.44280
С	-3.55754	0.07049	0.72757
С	-2.66421	-0.34984	-1.58064
С	-1.98951	-1.84624	0.31897
Η	3.26881	-1.47945	-1.60992
Η	1.68011	0.38950	-2.24252
Η	1.37584	1.21860	1.96905
Η	-3.53089	-0.97702	-1.79605
Η	-1.82075	-0.70669	-2.16999
Η	-2.89706	0.67024	-1.89080
Η	-4.41554	-0.57081	0.52028
Η	-3.81759	1.09636	0.46747
Η	-3.34833	0.04095	1.79652
Η	-2.84232	-2.50224	0.13672
Η	-1.73770	-1.90519	1.37989
Н	-1.14203	-2.21039	-0.26155

С	-2.12622	-1.40236	-0.84721
С	-1.60039	-0.05277	-1.23655
С	-1.60414	0.98835	-0.31378
0	-1.38104	2.21606	-0.78391
С	-2.25816	0.82174	1.02034
С	-2.32804	-0.65912	1.36519
0	-2.93674	-1.36631	0.30713
0	0.57774	-0.54235	-1.23526
Н	-1.31744	-1.03914	1.55403
Н	-3.27100	1.23130	0.95104
С	1.01465	0.02832	-0.21795
Н	-1.21803	2.81989	-0.04870
0	0.32594	0.72028	0.57453
С	2.51046	-0.14489	0.13956
Н	-2.74723	-1.80300	-1.64874
Н	-1.27827	-2.08293	-0.70170
С	2.56375	-0.98294	1.42074
С	3.25714	-0.85354	-0.98401
С	3.11705	1.23501	0.39528
Н	-2.94188	-0.82363	2.24876
Η	-1.70168	1.37656	1.77683
Η	-1.40564	0.17258	-2.27307
Н	2.03564	-0.48104	2.23138
Н	3.60348	-1.13342	1.71927
Η	2.11151	-1.96461	1.26340
Η	3.06408	1.85698	-0.50048
Н	4.16817	1.12844	0.67206
Н	2.59029	1.74473	1.20067
Η	3.20097	-0.28359	-1.91154

Н	2.83535	-1.83969	-1.17413
Н	4.30793	-0.96783	-0.70869

С	-1.84048	-1.39799	-0.90528
С	-1.60449	0.05287	-1.17351
С	-2.00720	0.99313	-0.27288
0	-1.93073	2.28118	-0.59680
С	-2.51203	0.61749	1.07765
С	-2.31085	-0.87736	1.32080
0	-2.70831	-1.61119	0.18591
0	0.23879	0.44339	0.22250
Н	-1.25759	-1.06812	1.54873
Н	-3.57164	0.88333	1.14594
С	1.19565	-0.03667	-0.49910
Η	-2.07606	2.83478	0.17928
0	1.09250	-0.50160	-1.62097
С	2.56149	-0.00795	0.23909
Η	-2.31203	-1.85896	-1.77470
Η	-0.87420	-1.89214	-0.74773
С	2.84981	1.41246	0.72662
С	2.46373	-0.96168	1.43315
С	3.65439	-0.47207	-0.71608
Η	-2.92674	-1.21774	2.15098
Η	-1.96375	1.19856	1.82629
Η	-1.17126	0.35607	-2.11491
Η	2.21945	-1.97408	1.10401
Н	1.69767	-0.62984	2.13423
Н	3.42193	-0.99846	1.95613
Н	2.88556	2.11245	-0.11034

Η	3.81800	1.43847	1.23161
Н	2.08292	1.74895	1.42321
Н	3.71640	0.18228	-1.58537
Η	3.45616	-1.48080	-1.07563
Η	4.61697	-0.46227	-0.19952

С	2.13840	-1.03722	1.22558
С	1.60706	0.35899	1.19403
С	1.65664	1.07105	0.00029
0	1.03342	2.21311	-0.13264
С	2.48199	0.61090	-1.14665
С	2.73872	-0.89167	-1.03813
0	3.15422	-1.23185	0.26974
0	-0.74031	0.66536	1.11482
Η	1.82575	-1.43101	-1.30028
Η	3.42887	1.16003	-1.12280
С	-1.05942	0.02081	0.06373
Η	0.28683	2.19352	0.50649
0	-0.25651	-0.39860	-0.77872
С	-2.57264	-0.23780	-0.12360
Η	2.57459	-1.25724	2.19925
Н	1.29995	-1.72783	1.05535
С	-2.83618	-0.91222	-1.46401
С	-3.02599	-1.14458	1.02425
С	-3.31080	1.09995	-0.04748
Н	3.54598	-1.18790	-1.70480
Н	1.96115	0.86222	-2.07010
Н	1.28930	0.84130	2.10416
Η	-2.30930	-1.86334	-1.53314
Н	-2.49828	-0.28593	-2.28976

Η	-3.90711	-1.09430	-1.57927
Η	-3.13652	1.58173	0.91380
Н	-4.38378	0.93753	-0.17096
Η	-2.97905	1.77477	-0.83985
Η	-2.83508	-0.67099	1.98673
Η	-2.50039	-2.10155	0.99593
Н	-4.09618	-1.34439	0.93544

0	-3.35749	-1.25441	-0.24014
С	-2.08963	-1.38453	-0.84195
С	-1.31939	-0.09091	-0.88170
С	-1.78311	1.01073	-0.15153
С	-2.96945	0.90026	0.74696
С	-3.29061	-0.56903	0.99054
0	0.33483	-0.60630	0.06507
С	1.29149	0.20060	-0.16246
С	2.70695	-0.26908	0.19260
0	-1.14266	2.14388	-0.17093
0	1.15734	1.33463	-0.66687
Η	-2.52422	-1.02205	1.63220
Η	-3.82295	1.39596	0.27483
Η	-0.17319	1.94417	-0.49726
Η	-2.26553	-1.74252	-1.85600
Η	-1.48650	-2.13197	-0.31301
С	3.51062	-0.30205	-1.11240
С	3.31672	0.76173	1.14677
С	2.69546	-1.64930	0.83986
Η	-4.26001	-0.68425	1.47178
Η	-2.75760	1.42832	1.67849
Η	-0.71957	0.11297	-1.75833
Н	3.31982	1.75124	0.69199
---	---------	----------	----------
Н	4.34389	0.47750	1.38315
Н	2.75462	0.81085	2.08147
Н	3.51927	0.68028	-1.58299
Н	3.08714	-1.02242	-1.81537
Η	4.53873	-0.60105	-0.89921
Н	2.26518	-2.39519	0.17188
Н	2.11206	-1.64810	1.76063
Η	3.71847	-1.94663	1.07854

Piv-TS6

С	-2.95868	-0.85868	-1.03697
С	-2.22496	0.41993	-1.22972
С	-1.44807	0.96713	-0.15720
0	-0.89910	2.12566	-0.33398
С	-1.77439	0.48844	1.23104
С	-2.29066	-0.94286	1.20748
0	-3.36462	-1.06378	0.29380
0	1.21197	1.46595	0.61237
Н	-1.48256	-1.62862	0.93246
Η	-2.56279	1.15372	1.59817
С	1.19386	0.32713	0.07516
Н	0.02578	2.06932	0.21574
0	0.14393	-0.22642	-0.36494
С	2.52163	-0.41711	-0.06960
Н	-3.85741	-0.88616	-1.65457
Η	-2.30471	-1.68418	-1.36838
С	3.24545	-0.38552	1.27850
С	2.30087	-1.85576	-0.52330
С	3.34420	0.34717	-1.11475

Η	-2.68255	-1.22794	2.18192
Η	-0.90508	0.60726	1.87699
Н	-2.11986	0.86021	-2.21134
Н	1.79391	-1.89163	-1.48688
Н	1.69340	-2.40673	0.19596
Н	3.26450	-2.36011	-0.61707
Н	2.83773	0.35380	-2.08187
Н	4.31438	-0.13716	-1.24136
Н	3.50470	1.37741	-0.79815
Η	4.21971	-0.86822	1.18088
Η	2.67703	-0.92129	2.04161
Н	3.39093	0.63991	1.61409

Piv-IV

С	-3.58941	-0.52509	-1.03143
С	-2.80624	0.73682	-0.98960
С	-1.94779	1.06530	0.10758
0	-1.24909	2.08075	0.08154
С	-1.93411	0.10806	1.27388
С	-2.39449	-1.27433	0.83512
0	-3.66151	-1.18195	0.20582
0	1.36492	1.40084	0.45611
Η	-1.65951	-1.71090	0.14939
Η	-2.62009	0.49816	2.03166
С	1.46356	0.18292	-0.07088
Н	0.43049	1.71254	0.41043
0	0.50889	-0.44291	-0.46837
С	2.89839	-0.32190	-0.10959
Η	-4.61557	-0.32968	-1.35405
Η	-3.13749	-1.18501	-1.79257
С	3.46156	-0.31555	1.31632

С	2.92085	-1.73370	-0.68254
С	3.71936	0.62465	-0.99402
Н	-2.52079	-1.93888	1.68754
Η	-0.93175	0.08619	1.70036
Η	-2.80368	1.39669	-1.84726
Η	4.48703	-0.68888	1.30076
Η	2.87564	-0.96289	1.97183
Η	3.46221	0.69071	1.73283
Η	3.32371	0.65062	-2.01098
Η	4.75115	0.27163	-1.03955
Η	3.71370	1.63741	-0.59326
Η	2.50715	-1.75332	-1.69045
Η	2.33257	-2.41524	-0.06802
Н	3.94955	-2.09607	-0.71852

Piv-VI

С	-0.93522	0.19021	0.00006
0	-1.50405	1.24603	0.00010
0	-1.60938	-0.97877	0.00003
Η	-2.55201	-0.75994	-0.00005
С	0.56985	-0.01215	0.00003
С	0.95759	-0.80569	1.25392
С	0.95782	-0.80196	-1.25616
С	1.25046	1.35151	0.00206
Н	0.96764	1.93110	-0.87633
Η	2.33324	1.21718	-0.00004
Η	0.97064	1.92694	0.88417
Η	0.66948	-0.26417	-2.16106
Η	0.48313	-1.78227	-1.26793
Η	2.04032	-0.93901	-1.27336

