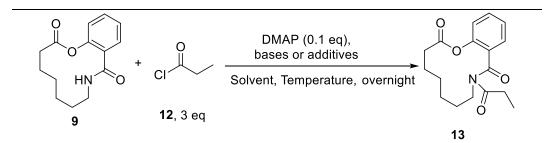
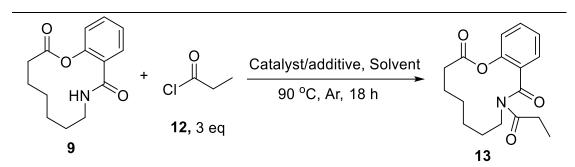
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024


Table of Contents

1) General Information	2
2) N-Acylation Optimisation Tables	3–6
3) Synthetic procedures and characterisation data	7–44
4) ¹ H and ¹³ C NMR spectra	45-81
5) Bioassay Information	82–92
6) References	93

1) General Information


Except where stated, all reagents were purchased from commercial sources and used without further purification. Anhydrous CH₂Cl₂ and THF were obtained from an Innovative Technology Inc. PureSolv[®] solvent purification system. ¹H NMR, ¹³C NMR, and ³¹P spectra were recorded on a JEOL ECX400 or JEOL ECS400 spectrometer (operating at 400 MHz and 100 MHz). All Spectroscopic data was acquired at 295 K unless stated otherwise. Chemical shifts (δ) are quoted in parts per million (ppm). The residual solvent peaks, $\delta_{\rm H}$ 7.26 and δ_c 77.16 for CDCl₃ were used as a reference. Coupling constants (*J*) are reported in Hertz (Hz) to the nearest 0.1 Hz. The multiplicity abbreviations used are: br s broad singlet, s singlet, d doublet, br d broad doublet, t triplet, br t broad triplet, q quartet, p pentet, dd, doublet of doublets, ddd doublet of doublet of doublets, dddd doublet of doublet of doublet of doublets, dt doublet of triplets, ddt doublet of doublet of triplets, td triplet of doublets, m multiplet. Signal assignment was achieved by analysis of DEPT, COSY, HMBC and HSQC experiments where required. In cases where products were formed as a mixture of rotamers, their ratio was determined by integration of signals in the ¹H NMR spectrum. Infrared (IR) spectra were recorded on a PerkinElmer UATR 2 spectrometer as a thin film dispersed from either CH_2Cl_2 or $CDCl_3$. Mass spectra (high-resolution) were obtained by the University of York Mass Spectrometry Service, using Electrospray Ionisation (ESI) on a Bruker Daltonics, Micro-tof spectrometer. Melting points were determined using Gallenkamp apparatus. Thin layer chromatography was carried out on Merck silica gel 60F₂₅₄ pre-coated aluminium foil sheets and were visualised using UV light (254 nm) and stained with basic aqueous potassium permanganate. Flash column chromatography was carried out using slurry packed Fluka silica gel (SiO₂), 35–70 µm, 60 Å, under a light positive pressure, eluting with the specified solvent system.

2) <u>N-Acylation Optimisation Tables</u>

Entry	Solvent and	Bases and	Isolated yield of 13 (%)	
	Temperature (°C)	additives		
1	DCE, 90	pyridine (6 eq)	28	
2	DCE, 90	4-picoline (6 eq)	0	
3	DCE, 90	NEt ₃ (6 eq)	0	
4	DCE, 90	imidazole (6 eq)	0	
5	DCE, 90	CuO (2 eq)	27	
6	DCE, 90	$Zn(OAc)_2$ (2 eq)	0	
7	toluene, 90	CuO (2 eq)	10	
8	benzene, 90	CuO (2 eq)	30	
9	1,4-dioxane, 90	CuO (2 eq)	0	

Table S1: Initial optimization of the *N*-acylation of lactam 9. Yield refers to isolated yield of product following purification by column chromatography.

Entry	Catalyst	additive	solvent	Ratio of 9:13
1	CuO (0.4 eq)	DMAP (0.4 eq)	DCE	69: 31
2	CuO (0.4 eq)	DMAP (0.4 eq)	benzene	51: 49
3	CuO (0.4 eq)		DCE	80: 20
4	CuO (0.4 eq)		benzene	48: 52
5	CuO (0.4 eq)	Imidazole	benzene	93:7
6	CuO (0.4 eq)	Pyridine	benzene	51:49
7	CuO (0.4 eq)	NEt ₃	benzene	100:0
8	CuO (0.4 eq)	NMM	benzene	30:70

 Table S2 Optimization of different conditions using CuO as a catalyst. Ratio of 9:13 was measured by integration of signals in the ¹H NMR spectrum of the unpurified reaction mixtures.

$\begin{array}{c} 0 \\ + \\ + \\ 0 \\ + \\ 0 \\ + \\ 0 \\ 12, 3 eq \end{array}$ $\begin{array}{c} CuO, NMM \\ \hline benzene, 90 \ ^{\circ}C, Ar, 18 h \\ \hline 0 \\ + \\ 13 \\ 13 \\ \end{array}$					
Entry	CuO (eq)	NMM (eq)	Other bases (eq)	Ratio of 9:13	
1	2	4.0		42: 58	
2	2	1.0		12: 88	
3	0.2	6.0		5:95	
4	0.2	6.0	DMAP (0.1)	9:91	
5	0.2	4.0	Pyridine (2.0)	11:89	

 Table S3: Optimization of different equivalents of CuO and NMM in benzene. Ratio of 9:13

 was measured by integration of signals in the ¹H NMR spectrum of the unpurified reaction mixtures.

) `o ⁺ c	solver t 12	O, NMM (6 eq) nt, temperature, ime, Argon		
Entry	CuO (eq)	12 (eq)	Solvent	Temperature (°C)	Time (hour)	Yield of 13 (%) ^a
1	0.2	3.0	benzene	90	18	92
2	0.1	3.0	benzene	90	18	93 (84 ^b)
3	0.1	3.0	cyclohexane	90	18	78
4	0.1	3.0	benzene	50	18	82
5	0.1	3.0	benzene	65	18	88
6	0.1	3.0	benzene	80	18	97 (92) ^b
7	0.1	2.0	benzene	80	18	60
8	0.1	1.5	benzene	80	18	45
9	0.1	3.0	benzene	80	6	84
10	0.1	3.0	benzene	80	1	82
11	0.1	3.0	benzene	80	18	96°

Table S4: Final optimisation reactions. ^a Yields were determined by ¹H NMR using 1,3,5

 trimethoxybenzene as an internal standard. ^b Isolated yield; ^c Reaction without argon.

3) Synthetic procedures and characterisation data

General procedure for acid chloride formation

$$HO \xrightarrow{O}_{n} XR \xrightarrow{(COCI)_2, DCM}_{DMF (cat)} O \xrightarrow{O}_{n} XR$$

Oxalyl chloride (3 mmol) was added to a suspension of carboxylic acid (1 mmol) in DCM (5 mL), followed by a catalytic amount of DMF (1 drop/mmol of carboxylic acid). The resulting mixture was stirred at RT for 1 h and concentrated *in vacuo* to remove all solvent and excess oxalyl chloride, affording the acid chloride, which was dried with a high vacuum for 1 h at RT before use.

