Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Revisiting Biginelli-like Reactions: Solvent Effects, Mechanisms, Biological Applications and Correction of Several Literature Reports

Pedro S. Beck,^a Arthur G. Leitão,^a Yasmin B. Santana,^a José R. Correa,^a Carime V. S. Rodrigues,^a Daniel

F. S. Machado,^a Guilherme D. R. Matos,^a Luciana M. Ramos,^b Claudia C. Gatto,^a Sarah C. C. Oliveira,^a Carlos K. Z. Andrade,^a and Brenno A. D. Neto,*^a

^a University of Brasilia, Chemistry Institute, Laboratory of Medicinal and Technological Chemistry. Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil. E-mail: brenno.ipi@gmail.com.

^b Universidade Estadual de Goiás (UEG), Anápolis, Goiás, 75001-970, Brazil.

^c University of Brasilia, Institute of Biology, Laboratory of Allelopathy, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.

Table of Content

List of Schemes	3
List of Tables	4
List of Figures	5
Schemes	8
Tables	9
Figures	18
Determination of numerical values	48
References	49

List of Schemes

Scheme S1. Synthesis reaction for the claimed structure of CPD-01 utilizing the
superacid imidazolium-based ionic liquid MSI ₃ PW
Scheme S2. Synthesis of the claimed CPD adducts and their respective yields based
on their theoretical masses

List of Tables

Table S1. Kamlet-Taft descriptors, yields for the claimed CPD as a function of solvent
variation and reagents' proportions, and E-factors9
Table S2. Melting point (mp) evaluation for the claimed CPD-01 structure reported
in the literature10
Table S3. A comparative assessment of experimental versus theoretical elemental
analysis (CHN) data for alleged CPDs structures. Specifically, for claimed CPD-01,
the data reveals a composition wherein approximately two molecules of DC-01
correlate with nearly one molecule of urea/thiourea11
Table S4. Indicative of whether these articles provide descriptions and/or FTIR
spectra for the claimed CPD-0112
Table S5. Indicative of whether these articles provide descriptions and/or mass
spectra for claimed CPD-01 13
Table S6. Indicative of whether these articles provide descriptions and/or ¹ H and
¹³ C NMR spectra for claimed CPD-01 14
Table S7. Indicative of whether these articles show descriptions for elemental
analysis and accuracy with respect to the expected values for the claimed CPD-01
structure15
Table S8 . Exploring reaction condition variations in the attempt to synthesize PCC-
01 . ^a 16
Table S9. Kamlet-Taft parameters used for solvent effect analysis

List of Figures

Figure S2. Correlations of reaction productivity (expressed as ln(P)) as a function of Kamlet-Taft parameters (α , β and π^*). All data refer to isolated yields of the model reaction (benzaldehyde, 4-hydroxycoumarin, and urea mixtures, 5 mol% of the catalyst at 80 °C for 60 min). Reactions proportion (mmol) from top to bottom: (i) Equimolar conditions i.e. 1.00 (benzaldehyde) : 1.00 (coumarin) : 1.00 (urea). (ii) Aldehyde excess i.e. 2.00 (benzaldehyde) : 1.00 (coumarin) : 1.00 (urea). (iii) Coumarin excess i.e. 1.00 (benzaldehyde) : 2.00 (coumarin) : 1.00 (urea). (iv) Urea Figure S3. (A) ¹H NRM (DMSO-d₆, 300 MHz) for claimed CPD-01 adduct. (B) ¹³C NRM (DMSO- d_6 , 75 MHz) for claimed **CPD-01** adduct. These two spectra are contaminated with urea......19 **Figure S4.** Reaction monitoring by HRMS using *p*-cymene as the solvent and at 80 °C......20 Figure S5. Reaction monitoring by HRMS using limonene as the solvent and at 80 °C......21 Figure S6. Reaction monitoring by HRMS using water as the solvent and at 80 °C. Figure S7. Reaction monitoring by HRMS using water as the solvent and at 100 °C. 4-Aminocoumarin was used instead of 4-hydroxycoumarin......23 Figure S8. Wheat coleoptile bioassay testing the synthesized DC derivatives contaminated with urea or thiourea (proportion of $\approx 2 \text{ DC}$: 1 urea/thiourea). Logran