Η	0.48618	-1.78764	1.26059
Н	0.66532	-0.27268	2.16038
Η	2.04052	-0.93910	1.27309

Piv-VIII

С	-1.05639	0.02971	0.00053
0	-1.60007	1.15030	0.00054
0	-1.58786	-1.09952	0.00029
С	0.52053	0.01077	0.00018
С	0.98814	-0.74712	1.24249
С	0.98650	-0.74026	-1.24704
С	1.09631	1.42079	0.00342
Η	0.67409	-0.21246	-2.15235
Η	0.53843	-1.73409	-1.26264
Η	2.07936	-0.83446	-1.26622
Η	0.53997	-1.74096	1.25319
Η	0.67709	-0.22442	2.15122
Η	2.08102	-0.84148	1.25961
Η	0.75233	1.97569	-0.87020
Η	2.19329	1.39270	0.00045
Η	0.75731	1.96990	0.88270

7.3 Benzoyl

Bz-I

0	-2.3791890	-1.1910630	-0.4815990
С	-1.0519830	-1.5169220	-0.1779890
С	-0.1040060	-0.3308520	-0.3712240

С	-0.6727270	0.9195390	0.2078530
С	-2.1542530	1.1023830	0.2277290
С	-2.8796780	-0.2179820	0.4159780
0	1.1163160	-0.7756560	0.2874260
С	2.2633080	-0.1756580	-0.0078310
0	0.0011250	2.0806930	0.0343540
0	2.3392770	0.8307170	-0.6776570
Η	-2.7608930	-0.5795210	1.4455240
Η	-2.4697210	1.5537690	-0.7228850
Η	0.9056530	1.8905470	-0.2699230
Η	-0.7539870	-2.3381590	-0.8278780
Η	-0.9657920	-1.8461900	0.8658140
Η	-3.9423910	-0.1153140	0.2041680
Η	-2.4263700	1.8093300	1.0158390
Η	0.1434350	-0.1935120	-1.4320200
С	3.4491070	-0.8622030	0.5694040
С	4.7012540	-0.2988520	0.3427270
С	3.3295880	-2.0313690	1.3148390
С	5.8334980	-0.9056850	0.8598380
Η	4.7660850	0.6107920	-0.2390710
С	4.4655460	-2.6342390	1.8316290
Η	2.3518680	-2.4590870	1.4862430
С	5.7152680	-2.0728710	1.6040960
Η	6.8080660	-0.4699990	0.6844120
Η	4.3768210	-3.5428380	2.4121650
Η	6.6004580	-2.5465740	2.0087070

Bz-TS1a

0	0.9262620	0.3422170	1.0145690
С	1.7553380	-0.2302530	0.2602360
0	1.2143090	-0.8970760	-0.7884140

С	-0.1506080	-0.4562210	-0.9801840
С	-0.2812780	0.9045690	-0.3882580
С	-1.5051960	1.3338530	0.3405070
С	-2.2184250	0.1303630	0.9446770
0	-2.3453500	-0.8970480	-0.0152410
С	-1.0927670	-1.4637460	-0.3124430
0	0.4202240	1.8221170	-1.0865150
Η	-1.6597310	-0.2376230	1.8119190
Η	-2.1745390	1.8379430	-0.3667230
Η	0.4062830	2.6711440	-0.6290910
Η	-1.2667880	-2.3108080	-0.9730630
Η	-0.6076810	-1.8222070	0.6021100
Η	-3.2253320	0.3983900	1.2591100
Η	-1.2407950	2.0534450	1.1228420
Η	-0.2876820	-0.4147100	-2.0613180
С	3.1879570	-0.0839980	0.2986110
С	3.7775800	0.6539450	1.3367460
С	4.0104320	-0.7009090	-0.6559550
С	5.1508370	0.7876740	1.3997310
Η	3.1378070	1.1116580	2.0795570
С	5.3843610	-0.5637660	-0.5770610
Η	3.5577970	-1.2756770	-1.4520320
С	5.9633820	0.1799700	0.4458590
Η	5.5967400	1.3647750	2.1997730
Η	6.0120330	-1.0388090	-1.3202220
Η	7.0389740	0.2816460	0.5030790

Bz-II

0	-0.47599	-0.91895	-0.05488
С	0.39774	0.06365	0.29615
0	-0.23594	1.09479	0.90283

С	-1.63573	0.87522	0.73861
С	-1.70631	-0.64579	0.61721
С	-2.86266	-1.18100	-0.20289
С	-3.12595	-0.31527	-1.42444
0	-3.29918	1.03176	-1.03463
С	-2.10025	1.57455	-0.54242
0	-1.67098	-1.17228	1.90648
Η	-2.29701	-0.39305	-2.13839
Η	-3.74490	-1.17549	0.43829
Н	-1.56039	-2.12852	1.84803
Н	-2.27034	2.63257	-0.35263
Η	-1.30075	1.47924	-1.28961
Η	-4.04446	-0.62014	-1.92266
Η	-2.64657	-2.21341	-0.48869
Η	-2.15213	1.22671	1.62830
С	1.76336	0.01590	0.05315
С	2.35653	-1.12565	-0.54747
С	2.59909	1.11011	0.40028
С	3.71272	-1.15566	-0.78290
Η	1.73116	-1.96607	-0.81616
С	3.95200	1.05023	0.15333
Η	2.15898	1.98396	0.86087
С	4.52690	-0.07566	-0.43873
Η	4.15084	-2.03309	-1.24198
Η	4.57685	1.89188	0.42472
Η	5.59086	-0.11102	-0.62770

Bz-TS1b

0	-0.57358	-0.32390	-1.04832
С	-1.94848	-0.53683	-0.58757

С	-1.85500	-0.74453	0.89713
0	-0.22149	-1.62121	0.68977
С	0.29070	-0.84291	-0.15990
С	-2.71898	0.71855	-0.94769
С	-2.27094	1.87694	-0.06710
0	-2.42427	1.56504	1.30207
С	-1.58260	0.49262	1.69525
0	-2.48900	-1.61837	-1.25981
Н	-1.22258	2.12671	-0.27705
Н	-3.77917	0.51793	-0.79124
Н	-2.01733	-2.41371	-0.98205
Η	-1.75646	0.32572	2.75547
Η	-0.53000	0.79178	1.55761
Η	-2.88096	2.75900	-0.25464
Н	-2.55689	0.93631	-2.00453
Η	-2.46740	-1.52717	1.31976
С	1.63928	-0.32572	-0.12548
С	2.09055	0.57398	-1.10034
С	2.51974	-0.76077	0.87457
С	3.39315	1.03826	-1.05917
Η	1.41191	0.89817	-1.87749
С	3.81571	-0.28291	0.90845
Н	2.16553	-1.46803	1.61272
С	4.25959	0.61640	-0.05699
Η	3.73699	1.73497	-1.81265
Η	4.48920	-0.61485	1.68790
Н	5.27744	0.98225	-0.03033

Bz-III

0	-0.42636	-0.07985	-0.50308
С	-1.80175	-0.62357	-0.51627

С	-2.26696	-0.78696	0.89204
0	0.35104	-1.99712	0.35811
С	0.53789	-0.86555	-0.02583
С	-2.61482	0.44916	-1.21877
С	-2.76260	1.67714	-0.33199
0	-3.38567	1.34886	0.89106
С	-2.61003	0.44592	1.65503
0	-1.83956	-1.77893	-1.26818
Η	-1.77995	2.12910	-0.14164
Η	-3.59776	0.02602	-1.42774
Η	-1.31613	-2.44654	-0.80231
Η	-3.19032	0.20538	2.54474
Η	-1.68793	0.95621	1.98642
Η	-3.39571	2.42168	-0.81202
Η	-2.12776	0.69481	-2.16314
Η	-2.14194	-1.73743	1.38863
С	1.87364	-0.20705	-0.01339
С	2.05097	1.10253	-0.44945
С	2.95794	-0.94229	0.45543
С	3.31381	1.67332	-0.41443
Η	1.20207	1.66364	-0.81455
С	4.21787	-0.36832	0.48880
Η	2.79258	-1.95827	0.78826
С	4.39562	0.93931	0.05397
Η	3.45505	2.69108	-0.75329
Η	5.06218	-0.93859	0.85281
Н	5.38060	1.38747	0.07973

С	-2.68023	1.61119	-0.34015
С	-2.20774	0.82861	0.84759

С	-2.19402	-0.56445	0.80131
0	-2.00334	-1.20318	1.95141
С	-2.78526	-1.29500	-0.36024
С	-2.81274	-0.37583	-1.57368
0	-3.44770	0.83826	-1.23628
0	-0.00750	1.22630	0.65151
Н	-1.78886	-0.19508	-1.91834
Н	-3.80765	-1.57891	-0.09037
С	0.46129	0.13976	0.25654
Н	-1.84039	-2.13985	1.78312
0	-0.21157	-0.89512	0.01415
Η	-3.31860	2.43195	-0.01259
Η	-1.80650	2.03967	-0.84616
Η	-3.38997	-0.81935	-2.38261
Н	-2.20665	-2.19738	-0.56127
Н	-2.05608	1.31833	1.79622
С	1.95587	0.05775	0.04295
С	2.75367	1.16593	0.30492
С	2.53338	-1.12086	-0.41535
С	4.12471	1.09422	0.11016
Η	2.28307	2.07231	0.66086
С	3.90463	-1.19095	-0.61078
Η	1.89511	-1.97103	-0.61383
С	4.70090	-0.08371	-0.34798
Η	4.74553	1.95681	0.31525
Η	4.35380	-2.10867	-0.96803
Η	5.77134	-0.13883	-0.50028

