Supporting information for

Water mediated multicomponent reactions for the synthesis of novel spirooxindole derivatives and their antifungal activity

Min Zhang, Liang Shi, Li Chen, Zhengyu Liu, Ting Zhao, Chunyin Zhu* and Liuqing Yang*

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China E-mail: zhucycn@gmail.com; yangliuqing@ujs.edu.cn

List of contents

Figure S1. The ¹H NMR (400 MHz, DMSO- d_6) of 4a.

Figure S2. The ¹³C NMR (100 MHz, DMSO-*d*₆) of 4a.

Figure S3. The ¹H NMR (400 MHz, DMSO-*d*₆) of **4b**.

Figure S4. The 13 C NMR (100 MHz, DMSO- d_6) of 4b.

Figure S5. The ¹H NMR (400 MHz, DMSO-*d*₆) of **4c**.

Figure S6. The ¹³C NMR (100 MHz, DMSO-*d*₆) of **4c**.

Figure S7. The ¹H NMR (400 MHz, DMSO- d_6) of 4d.

Figure S8. The ¹³C NMR (100 MHz, DMSO-*d*₆) of 4d.

Figure S9. The ¹H NMR (400 MHz, DMSO-*d*₆) of **4e**.

Figure S10. The 13 C NMR (100 MHz, DMSO- d_6) of 4e.

Figure S11. The ¹H NMR (400 MHz, DMSO-*d*₆) of **5**a.

Figure S12. The ¹³C NMR (100 MHz, DMSO- d_6) of 5a.

Figure S13. The ¹H NMR (400 MHz, DMSO-*d*₆) of 5b.

Figure S14. The ¹³C NMR (100 MHz, DMSO-*d*₆) of **5b**.

Figure S15. The ¹H NMR (400 MHz, DMSO- d_6) of 5c.

Figure S16. The 13 C NMR (100 MHz, DMSO- d_6) of 5c.

Figure S17. The ¹H NMR (400 MHz, DMSO- d_6) of 5d.

Figure S18. The 13 C NMR (100 MHz, DMSO- d_6) of 5d.

Figure S19. The ¹H NMR (400 MHz, DMSO- d_6) of 5e.

Figure S20. The 13 C NMR (100 MHz, DMSO- d_6) of 5e.

Figure S21. The ¹H NMR (400 MHz, DMSO-*d*₆) of 5f.

Figure S22. The ¹³C NMR (100 MHz, DMSO-*d*₆) of 5f.

Figure S23. The ¹H NMR (400 MHz, DMSO-*d*₆) of 5g.

Figure S24. The 13 C NMR (100 MHz, DMSO- d_6) of 5g.

Figure S25. The ¹H NMR (400 MHz, DMSO-*d*₆) of 5h.

Figure S26. The ¹³C NMR (100 MHz, DMSO-*d*₆) of 5h.

Figure S27. The ¹H NMR (400 MHz, DMSO-*d*₆) of **5**i.

Figure S28. The ¹³C NMR (100 MHz, DMSO-*d*₆) of 5i.

Figure S29. The ¹H NMR (400 MHz, DMSO-*d*₆) of 5j.

Figure S30. The ¹³C NMR (100 MHz, DMSO-*d*₆) of 5j.

Figure S31. The ¹H NMR (400 MHz, DMSO-*d*₆) of **5**k.

Figure S32. The ¹³C NMR (100 MHz, DMSO-*d*₆) of 5k.

Figure S33. The ¹H NMR (400 MHz, DMSO-*d*₆) of 5l.

Figure S34. The ¹³C NMR (100 MHz, DMSO-*d*₆) of 51.

Figure S35. The ¹H NMR (400 MHz, DMSO-*d*₆) of **5m**.

Figure S36. The ¹³C NMR (100 MHz, DMSO-*d*₆) of 5m.

Figure S37. The ¹H NMR (400 MHz, DMSO-*d*₆) of **6a**.

Figure S38. The ¹³C NMR (100 MHz, DMSO-*d*₆) of **6a**.

Figure S39. The ¹H NMR (400 MHz, DMSO-*d*₆) of **6b**.

Figure S40. The 13 C NMR (100 MHz, DMSO- d_6) of 6b.

Figure S41. The ¹H NMR (400 MHz, DMSO-*d*₆) of **6c**.

Figure S42. The 13 C NMR (100 MHz, DMSO- d_6) of 6c.

Figure S43. The ¹H NMR (400 MHz, DMSO-*d*₆) of **6d**.

Figure S44. The ¹³C NMR (100 MHz, DMSO-*d*₆) of **6d**.

Figure S45. The ¹H NMR (400 MHz, DMSO- d_6) of 6e.

Figure S46. The ¹³C NMR (100 MHz, DMSO-*d*₆) of **6e**.

Figure S47. The ¹H NMR (400 MHz, DMSO-*d*₆) of **6f**.

Figure S48. The 13 C NMR (100 MHz, DMSO- d_6) of 6f.

Figure S49. The ¹H NMR (400 MHz, DMSO- d_6) of 6g.

Figure S50. The 13 C NMR (100 MHz, DMSO- d_6) of 6g.

Figure S51. The ¹H NMR (400 MHz, DMSO-*d*₆) of **6h**.

Figure S52. The 13 C NMR (100 MHz, DMSO- d_6) of 6h.

Figure S53. The ¹H NMR (400 MHz, DMSO-*d*₆) of 6i.

Figure S54. The ¹³C NMR (100 MHz, DMSO-*d*₆) of 6i.

Figure S55. The ¹H NMR (400 MHz, CDCl₃) of 7

Figure S56. The ¹³C NMR (100 MHz, CDCl₃) of 7