is the positive control. CDPs 01, 03, 05, 07 and 08 are indeed and respectively DCs
01, 02, 03, 04 and 05 contaminated with urea. CPDs 02, 04 and 06 are respectively
DCs 01 , 02 , 03 , contaminated with thiourea24
Figure S9. Cellular division (mitosis) inhibition by DC-03 contaminated with urea
(proportion of $\approx 2 \text{ DC}$: 1 urea/thiourea). (A) Nuclei stained with the commercially
available DAPI (blue emitter). (B) Anti- α -Tubulin monoclonal antibody
(commercially available red emitter). (C) Merged images from (A)-(B). Remarkably,
despite the presence of those contaminant, DC-03 induced monoastral spindles in
mitotic cells
Figure S10. (A) ¹ H NMR spectrum (600 MHz, DMSO- d_6) of DC-01. (B) ¹³ C{ ¹ H} NMR
spectrum (150 MHz, DMSO- <i>d</i> ₆) of DC-01 26
Figure S11. 2D COSY NMR (600 MHz, DMSO- <i>d</i> ₆) for DC-01 27
Figure S12. 2D HSQC NMR (600 MHz and 150 MHz, DMSO- <i>d</i> ₆) for DC-01 28
Figure S13. 2D HMBC (600 MHz and 150 MHz, DMSO- <i>d</i> ₆) for DC-01 29
Figure S14. (A) ¹ H NMR spectrum (600 MHz, DMSO- d_6) of DC-02. (B) ¹³ C{ ¹ H} NMR
spectrum (150 MHz, DMSO- <i>d</i> ₆) of DC-02 30
Figure S15. (A) ¹ H NMR spectrum (600 MHz, DMSO- <i>d</i> ₆) of DC-03. (B) ¹³ C NMR
spectrum (150 MHz, DMSO- <i>d</i> ₆) of DC-03 31
Figure S16. (A) ¹ H NMR spectrum (600 MHz, DMSO- <i>d</i> ₆) of DC-04. (B) ¹³ C{1H} NMR
spectrum (150 MHz, DMSO- <i>d</i> ₆) of DC-04 32
Figure S17. (A) ¹ H NMR spectrum (600 MHz, DMSO- <i>d</i> ₆) of DC-05. (B) ¹³ C{1H} NMR
spectrum (150 MHz, DMSO- <i>d</i> ₆) of DC-05 33
Figure S18. (A) ¹ H NMR spectrum (600 MHz, DMSO- <i>d</i> ₆) of APC-01. (B) ¹³ C{1H} NMR
spectrum (150 MHz, DMSO- <i>d</i> ₆) of APC-01 34

Figure S19. (A) ¹ H NMR spectrum (600 MHz, CDCl ₃) of TCC-01. (B) ¹³ C{1H} NMR
spectrum (150 MHz, CDCl ₃) of TCC-01 35
Figure S20. (A) ¹ H NMR spectrum (600 MHz, DMSO- d_6) of 4-aminocoumarin.
(B) ¹³ C{1H} NMR spectrum (150 MHz, DMSO- d_6) of 4-aminocoumarin
Figure S21. FTIR (KBr) spectrum for DC-01
Figure S22. FTIR (KBr) spectrum for DC-02
Figure S23. FTIR (KBr) spectrum for DC-03
Figure S24. FTIR (KBr) spectrum for DC-04
Figure S25. FTIR (KBr) spectrum for DC-05
Figure S26. FTIR (KBr) spectrum for 4-aminocoumarin
Figure S27. FTIR (KBr) spectrum for APC-0140
Figure S28. FTIR (KBr) spectrum for TCC-0140
Figure S29. (A) ESI(+)-MS for DC-01. (B) ESI(+)-MS/MS for DC-0141
Figure S30. (A) ESI(+)-MS for DC-02. (B) ESI(+)-MS/MS for DC-0242
Figure S31. (A) ESI(+)-MS for DC-03. (B) ESI(+)-MS/MS for DC-0343
Figure S32. (A) ESI(+)-MS for DC-04. (B) ESI(+)-MS/MS for DC-0444
Figure S33. (A) ESI(+)-MS for DC-05. (B) ESI(+)-MS/MS for DC-0545
Figure S34. (A) ESI(+)-MS for APC-01. (B) ESI(+)-MS/MS for APC-0146
Figure S35. (A) ESI(+)-MS for TCC-01 . (B) ESI(+)-MS/MS for TCC-01 47