(S)-Decahydro-1H-pyrrolo[1,2-a][1,4]diazacycloundecine-1,9(2H)-dione (7)

A mixture of azocan-2-one (635 mg, 5 mmol), DMAP (61 mg, 0.5 mmol) and pyridine (2.42 mL, 30 mmol) in DCM (35 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of Fmoc-Pro-Cl (7.5 mmol, 1.50 equiv., freshly prepared from Fmoc-Pro-OH using the general procedure) in DCM (18 mL) was added and the resulting mixture was refluxed at 50 °C for 16 h. The mixture was then diluted with DCM (150 mL) and washed with 10% aq. HCl (150 mL). The aqueous layer was then extracted with DCM (3×100 mL) and the combined organic extracts dried over MgSO4 and concentrated in vacuo. The crude material was then re-dissolved in DCM (60 mL) and DBU (7.6 mL, 50 mmol) was added, followed by stirring at RT overnight, before the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 10:1 hexane: ethyl acetate \rightarrow 1:1 hexane: ethyl acetate \rightarrow ethyl acetate) afforded the *title compound* as a white solid (430 mg, 52%); $R_f = 0.18$ (19:1 ethyl acetate: methanol); $[\alpha]_D^{21} = -4.3$ (1.1 mg/mL in CHCl₃); δ_H (400 MHz, CDCl₃) 5.97 (d, J = 10.3 Hz, 1H, NH), 4.35 (dd, J = 9.0 Hz, 3.7 Hz, 1H, NCH), 3.95 – 3.85 (m, 1H, NCH₂), 3.70 – 3.42 (m, 2H, NCH₂), 3.00 – 2.92 (m, 1H, NCH₂), 2.47 – 1.25 (m, 10H, 5 × CH₂), 1.06 – 0.82 (m, 2H, CH₂); δ_C (100 MHz, CDCl₃) 174.1 (CO), 173.3 (CO), 62.5 (NCH), 47.2 (NCH₂), 39.4 (NHCH₂), 32.0 (CH₂), 31.8 (CH₂), 29.1 (CH₂), 26.0 (CH₂), 24.3 (CH₂), 23.2 (CH₂), 22.5 (CH₂). HRMS (ESI): calcd. for C₁₂H₂₀N₂NaO₂, 247.1417. Found: [MNa]⁺, 247.1418 (-0.3 ppm error). Spectroscopic data are consistent with those previously reported.^[1]

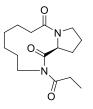
5-Benzyl-1,5-diazacyclododecane-2,6-dione (8)

A mixture of azocan-2-one (500 mg, 3.93 mmol), DMAP (50 mg, 0.393 mmol) and pyridine (1.90 mL, 23.6 mmol) in DCM (30 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride (5.89 mmol, 1.50 equiv., freshly prepared from N-benzyl β-alanine using the general procedure) in DCM (15 mL) was added and the resulting mixture was refluxed at 50 °C for 16 h. The mixture was then diluted with DCM (150 mL) and washed with 10% aq. HCl (150 mL). The aqueous layer was then extracted with DCM (3×100 mL) and the combined organic extracts dried over MgSO4 and concentrated in vacuo. The crude material was then re-dissolved in DCM (40 mL) and DBU (6 mL, 39.3 mmol) was added, followed by stirring at RT overnight, before the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow 9:1 ethyl acetate: methanol) afforded the title compound (as a 5:1 mixture of rotamers) as a colorless oil (780 mg, 69%); Rf = 0.42 (9:1 ethyl acetate: methanol); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.37 – 7.27 (m, 3H, Ar-CH), 7.18 -7.10 (m, 2H, Ar-CH), 6.46 (d, J = 9.4 Hz, 1H, NH), 4.90 (d, J = 16.9 Hz, 1H, NCH₂), 4.41 $(d, J = 16.9 \text{ Hz}, 1\text{H}, \text{NCH}_2), 4.55 \text{ (dddd}, J = 14.5, 9.4, 5.1, 1.3 \text{ Hz}, 1\text{H}, \text{CH}_2), 3.75 \text{ (dddd}, J = 14.5, 9.4, 5.1, 1.3 \text{ Hz}, 1\text{H}, \text{CH}_2)$ 13.4, 9.5, 7.5, 6.2 Hz, 1H, CH₂), 2.92 - 2.83 (m, 1H, CH₂), 2.77 (dt, J = 15.7, 5.2 Hz, 1H, CH₂), 2.59 (ddd, *J* = 15.6, 9.5, 5.7 Hz, 1H, CH₂), 2.49 (ddd, *J* = 14.8, 10.4, 2.0 Hz, 1H, CH₂), 2.13 (ddd, J = 14.8, 8.2, 2.0 Hz, 1H, CH₂), 1.63 – 1.39 (m, 8H, 4 × CH₂); $\delta_{\rm C}$ (100 MHz, CDCl₃) 176.0 (CO), 170.3 (CO), 136.5 (Ar-C), 129.1 (Ar-CH), 127.8 (Ar-CH), 126.5 (Ar-CH), 51.7 (NCH₂Ph), 40.8 (NCH₂), 39.1 (CH₂), 35.2 (CH₂), 32.4 (CH₂), 27.5 (CH₂), 25.7 (CH₂), 23.8 (CH₂), 22.1 (CH₂). HRMS (ESI): calcd. for C₁₇H₂₅N₂O₂, 289.1911. Found: [MH]⁺, 289.1907 (1.2 ppm error). Spectroscopic data are consistent with those previously reported.^[2]

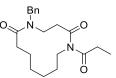
4,5,6,7,8,9-Hexahydro-2H-benzo[b][1]oxa[5]azacyclododecine-2,10(3H)-dione (9)

A mixture of azacyclooctan-2-one (500 mg, 3.93 mmol), DMAP (50 mg, 0.393 mmol) and pyridine (1.9 mL, 23.6 mmol) in DCM (30 mL) under an argon atmosphere was stirred at RT

for 5 mins. Next, a solution of O-benzyl salicyloyl chloride (5.89 mmol, 1.50 equiv. prepared from O-benzyl salicylic acid using the general procedure) in DCM (15 mL) was added and the resulting mixture was heated, at reflux, at 50 °C for 16 h. An additional solution of O-benzyl salicyloyl chloride (5.89 mmol, 1.50 equiv. prepared from O-benzyl salicylic acid using the general procedure) in DCM (15 mL) was then added and the mixture was heated at reflux at 50 °C for a further 16 h to achieve reaction completion. The solvent was then concentrated in vacuo, loaded onto a short silica plug and eluted with 2:1 hexane:ethyl acetate, to remove the majority of excess carboxylic acid and pyridine residues, and concentrated in vacuo. This material was redissolved in ethyl acetate (40 mL) and placed under an argon atmosphere. Palladium on carbon (390 mg, Pd 10% on carbon) was then added and the reaction vessel was backfilled with hydrogen (via balloon) several times, then stirred at RT under a slight positive pressure of hydrogen (balloon) for 1 h. The reaction was then purged with argon, filtered through Celite, washed with methanol and the solvent was removed in vacuo. The crude material was then re-dissolved in chloroform (40 mL) and triethylamine (825 µL, 5.89 mmol) added, and stirred at RT for 16 h, then reduced in vacuo. Purification by flash column chromatography (SiO₂, 2:1 hexane: ethyl acetate \rightarrow ethyl acetate) afforded the *title compound* as a white solid (520 mg, 54%); $R_f = 0.62$ (ethyl acetate); δ_H (400 MHz, CDCl₃) 7.74 (dd, J =7.7, 1.8 Hz, 1H, Ar-CH), 7.44 (ddd, J = 8.2, 7.4, 1.8 Hz, 1H, Ar-CH), 7.37 – 7.23 (m, 1H, Ar-CH), 7.06 (dd, J = 8.2, 1.2 Hz, 1H, Ar-CH), 6.46 (brs, 1H, NH), 3.60 – 3.36 (m, 2H, CH₂NH), 2.79 - 2.56 (m, 2H, CH2COO), 1.92 - 1.84 (m, 2H, CH2), 1.74 - 1.67 (m, 2H, CH2), 1.64 -1.52 (m, 4H, 2 × CH₂); δ_C (100 MHz, CDCl₃) 172.0 (CO), 165.4 (CO), 147.2 (Ar-C), 131.6 (Ar-CH), 130.6 (Ar-CH), 129.1 (Ar-C), 126.6 (Ar-CH), 123.3 (Ar-CH), 40.2 (CH₂NH), 34.6 (CH₂CO), 26.4 (CH₂), 25.8 (CH₂), 24.7 (CH₂), 22.5 (CH₂); HRMS (ESI): calcd. For C₁₄H₁₇NNaO₃, 270.1101. Found: [MNa]⁺, 270.1101 (-0.2 ppm error). Spectroscopic data are consistent with those previously reported.^[1]

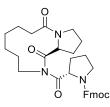

9-Propanoyl-4,5,6,7,8,9-hexahydro-2*H*-1,9-benzoxazacyclododecine-2,10(3*H*)-dione (13)

A mixture of lactam 9 (49.4 mg, 0.20 mmol), CuO (1.6 mg, 0.02 mmol) and NMM (0.132 mL, 1.20 mmol) in benzene (1.0 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of propionyl chloride 12 (0.60 mmol, 3 equiv.) in benzene (1.0 mL) was added