С	-2.52060	1.48521	-0.59682
С	-2.24425	0.81626	0.70897

С	-2.52343	-0.51102	0.87629
0	-2.42218	-1.04550	2.08676
С	-2.91747	-1.37632	-0.26980
С	-2.76015	-0.61596	-1.58594
0	-3.29345	0.68231	-1.46075
0	-0.27292	-0.33375	0.19192
Н	-1.70042	-0.56983	-1.85268
Н	-3.95434	-1.69732	-0.12817
С	0.59728	0.60786	0.34377
Н	-2.47295	-2.00769	2.04022
0	0.36372	1.76686	0.64897
Η	-3.09067	2.39973	-0.42477
Η	-1.56618	1.76691	-1.05704
Η	-3.31224	-1.11075	-2.38249
Н	-2.27941	-2.26584	-0.26711
Η	-1.88229	1.40085	1.54151
С	2.02400	0.16402	0.08815
С	2.33621	-1.15029	-0.24095
С	3.03610	1.11173	0.19046
С	3.65562	-1.51457	-0.46697
Η	1.54004	-1.87816	-0.31610
С	4.35432	0.74653	-0.03562
Η	2.76606	2.12674	0.44922
С	4.66532	-0.56677	-0.36470
Η	3.89760	-2.53820	-0.72264
Η	5.14097	1.48568	0.04495
Н	5.69478	-0.85160	-0.54113

С	-2.60585	-0.06109	1.64447
С	-2.20508	-1.05576	0.60363

С	-2.28948	-0.69471	-0.73924
0	-1.75871	-1.43920	-1.67171
С	-3.03845	0.51153	-1.17571
С	-3.16323	1.49943	-0.01564
0	-3.57959	0.83362	1.15991
0	0.08795	-1.36967	0.26786
Η	-2.19982	1.98826	0.14445
Η	-4.03120	0.19030	-1.50752
С	0.50578	-0.19851	-0.01456
Н	-1.03332	-1.94559	-1.24500
0	-0.21721	0.76018	-0.31329
Η	-3.03997	-0.56515	2.50690
Η	-1.70377	0.47568	1.97060
Η	-3.92437	2.24559	-0.23393
Η	-2.51714	0.95281	-2.02464
Η	-1.97123	-2.07094	0.88073
С	2.00387	0.00026	0.02105
С	2.53834	1.23436	-0.33241
С	2.84765	-1.03614	0.40461
С	3.91055	1.43076	-0.30323
Η	1.86171	2.02551	-0.62613
С	4.22032	-0.83839	0.43520
Η	2.41264	-1.98801	0.67724
С	4.75243	0.39450	0.08085
Η	4.32560	2.39168	-0.57898
Η	4.87641	-1.64524	0.73552
Н	5.82387	0.54822	0.10441

0	3.76902	-1.40365	0.38603
С	2.52958	-1.29133	1.04680

С	1.88192	0.05697	0.86223
С	2.41016	0.94843	-0.08257
С	3.52404	0.54850	-0.99054
С	3.69602	-0.96480	-0.95235
0	0.15397	-0.45490	0.10599
С	-0.71443	0.47198	0.22693
0	1.88540	2.12906	-0.25374
0	-0.45329	1.66137	0.49101
Η	2.85683	-1.45366	-1.46324
Η	4.44606	1.03824	-0.66308
Η	0.92868	2.10075	0.14236
Η	2.72710	-1.46484	2.10417
Η	1.83368	-2.06210	0.69572
Η	4.62244	-1.26682	-1.43718
Η	3.30376	0.90547	-1.99838
Η	1.36575	0.48646	1.71038
С	-2.14665	0.06871	0.04149
С	-3.13947	1.04009	0.11498
С	-2.48563	-1.25784	-0.20349
С	-4.46826	0.68423	-0.05469
Η	-2.85149	2.06497	0.30568
С	-3.81535	-1.61119	-0.37323
Η	-1.70070	-1.99961	-0.25925
С	-4.80638	-0.64080	-0.29875
Η	-5.24144	1.43918	0.00288
Η	-4.08030	-2.64298	-0.56371
Η	-5.84445	-0.91783	-0.43147

С	2.79976	-0.67625	1.55571
С	2.26991	0.61613	1.04319

С	2.11515	0.81566	-0.36268
0	1.75143	1.96471	-0.84670
С	2.84165	-0.10878	-1.28445
С	3.03979	-1.46970	-0.63175
0	3.64566	-1.32396	0.63783
0	-0.41363	1.86525	0.28805
Н	2.07486	-1.97798	-0.53338
Н	3.81107	0.34985	-1.50038
С	-0.59649	0.66624	-0.02269
Н	0.89375	2.21889	-0.31160
0	0.33148	-0.13997	-0.35146
Η	3.37731	-0.51801	2.46748
Η	1.94541	-1.32524	1.81269
Η	3.70825	-2.08919	-1.22619
Η	2.27964	-0.17788	-2.21471
Η	1.84507	1.34249	1.72269
С	-1.99424	0.12390	-0.01139
С	-3.05172	0.97209	0.29931
С	-2.23661	-1.21324	-0.30707
С	-4.34863	0.48279	0.31435
Η	-2.83794	2.00811	0.52484
С	-3.53435	-1.70069	-0.29150
Η	-1.40146	-1.85683	-0.54814
С	-4.59008	-0.85300	0.01913
Η	-5.17248	1.14193	0.55506
Η	-3.72456	-2.74090	-0.52167
Η	-5.60323	-1.23431	0.03059

Bz-IV

С	-3.71141	-1.63282	-0.10773
С	-2.57617	-0.67669	-0.06330

С	-2.78358	0.73634	-0.03407
0	-1.84173	1.53507	-0.02008
С	-4.21144	1.23041	-0.01757
С	-5.16099	0.12440	0.41970
0	-4.95463	-1.03094	-0.36714
0	0.84951	1.28051	-0.04739
Η	-5.00878	-0.11518	1.48090
Η	-4.46544	1.55344	-1.03057
С	1.31995	0.04613	0.01880
Η	-0.14009	1.27290	-0.03750
0	0.61646	-0.93716	0.07932
Η	-3.54603	-2.37887	-0.88930
Η	-3.74351	-2.18297	0.84878
Η	-6.20043	0.41616	0.28261
Η	-4.26878	2.10374	0.63272
Η	-1.55643	-1.04297	-0.01740
С	2.80983	-0.02303	0.01170
С	3.41254	-1.27490	0.07635
С	3.59047	1.12634	-0.05769
С	4.79385	-1.37815	0.07156
Η	2.78135	-2.15196	0.12939
С	4.97314	1.01964	-0.06226
Η	3.10864	2.09282	-0.10749
С	5.57416	-0.23044	0.00223
Η	5.26417	-2.35139	0.12160
Η	5.58277	1.91202	-0.11614
Н	6.65372	-0.31106	-0.00159

Bz-VI

С	1.69762	0.12277	-0.00001
0	2.31972	1.14981	-0.00005

0	2.30151	-1.08061	0.00005
Н	3.25434	-0.91308	0.00004
С	0.21423	0.03017	0.00000
С	-0.51124	1.21739	0.00002
С	-0.44392	-1.19568	-0.00002
С	-1.89538	1.17855	0.00002
Н	0.02743	2.15567	0.00003
С	-1.83004	-1.22970	-0.00002
Н	0.13055	-2.11141	-0.00004
С	-2.55421	-0.04503	0.00000
Η	-2.46235	2.09999	0.00004
Н	-2.34588	-2.18074	-0.00004
Н	-3.63628	-0.07483	0.00000

Bz-VIII

С	-0.00005	1.82632	0.00000
0	1.12699	2.35385	0.00000
0	-1.12714	2.35374	0.00000
С	0.00000	0.27564	0.00000
С	-1.19653	-0.43366	0.00000
С	1.19656	-0.43359	0.00000
С	-1.20089	-1.82310	0.00000
Н	-2.11327	0.14308	0.00000
С	1.20100	-1.82303	0.00000
Η	2.11327	0.14320	0.00000
С	0.00008	-2.52363	0.00000
Н	-2.14068	-2.36456	0.00000
Н	2.14082	-2.36443	0.00000
Η	0.00010	-3.60778	0.00000

7.4 Chloromethyl

ClAc-I

0	-3.17533	-1.19967	-0.44681
С	-1.82725	-1.50886	-0.23555
С	-0.91572	-0.29501	-0.43573
С	-1.47879	0.92606	0.20327
С	-2.95848	1.06945	0.33774
С	-3.63943	-0.27532	0.51941
0	0.34707	-0.73279	0.16034
С	1.46266	-0.08857	-0.15266
С	2.64836	-0.84356	0.41056
0	-0.85042	2.11009	0.01501
0	1.52013	0.92992	-0.78666
Н	-3.44675	-0.67371	1.52379
Н	-3.35041	1.55253	-0.56737
Н	0.04344	1.96144	-0.33562
Н	-1.55295	-2.29712	-0.93475
Н	-1.67155	-1.87746	0.78652
Н	2.69628	-1.82022	-0.06709
Cl	4.17202	-0.00244	0.15575
Η	2.49288	-0.99116	1.47699
Н	-4.71549	-0.19125	0.37982
Н	-3.18871	1.73616	1.17289
Н	-0.71078	-0.12327	-1.50029

ClAc-TS1a

0	0.19022	-0.03922	1.22560
С	0.94803	-0.78242	0.55709
0	0.43862	-1.25867	-0.59874
С	-0.77184	-0.52725	-0.92925

С	-0.69862	0.80983	-0.27651
С	-1.89185	1.44851	0.34568
С	-2.89958	0.39483	0.78613
0	-3.11452	-0.54029	-0.24990
С	-1.97692	-1.34244	-0.44583
0	0.23062	1.59506	-0.85628
С	2.40948	-0.88908	0.72457
Н	-2.53618	-0.11989	1.68220
Н	-2.35488	2.10915	-0.39624
Н	0.37842	2.39148	-0.33238
Н	-2.23616	-2.10180	-1.18094
Н	-1.69380	-1.83907	0.48918
Н	2.67780	-0.75719	1.76660
Н	2.77909	-1.83308	0.33735
Cl	3.32397	0.40752	-0.19370
Н	-3.86233	0.85198	1.00668
Н	-1.58432	2.06440	1.19717
Н	-0.74689	-0.42077	-2.01361