Scheme S1. Synthesis reaction for the claimed structure of **CPD-01** utilizing the superacid imidazolium-based ionic liquid MSI₃PW.

Scheme S2. Synthesis of the claimed **CPD** adducts and their respective yields based on their theoretical masses.

Tables

Table S1. Kamlet-Taft descriptors, yields for the claimed **CPD** as a function of solvent variation andreagents' proportions, and E-factors.

он с с с с с с с с с с с с с с с с с с с	0 + H₂N	O Ph H	(MSI) ₃ I Solve	nt (HN O CP	0 NH 0 D-01
	(MSI)₃PW 	(N(+	N~	yso₃H) ₃		
		Isol	PW ₁₂ O ₄₀	de (%)		
	R	eagents	propo	rtion (r	nmol)	
	С	oumar	in : Ald	ehyde :	Urea	
Solvent	Kamlet-Taft descriptors	1:1:1	2:1:1	1:2:1	1:1:2	E factor [†]
AcOEt	$lpha \ 0.00 \ eta \ 0.45 \ \pi^* \ 0.55$	74%	67%	72%	62%	47
MeCN	α 0.19 β 0.31 π* 0.75	63%	85%	65%	53%	41
Water	α 1.17 β 0.47 π* 1.09	94%	94%	90%	71%	36
[C ₄ C ₁ Im][BF ₄]	α 0.63 β 0.38 π* 1.04	69%	93%	83%	77%	38
[C ₄ C ₁ Im][NTf ₂]	α 0.62 β 0.23 π* 0.90	80%	90%	88%	59%	39
$[C_4C_1Im][PF_6]$	α 0.63 β 0.19 π* 1.02	71%	94%	75%	64%	37
CH ₂ Cl ₂	α 0.04 β -0.01 π* 0.79	74%	79%	80%	75%	44
EtOH	α 0.83 β 0.75 π* 0.51	77%	90%	75%	58%	39
Hexane	$\begin{array}{c} \alpha \ -0.08 \\ \beta \ 0.00 \\ \pi^* \ 0.00 \end{array}$	53%	63%	59%	44%	55
МеОН	α 0.93 β 0.66 π* 0.58	65%	92%	82%	52%	38
PhMe	$\alpha 0.00 \\ \beta 0.11 \\ \pi^* 0.54$	55%	72%	75%	50%	47

[†] Calculated for the best yield of each solvent.

2003	-	1
2006	162	2
2008	162-163	3
2014	210-212	4
2015	265-267	5
2016	162-163	6
2016	160-162	7
2017	160-162	8
2018	160-162	9
2018	160-162	10
2018	206	11
2018	160-162	12
2018	238-240	13
2019	165-167	14
2019	160-162	15
2020	163-165	16
2020	211-213	17
2020	160-162	18
2022	162-163	19
2022	160-162	20
2023	214-216	21
2023	210-212	22

Year of publication mp (°C) Reference

Table S3. A comparative assessment of experimental versus theoretical elemental analysis (CHN)data for alleged CPDs structures. Specifically, for claimed CPD-01, the data reveals a compositionwherein approximately two molecules of DC-01 correlate with nearly one molecule of urea/thiourea.