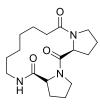

and the resulting mixture was refluxed at 80 °C for 16 h. The mixture was then directly concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 10:1 hexane: ethyl acetate \rightarrow 1:1 hexane: ethyl acetate) afforded the *title compound* as a colorless oil (55.5 mg, 92%); R_f = 0.60 (hexane: ethyl acetate = 1:1); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.51 – 7.44 (m, 2H, Ar-CH), 7.36 – 7.29 (m, 1H, Ar-CH), 7.17 – 7.13 (m, 1H, Ar-CH), 4.04 (s, 2H, NCH₂), 2.65 – 2.39 (m, 2H, CH₂), 2.20 (q, *J* = 7.2 Hz, 2H, CH₂), 1.83 (d, *J* = 6.8 Hz, 2H, CH₂), 1.72 (q, *J* = 6.3 Hz, 2H, CH₂), 1.56 – 1.39 (m, 4H, 2 × CH₂), 0.99 (t, *J* = 7.2 Hz, 3H, CH₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 176.8 (CO), 172.3 (CO), 169.9 (CO), 146.5 (Ar-C), 132.2 (Ar-C), 131.4 (Ar-CH), 128.6 (Ar-CH), 126.5 (Ar-CH), 123.1 (Ar-CH), 44.0 (NCH₂), 34.1 (CH₂), 31.4 (CH₂), 27.4 (CH₂), 25.6 (CH₂), 24.0 (CH₂), 22.9 (CH₂), 9.6 (CH₃); HRMS (ESI): calcd. For C₁₇H₂₁NNaO₄, 326.1363. Found: [MNa]⁺, 326.1363 (-0.1 ppm error).

2-Propanoyldecahydro-1*H*-pyrrolo[1,2-*a*][1,4]diazacycloundecine-1,9(2*H*)-dione (14)

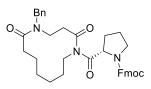
A mixture of lactam 7 (22.4 mg, 0.10 mmol), CuO (0.8 mg, 0.01 mmol) and NMM (0.066 mL, 0.60 mmol) in benzene (0.5 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of propionyl chloride 12 (0.30 mmol, 3 equiv.) in benzene (0.5 mL) was added and the resulting mixture was refluxed at 80 °C for 16 h. The mixture was then diluted with DCM (10 mL) and washed with 10% aq. HCl (10 mL). The aqueous layer was then extracted with DCM $(3 \times 5 \text{ mL})$ and the combined organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 10:1 hexane: ethyl acetate \rightarrow 1:1 hexane: ethyl acetate \rightarrow ethyl acetate) afforded the *title compound* as a white solid (23 mg, 72%); $R_f = 0.24$ (ethyl acetate); δ_H (400 MHz, CDCl₃) 5.08 (dd, J = 8.6, 2.7 Hz, 1H, NCH), 4.27 (dt, *J* = 14.8, 6.2 Hz, 1H, NCH₂), 3.37 (ddd, *J* = 14.8, 7.7, 6.1 Hz, 1H, NCH₂), 3.74 (ddd, J = 12.3, 8.5, 4.1 Hz, 1H, NCH₂), 3.65 (dt, J = 11.7, 7.7 Hz, 1H, NCH₂), 2.64 – 2.51 (m, 2H, CH₂), 2.47 – 2.37 (m, 1H, CH₂), 1.89 (dtt, *J* = 12.6, 7.6, 3.9 Hz, 1H, CH₂), 2.34 – 2.20 (m, 2H, CH₂), 2.15 – 1.98 (m, 2H, CH₂), 1.81 – 1.70 (m, 2H, CH₂), 1.69 – 1.62 (m, 2H, CH₂), 1.57 – 1.47 (m, 1H, CH₂), 1.41 – 1.29 (m, 1H, CH₂), 1.26 – 1.11 (m, 5H, CH₃ + CH₂); δ_C (100 MHz, CDCl₃) 179.4 (CO), 177.4 (CO), 172.6 (CO), 63.5 (NCH), 47.6 (NCH₂), 42.2 (NCH₂), 32.0 (CH₂), 31.0 (CH₂), 29.6 (CH₂), 25.1 (CH₂), 23.2 (CH₂), 22.4 (CH₂), 22.3 (CH₂), 20.3 (CH₂), 8.9 (CH₃); HRMS (ESI): calcd. For C₁₅H₂₄N₂NaO₃, 303.1679. Found: [MNa]⁺, 303.1678 (0.5 ppm error).


1-(1-Oxopropyl)-5-(phenylmethyl)-1,5-diazacyclododecane-2,6-dione (15)

A mixture of lactam 8 (28.8 mg, 0.10 mmol), CuO (0.8 mg, 0.01 mmol) and NMM (0.066 mL, 0.60 mmol) in benzene (0.5 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of propionyl chloride 12 (0.30 mmol, 3.0 equiv.) in benzene (0.5 mL) was added and the resulting mixture was refluxed at 80 °C for 18 h. The mixture was then diluted with DCM (10 mL) and washed with 10% aq. HCl (10 mL). The aqueous layer was then extracted with DCM (3×5 mL) and the combined organic extracts dried over MgSO₄ and concentrated in vacuo. Purification by flash column chromatography (SiO₂, 10:1 hexane: ethyl acetate \rightarrow 1:1 hexane: ethyl acetate) afforded the *title compound* as a colorless oil (32 mg, as 3:1 mixture of rotamers when analyzed by NMR in CDCl₃ at RT, 93%); $R_f = 0.62$ (ethyl acetate); To simplify ¹H NMR analysis, the product was also analyzed at 120 °C in DMSO which resolved the rotamers; $\delta_{\rm H}$ (400 MHz, DMSO- d_6 , 120 °C) 7.34 (t, J = 7.3 Hz, 2H, Ar-CH), 7.27 (d, J = 6.7 Hz, 1H, Ar-CH), 7.22 (d, J = 7.6 Hz, 2H, Ar-CH), 4.61 (s, 2H, NCH₂Ph), 3.78 (s, 2H, NCH₂), 3.00 (s, 2H, NCH₂), 2.90 (s, 2H, CH₂), 2.66 (q, J = 7.0 Hz, 2H, CH₂CH₃), 2.30 (s, 2H, CH2), 1.72 (s, 2H, CH2), 1.62 – 1.48 (m, 2H, CH2), 1.44 – 1.34 (m, 2H, CH2), 1.26 -1.18 (m, 2H, CH₂), 1.10 (t, J = 7.3 Hz, 3H, CH₃); Diagnostic ¹H NMR resonances recorded in CDCl₃ at RT, which confirm the presence of the two rotameric forms can be found at: 7.36 - 7.23 (m, 5H, Ar-CH, major rotamer), 7.16 - 7.11 (m, 5H, Ar-CH, minor rotamer), 1.21 (t, J = 7.2 Hz, 3H, CH₃, major rotamer), 1.14 (t, J = 7.2 Hz, 3H, CH₃, minor rotamer); $\delta_{\rm C}$ (100 MHz, CDCl₃ at RT) data for the major rotamer only: 177.4 (CO), 176.7 (CO), 175.4 (CO), 137.0 (Ar-C), 129.0 (Ar-CH), 127.7 (Ar-CH), 126.5 (Ar-CH), 52.0 (NCH₂Ph), 43.5 (CH₂), 41.7 (CH₂), 37.7 (CH₂), 33.0 (CH₂), 30.0 (CH₂), 28.1 (CH₂), 27.0 (CH₂), 24.3 (CH₂), 22.5 (CH₂), 9.3 (CH₃); Diagnostic ¹³C NMR resonances for the minor rotamer: 177.3 (CO), 175.1 (CO), 174.7 (CO), 138.1 (Ar-C), 128.7 (Ar-CH), 128.5 (Ar-CH), 127.5 (Ar-CH), 48.9 (NCH₂Ph), 43.9 (CH₂), 41.5 (CH₂), 37.6 (CH₂), 30.4 (CH₂), 24.1 (CH₂), 22.4 (CH₂), 9.1 (CH₃); HRMS (ESI): calcd. for C₂₀H₂₉N₂O₃, 345.2173. Found: [MH]⁺, 345.2178 (-1.6 ppm error).