ClAc-II

0	-0.11638	0.87000	-0.84550
С	1.16629	0.82936	-0.22016
С	0.80354	0.26454	1.15349
0	-0.51228	0.78524	1.35992
С	-1.02848	1.09153	0.14219
С	2.10452	-0.02269	-1.05161
С	1.79869	-1.50322	-0.89182
0	1.81383	-1.84806	0.47792
С	0.72565	-1.26567	1.15234
0	1.64488	2.12497	-0.03027
С	-2.42940	0.86225	-0.13629
Н	0.82148	-1.74483	-1.32746

Η	3.11864	0.17310	-0.70109
Н	1.77635	2.53517	-0.89303
Н	0.73211	-1.64081	2.17400
Н	-0.22029	-1.55720	0.67948
Н	-3.05031	1.16685	0.69843
Н	-2.73423	1.33880	-1.06104
Cl	-2.82243	-0.94718	-0.38833
Н	2.56002	-2.10880	-1.38032
Н	2.02978	0.28826	-2.09666
Н	1.46247	0.65774	1.92388

ClAc-TS1b

0	0.07872	-0.93583	-0.84646
С	-1.26997	-0.70610	-0.31586
С	-1.11281	-0.35003	1.13040
0	0.42497	-1.38760	1.28247
С	0.93233	-1.17773	0.15765
С	-1.85589	0.42645	-1.14723
С	-1.23942	1.76070	-0.75025
0	-1.42810	1.99758	0.62835
С	-0.70342	1.06526	1.41537
0	-1.99180	-1.88568	-0.41245
С	2.36084	-0.89458	-0.09355
Н	-0.16919	1.77096	-0.99154
Н	-2.93059	0.45136	-0.96205
Н	-2.10013	-2.10622	-1.34468
Η	-0.88757	1.31795	2.45679
Н	0.37047	1.18878	1.21320
Η	2.95131	-1.20295	0.76164
Н	2.70058	-1.38375	-1.00176
C1	2.69989	0.88148	-0.35633

Η	-1.72476	2.57967	-1.27882
Η	-1.68384	0.21620	-2.20629
Η	-1.76451	-0.86875	1.81654

ClAc-III

С	2.11856	-1.08035	1.26211
С	1.42736	0.23955	1.23828
С	1.07854	0.82046	-0.08934
0	0.78950	2.16697	-0.06800
С	2.18861	0.56777	-1.09274
С	2.67678	-0.87073	-1.00278
0	3.14571	-1.16524	0.29543
0	-0.08355	0.07458	-0.64456
Н	1.87135	-1.56451	-1.27708
Н	3.00489	1.24808	-0.84845
С	-1.24987	0.21898	-0.02096
Н	0.10770	2.31671	0.60170
0	-1.43591	0.89683	0.95105
С	-2.30318	-0.59854	-0.74272
Н	2.58048	-1.25957	2.23205
Н	1.39097	-1.89311	1.08645
Cl	-3.87394	-0.52890	0.04767
Н	-2.39863	-0.22008	-1.75850
Η	-1.97377	-1.63409	-0.79225
Η	3.51433	-1.03286	-1.67915
Η	1.81931	0.80339	-2.09130
Н	0.99354	0.65930	2.13383

ClAc-TS2

C -1.67264 -1.62273 -0.70363

С	-1.26058	-0.27571	-1.21235
С	-1.54437	0.86619	-0.46477
0	-1.36593	2.03735	-1.06149
С	-2.37540	0.78310	0.77306
С	-2.33193	-0.63854	1.31760
0	-2.66618	-1.55023	0.29423
0	0.97322	-0.45206	-0.81905
Н	-1.33199	-0.84793	1.71227
Н	-3.40419	1.04161	0.50127
С	1.14804	0.29295	0.15115
Н	-1.44619	2.75228	-0.41728
0	0.27093	0.95269	0.76435
С	2.55637	0.49062	0.72835
Н	-2.09176	-2.21311	-1.51866
Н	-0.78111	-2.14225	-0.33141
Н	2.52945	0.24603	1.78671
Cl	3.81589	-0.48359	-0.04187
Н	2.81922	1.53995	0.62015
Н	-3.06515	-0.77124	2.11057
Н	-2.01106	1.50006	1.50977
Η	-0.90062	-0.16159	-2.22243

С	-1.55714	-1.45367	-0.86018
С	-1.34932	0.00036	-1.12723
С	-1.93669	0.94002	-0.32510
0	-1.87364	2.21731	-0.67533
С	-2.62071	0.56506	0.94317
С	-2.38283	-0.91188	1.25534
0	-2.56875	-1.68675	0.09356
0	0.24912	0.51843	0.49651

Η	-1.36814	-1.04113	1.64283
Н	-3.69067	0.77218	0.84040
С	1.31946	0.11617	-0.09988
Н	-2.18223	2.78456	0.04153
0	1.41465	-0.41456	-1.18457
С	2.54036	0.41057	0.79055
Η	-1.87075	-1.95114	-1.77950
Н	-0.60293	-1.89602	-0.55042
Н	2.62685	1.48742	0.91202
Н	2.38601	-0.03977	1.76723
Cl	4.05692	-0.20138	0.12250
Η	-3.09905	-1.26766	1.99312
Η	-2.22551	1.19243	1.74846
Н	-0.79128	0.30742	-1.99941

С	1.96634	-0.44282	1.51670
С	1.61201	0.83436	0.82541
С	1.55333	0.85034	-0.56597
0	1.05862	1.87471	-1.20886
С	2.09867	-0.26220	-1.38458
С	2.19424	-1.53638	-0.54499
0	2.78243	-1.25824	0.71051
0	-0.65075	1.43681	0.84061
Н	1.19495	-1.95674	-0.41326
Н	3.09211	0.03559	-1.73587
С	-1.21579	0.43600	0.29020
Н	0.45727	2.33830	-0.58955
0	-0.66372	-0.47192	-0.32104
С	-2.73842	0.46953	0.47243
Η	2.52387	-0.23911	2.42994

Η	1.03374	-0.95928	1.78484
Cl	-3.59314	-0.87665	-0.29386
Н	-2.95435	0.45313	1.53776
Η	-3.11903	1.39934	0.05786
Η	2.83862	-2.26401	-1.03357
Η	1.45389	-0.40042	-2.25212
Η	1.52722	1.75224	1.38472

0	-3.37339	-1.04557	-0.18968
С	-2.12071	-1.38078	-0.73944
С	-1.18365	-0.20401	-0.83221
С	-1.52300	0.99467	-0.19041
С	-2.72759	1.09589	0.68207
С	-3.24619	-0.30089	1.00121
0	0.35256	-0.86376	0.20029
С	1.40948	-0.19628	-0.05604
С	2.66671	-0.91007	0.42701
0	-0.75300	2.04515	-0.27263
0	1.46770	0.88968	-0.63593
Η	-2.56250	-0.80979	1.69231
Н	-3.49804	1.67120	0.15988
Н	0.17302	1.73200	-0.56941
Н	-2.31647	-1.77510	-1.73616
Н	-1.63570	-2.16565	-0.14760
Н	2.75502	-1.84987	-0.11336
Cl	4.15138	0.01640	0.19529
Н	2.55390	-1.13154	1.48525
Н	-4.23350	-0.25763	1.45676
Η	-2.46400	1.64747	1.58648
Н	-0.54643	-0.13518	-1.70363

С	-3.05552	-0.58298	-1.01861
С	-2.21001	0.63809	-1.07597
С	-1.29937	0.92530	-0.01443
0	-0.65118	2.04724	-0.06154
С	-1.52588	0.23197	1.29761
С	-2.18088	-1.12536	1.08654
0	-3.34596	-0.98986	0.29456
0	1.47663	1.03445	0.57628
Н	-1.47547	-1.81112	0.60684
Н	-2.20454	0.87965	1.86292
С	1.29386	0.04767	-0.15710
Н	0.26748	1.85531	0.40030
0	0.17608	-0.34952	-0.60467
С	2.46268	-0.81685	-0.61284
Н	-4.00843	-0.41633	-1.52290
Н	-2.53045	-1.38662	-1.56394
C1	4.01444	-0.36605	0.09979
Н	2.25002	-1.85244	-0.36022
Н	2.54014	-0.73549	-1.69494
Н	-2.50136	-1.55001	2.03563
Н	-0.58907	0.16290	1.84915
Η	-2.14774	1.23142	-1.97746

ClAc-IV

0	3.21951	-1.45579	0.28404
С	2.09375	-1.31013	1.11180
С	1.50815	0.05402	1.07906
С	1.82419	0.99392	0.04833

С	2.89994	0.59715	-0.93113
С	3.00313	-0.92132	-1.00709
0	-1.38941	1.81857	0.40811
С	-1.72699	0.59948	0.01464
С	-3.23400	0.44717	0.08727
0	1.22350	2.06757	-0.05579
0	-0.96037	-0.25213	-0.34522
Η	2.08616	-1.34315	-1.43810
Η	3.85180	1.00966	-0.58577
Η	-0.41013	1.96368	0.29881
Η	2.40272	-1.57595	2.12536
Η	1.30075	-2.01911	0.81748
Cl	-3.77615	-1.18892	-0.27691
Η	-3.56981	0.72047	1.08483
Η	-3.68473	1.13563	-0.62489
Η	3.84824	-1.22953	-1.61939
Η	2.66791	1.04350	-1.89778
Η	0.74676	0.31908	1.80055

ClAc-VI

С	-0.85196	0.41003	0.00000
0	-0.47335	1.53908	0.00000
0	-2.15028	0.05453	0.00000
Н	-2.67438	0.86865	0.00000
С	0.00000	-0.84017	0.00000
Η	-0.24394	-1.42915	0.88189
Н	-0.24394	-1.42915	-0.88189
Cl	1.72135	-0.48109	0.00000