	ŀ	Experimental Da	Theorical Data			
Structure	Carbon Hydrogen (%) (%)		Nitrogen (%)	Carbon (%)	Hydrogen (%)	Nitrogen (%)
CPD-01	64.62	3.92	2.90	69.86	4.14	9.58
CPD-02	63.59	3.47	0.48	66.22	3.92	9.08
CPD-03	68.65	3.95	0.13	67.08	4.38	8.69
CPD-04	53.33	2.85	0.06	63.89	4.17	8.28
CPD-05	67.29	3.36	0.07	64.29	3.6	8.33
CPD-06	64.04	3.25	0.01	61.36	3.43	7.95
CPD-07	56.01	2.82	1.32	55.01	2.99	7.55
CPD-08	70.53	4.49	2.98	68.05	5.11	12.53

Table	S4 .	Indicative	of	whether	these	articles	provide	descriptions	and/or	FTIR	spectra	for	the
claime	d CI	PD-01.											

Year of publication	Experimental description	Available Spectrum	Reference
2003	-	-	1
2006	Yes	No	2
2008	Yes	No	3
2014	Yes	No	4
2015	Yes	No	5
2016	Yes	No	6
2016	Yes	No	7
2017	Yes	No	8
2018	Yes	No	9
2018	No	No	10
2018	Yes	No	11
2018	No	No	12
2018	Yes	Yes	13
2019	No	No	14
2019	Yes	No	15
2020	Yes	No	16
2020	No	Yes	17
2020	Yes	No	18
2022	Yes	No	19
2022	Yes	Yes	20
2023	Yes	Yes	21
2023	No	No	22

Table S5. Indicative of whether these articles provide descriptions and/or mass spectra for claimed

CPD-01.

Year of	Experimental	Ionization Source	Available	Deferrer
publication	Description	/ (<i>m/z</i> detected)	Spectrum	Reference
2003	-		-	1
2006	No		No	2
2008	Yes	Not available / (292.0)	No	3
2014	No		No	4
2015	No		No	5
2016	No		No	6
2016	Yes	ESI-(+) / (292.3)	No	7
2017	No		No	8
2018	No		No	9
2018	Yes	ESI-(+) / (292.3)	Yes	10
2018	No		No	11
2018	Yes	ESI-(+) / (292.3)	Yes	12
2018	Yes	Not available / (292)	No	13
2019	No		No	14
2019	Yes	ESI-(+) / (292.3)	Yes	15
2020	Yes	ESI-(+) / (293.3)	No	16
2020	No		No	17
2020	No		No	18
2022	Yes	Not available / (292.0)	No	19
2022	No		No	20
2023	No		No	21
2023	No	No	No	22

Table S6. Indicative of whether these articles provide descriptions and/or ¹H and ¹³C NMR spectra for claimed **CPD-01**.

	¹ H NM	IR	¹³ C NM		
Year	Experimental Description	Available spectrum	Experimental Description	Available spectrum	Reference
2003	-	-	-	-	1
2006	Yes	No	No	No	2
2008	Yes	No	No	No	3
2014	Yes	No	Yes	No	4
2015	Yes	No	Yes	No	5
2016	Yes	No	No	No	6
2016	Yes	Yes*	Yes	Yes	7
2017	Yes	No	No	No	8
2018	Yes	No	Yes	No	9
2018	Yes	Yes*	Yes	Yes*	10
2018	Yes	No	Yes	No	11
2018	Yes	Yes*	Yes	Yes*	12
2018	Yes	Yes	Yes	No	13
2019	Yes	Yes	No	No	14
2019	Yes	Yes*	Yes	Yes*	15
2020	Yes	No	Yes	No	16
2020	No	No	No	No	17
2020	Yes	No	Yes	No	18
2022	Yes	No	No	No	19
2022	No	No	No	No	20
2023	Yes	Yes	No	No	21
2023**	No	No	No	No	22

* Indicate the articles that likely have duplicate spectra among themselves. ** Available spectra for similar structures, but not for **CPD-01**.

Table S7. Indicative of whether these articles show descriptions for elemental analysis and accuracywith respect to the expected values for the claimed **CPD-01** structure.