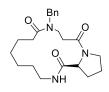

(9H-Fluoren-9-yl)methyl

a][1,4]diazacycloundecine-2(3*H*)-carbonyl)pyrrolidine-1-carboxylate (19)


A mixture of 11 membered lactam 7 (89.7 mg, 0.4 mmol), CuO (3.2 mg, 0.04 mmol) and NMM (0.260 mL, 2.4 mmol) in benzene (2.0 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 16 (1.2 mmol, 3.0 equiv., freshly prepared from Fmoc-Pro-OH using the general procedure) in dry benzene (2.0 mL) was added and the resulting mixture was refluxed at 50 °C for 18 h. The mixture was then diluted with DCM (10 mL) and washed with 10% aq. HCl (10 mL). The aqueous layer was then extracted with DCM $(3 \times 10 \text{ mL})$ and the combined organic extracts dried over MgSO₄ and concentrated in vacuo. Purification by flash column chromatography (SiO₂, ethyl acetate \rightarrow 9:1 ethyl acetate: methanol) afforded the title compound (as a 10:1 mixture of rotamers) as a colorless oil (129 mg, 60%). $R_f = 0.60$ (9:1 ethyl acetate: methanol); δ_H (400 MHz, CDCl₃) 7.75 (d, J = 7.2 Hz, 2H, Ar-CH, major rotamer), 7.64 – 7.59 (m, Ar-CH, 2H, major rotamer), 7.55 – 7.52 (m, 2H, Ar-CH, minor rotamer), 7.48 - 7.45 (m, 2H, Ar-CH, minor rotamer), 7.39 (t, J = 7.4 Hz, 2H, Ar-CH, major rotamer), 7.30 (tt, J = 7.4, 1.1 Hz, 1H, Ar-CH, major rotamer), 4.96 (dd, J = 8.6, 1.2 Hz, 1H, NCH, major rotamer), 4.75 (dd, J = 9.1, 2.8 Hz, 1H, NCH, minor rotamer), 4.60 (dd, J = 8.4, 4.7 Hz, 1H, NCH, major rotamer), 4.36 (dd, J = 10.4, 7.3 Hz, 2H, CH₂, majorrotamer), 4.24 (t, J = 7.2 Hz, 1H, CH₂CH, major rotamer), 4.14 (ddd, J = 14.2, 5.5, 3.6 Hz, 1H, NCH₂, major rotamer), 3.80 - 3.57 (m, 5H, NCH₂, both rotamers), 3.27 (ddd, J = 14.8, 9.9, 4.9Hz, 1H, CH₂, major rotamer), 2.55 (ddd, J = 13.7, 9.5, 4.4 Hz, 1H, CH₂, major rotamer), 2.45 -1.11 (m, 20H, 8 × CH₂, both rotamers); $\delta_{\rm C}$ (100 MHz, CDCl₃) data for the major rotamer only: 179.0 (CO), 176.6 (CO), 173.3 (CO), 154.8 (COO), 2 × 143.8 (Ar-C), 2 × 141.3 (Ar-C), 2 × 127.8 (Ar-CH), 2 × 127.0 (Ar-CH), 2 × 125.2 (Ar-CH), 2 × 120.0 (Ar-CH), 67.7 (OCH₂), 62.7 (NCH), 59.6 (NCH), 47.5 (CH₂CH), 47.2 (CH₂), 47.1 (CH₂), 42.3 (CH₂), 32.3 (CH₂), 30.7 (CH₂), 29.8 (CH₂), 25.4 (CH₂), 24.6 (CH₂), 22.9 (CH₂), 22.4 (CH₂), 21.7 (CH₂), 19.2 (CH₂); ¹³C NMR resonances for the minor rotamers: 178.9 (CO), 175.5 (CO), 172.3 (CO), 154.2 (COO), 143.9 (Ar-C), 143.4 (Ar-C), 141.2 (Ar-C), 141.2 (Ar-C), 125.0 (Ar-CH), 120.3 (Ar-CH), 68.7 (OCH₂), 62.6 (NCH), 59.5 (NCH), 47.5 (CH₂CH), 47.1 (CH₂), 46.9 (CH₂), 32.1 (CH₂), 31.0 (CH₂), 30.1 (CH₂), 24.7 (CH₂), 23.0 (CH₂), 22.3 (CH₂), 21.5 (CH₂), 19.4 (CH₂); HRMS (ESI): calcd. for $C_{32}H_{37}N_3NaO_5$, 566.2625. Found: [MNa]⁺, 566.2636 (-1.8 ppm error).

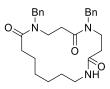
Dodecahydro-1*H*,5*H*-dipyrrolo[1,2-*a*:1',2'-*d*][1,4,7]triazacyclotetradecine 5,13,18(6*H*,18a*H*)-trione (20)

The N-acylated product 19 (129 mg, 0.33 mmol) was dissolved in DCM (4 mL) and DBU (0.6 mL, 4.0 mmol) was added, followed by stirring at RT overnight, before the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 10:1 ethyl acetate: methanol) afforded the *title compound* (as a 3:1) mixture of rotamers) as a yellow oil (54 mg, 43%); $R_f = 0.31$ (9:1 ethyl acetate: methanol); $[\alpha]_{D}^{21} = 64.3 \ (0.7 \text{ mg/mL in CHCl}_{3}); \delta_{H} \ (400 \text{ MHz, CDCl}_{3}) \ 6.97 \ (1H, s, NH, major rotamer),$ 4.51 - 4.56 (2H, m, 2 × NCH, both rotamers), 4.12 - 4.19 (m, 1H, NHCH₂, both rotamers), 3.95 – 4.02 (m, 1H, NHCH₂, both rotamers), 3.63 – 3.72 (m, 1H, COCH₂, both rotamers), 3.48 - 3.55 (m, 2H, NCH₂, both rotamers), 3.35 - 3.20 (m, 2H, NCH₂, both rotamers), 3.17 - 3.04 (m, 1H, COCH₂, both rotamers), 2.36 – 2.46 (m, 2H, CH₂, both rotamers), 2.17 – 2.31 (m, 4H, CH₂, both rotamers), 1.85 - 2.14 (m, 12H, CH₂, both rotamers); δ_C (100 MHz, CDCl₃) data for the major rotamer only: 173.3 (CO), 171.9 (CO), 171.5 (CO), 61.3 (NCH), 58.1 (NCH), 47.5 (CH₂), 47.3 (CH₂), 39.9 (CH₂), 34.6 (CH₂), 29.7 (CH₂), 29.3 (CH₂), 28.6 (CH₂), 25.8 (CH₂), 25.4 (CH₂), 24.2 (CH₂), 23.8 (CH₂), 19.0 (CH₂). Diagnostic ¹³C NMR resonances for the minor rotamer: 166.5 (CO), 164.4 (CO), 61.2 (NCH), 60.7 (NCH), 45.3 (CH₂), 44.6 (CH₂), 30.0 (CH₂), 27.8 (CH₂), 23.5 (CH₂), 22.8 (CH₂), 21.8 (CH₂), 14.2 (CH₂); HRMS (ESI): calcd. for C₁₇H₂₇NaN₃O₃, 344.1943. Found: [MNa]⁺, 344.1945 (0.4 ppm error).


(9*H*-Fluoren-9-yl)methyl 2-(5-benzyl-2,6-dioxo-1,5-diazacyclododecane-1carbonyl)pyrrolidine-1-carboxylate (21)

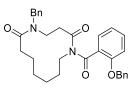
A mixture of 12 membered lactam **8** (115.4 mg, 0.4 mmol), CuO (6.4 mg, 0.08 mmol) and NMM (0.264 mL, 2.4 mmol) in dry benzene (2 mL) under an argon atmosphere was stirred at