ClAc-VIII

С	1.05309	-0.34876	0.00000
0	0.66056	-1.51722	0.00000
0	2.20247	0.13514	0.00000
С	0.00000	0.80538	0.00000
Η	0.14962	1.41916	0.88419
Η	0.14962	1.41916	-0.88419
Cl	-1.73659	0.32227	0.00000

7.5 Trichloromethyl

С	-2.03343	-1.42575	0.05558
С	-1.55981	-0.06649	-0.46301
С	-2.44997	1.02322	0.01298
0	-2.02769	2.25772	-0.37389
С	-3.91658	0.74987	0.05484
С	-4.17811	-0.66452	0.55750
0	-3.40916	-1.60007	-0.16733
0	-0.23385	0.18772	0.04707
Η	-3.93445	-0.73442	1.62517
Η	-4.34467	0.85596	-0.95271
С	0.77054	-0.36604	-0.60865
Η	-2.68107	2.92069	-0.12778
0	0.69726	-1.05754	-1.57601
С	2.11469	-0.00427	0.07800
Η	-1.51069	-2.22579	-0.46498
Η	-1.80291	-1.48057	1.12784
Cl	3.45205	-0.65597	-0.84940
Cl	2.25603	1.75481	0.18972
Cl	2.09909	-0.72066	1.69909
Η	-5.22145	-0.94112	0.41768

Η	-4.42353	1.47484	0.70025
Н	-1.49944	-0.07759	-1.55768

0	-0.41925	0.32225	0.99718
С	0.35758	-0.33624	0.27746
0	-0.18488	-1.01729	-0.74284
С	-1.55991	-0.57488	-0.93719
С	-1.69053	0.80878	-0.40146
С	-2.88800	1.24670	0.36885
С	-3.57150	0.05736	1.03098
0	-3.72540	-0.99437	0.10198
С	-2.48269	-1.56645	-0.21810
0	-1.05071	1.71008	-1.16916
С	1.83834	-0.07797	0.14414
Н	-2.98217	-0.28540	1.88828
Η	-3.58540	1.72661	-0.32733
Η	-1.07836	2.58386	-0.76099
Η	-2.67305	-2.42893	-0.85339
Н	-1.97109	-1.90437	0.69023
Cl	2.43163	0.72301	1.59404
C1	2.68043	-1.62390	-0.08369
Cl	2.19241	0.96309	-1.28658
Η	-4.56805	0.32940	1.37306
Η	-2.59648	1.98940	1.11850
Н	-1.69929	-0.57731	-2.01777

Cl₃Ac-II

С	-2.37664	-1.58418	-0.29371
С	-1.56850	-0.50989	-1.02870

С	-1.54788	0.81745	-0.27427
0	-1.17076	1.80567	-1.17608
С	-2.81594	1.15887	0.48167
С	-3.42376	-0.07413	1.13040
0	-3.60848	-1.08845	0.16321
0	-0.18633	-0.87387	-1.01835
Н	-2.78065	-0.44273	1.93881
Н	-3.52130	1.57041	-0.24107
С	0.32891	-0.37309	0.12817
Н	-0.89929	2.59042	-0.68482
0	-0.48317	0.58123	0.66074
С	1.79488	-0.12042	0.14926
Н	-2.58262	-2.42006	-0.95938
Η	-1.77336	-1.95009	0.54785
Cl	2.28115	0.29173	1.79877
Cl	2.64216	-1.56713	-0.39846
Cl	2.23406	1.25552	-0.93555
Н	-4.40573	0.15105	1.54221
Η	-2.59028	1.92823	1.22372
Н	-1.87876	-0.37352	-2.06137

0	0.43308	0.94817	-0.54613
С	1.80056	1.00234	0.00839
С	1.78445	0.19137	1.26609
0	-0.00383	0.61533	1.58858
С	-0.42676	0.62201	0.41782
С	2.70653	0.41988	-1.06614
С	2.56691	-1.09467	-1.13127
0	2.82649	-1.67030	0.13151
С	1.84588	-1.29713	1.08488

0	2.09272	2.31636	0.32347
С	-1.70092	-0.03924	-0.04983
Η	1.56088	-1.36826	-1.47072
Н	3.73291	0.68124	-0.80503
Η	2.10374	2.83784	-0.48762
Η	2.10487	-1.78995	2.01870
Η	0.86499	-1.67274	0.75787
Cl	-2.67332	-0.51426	1.33043
Cl	-2.59331	1.11745	-1.06254
Cl	-1.35762	-1.49738	-1.05912
Η	3.29467	-1.51609	-1.82270
Η	2.45892	0.87683	-2.02778
Н	2.24361	0.64844	2.12917

Cl₃Ac-III

С	-2.65689	-0.87555	-1.35261
С	-2.17906	0.52809	-1.19910
С	-1.74140	0.96435	0.15510
0	-1.62601	2.32271	0.32071
С	-2.64948	0.39613	1.22826
С	-2.92389	-1.07826	0.96542
0	-3.51870	-1.26190	-0.30193
0	-0.41942	0.31714	0.44512
Η	-1.99281	-1.65595	1.03109
Η	-3.58318	0.95800	1.19142
С	0.59839	0.68337	-0.29707
Η	-1.08121	2.67465	-0.39666
0	0.60460	1.53270	-1.14075
С	1.85290	-0.16923	0.03747
Η	-3.21274	-0.99738	-2.28117
Η	-1.79428	-1.56480	-1.38632

Cl	3.22762	0.38713	-0.89427
Cl	2.19937	-0.04348	1.76534
Cl	1.47294	-1.85036	-0.38924
Н	-3.62647	-1.47152	1.69791
Н	-2.18100	0.54960	2.20079
Н	-1.95428	1.14295	-2.05825

С	-2.50862	-1.38313	-0.95501
С	-2.25576	0.05514	-1.27335
С	-2.35222	1.01560	-0.26232
0	-2.27697	2.27831	-0.62534
С	-2.82219	0.64757	1.10388
С	-2.63868	-0.85025	1.32116
0	-3.22053	-1.55762	0.24680
0	0.07240	-0.10904	-1.45458
Η	-1.57168	-1.08090	1.40750
Η	-3.88625	0.90110	1.16525
С	0.44261	0.30022	-0.35192
Η	-2.21593	2.85188	0.15048
0	-0.21681	0.86716	0.53368
С	1.93700	-0.02656	0.03870
Η	-3.10528	-1.83836	-1.74607
Η	-1.54002	-1.90016	-0.92097
Cl	1.84681	-1.55946	0.94732
Cl	2.95425	-0.24430	-1.37955
Cl	2.62139	1.23035	1.06937
Η	-3.15012	-1.17261	2.22544
Η	-2.27365	1.22623	1.84785
Η	-2.11627	0.37899	-2.29227

С	2.22202	-1.34907	1.02731
С	2.19514	0.13058	1.21163
С	2.67380	0.95699	0.22211
0	2.79304	2.24638	0.47542
С	3.00629	0.43584	-1.13153
С	2.58137	-1.02757	-1.25594
0	2.96958	-1.73691	-0.10047
0	0.31933	0.64872	-0.04986
Н	1.49767	-1.08265	-1.39458
Н	4.08399	0.54269	-1.29220
С	-0.60259	0.22053	0.70972
Н	2.98670	2.74260	-0.33010
0	-0.55845	-0.11601	1.87179
С	-1.96198	0.03718	-0.07550
Н	2.69234	-1.81317	1.89634
Н	1.18986	-1.71966	0.97413
Cl	-2.27244	1.40518	-1.15069
Cl	-1.75410	-1.44681	-1.04386
Cl	-3.31172	-0.16627	1.02674
Η	3.07880	-1.49918	-2.10052
Н	2.48490	1.04946	-1.87293
Н	1.86391	0.54993	2.15053

С	2.89939	-0.97478	1.23485
С	2.24334	0.36775	1.21236
С	2.16171	1.05775	0.00263
0	1.43314	2.13307	-0.11858
С	2.92111	0.62470	-1.19706

С	3.31637	-0.84699	-1.06856
0	3.85744	-1.10014	0.21277
0	-0.09176	0.35763	1.28079
Η	2.43897	-1.47323	-1.24383
Н	3.81632	1.25104	-1.27151
С	-0.44089	-0.19047	0.20457
Η	0.76882	2.14549	0.59968
0	0.26202	-0.66189	-0.67727
С	-1.99793	-0.15618	-0.04290
Н	3.41879	-1.12684	2.18014
Н	2.11407	-1.73821	1.14222
C1	-2.48235	-1.27735	-1.30665
C1	-2.88454	-0.51465	1.43991
C1	-2.35125	1.51362	-0.56454
Н	4.09437	-1.09335	-1.78761
Η	2.30374	0.80229	-2.07761
Н	1.94795	0.84504	2.13313

0	-3.83021	-1.31066	-0.26756
С	-2.56296	-1.35170	-0.87872
С	-1.86985	-0.01085	-0.88803
С	-2.42414	1.04333	-0.14572
С	-3.57074	0.83158	0.78041
С	-3.79241	-0.66225	0.98453
0	-0.23638	-0.44040	0.02941
С	0.66868	0.41092	-0.22088
С	2.10970	-0.10449	0.10335
0	-1.90292	2.24668	-0.17879
0	0.54218	1.52327	-0.71533
Η	-2.99065	-1.08381	1.60346

Н	-4.46628	1.28913	0.34888
Η	-0.97787	2.18270	-0.55097
Η	-2.72350	-1.68617	-1.90303
Η	-1.91176	-2.07628	-0.37726
Cl	2.51182	-1.27246	-1.17476
Cl	3.27293	1.21004	0.09205
Cl	2.13051	-0.90585	1.67735
Η	-4.74629	-0.85319	1.47179
Η	-3.36460	1.34363	1.72255
Н	-1.30957	0.25434	-1.77584