Year of publication	Experimental Description	Accuracy	Calculate (%)	Found (%)	Reference	
2003	-	-	-	-	1	
			C 69.88	C 69.80		
2006	Yes	Yes	H 4.10	H 4.01	2	
			N 9.58	N 9.49		
			C 69.86	C 69.85		
2008	Yes	Yes	H 4.10	H 4.14	3	
			N 9.58	N 9.56		
2014	No	-	-	-	4	
			C 69.86	C 69.67		
2015	Yes	Yes	H 4.14	H 4.11	5	
			N 9.58	N 9.61		
			C 69.86	C 69.64		
2016	Yes	No*(a)	H 4.14	Н 3.96	6	
			N 9.58	N 9.69		
2016	No	-	-	-	7	
2017	No	-	-	-	8	
2017	No	-	-	-	9	
			C 69.86	C 70.02		
2018	Yes	Yes	H 4.14	H 4.18	10	
			N 9.58	N 9.69		
2018	No	-	-	-	11	
			C 69.86	C 70.02		
2018	Yes	Yes	H 4.14	H 4.18	12	
			N 9.58	N 9.69		
			C 69.86	C 70.00		
2018	Yes	Yes	H 4.14	H 4.27	13	
			N 9.58	N 9.60		
2019	No	-	-	-	14	
			C 69.86	C 70.02		
2019	Yes	Yes	H 4.14	H 4.18	15	
			N 9.58	N 9.69		
				C 69.86		
2020	Yes	Yes	Not available	H 4.14	16	
				N 9.58		
2020	No	-	-	-	17	
			C 69.86	C 69.92		
2020	Yes	Yes	H 4.14	H 4.22	18	
			N 9.58	N 9.70		
			C 69.86	C 69.85		
2022	Yes	No*(b)	H 4.10	H 4.14	19	
			N 9.58	N 5.30		
2022	No	-	-	-	20	
2023	No	-	-	-	21	
2023	No	-	-	-	22	

* = Chemical formula calculated based on experimental CHN: (a) $C_{17}H_{11}N_2O_3$; (b) $C_{31}H_{22}N_2O_7$. The results of elemental analyses in red highlight that the values have been triplicated in different publications. The value highlighted in blue indicates that the obtained value is exactly equal to the theoretical value. **01**.ª

Entry	Solvent	Temperature (°C)	Time	Catalyst	Product	Yield
1	Ethanol	50	30 min	HC1	DC-01	51%
2	Ethanol	60	30 min	HC1	DC-01	53%
3	Ethanol	70	30 min	HC1	DC-01	52%
4	Ethanol	80	30 min	HCl	DC-01	44%
5	Ethanol	90	30 min	HC1	DC-01	48%
6	Ethanol	100	30 min	HCl	DC-01	44%
7	Ethanol	60	2 h	HCl	DC-01	47%
8	Ethanol	60	3 h	HC1	DC-01	44%
9	Ethanol	60	4 h	HCl	DC-01	44%
10	Ethanol	60	5 h	HC1	DC-01	45%
11	Ethanol	60	6 h	HC1	DC-01	48%
12	Ethanol	70	6 h	HCl	DC-01	43%
13	Ethanol	80	6 h	HCl	DC-01	42%
14	Ethanol	90	6 h	HC1	DC-01	43%
15	Ethanol	100	6 h	HC1	DC-01	47%
16	Ethanol	60	24 h	HC1	DC-01	44%
17	Ethanol	100	24 h	HC1	DC-01	38%
18	Ethanol	60	48 h	HCl	DC-01	48%
19	Ethanol	100	48 h	HC1	DC-01	38%
20	Ethanol	60	30 min	(MSI) ₃ PW	DC-01	73%
21	Ethanol	60	24 h	(MSI) ₃ PW	DC-01	81%
22	Ethanol	100	30 min	(MSI) ₃ PW	DC-01	55%
23	Ethanol	100	24 h	(MSI) ₃ PW	DC-01	88%
24	Ethanol	60	30 min	KOtBu	DC-01	65%
25	Ethanol	60	24 h	KOtBu	DC-01	80%
26	t-Butanol	60	30 min	KOtBu	DC-01	66%
27	t-Butanol	60	24 h	KOtBu	DC-01	65%
28	Solventless	60	15 min	MWI ^b	DC-01	40%

^a No condition allowed the formation of **ACP-01**. ^b Microwave irradiation.