RT for 30 mins. Next, a solution of acid chloride 16 (1.2 mmol, 3.00 equiv., freshly prepared from Fmoc-Pro-OH using the general procedure) in dry benzene (2 mL) was added and the resulting mixture was refluxed at 80 °C for 18 h. The mixture was then diluted with DCM (30 mL) and washed with 10% aq. HCl (30 mL). The aqueous layer was then extracted with DCM $(3 \times 30 \text{ mL})$ and the combined organic extracts dried over MgSO₄ and concentrated in vacuo. Purification by flash column chromatography (SiO₂, hexane \rightarrow 10:1 hexane: ethyl acetate) afforded the *title compound* (as 2:1 mixture rotamers) as a colorless oil (198 mg, 81%). $R_f =$ 0.55 (ethyl acetate); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.78 – 7.44 (m, 7H, Ar-CH, both rotamers), 7.42 – 7.10 (m, 14H, Ar-CH, both rotamers), 4.86 (d, J = 17.2 Hz, 1H, NCH, major rotamer), 4.77 (dd, J = 8.3, 4.4 Hz, 1H, NCH, minor rotamer), 4.74 (ddd, J = 16.0, 8.4, 3.7 Hz, 1H, NCH, major rotamer), 4.51 – 4.21 (m, 7H, COOCH₂ + NCH₂Ph, both rotamers), 4.14 – 4.08 (m, 1H, Fmoc-CH, both rotamers), 3.94 – 3.41 (m, 7H, CH₂, both rotamers), 3.27 – 2.70 (m, 3H, CH₂, both rotamers), 2.63 – 2.17 (m, 6H, CH₂, both rotamers), 2.15 – 1.14 (m, 20H, CH₂, both rotamers); δ_{C} (100 MHz, CDCl₃) for major rotamer only: 177.0 (CO), 175.1 (CO), 174.8 (CO), 155.0 (CO), 2 × 144.1 (Ar-C), 2 × 141.4 (Ar-C), 137.1 (Ar-C), 129.0 (Ar-CH), 2 × 128.8 (Ar-CH), 2 × 127.8 (Ar-CH), 2 × 127.1 (Ar-CH), 2 × 126.6 (Ar-CH), 2 × 125.2 (Ar-CH), 2 × 120.1 (Ar-CH), 67.6 (OCH₂), 60.4 (CH), 47.3 (Fmoc-CH), 47.1 (CH₂), 43.8 (CH₂), 43.4 (CH₂), 37.2 (CH₂), 33.0 (CH₂), 30.5 (CH₂), 27.6 (CH₂), 24.6 (CH₂), 24.5 (CH₂), 23.1 (CH₂), 22.3 (CH₂); HRMS (ESI): calcd. for C₃₇H₄₁N₃NaO₅, 630.2938. Found: [MNa]⁺, 630.2922 (2.6 ppm error).


10-Benzyldodecahydro-1*H*-pyrrolo[2,1-*c*][1,4,8]triazacyclopentadecine-1,9,13(2*H*,10*H*)trione (22)

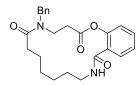
The *N*-acylated product **21** (161 mg, 0.265 mmol) was dissolved in DCM (3 mL) and DBU (0.390 mL, 2.6 mmol) was added, followed by stirring at RT overnight, before the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, ethyl acetate \rightarrow 9:1 ethyl acetate: methanol) afforded the *title compound* as (as a 10:5:1:1 mixture of rotamers, A:B:C:D) a colorless oil (98 mg, 96%); R_f = 0.25 (9:1 ethyl acetate: methanol); $[\alpha]_D^{21} = -3.0$ (5.9 mg/mL in CHCl₃); δ_H (400 MHz, CDCl₃) 7.35 – 7.08 (m, 10H, Ar-CH, all rotamers), 7.05 – 7.00 (m, 2H, NH, rotamers A and B), 6.62 (t, *J* = 6.3 Hz, 1H, NH, rotamer C), 6.33 (t, *J* = 5.2 Hz, 1H, NH, rotamer D), 5.05 – 4.47 (m, 4H, NCH₂Ph, all rotamers), 4.43 (d, *J* = 7.5 Hz, 1H,

NCH, rotamer A), 4.36 (d, J = 3.4 Hz, 1H, NCH, rotamer C), 4.34 (d, J = 3.5 Hz, 1H, NCH, rotamer D), 4.23 – 4.04 (m, 2H, NCH₂Ph + NCH, mix rotamers), 3.62 – 2.85 (m, 8H, COCH₂+ NCH₂, mix rotamers), 2.57 – 2.00 (m, 12H, NCH₂ + CH₂, mix rotamers), 1.97 – 1.16 (m, 22H, CH₂, all rotamers); δ_C (100 MHz, CDCl₃) data for the major rotamer A only: 173.5 (CO), 170.8 (CO), 170.1 (CO), 138.7 (Ar-C), 2 × 128.7 (Ar-CH), 127.1 (Ar-CH), 2 × 126.7 (Ar-CH), 60.0 (NCH), 49.5 (NCH₂Ph), 47.2 (CH₂), 43.8 (CH₂), 37.6 (CH₂), 33.3 (CH₂), 29.6 (CH₂), 27.7 (CH₂), 26.8 (CH₂), 26.1 (CH₂), 24.8 (CH₂), 23.6 (CH₂), 22.7 (CH₂); ¹³C NMR resonances for the minor rotamers: 174.9 (CO), 174.4 (CO), 172.5 (CO), 171.7 (CO), 171.6 (CO), 171.3 (CO), 171.0 (CO), 169.9 (CO), 138.0 (Ar-C), 137.4 (Ar-C), 137.0 (Ar-C), 129.0 (Ar-CH), 128.9 (Ar-CH), 128.6 (Ar-CH), 128.1 (Ar-CH), 127.6 (Ar-CH), 127.5 (Ar-CH), 127.4 (Ar-CH), 126.3 (Ar-CH), 126.2 (Ar-CH), 61.1 (NCH), 61.0 (NCH), 60.5 (NCH), 53.1 (NCH₂Ph), 52.3 (NCH₂Ph), 49.0 (NCH₂Ph), 47.6 (CH₂), 46.9 (CH₂), 46.9 (CH₂), 42.9 (CH₂), 42.6 (CH₂), 40.1 (CH₂), 39.3 (CH₂), 39.0 (CH₂), 34.5 (CH₂), 34.3 (CH₂), 33.3 (CH₂), 32.6 (CH₂), 32.1 (CH₂), 31.9 (CH₂), 29.3 (CH₂), 28.9 (CH₂), 28.7 (CH₂), 28.4 (CH₂), 28.2 (CH₂), 27.3 (CH₂), 26.3 (CH₂), 25.7 (CH₂), 25.5 (CH₂), 24.7 (CH₂), 24.5 (CH₂), 23.2 (CH₂), 22.8 (CH₂), 22.8 (CH₂), 22.7 (CH₂); HRMS (ESI): calcd. for C₂₂H₃₁N₃NaO₅, 408.2258. Found: [MNa]⁺, 408.2260 (-0.5 ppm error).


5,9-Dibenzyl-1,5,9-triazacyclohexadecane-2,6,10-trione (24)

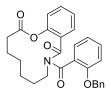
A mixture of 8 (115.4 mg, 0.40 mmol), CuO (3.2 mg, 0.04 mmol) and NMM (0.260 mL, 2.4 mmol) in benzene (2.0 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 17 (1.2 mmol, 3.00 equiv., prepared using the general procedure) in benzene (2.0 mL) was added and the resulting mixture was refluxed at 80 °C for 18 h. The reaction mixture was concentrated in vacuo, loaded onto a short silica plug and eluted with 2:1 hexane: ethyl acetate to remove the excess carboxylic acid and NMM. The acylated product was concentrated in *vacuo*, re-dissolved in DCM (4 mL) and DBU (0.6 mL, 4.0 mmol) was added, followed by stirring at RT overnight, before the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 10:1 ethyl acetate: methanol) afforded the *title compound* (as a 4:2:1 mixture of rotamers, A:B:C) as a yellow oil (75 mg, 40%); R_f = 0.42 (9:1 ethyl acetate: methanol); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.43 – 7.07 (m, 20H, Ar-CH, all rotamers), 7.00 – 6.96 (m, 1H, NH, rotamer A), 6.85