С	-3.44292	-0.86813	-1.00788
С	-2.89223	0.50547	-1.13962
С	-2.09101	1.04995	-0.09594
0	-1.70155	2.28474	-0.22266
С	-2.16539	0.40344	1.25475
С	-2.49746	-1.07738	1.12606
0	-3.65254	-1.25077	0.32665
0	0.61127	1.72337	0.57455
Η	-1.64839	-1.61532	0.69287
Н	-2.97594	0.91554	1.78467
С	0.61162	0.65870	-0.04952
Н	-0.82672	2.36362	0.28487
0	-0.35537	0.08738	-0.61148
С	1.94708	-0.15830	-0.07419
Н	-4.40106	-0.94972	-1.52313
Н	-2.74106	-1.56027	-1.50525
Cl	3.33946	0.87325	0.21414
Cl	1.78449	-1.33371	1.25755
Cl	2.13935	-1.01642	-1.60012

Η	-2.72929	-1.50299	2.09990
Н	-1.24252	0.57563	1.80879
Η	-2.94363	1.04021	-2.07779

Cl₃Ac-IV

0	4.37680	-1.20989	0.18816
С	3.12044	-1.43587	0.77260
С	2.29881	-0.20643	0.90856
С	2.61573	0.99997	0.20898
С	3.89088	1.01323	-0.59403
С	4.28970	-0.40752	-0.97263
0	-0.64321	1.39213	0.53576
С	-0.86295	0.33093	-0.19630
С	-2.34269	-0.12870	-0.08083
0	1.87181	1.98664	0.24127
0	-0.06281	-0.27121	-0.85432
Н	3.55858	-0.83597	-1.67034
Н	4.67740	1.46117	0.01932
Н	0.32261	1.67351	0.46600
Н	3.29598	-1.89161	1.74992
Н	2.54015	-2.16358	0.17896
Cl	-2.66492	-1.43867	-1.20149
C1	-2.57477	-0.69680	1.58712
Cl	-3.41920	1.22990	-0.41501
Н	5.27033	-0.42974	-1.44343
Н	3.74184	1.64739	-1.46763
Н	1.39403	-0.24163	1.50162

Cl₃Ac-VI C -1.33431 0.02877 0.00000

0	-2.01365	1.00387	0.00000
0	-1.78099	-1.22449	0.00000
Н	-2.74880	-1.19341	0.00000
С	0.21289	0.05442	0.00000
Cl	0.78107	-0.78332	1.45220
Cl	0.78107	-0.78332	-1.45220
Cl	0.78107	1.71130	0.00000

Cl₃Ac-VIII

С	-1.49483	-0.04762	0.00000
0	-2.04349	1.04759	0.00000
0	-1.88444	-1.21093	0.00000
С	0.14053	0.02976	0.00000
Cl	0.77548	-0.80346	1.44729
Cl	0.77548	-0.80346	-1.44729
Cl	0.77548	1.69009	0.00000

7.6 Trifluoromethyl

F₃Ac-I

С	-1.44843	-1.39497	0.19117
С	-0.95475	-0.06586	-0.38444
С	-1.85129	1.05062	0.01014
0	-1.41411	2.26006	-0.43380
С	-3.31987	0.78573	0.03353
С	-3.60040	-0.60024	0.60057
0	-2.81857	-1.57376	-0.05791
0	0.36195	0.21052	0.14397
Н	-3.38278	-0.61763	1.67593
Η	-3.72486	0.84292	-0.98736

С	1.37867	-0.37724	-0.45856
Η	-2.06707	2.93955	-0.23618
0	1.34433	-1.13281	-1.37941
С	2.69821	0.05732	0.21829
Η	-0.91765	-2.22307	-0.27437
Η	-1.24621	-1.39595	1.27040
F	3.72876	-0.52741	-0.36618
F	2.85515	1.37567	0.13769
F	2.69165	-0.28381	1.50629
Η	-4.64128	-0.87987	0.44948
Η	-3.83676	1.54475	0.62997
Η	-0.86512	-0.13498	-1.47508

F₃Ac-TS1a

0	0.13060	0.29570	1.04075
С	0.90378	-0.39640	0.34704
0	0.37062	-1.08490	-0.67424
С	-0.98225	-0.59118	-0.91996
С	-1.06428	0.80723	-0.41703
С	-2.27003	1.32155	0.28941
С	-3.02875	0.18166	0.95742
0	-3.19662	-0.88857	0.05214
С	-1.97044	-1.52319	-0.20941
0	-0.33722	1.65378	-1.17032
С	2.37994	-0.09397	0.19056
Η	-2.48517	-0.16151	1.84418
Η	-2.91888	1.80876	-0.44746
Η	-0.34473	2.53962	-0.78825
Η	-2.17783	-2.39269	-0.82966
Η	-1.50556	-1.85920	0.72425
F	2.86794	0.41486	1.31732
F	3.06222	-1.20025	-0.10653
---	----------	----------	----------
F	2.62235	0.79158	-0.78838
Н	-4.02374	0.50597	1.25559
Н	-1.97606	2.07344	1.02871
Н	-1.08738	-0.61244	-2.00400

F₃Ac-II

С	-1.88154	-1.54897	-0.22828
С	-0.98797	-0.55364	-0.97537
С	-0.94097	0.80893	-0.28776
0	-0.46529	1.72856	-1.21470
С	-2.22834	1.24852	0.37900
С	-2.92821	0.08132	1.05644
0	-3.11060	-0.97472	0.13490
0	0.37327	-0.97975	-0.87937
Н	-2.34672	-0.27100	1.91696
Н	-2.87505	1.65256	-0.40071
С	0.86393	-0.43056	0.25826
Н	-0.26102	2.55513	-0.76131
0	0.06042	0.57051	0.71605
С	2.33668	-0.13796	0.23613
Н	-2.09217	-2.41044	-0.85894
Н	-1.33990	-1.89365	0.66251
F	2.75069	0.23483	1.44666
F	3.02108	-1.21601	-0.13639
F	2.65236	0.85280	-0.61145
Н	-3.91836	0.37328	1.40122
Н	-2.00437	2.04470	1.09295
Н	-1.24335	-0.45776	-2.02751

-0.06398	0.88918	-0.69688
1.29739	0.93848	-0.11100
1.21641	0.25080	1.21495
-0.56990	0.74932	1.44919
-0.95113	0.65398	0.26758
2.19228	0.21725	-1.10805
1.97895	-1.28827	-1.03471
2.19891	-1.75189	0.27991
1.22273	-1.25025	1.17600
1.64068	2.26197	0.08564
-2.15534	-0.15772	-0.17257
0.96315	-1.54609	-1.36014
3.22639	0.45141	-0.85177
1.69555	2.70259	-0.77036
1.44766	-1.66140	2.15691
0.23272	-1.61785	0.86751
-2.99115	-0.33941	0.83789
-2.80187	0.45927	-1.16079
-1.80271	-1.37097	-0.63676
2.69059	-1.80766	-1.67413
1.98279	0.59441	-2.11235
1.66935	0.77037	2.04525
	-0.06398 1.29739 1.21641 -0.56990 -0.95113 2.19228 1.97895 2.19891 1.22273 1.64068 -2.15534 0.96315 3.22639 1.69555 1.44766 0.23272 -2.99115 -2.80187 -1.80271 2.69059 1.98279 1.66935	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

F₃Ac-III

С	2.22948	-0.72576	1.41739
С	1.63446	0.60749	1.11637
С	1.16225	0.85988	-0.27194
0	0.94952	2.17961	-0.58428
С	2.10034	0.24195	-1.28974
С	2.49340	-1.16688	-0.86751

0	3.11094	-1.15718	0.40208
0	-0.11999	0.09717	-0.46970
Н	1.61248	-1.82119	-0.85242
Н	2.98763	0.87418	-1.33296
С	-1.16230	0.50014	0.21500
Н	0.39746	2.57629	0.10361
0	-1.23332	1.42703	0.97015
С	-2.37009	-0.42426	-0.06395
Н	2.80154	-0.69460	2.34362
Н	1.42880	-1.47591	1.54587
F	-3.43781	-0.00308	0.58840
F	-2.64891	-0.45752	-1.36367
F	-2.09058	-1.66590	0.33453
Н	3.21956	-1.58379	-1.56290
Н	1.61341	0.24795	-2.26521
Н	1.35234	1.28714	1.90736

С	-2.17467	-1.40472	-0.81560
С	-1.64409	-0.07362	-1.23984
С	-1.64767	0.99486	-0.34096
0	-1.32603	2.17997	-0.81721
С	-2.27264	0.86329	1.00593
С	-2.36273	-0.61108	1.38132
0	-2.98222	-1.32860	0.33506
0	0.64239	-0.60872	-1.21239
Н	-1.35847	-0.99902	1.57900
Н	-3.27944	1.29080	0.94675
С	1.03080	-0.03844	-0.18900
Η	-1.21545	2.81672	-0.09815
0	0.37874	0.61868	0.64236

С	2.55094	-0.14104	0.13970
Η	-2.79424	-1.82470	-1.60874
Η	-1.32213	-2.07821	-0.65963
F	2.72875	-0.71063	1.33485
F	3.21994	-0.85634	-0.75477
F	3.09913	1.07619	0.18370
Η	-2.98131	-0.74610	2.26576
Η	-1.68900	1.42388	1.73685
Η	-1.37301	0.10752	-2.26772

С	-1.84057	-1.41460	-0.85837
С	-1.56878	0.02218	-1.15295
С	-1.99514	0.99857	-0.28413
0	-1.89253	2.26242	-0.65065
С	-2.51585	0.66033	1.06814
С	-2.32585	-0.83012	1.35008
0	-2.72231	-1.58364	0.22616
0	0.26113	0.38477	0.21699
Н	-1.27734	-1.02404	1.59250
Η	-3.57559	0.93134	1.11324
С	1.19937	-0.09049	-0.49928
Η	-2.07063	2.85540	0.09044
0	1.16423	-0.59375	-1.60169
С	2.56905	0.00157	0.24198
Н	-2.31299	-1.87835	-1.72639
Η	-0.88557	-1.92613	-0.68742
F	2.83180	1.25692	0.61376
F	2.54716	-0.75198	1.34766
F	3.56998	-0.41791	-0.51689
Н	-2.95327	-1.14479	2.18102