Solvent	α	β	π*
1,4-Dioxane	0.00	0.37	0.55
Acetone	0.08	0.43	0.71
AcOEt	0.00	0.45	0.55
BMI.BF ₄	0.63	0.38	1.04
BMI.NTf ₂	0.62	0.23	0.90
BMI.PF ₆	0.63	0.38	1.04
CF ₃ CH ₂ OH	1.51	0.00	0.73
CHCl ₂	0.04	-0.01	0.79
CHCl ₃	0.20	0.10	0.58
Cyclohexane	0.00	0.00	0.00
EtOH	0.83	0.75	0.51
H ₂ O	1.17	0.47	1.09
Hexane	-0.08	0.00	0.00
Limonene	0.00	0.00	0.16
MeCN	0.19	0.31	0.75
MeOH	0.93	0.66	0.58
<i>n</i> -OcOH	0.77	0.81	0.4
<i>p</i> -Cymene	0.00	0.13	0.39
t-BuOH	0.68	0.93	0.41
THF	0.00	0.55	0.58
Toluene	0.00	0.11	0.54
Triethylamine	0.00	0.71	0.14

Table S9. Kamlet-Taft parameters used for solvent effect analysis.

Figures

Figure S1. Conditions optimization for the attempts to synthesize **CPD-01**. (Left) Temperature optimization. (Center) Catalyst amount optimization. (Right) Time optimization.

Figure S2. Correlations of reaction productivity (expressed as $\ln(P)$) as a function of Kamlet-Taft parameters (α , β and π^*). All data refer to isolated yields of the model reaction (benzaldehyde, 4-hydroxycoumarin, and urea mixtures, 5 mol% of the catalyst at 80 °C for 60 min). Reactions proportion (mmol) from top to bottom: (i) Equimolar conditions i.e. 1.00 (benzaldehyde) : 1.00 (coumarin) : 1.00 (urea). (ii) Aldehyde excess i.e. 2.00 (benzaldehyde) : 1.00 (coumarin) : 1.00 (urea). (iii) Coumarin excess i.e. 1.00 (benzaldehyde) : 2.00 (coumarin) : 1.00 (urea). (iv) Urea excess i.e. 1.00 (benzaldehyde) : 1.00 (urea). (iv) Urea excess i.e. 1.00 (benzaldehyde) : 1.00 (coumarin) : 2.00 (urea).

Figure S3. (A) ¹H NRM (DMSO-*d*₆, 300 MHz) for claimed **CPD-01** adduct. (B) ¹³C{¹H} NRM (DMSO-*d*₆, 75 MHz) for claimed **CPD-01** adduct. These two spectra are contaminated with urea. Note the number of hydrogens and carbons do not fit the claimed **CPD-01** structure.

Figure S4. Reaction monitoring by HRMS using *p*-cymene as the solvent and at 80 °C.

Figure S5. Reaction monitoring by HRMS using limonene as the solvent and at 80 °C.

Figure S6. Reaction monitoring by HRMS using water as the solvent and at 80 °C.

Figure S7. Reaction monitoring by HRMS using water as the solvent and at 100 °C. 4-Aminocoumarin was used instead of 4-hydroxycoumarin.

Figure S8. Wheat coleoptile bioassay testing the synthesized DC derivatives contaminated with urea or thiourea (proportion of ≈ 2 DC : 1 urea/thiourea). Logran is the positive control. CDPs 01, 03, 05, 07 and 08 are indeed and respectively DCs 01, 02, 03, 04 and 05 contaminated with urea. CPDs 02, 04 and 06 are respectively DCs 01, 02, 03, contaminated with thiourea.

Figure S9. Cellular division (mitosis) inhibition by **DC-03** contaminated with urea (proportion of ≈ 2 **DC** : 1 urea/thiourea). (A) Nuclei stained with the commercially available DAPI (blue emitter). (B) Anti- α -Tubulin monoclonal antibody (commercially available red emitter). (C) Merged images from (A)-(B). Remarkably, despite the presence of those contaminant, **DC-03** induced monoastral spindles in mitotic cells.