(t, J = 5.7 Hz, 1H, NH, rotamer B), 6.16 (t, J = 5.3 Hz, 1H, NH, rotamer C), 4.67 - 4.50 (m, 10.16 Hz)5H, NCH₂Ph, all rotamers), 3.73 – 3.56 (m, 7H, NCH₂, all rotamers), 3.39 – 3.13 (m, 4H, CH₂NH, all rotamers), 2.76 - 2.28 (m, 12H, $3 \times CH_2$, all rotamers), 1.84 - 1.20 (m, 16H, $6 \times CH_2$) CH₂, all rotamers); δ_C (100 MHz, CDCl₃) data for the major rotamer only: 174.4 (CO), 170.9 (CO), 170.5 (CO), 137.6 (Ar-C), 136.4 (Ar-C), 2 × 129.2 (Ar-CH), 129.0 (Ar-CH), 2 × 128.7 (Ar-CH), 2 × 128.2 (Ar-CH), 2 ×126.5 (Ar-CH), 126.2 (Ar-CH), 52.1 (NCH2Ph), 49.3 (NCH2Ph), 45.9 (CH2), 44.9 (CH2), 40.3 (CH2), 37.4 (CH2), 32.8 (CH2), 31.1 (CH2), 28.4 (CH2), 26.5 (CH2), 25.6 (CH2), 21.6 (CH2); ¹³C NMR resonances for the minor rotamer: 174.1 (CO), 173.6 (CO), 173.0 (CO), 171.9 (CO), 171.4 (CO), 170.6 (CO), 138.2 (Ar-C), 138.0 (Ar-C), 137.0 (Ar-C), 136.0 (Ar-C), 128.9 (Ar-CH), 128.0 (Ar-CH), 127.9 (Ar-CH), 127.9 (Ar-CH), 127.6 (Ar-CH), 127.5 (Ar-CH), 127.5 (Ar-CH), 127.5 (Ar-CH), 126.3 (Ar-CH), 54.1 (NCH2Ph), 52.2 (NCH2Ph), 49.3 (NCH2Ph), 44.7 (NCH2Ph), 44.2 (CH2), 43.7 (CH2), 43.2 (CH2), 43.0 (CH2), 39.6 (CH2), 39.1 (CH2), 36.7 (CH2), 35.6 (CH2), 35.4 (CH2), 33.3 (CH2), 32.2 (CH₂), 31.4 (CH₂), 30.7 (CH₂), 28.9 (CH₂), 28.1 (CH₂), 27.6 (CH₂), 26.2 (CH₂), 25.4 (CH2), 24.7 (CH2), 24.5 (CH2), 23.3 (CH2); HRMS (ESI): calcd. for C27H36NO3, 450.2751. Found: [MH]⁺, 450.2757 (-1.2 ppm error).

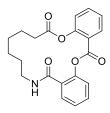

5-Benzyl-1-[2-(benzyloxy) benzoyl]-1,5-diazacyclododecane-2,6-dione (25)

A mixture of lactam **8** (115.4 mg, 0.40 mmol), CuO (6.4 mg, 0.20 mmol) and 4methylmorpholine (0.260 mL, 2.4 mmol) in benzene (2.0 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride **18** (1.20 mmol, 3.00 equiv., prepared from 2-benzyloxybenzoic acid using the general procedure) in benzene (2.0 mL) was added and the resulting mixture was refluxed at 80 °C for 18 h. Purification by flash column chromatography (SiO₂, hexane \rightarrow 1:10 hexane: dichloromethane \rightarrow dichloromethane \rightarrow 5: 1 dichloromethane: ethyl acetate) afforded the *title compound* (as a 4:3 mixture of rotamers) as a colorless oil (180 mg, 90%). R_f = 0.70 (1: 2 hexane: ethyl acetate); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.59 – 6.93 (m, 14H, Ar-CH, both rotamers), 5.10 (s, 2H, OCH₂Ph, both rotamers), 4.84 (d, *J* = 16.7 Hz, 1H, NCH₂Ph, major rotamer), 4.63 (s, 1H, NCH₂Ph, minor rotamer), 4.12 – 3.99 (m, 1H, CH₂, major rotamer), 3.94 – 3.62 (m, 2H, CH₂, both rotamers), 3.30 (s, 1H, CH₂, major rotamer), 2.96 - 2.64 (m, 1H, CH₂, both rotamers), 2.59 - 2.05 (m, 2H, CH₂, both rotamers), 1.93 - 1.32 (m, 8H, $4 \times$ CH₂, both rotamers), 1.19 - 0.76 (m, 2H, CH₂, both rotamers);

 $δ_{\rm C}$ (100 MHz, CDCl₃) data for the major rotamer only: 175.3 (CO), 174.4 (CO), 171.3 (CO), 154.8 (Ar-C), 137.3 (Ar-C), 136.4 (Ar-C), 132.0 (Ar-C), 129.4 (Ar-CH), 2 × 129.0 (Ar-CH), 128.8 (Ar-CH), 2 × 128.7 (Ar-CH), 128.3 (Ar-CH), 2 × 127.6 (Ar-CH), 2 × 127.2 (Ar-CH), 126.5 (Ar-CH), 121.6 (Ar-CH), 112.7 (Ar-CH), 70.7 (OCH₂), 48.0 (NCH₂Ph), 45.2 (CH₂), 43.9 (CH₂), 36.5 (CH₂), 29.8 (CH₂), 27.8 (CH₂), 26.2 (CH₂), 24.5 (CH₂), 23.2 (CH₂); Diagnostic ¹³C NMR resonances for the minor rotamers: 176.7 (CO), 174.0 (CO), 172.5 (CO), 155.1 (Ar-C), 137.9 (Ar-C), 136.1 (Ar-C), 132.6 (Ar-C), 129.4 (Ar-CH), 128.8 (Ar-CH), 128.7 (Ar-CH), 128.4 (Ar-CH), 128.2 (Ar-CH), 127.6 (Ar-CH), 127.4 (Ar-CH), 126.4 (Ar-CH), 121.5 (Ar-CH), 112.8 (Ar-CH), 43.5 (NCH₂Ph), 43.4 (CH₂), 36.9 (CH₂), 33.7 (CH₂), 29.4 (CH₂), 26.7 (CH₂), 26.5 (CH₂), 23.6 (CH₂); HRMS (ESI): calcd. for C₃₁H₃₅N₂O₄, 499.2591. Found: [MH]⁺, 499.2600 (-1.6 ppm error).


5-Benzyl-4,5,8,9,10,11,12,13-octahydro-2*H*-1,5,13-benzoxadiazacyclohexadecine-2,6,14(3*H*,7*H*)-trione (26)

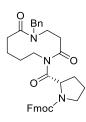
N-acylated product **25** (176 mg, 0.353 mmol) was dissolved in ethyl acetate (3.5 mL) and placed under an argon atmosphere. Palladium on carbon (35.3 mg, Pd 10% on carbon) was then added and the reaction vessel was backfilled with hydrogen (via balloon) several times, then stirred at RT under a slight positive pressure of hydrogen (balloon) overnight. The reaction was then purged with argon, filtered through Celite, washed with methanol where the solvent was removed *in vacuo*. The crude material was then re-dissolved in chloroform (3.5 mL) and triethylamine (75 μ L, 0.52 mmol) was added, and then stirred at RT for 16 h, then reduced *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 hexane: ethyl acetate \rightarrow 10:1 ethyl acetate: menthol) afforded the *title compound* (as a 2:1 mixture of rotamers) as a colorless oil (45.5 mg, 32%); R_f=0.65 (9:1 ethyl acetate: menthol); $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.09 (dd, *J* = 7.8, 1.8 Hz, 1H, Ar-CH, major rotamer), 7.51 – 7.41 (m, 2H, Ar-CH, both rotamers), 7.37 – 7.23 (m, 9H, Ar-CH, both rotamers), 7.09 (ddt, *J* = 15.8, 8.1, 1.4 Hz, 4H, Ar-CH, both rotamers), 6.81 (t, *J* = 5.3 Hz, 1H, CONH, major rotamer), 4.78 (s, 2H, NCH₂Ph, major rotamer), 3.77 – 3.69 (m, 1H, NCH₂, both rotamers), 3.67 – 3.59 (m,


2H, NHCH₂, both rotamers), 3.51 - 3.37 (m, 3H, OCOCH₂ + NCH₂, both rotamers), 3.15 (dd, J = 5.9, 4.3 Hz, 2H, NCH₂, both rotamers), 2.79 - 2.70 (m, 1H, CH₂, both rotamers), 2.53 - 2.44 (m, 1H, CH₂, both rotamers), 2.38 - 2.26 (m, 2H, CH₂, both rotamers), 1.80 (dq, J = 17.1, 8.8 Hz, 4H, CH₂, both rotamers), 1.67 - 1.38 (m, 8H, CH₂, both rotamers); Diagnostic ¹H NMR resonances for the minor rotamers: 7.63 (dd, J = 7.7, 1.7 Hz, 1H, Ar-CH, major rotamer), 6.14 (t, J = 6.2 Hz, 1H, CONH, minor rotamer), 4.64 (s, 2H, NCH₂Ph, minor rotamer); δ_{C} (100 MHz, CDCl₃) data for the major rotamer only: 174.6 (CO), 171.4 (CO), 164.9 (CO), 147.8 (Ar-C), 137.6 (Ar-C), 132.0 (Ar-CH), 131.6 (Ar-CH), 2×129.0 (Ar-CH), 128.2 (Ar-CH), 127.6 (Ar-CH), 127.0 (Ar-C), 2×126.5 (Ar-CH), 123.1 (Ar-CH), 54.1 (NCH₂Ph), 43.2 (CH₂), 40.5 (CH₂), 33.6 (CH₂), 32.7 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 26.4 (CH₂), 23.9 (CH₂); Diagnostic ¹³C NMR resonances for the minor rotamers: 173.7 (CO), 169.4 (CO), 166.3 (CO), 147.7 (Ar-C), 137.7 (Ar-C), 131.7 (Ar-CH), 129.1 (Ar-CH), 127.7 (Ar-CH), 127.0 (Ar-C), 126.6 (Ar-CH), 123.2 (Ar-CH), 49.2 (NCH₂Ph), 42.9 (CH₂), 39.6 (CH₂), 34.8 (CH₂), 31.5 (CH₂), 29.5 (CH₂), 27.3 (CH₂), 25.2 (CH₂), 24.5 (CH₂); HRMS (ESI): calcd. for C₂₄H₂₈N₂NaO₄, 431.1941. Found: [MNa]⁺, 431.1939 (0.6 ppm error).