Η	-1.97557	1.26153	1.80612
Η	-1.10698	0.29871	-2.08972

С	2.09608	-1.07332	1.20255
С	1.58569	0.33196	1.20370
С	1.66943	1.07846	0.02972
0	1.07001	2.23308	-0.08378
С	2.47266	0.62308	-1.13247
С	2.71267	-0.88505	-1.05171
0	3.11803	-1.25043	0.25241
0	-0.72382	0.53173	1.11718
Н	1.79729	-1.41210	-1.32903
Н	3.42695	1.15977	-1.10931
С	-1.04668	-0.02810	0.03494
Н	0.36232	2.27985	0.58838
0	-0.32815	-0.41757	-0.87594
С	-2.58508	-0.21711	-0.11414
Н	2.51723	-1.32411	2.17515
Н	1.24925	-1.74641	1.00703
F	-2.91116	-0.79626	-1.26173
F	-3.06249	-0.97289	0.87747
F	-3.20633	0.96519	-0.06108
Η	3.52050	-1.17511	-1.71975
Η	1.94609	0.89956	-2.04576
Н	1.28304	0.80030	2.12683

0	-3.26610	-1.28276	-0.27803
С	-2.00566	-1.35845	-0.89918

С	-1.26118	-0.04435	-0.88066
С	-1.77228	1.01042	-0.10796
С	-2.91416	0.81641	0.82758
С	-3.19327	-0.67263	0.99167
0	0.36216	-0.56142	0.00256
С	1.28895	0.27946	-0.20410
С	2.68719	-0.26336	0.19448
0	-1.21590	2.19918	-0.12341
0	1.21176	1.40501	-0.67922
Н	-2.40453	-1.14345	1.59144
Н	-3.79569	1.32215	0.42177
Η	-0.29982	2.11893	-0.50912
Η	-2.18589	-1.66020	-1.93031
Η	-1.38108	-2.12065	-0.42051
F	3.01697	-1.28786	-0.59464
F	3.62202	0.66604	0.07973
F	2.68168	-0.69810	1.45355
Η	-4.15026	-0.83952	1.48157
Н	-2.67616	1.29215	1.78126
Н	-0.70542	0.22488	-1.76996

С	-2.3111650	-0.3724560	-1.1138230
С	-1.3154050	0.7306000	-1.1388190
С	-0.4259310	0.9186300	-0.0325290
0	0.3565600	1.9472870	-0.0552770
С	-0.8163920	0.2847050	1.2729200
С	-1.6234620	-0.9853690	1.0413790
0	-2.7180800	-0.7167850	0.1863450
0	2.3125960	0.7686960	0.6647060
Η	-0.9867900	-1.7646140	0.6101770

Η	-1.4426950	1.0243340	1.7827080
С	2.0113600	-0.2252880	-0.0211670
Η	1.2534990	1.6392530	0.4436490
0	0.8914820	-0.5131570	-0.4979360
С	3.1288470	-1.2540540	-0.3262740
Η	-3.2077200	-0.0948480	-1.6697760
Η	-1.8666420	-1.2457730	-1.6225500
F	4.2919350	-0.8895300	0.1886570
F	2.8001640	-2.4432680	0.1833410
F	3.2776200	-1.3977960	-1.6421380
Η	-2.0441100	-1.3491490	1.9764390
Η	0.0661310	0.1134440	1.8886680
Η	-1.1320730	1.2969680	-2.0412200

F₃Ac-IV

0	3.90789	-1.10893	0.17258
С	2.66319	-1.47621	0.70791
С	1.72698	-0.33518	0.87072
С	1.95080	0.92612	0.23714
С	3.23433	1.09020	-0.53580
С	3.77768	-0.26909	-0.95706
0	-1.37156	1.20307	0.59142
С	-1.58467	0.13495	-0.12996
С	-3.08311	-0.24297	-0.10723
0	1.12726	1.84603	0.30469
0	-0.78241	-0.51838	-0.73560
Н	3.11203	-0.73494	-1.69520
Н	3.96010	1.58898	0.11225
Н	-0.40097	1.47813	0.54273
Η	2.85450	-1.95614	1.67058
Η	2.17050	-2.22855	0.06773

F	-3.30700	-1.31953	-0.84234
F	-3.47534	-0.49801	1.14164
F	-3.82717	0.75392	-0.58025
Η	4.76888	-0.17852	-1.39640
Η	3.04313	1.74108	-1.38881
Η	0.81664	-0.47865	1.43667

F₃Ac-VI

С	-0.29275	-0.90375	0.00000
0	-1.41425	-1.29532	0.00000
0	0.80814	-1.64751	0.00000
Н	0.54664	-2.58050	0.00000
С	0.08636	0.59235	0.00000
F	0.80814	0.88492	1.07914
F	0.80814	0.88492	-1.07914
F	-1.00067	1.34033	0.00000

F₃Ac-VIII

С	-0.21913	-1.03677	0.00000
0	-1.41902	-1.32393	0.00000
0	0.81261	-1.71640	0.00000
С	0.08903	0.50768	0.00000
F	0.81261	0.88061	1.07794
F	0.81261	0.88061	-1.07794
F	-0.99947	1.29402	0.00000

7.7 Tosyl

Ts-I

С	-3.90006	0.83577	-0.28600
С	-3.35396	0.75135	0.99767
С	-2.19611	0.03659	1.23457
С	-1.56799	-0.60189	0.16990
С	-2.08776	-0.53753	-1.11164
С	-3.25463	0.18363	-1.33016
S	-0.07890	-1.48666	0.47887
С	-5.16890	1.60650	-0.51484
0	0.96437	-0.34639	0.74261
С	1.48431	0.41845	-0.43396
С	1.53663	1.87953	-0.01610
0	2.62370	2.16310	0.82107
С	3.85975	1.91294	0.17916
С	4.02355	0.43094	-0.12717
С	2.81320	-0.08910	-0.81900
0	2.92734	-1.32583	-1.34382
0	0.28726	-2.16317	-0.73818
Н	4.63596	2.26335	0.85667
Н	4.90666	0.26062	-0.74696
Н	2.06010	-1.76310	-1.38909
Н	1.58774	2.48830	-0.92927
Н	0.62865	2.13360	0.52996
Н	3.91314	2.49810	-0.74874
Н	4.17453	-0.12000	0.81103
Н	0.75517	0.29182	-1.23872
Н	-1.77899	-0.04016	2.23050
Н	-1.59099	-1.05859	-1.91921
Н	-3.85169	1.25059	1.82044
Η	-3.66994	0.23396	-2.32902
Н	-5.07973	2.62327	-0.13021
Н	-5.41530	1.65991	-1.57372
Н	-6.00352	1.13303	0.00521

O -0.19486 -2.20661 1.69765

Ts-III

С	-2.90593	1.27303	-0.58127
С	-2.21294	0.24946	0.30085
С	-1.23625	0.91353	1.21000
С	-0.44959	2.07293	0.69629
0	-1.24419	2.95333	-0.07506
С	-1.90345	2.27911	-1.12617
0	-3.15899	-0.50756	0.94632
0	-1.49288	-0.61627	-0.69299
S	-0.52233	-1.75707	-0.21166
0	-0.91429	-2.16441	1.10921
С	1.03484	-0.94392	-0.09980
С	1.61715	-0.72325	1.13580
С	2.82016	-0.03341	1.19994
С	3.44019	0.43646	0.04639
С	2.83355	0.19119	-1.18760
С	1.63856	-0.49947	-1.26987
С	4.74801	1.17240	0.11217
0	-0.47220	-2.69642	-1.27672
Н	-1.16849	1.77480	-1.76773
Н	-3.64035	1.78603	0.04071
Н	-2.70664	-1.19886	1.45229
Н	-0.04047	2.65532	1.52084
Η	0.39857	1.72224	0.08283
Н	-2.40951	3.04168	-1.71574
Н	-3.42548	0.74640	-1.38191
Н	-1.09689	0.52640	2.20836
Η	1.12897	-1.08730	2.02992
Н	1.17115	-0.69609	-2.22636

3.28330	0.14200	2.16314
3.30927	0.54676	-2.09370
4.99241	1.45579	1.13439
5.55730	0.54561	-0.26747
4.71884	2.07460	-0.49932
	3.28330 3.30927 4.99241 5.55730 4.71884	3.283300.142003.309270.546764.992411.455795.557300.545614.718842.07460

С	-4.50495	0.07186	-0.19176
С	-3.74962	1.13053	0.31450
С	-2.38234	1.01159	0.48894
С	-1.75303	-0.17945	0.15144
С	-2.48061	-1.24443	-0.34936
С	-3.85286	-1.11159	-0.51898
S	0.00392	-0.32176	0.34071
0	0.34864	0.36687	1.57838
С	2.89100	0.69741	0.98486
С	2.74916	1.18565	-0.32492
0	0.57806	0.38416	-0.82499
С	3.40136	-0.67990	1.20540
0	4.09868	-1.18316	0.09343
С	3.34555	-1.08045	-1.10122
С	3.22085	0.39106	-1.49063
0	0.32380	-1.73449	0.33247
0	2.38008	2.42989	-0.45425
С	-5.99372	0.20994	-0.35101
Н	2.35198	-1.51824	-0.97264
Η	4.20629	0.78517	-1.76631
Н	2.14038	2.62314	-1.37241
Н	4.08838	-0.68983	2.05358
Н	2.53557	-1.31115	1.46155
Η	3.89407	-1.62770	-1.86434

Η	2.53200	0.52797	-2.32455
Η	2.59264	1.32223	1.81237
Η	-1.79749	1.82607	0.89639
Η	-1.97040	-2.16740	-0.59051
Η	-4.24567	2.05722	0.57980
Η	-4.42588	-1.94468	-0.90856
Η	-6.48844	0.20018	0.62244
Η	-6.25015	1.15144	-0.83819
Η	-6.40479	-0.60591	-0.94392