Figure S10. (A) ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of **DC-01.** (B)¹³C{¹H} NMR spectrum (150 MHz, DMSO-*d*₆) of **DC-01**.

Figure S11. 2D COSY NMR (600 MHz, DMSO-*d*₆) for **DC-01**.

Figure S12. 2D HSQC NMR (600 MHz and 150 MHz, DMSO-*d*₆) for **DC-01**.

Figure S13. 2D HMBC (600 MHz and 150 MHz, DMSO-*d*₆) for **DC-01**.

Figure S14. (A) ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of **DC-02.** (B)¹³C{¹H} NMR spectrum (150 MHz, DMSO-*d*₆) of **DC-02**.

Figure S15. (A) ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of **DC-03.** (B)¹³C{¹H} NMR spectrum (150 MHz, DMSO-*d*₆) of **DC-03**.

Figure S16. (A) ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of **DC-04.** (B)¹³C{¹H} NMR spectrum (150 MHz, DMSO-*d*₆) of **DC-04**.

Figure S17. (A) ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of **DC-05.** (B)¹³C{¹H} NMR spectrum (150 MHz, DMSO-*d*₆) of **DC-05**.

(B)

Figure S18. (A) ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of **APC-01.** (B)¹³C{¹H} NMR spectrum (150 MHz, DMSO-*d*₆) of **APC-01**.

Figure S19. (A) ¹H NMR spectrum (600 MHz, CDCl₃) of **TCC-01.** (B)¹³C{¹H} NMR spectrum (150 MHz, CDCl₃) of **TCC-01**.

Figure S20. (A) ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of 4-aminocoumarin. (B)¹³C{¹H} NMR spectrum (150 MHz, DMSO-*d*₆) of 4-aminocoumarin.

Figure S21. FTIR (KBr) spectrum for DC-01.

Figure S22. FTIR (KBr) spectrum for DC-02.

Figure S23. FTIR (KBr) spectrum for DC-03.

Figure S24. FTIR (KBr) spectrum for DC-04.

Figure S25. FTIR (KBr) spectrum for DC-05.

Figure S26. FTIR (KBr) spectrum for 4-aminocoumarin.

Figure S27. FTIR (KBr) spectrum for APC-01.

Figure S28. FTIR (KBr) spectrum for TCC-01.

Figure S29. (A) ESI(+)-MS for **DC-01**. (B) ESI(+)-MS/MS for **DC-01**.

Figure S30. (A) ESI(+)-MS for **DC-02**. (B) ESI(+)-MS/MS for **DC-02**.

Figure S31. (A) ESI(+)-MS for **DC-03**. (B) ESI(+)-MS/MS for **DC-03**.

Figure S32. (A) ESI(+)-MS for **DC-04**. (B) ESI(+)-MS/MS for **DC-04**.

Figure S33. (A) ESI(+)-MS for **DC-05**. (B) ESI(+)-MS/MS for **DC-05**.

Figure S34. (A) ESI(+)-MS for **APC-01**. (B) ESI(+)-MS/MS for **APC-01**.

Figure S35. (A) ESI(+)-MS for **TCC-01**. (B) ESI(+)-MS/MS for **TCC-01**.

Determination of numerical values

Productivity is formally expressed as the molar ratio of the produced output to the unreacted limiting reagent. This can be determined through the following equation:

$$Productivity = \frac{n_{product}}{(1 - Yield) * n_{LimitingReactant}} \equiv \frac{Yield}{1 - Yield}$$

Example: In the synthesis of DC-01, 0.297 g of the compound was obtained from a reaction involving 2 mmol of 4-hydroxycoumarin and 1 mmol of benzaldehyde. This yield corresponds to approximately 0.72 mmol, resulting in a 72% yield. Calculating the productivity using the productivity equation, the value for this synthesis is 2.57, as demonstrated below.

$$\frac{0.72 \ mmol}{(1 - 0.72) * 1 \ mmol} \equiv \frac{0.72}{1 - 0.72} = 2.57$$

The impact of the solvent was investigated by correlating the Kamlet-Taft solvatochromic parameters of each solvent with the natural logarithm of productivity.