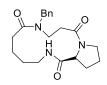
9-[2-(Benzyloxy)benzoyl]-4,5,6,7,8,9,10a,14a-octahydro-2*H*-1,9-benzoxazacyclododecine-2,10(3*H*)-dione (27)

A mixture of lactam **9** (247mg, 1.00 mmol), CuO (8.0 mg, 0.10 mmol) and 4-Methylmorpholine (0.660 mL, 6.0 mmol) in benzene (5.0 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride **18** (3.0 mmol, 3.00 equiv., prepared from 2-benzyloxybenzoic acid using the general procedure) in benzene (5.0 mL) was added and the resulting mixture was refluxed at 80 °C for 18 h. Purification by flash column chromatography (SiO₂, hexane \rightarrow 1:10 hexane: dichloromethane \rightarrow dichloromethane) afforded the title compound as a white solid (315 mg, 69%). R_f = 0.53 (1:1 hexane: ethyl acetate); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.41 (d, *J* = 4.4 Hz, 4H, Ar-CH), 7.37 – 7.32 (m, 1H, Ar-CH), 7.25 – 7.23 (m, 1H, Ar-CH), 7.14 – 7.04 (m, 3H, Ar-CH), 6.86 (td, *J* = 7.6, 1.1 Hz, 1H, Ar-CH), 6.77 (dd, *J* = 8.6, 1.1Hz, 1H, Ar-CH), 6.68 (td, *J* = 7.5, 0.9 Hz, 1H, Ar-CH), 6.59 (d, *J* = 8.4 Hz, 1H, Ar-CH), 4.97 (s, 2H, OCH₂), 4.09 (d, *J* = 6.9 Hz, 2H, CH₂), 2.53 (d, *J* = 6.7 Hz, 2H, CH₂), 1.91 – 1.42 (m, 8H, 4 × CH₂); $\delta_{\rm C}$ (100 MHz, CDCl₃) 172.6 (CO), 172.5 (CO), 169.8 (CO), 154.7 (ArC), 146.5 (Ar-C), 136.1 (Ar-C), 132.2 (Ar-CH), 131.3 (Ar-CH), 130.7 (Ar-C), 130.1 (Ar-C), 129.8 (Ar-CH), 2 × 128.7 (Ar-CH), 128.3 (Ar-CH), 2 × 127.4 (Ar-CH), 126.8 (Ar-CH), 125.6 (Ar-CH), 122.3 (Ar-CH), 121.0 (Ar-CH), 111.7 (Ar-CH), 70.4 (OCH₂), 45.2 (CH₂), 33.9 (CH₂), 27.7 (CH₂), 25.4 (CH₂), 23.9 (CH₂), 23.0 (CH₂); HRMS (ESI): calcd. for C₂₈H₂₈NO₅, 458.1962. Found: [MH]⁺, 458.1963 (-0.1ppm error).

8,9,10,11,12,13-Hexahydro-4a*H*,6*H*-dibenzo[*b*,*f*][1,5,9]dioxazacyclohexadecine-6,14,20(7*H*,20a*H*)-trione (28)

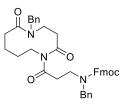

9-[2-(Benzyloxy)benzoyl]-4,5,6,7,8,9,10a,14a-octahydro-2H-1,9-benzoxaza- cyclododecine-2,10(3H)-dione 27 (315 mg, 0.689 mmol) was dissolved in ethyl acetate (7.0 mL) and placed under an argon atmosphere. Palladium on carbon (70 mg, Pd 10% on carbon) was then added and the reaction vessel was backfilled with hydrogen (via balloon) several times, then stirred at RT under a slight positive pressure of hydrogen (balloon) for 18 h. The reaction was then purged with argon, filtered through Celite, washed with methanol where the solvent was removed in vacuo. The crude material was then re-dissolved in chloroform (7.0 mL) and triethylamine (147 µL, 1.05 mmol) was added, and then stirred at RT for 16 h, then reduced in vacuo. Purification by flash column chromatography (SiO₂, 2:1 hexane: ethyl acetate) afforded the *title compound* as a yellow oil (91 mg, 35%); $R_f = 0.67$ (ethyl acetate); δ_H (400 MHz, CDCl₃) 8.36 (dd, *J* = 7.9, 1.7 Hz, 1H, Ar-CH), 7.65 (ddd, *J* = 8.1, 7.4, 1.7 Hz, 1H, Ar-CH), 7.59 (dd, *J* = 7.6, 1.7 Hz, 1H, Ar-CH), 7.49 (ddd, *J* = 8.1, 7.5, 1.7 Hz, 1H, Ar-CH), 7.39 (ddd, J = 7.9, 7.5, 1.2 Hz, 1H, Ar-CH), 7.32 (td, J = 7.6, 1.2 Hz, 1H, Ar-CH), 7.20 (dd, J = 8.1, 1.1) Hz, 1H, Ar-CH), 7.15 (dd, *J* = 8.1, 1.1 Hz, 1H, Ar-CH), 5.98 (s, 1H, NH), 3.56 – 3.32 (m, 2H, CH₂), 2.75 – 2.51 (m, 2H, CH₂), 1.87 – 1.79 (m, 2H, CH₂), 1.66 – 1.59 (m, 2H, CH₂), 1.52 $(qd, J = 6.5, 2.7 Hz, 2H, CH_2)$, 1.44 $(qd, J = 6.5, 2.5 Hz, 2H, CH_2)$; δ_C (100 MHz, CDCl₃) 172.3 (CO), 166.6 (CO), 162.3 (CO), 152.1 (Ar-C), 148.0 (Ar-C), 134.9 (Ar-CH), 133.0 (Ar-CH), 131.8 (Ar-CH), 130.8 (Ar-C), 128.5 (Ar-CH), 126.5 (Ar-CH), 126.3 (Ar-CH), 124.8 (Ar-CH), 123.1 (Ar-CH), 121.6 (Ar-C), 38.5 (CH₂), 32.8 (CH₂), 28.4 (CH₂), 27.2 (CH₂), 24.3 (CH₂), 23.6 (CH₂); HRMS (ESI): calcd. for C₂₁H₂₂NO₅, 368.1492. Found: [MH]⁺, 368.1492 (0.2 ppm error).

5-Benzyl-1,5-diazecane-2,6-dione (29)