S	-0.37161	1.79988	-0.11239
0	-0.95904	1.62402	-1.42444
С	-3.00744	-0.45302	0.59601
С	-1.88782	-1.08138	1.12790
0	-1.17503	1.11542	0.94560
С	-3.29571	-0.57325	-0.85477
0	-2.65767	-1.69214	-1.42277
С	-1.26066	-1.64795	-1.21193
С	-0.94747	-1.85434	0.27191
0	-1.74039	-1.08383	2.43011
Η	-0.86402	-0.69027	-1.55261
Н	-1.06082	-2.90979	0.54407
Н	-0.86600	-1.41518	2.67917
Н	-4.36823	-0.69309	-1.01547
Н	-2.97156	0.36163	-1.34073
Η	-0.82323	-2.45090	-1.80183
Η	0.07966	-1.55108	0.50164
Н	-3.62575	0.14879	1.24618
С	1.14193	0.85860	-0.11693
С	1.79201	0.62737	1.09182

С	1.65025	0.33115	-1.29076
С	2.93759	-0.14894	1.11713
Η	1.39116	1.05966	2.00092
С	2.80275	-0.44685	-1.25393
Η	1.13920	0.52980	-2.22403
С	3.45984	-0.70101	-0.05530
Η	3.44503	-0.32730	2.05843
Η	3.19777	-0.85995	-2.17426
С	4.72202	-1.51654	-0.01713
Η	5.59522	-0.86660	0.06602
Η	4.73240	-2.18834	0.84125
Η	4.83517	-2.11211	-0.92194
0	-0.03535	3.13830	0.27929

С	4.25125	-0.82467	-0.33639
С	3.28193	-1.44943	0.45173
С	2.05693	-0.85272	0.68013
С	1.79388	0.38753	0.11127
С	2.73517	1.03002	-0.67279
С	3.96168	0.41674	-0.89096
S	0.23074	1.14958	0.38075
0	0.29744	2.51744	-0.03942
С	5.58036	-1.48831	-0.56245
0	-0.70358	0.33272	-0.49139
С	-2.49117	0.60775	-0.01445
С	-3.16503	0.65262	-1.35554
0	-3.53675	-0.61531	-1.82560
С	-4.34320	-1.30332	-0.89453
С	-3.53063	-1.66780	0.34052
С	-2.76220	-0.48980	0.82708

0	-2.23447	-0.58610	2.02641
0	-0.13067	0.93625	1.78062
Н	-4.71432	-2.19492	-1.39556
Н	-4.16619	-2.04085	1.14646
Н	-1.47193	0.05510	2.11404
Η	-4.04965	1.30150	-1.26707
Η	-2.48763	1.09119	-2.08550
Н	-5.20214	-0.67934	-0.61352
Н	-2.81610	-2.46186	0.09655
Н	-2.32319	1.57141	0.45502
Н	1.30924	-1.33150	1.29921
Η	2.50594	1.99943	-1.09425
Η	3.49807	-2.41507	0.89345
Н	4.70544	0.91494	-1.50058
Н	5.44869	-2.48870	-0.97730
Н	6.19917	-0.91224	-1.24823
Н	6.12315	-1.59405	0.37856

С	-3.17842	1.07590	-0.44339
С	-2.39077	0.27087	0.53530
С	-1.28069	0.89917	1.17988
С	-0.67776	2.12222	0.58481
0	-1.60413	2.88239	-0.15143
С	-2.28546	2.10847	-1.11972
0	-3.02484	-0.72238	1.10155
0	-1.34128	-0.71369	-0.83531
S	-0.39706	-1.75189	-0.28916
0	-0.79808	-2.11386	1.06709
С	1.13725	-0.87827	-0.13058
С	1.74367	-0.72153	1.10272

С	2.91851	0.01650	1.19728
С	3.49391	0.59580	0.07243
С	2.86782	0.41552	-1.16354
С	1.70031	-0.31730	-1.27195
С	4.77343	1.37844	0.16625
0	-0.20583	-2.81643	-1.22123
Н	-1.56883	1.60439	-1.77602
Н	-3.97105	1.57685	0.12032
Н	-2.35587	-1.35263	1.46640
Н	-0.28104	2.76823	1.36884
Н	0.17144	1.81633	-0.05166
Η	-2.88151	2.80248	-1.70835
Η	-3.63718	0.39596	-1.15940
Η	-0.80585	0.40366	2.01504
Н	1.29888	-1.18004	1.97643
Н	1.21809	-0.45679	-2.23152
Н	3.39609	0.13793	2.16214
Η	3.30763	0.85659	-2.05045
Н	5.03439	1.58807	1.20233
Н	5.59733	0.82006	-0.28243
Η	4.69274	2.32604	-0.36740

Ts-IV

С	-0.99486	-2.32171	0.29278
С	-0.54714	-1.57916	1.38182
С	0.61704	-0.82546	1.30549
С	1.33790	-0.81727	0.12349
С	0.92638	-1.56768	-0.97098
С	-0.23603	-2.31364	-0.87936
S	2.76210	0.22097	-0.02365
0	3.67941	-0.38115	-0.93042

С	-2.27200	-3.11116	0.36256
0	2.17562	1.46790	-0.77016
С	-1.09887	1.20824	-1.09108
С	-2.39405	0.67968	-1.59261
0	-3.49632	1.06724	-0.81418
С	-3.26619	0.86770	0.56642
С	-2.21220	1.84438	1.06972
С	-0.97932	1.81503	0.20026
0	0.08411	2.30043	0.59970
0	3.16237	0.59981	1.29225
Η	-2.94325	-0.16666	0.74231
Η	-2.60831	2.86311	1.04888
Η	1.47740	1.91678	-0.21085
Η	-2.57769	1.03362	-2.61015
Η	-2.32133	-0.42065	-1.64400
Η	-4.21884	1.02208	1.06906
Η	-1.91092	1.62972	2.09607
Η	-0.21599	1.13485	-1.71331
Η	0.96854	-0.24260	2.14700
Η	1.52391	-1.56546	-1.87399
Η	-1.11301	-1.59530	2.30619
Η	-0.56110	-2.90616	-1.72702
Η	-2.11536	-4.13848	0.03213
Η	-2.66960	-3.13397	1.37609
Н	-3.03356	-2.67386	-0.28854

Ts-VI

0	2.34558	-1.30365	0.48457
0	2.28617	0.23071	-1.39995
Η	2.41168	-0.62925	-1.82526
С	0.13049	-0.00682	0.07471

С	-0.54991	1.20398	0.03287
С	-0.54891	-1.21355	0.07795
С	-1.93112	1.19318	-0.01855
Н	0.00408	2.13317	0.05180
С	-1.93565	-1.20433	0.02915
Н	0.00398	-2.14170	0.13487
С	-2.64326	-0.00779	-0.02162
Н	-2.47175	2.13155	-0.05097
Η	-2.47521	-2.14326	0.03669
С	-4.14506	0.00578	-0.05616
Η	-4.54723	-0.99391	-0.21055
Н	-4.54545	0.39073	0.88362
Н	-4.50979	0.65175	-0.85545
S	1.88851	0.00101	0.12499
0	2.32501	1.16820	0.80606

Ts-VIII

Ο	2.35137	1.35478	-0.35742
Ο	2.29577	-0.36891	1.37149
С	0.17196	0.01643	-0.02122
С	-0.52590	-1.18682	-0.01836
С	-0.53077	1.20856	-0.01774
С	-1.91023	-1.18969	-0.00481
Η	0.03611	-2.11237	-0.03762
С	-1.92266	1.19985	-0.00468
Η	0.02884	2.13506	-0.03414
С	-2.63140	0.00539	0.00352
Η	-2.44793	-2.13286	-0.00453
Η	-2.46605	2.13926	-0.00394
С	-4.13709	-0.01296	0.01278
Η	-4.53218	-0.50623	-0.87842

Η	-4.52038	-0.55499	0.88029
Η	-4.54134	0.99917	0.04304
S	1.97236	-0.00080	0.00354
0	2.32808	-1.01070	-0.97886

8.0 References

- Gaussion 09, R. D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., W. CT, 2010.
- 2. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.
- 3. Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* 2005, **7**, 3297-3305.
- 4. G. Luchini, J. V. Alegre-Requena, I. Funes-Ardoiz, and R. S. Paton, F1000Research 2020, 9(Chem Inf Sci):291.
- 5. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
- 6. Schrödinger Release 2019-2: Jaguar, Schrödinger, LLC, New York, NY, 2019
- 7. Neese, F. Software update: the ORCA program system, version 4.0. Wiley Interdisciplinary Reviews-Computational Molecular Science 2018, 8.
- 8. H. Zipse and M. Bootz, J. Chem. Soc., Perkin Trans. 2001, 1566 1572.
- 9. J. Turner, N. Rosano, D. J. Gorelik and M. S. Taylor, ACS Catal. 2021, 11, 11171 11179.
- 10. A. Kütt, S. Tshepelevitsh, J. Saame, M. Lõkov, I. Kaljurand, S. Selberg and I Leito, Eur. J. Org. Chem., 2021, 1407-1419.
- 11. R. S. Mancini, J. B. Lee and M. S. Taylor, Org. Biomol. Chem., 2017, 15, 132-143.
- 12. D. I. Batovska, S. Tsubota, Y. Kato, Y. Asano and M. Ubukata, Tetrahedron: Asymmetry, 2004, 15, 3551–3559.
- 13. D. Lee and M. S. Taylor, J. Am. Chem. Soc., 2011, 133, 3724-3727.
- 14. J. Bálint, G. Egri, A. Kolbert, C. Dianóczky, E. Fogassy, L. Novák and L. Poppe, Tetrahedron: Asymmetry, 1999, 10, 4017-4028.
- 15. P. Vertesaljai, P. V. Navaratne and A. J. Grenning, Angew. Chem. Int. Ed. 2016, 55, 317-320.
- 16. F. Li, N. Wang and G. Zhu, J. Org. Chem. 2015, 80, 3538-3546.
- 17. P. S. Kumar, R. Ravikumar, K. C. Ashalu and K. R. Reddy, Tetrahedron Letters. 2018, 59, 33-37.
- 18. C. R. Reddy, A. D. Patil and S. Z. Mohammed, Chem. Commun., 2020, 56, 7191-7194.