References

- 1. G. Sabitha, G. K. K. Reddy, K. B. Reddy and J. Yadav, *Tetrahedron Lett.*, 2003, 44, 6497-6499.
- 2. M. Kidwai, S. Saxena and R. Mohan, *Russ. J. Org. Chem.*, 2006, **42**, 52-55.
- 3. M. Kidwai, Priya and S. Rastogi, Z. Naturforsch. B, 2008, 63, 71-76.
- 4. P. K. Ambre, R. R. S. Pissurlenkar, R. D. Wavhale, M. S. Shaikh, V. M. Khedkar, B. Wan, S. G. Franzblau and E. C. Coutinho, *Med. Chem. Res.*, 2014, **23**, 2564-2575.
- 5. H. Mehrabi and M. Baniasad-Dashtabi, J. Chem. Res., 2015, **39**, 294-295.
- 6. S. Abdolmohammadi and S. Karimpour, *Chin. Chem. Lett.*, 2016, **27**, 114-118.
- 7. P. K. Sahu, *RSC Adv.*, 2016, **6**, 67651-67661.
- 8. S. Sadjadi, M. M. Heravi and M. Malmir, *Res. Chem. Interm.*, 2017, **43**, 6701-6717.
- 9. S. Sadjadi, M. M. Heravi and M. Malmir, *Appl. Organomet. Chem.*, 2018, **32**, e4286.
- 10. P. K. Sahu, P. K. Sahu, M. S. Kaurav, M. Messali, S. M. Almutairi, P. L. Sahu and D. D. Agarwal, *ACS Omega*, 2018, **3**, 15035-15042.
- 11. S. Sadjadi, M. M. Heravi, V. Zadsirjan, S. Y. S. Beheshtiha and R. R. Kelishadi, *ChemistrySelect*, 2018, **3**, 12031-12038.
- 12. P. K. Sahu, P. K. Sahu, M. S. Kaurav, M. Messali, S. M. Almutairi, P. L. Sahu and D. D. Agarwal, *RSC Adv.*, 2018, **8**, 33952-33959.
- 13. M. R. Bhosle, D. B. Wahul, G. M. Bondle, A. Sarkate and S. V. Tiwari, *Synth. Commun.*, 2018, **48**, 2046-2060.
- 14. L. Rout, A. Kumar, P. K. Chand, L. S. K. Achary and P. Dash, *ChemistrySelect*, 2019, **4**, 5696-5706.
- 15. M. S. Kaurav, P. K. Sahu, P. K. Sahu, M. Messali, S. M. Almutairi, P. L. Sahu and D. D. Agarwal, *RSC Adv.*, 2019, **9**, 3755-3763.
- 16. J. Puvithra and D. Parthiban, *Asian J. Chem.*, 2020, **32**, 2067-2074.
- 17. M. M. Heravi, T. Hosseinnejad, M. Tamimi, V. Zadsirjan and M. Mirzaei, *J. Mol. Struct.*, 2020, **1205**, 127598.
- 18. Y. I. Shaikh, S. S. Shaikh, K. Ahmed, G. M. Nazeruddin and V. S. Shaikh, *Orient. J. Chem.*, 2020, **36**, 415-418.
- 19. A. K. Bhagi, K. P. Singh, A. Kumar, Priya and N. Manav, *Indian J. Chem.*, 2022, **61**, 1173-1179.
- 20. Z. Besharati, M. Malmir and M. M. Heravi, *Inorg. Chem. Commun.*, 2022, **143**, 109813.
- 21. F. Ghobakhloo, D. Azarifar and M. Mohammadi, J. Phys. Chem. Solids, 2023, 175, 111222.
- 22. P. Ghamari Kargar and G. Bagherzade, *Sci. Rep.*, 2023, **13**, 19104.