A mixture of δ-valerolactam (495.6 mg, 5.0 mmol), DMAP (61 mg, 0.5 mmol) and pyridine (2.42 mL, 30 mmol) in DCM (35 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 17 (7.5 mmol, 1.50 equiv., freshly prepared from 3-[benzyl({[(9H-fluoren-9-yl)methoxy]carbonyl})amino]propanoic acid using the general procedure) in DCM (18 mL) was added and the resulting mixture was refluxed at 50 °C for 16 h. The mixture was then diluted with DCM (100 mL) and washed with 10% aq. HCl (100 mL). The aqueous layer was then extracted with DCM (3×100 mL) and the combined organic extracts dried over MgSO4 and concentrated in vacuo. The crude material was then redissolved in DCM (50 mL) and DBU (7.6 mL, 50 mmol) was added, followed by stirring at RT overnight, before the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, ethyl acetate \rightarrow 9:1 ethyl acetate: methanol) afforded the *title compound* (as a 10:1 mixture of rotamers) as a white solid (730 mg, 56%); $R_f = 0.26$ (9:1 ethyl acetate: methanol); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.35 – 7.17 (m, 5H, Ar-CH, both rotamers), 5.95 (d, J = 10.3 Hz, 1H, NH, minor rotamer), 5.32 (d, J = 9.1 Hz, 1H, NH, major rotamer), 4.89 (d, J = 14.5 Hz, 1H, NCH₂Ph, both rotamers), 4.41 (d, J = 14.5 Hz, 1H, NCH₂Ph, both rotamers), 3.97 – 3.82 (m, 2H, CH₂, both rotamers), 3.35 – 3.27 (m, 1H, CH₂, both rotamers), 2.93 – 2.82 (m, 1H, CH₂, both rotamers), 2.74 – 2.61 (m, 1H, CH₂, both rotamers), 2.27 – 2.10 (m, 3H, CH₂ + CH₂, both rotamers), 1.79 - 1.43 (m, 4H, CH₂, both rotamers); $\delta_{\rm C}$ (100 MHz, CDCl₃) data for the major rotamer only: 174.1 (CO), 171.1 (CO), 138.2 (Ar-C), 2 × 129.1 (Ar-CH), 2 × 128.3 (Ar-CH), 128.0 (Ar-CH), 49.6 (NCH₂Ph), 45.5 (CH₂), 39.3 (CH₂), 37.7 (CH₂), 28.4 (CH₂), 25.9 (CH₂), 23.9 (CH₂); ¹³C NMR resonances for the minor rotamer: 176.4 (CO), 171.4 (CO), 136.7 (Ar-C), 129.0 (Ar-CH), 127.8 (Ar-CH), 126.8 (Ar-CH), 60.5 (NCH₂Ph), 54.4 (CH₂), 42.6 (CH₂), 40.2 (CH₂), 35.2 (CH₂), 27.4 (CH₂), 25.1 (CH₂), 21.2 (CH₂), 14.3 (CH₂); HRMS (ESI): calcd. for C₁₅H₂₀N₂NaO₂, 283.1417. Found: [MNa]⁺, 283.1416 (0.3 ppm error). Spectroscopic data are consistent with those previously reported.^[2]

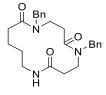
(9*H*-Fluoren-9-yl)methyl 2-(5-benzyl-2,6-dioxo-1,5-diazecane-1-carbonyl)pyrrolidine-1carboxylate (30)

A mixture of 5-benzyl-1,5-diazecane-2,6-dione 29 (103.7 mg, 0.4 mmol), CuO (6.4 mg, 0.08 mmol) and NMM (0.260 mL, 2.4 mmol) in benzene (3.0 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 16 (1.2 mmol, 1.50 equiv., freshly prepared from Fmoc-Pro-OH using the general procedure) in benzene (2 mL) was added and the resulting mixture was refluxed at 80 °C for 18 h. The mixture was then diluted with DCM (30 mL) and washed with 10% aq. HCl (30 mL). The aqueous layer was then extracted with DCM (3×30 mL) and the combined organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 hexane: ethyl acetate \rightarrow 1:3 hexane: ethyl acetate) afforded the *title compound* as a pale yellow oil (150 mg, 65%). $R_f =$ 0.20 (9:1 ethyl acetate: methanol); δ_H (400 MHz, CDCl₃) 7.77 – 7.11 (m, 13H, Ar-CH), 4.79 (dd, J = 8.7, 3.6 Hz, 1H, NCH), 4.43 - 4.21 (m, 4H, NCH₂Ph + COOCH₂), 4.00 - 3.86 (m, 4H, NCH₂Ph + 3.00 - 3.00 (m, 4H, NCH₂Ph + 3.00 (m, 4H, N1H, Fmoc-CH), 3.82 – 3.48 (m, 4H, CH₂), 3.34 – 3.02 (m, 4H, CH₂), 2.46 – 2.14 (m, 4H, CH₂), 1.86 – 1.54 (m, 6H, CH₂); δ_C (100 MHz, CDCl₃) 173.4 (CO), 173.4 (CO), 171.3 (CO), 155.0 (COO), 144.0 (Ar-C), 143.8 (Ar-C), 141.4 (Ar-C), 141.4 (Ar-C), 137.3 (Ar-CH), 2 × 128.7 (Ar-CH), 2 × 128.4 (Ar-CH), 2 × 127.8 (Ar-CH), 2 × 127.5 (Ar-CH), 2 × 125.3 (Ar-CH), 2 × 120.1 (Ar-CH), 67.8 (OCH₂), 60.0 (OCH), 47.2 (NCH₂Ph), 47.1 (Fmoc-CH), 47.0 (CH₂), 45.2 (CH₂), 43.4 (CH₂), 38.6 (CH₂), 30.0 (CH₂), 29.2 (CH₂), 24.8 (CH₂), 24.3 (CH₂), 24.3 (CH₂); HRMS (ESI): calcd. for C₃₅H₃₇N₃NaO₅, 602.2625. Found: [MNa]⁺, 602.2634 (-1.4 ppm error).

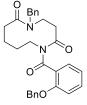

8-Benzyldecahydro-1*H*-pyrrolo[2,1-*c*][1,4,8]triazacyclotridecine-1,7,11(2*H*,8*H*)-trione (31)

The *N*-acylated product **30** (133 mg, 0.23 mmol) was then re-dissolved in DCM (4 mL) and DBU (0.6 mL, 4 mmol) was added, followed by stirring at RT overnight, before the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 5:4 hexane: ethyl

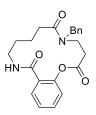
acetate \rightarrow 9:1 ethyl acetate: methanol) afforded the *title compound* as (as a 2:1 mixture of rotamers) a colorless oil (83 mg, 98%); $R_f = 0.21$ (9:1 ethyl acetate: methanol); $[\alpha]_D^{21} = -1.8$ (5.3 mg/mL in CHCl₃); δ_H (400 MHz, CDCl₃) 7.39 – 7.16 (m, 9H, Ar-CH, both rotamers), 7.07 (t, J = 4.5 Hz, 1H, NH, major rotamer), 4.77 (d, J = 17.1 Hz, 1H, NCH, major rotamer), 4.68 (d, J = 6.9 Hz, 1H, NCH, minor rotamer), 4.59 – 4.49 (m, 2H, NCH₂Ph, both rotamers), 3.97 – 3.20 (m, 6H, CH₂, both rotamers), 3.12 – 2.23 (m, 10H, CH₂, both rotamers), 2.21 – 1.50 (m, 15H, CH₂, both rotamers); δ_C (100 MHz, CDCl₃) data for the major rotamer: 176.3 (CO), 171.4 (CO), 170.1 (CO), 136.4 (Ar-C), 2 × 129.1 (Ar-CH), 128.3 (Ar-CH), 2 × 126.6 (Ar-CH), 61.4 (NCH), 49.9 (NCH₂Ph), 48.0 (CH₂), 47.5 (NH₂), 39.1(CH₂), 33.5(CH₂), 32.0 (CH₂), 29.0 (CH₂), 25.3 (CH₂), 25.0 (CH₂), 22.3 (CH₂); ¹³C NMR resonances for the minor rotamer: 172.7 (CO), 171.8 (CO), 169.8 (CO), 137.7 (Ar-C), 128.9 (Ar-CH), 127.9 (Ar-CH), 127.6 (Ar-CH), 59.6 (NCH₂Ph), 47.9 (NCH₂Ph), 40.7 (CH₂), 33.5 (CH₂), 33.0 (CH₂), 29.1 (CH₂), 26.8 (CH₂), 26.3 (CH₂), 23.8 (CH₂); HRMS (ESI): calcd. for C₂₀H₂₇N₃NaO₃, 380.1945. Found: [MNa]⁺, 380.1942 (0.6 ppm error).


(9*H*-Fluoren-9-yl)methyl benzyl[3-(5-benzyl-2,6-dioxo-1,5-diazecan-1-yl)-3oxopropyl]carbamate (32)

A mixture of 5-benzyl-1,5-diazecane-2,6-dione **29** (103.7 mg, 0.4 mmol), CuO (6.4 mg, 0.08 mmol) and NMM (0.260 mL, 2.4 mmol) in benzene (3.0 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride **17** (1.2 mmol, 3.00 equiv., freshly prepared using the general procedure) in benzene (2 mL) was added and the resulting mixture was refluxed at 80 °C for 18 h. The mixture was then diluted with DCM (30 mL) and washed with 10% aq. HCl (30 mL). The aqueous layer was then extracted with DCM (3×30 mL) and the combined organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 hexane: ethyl acetate) afforded the *title compound* (exist as a 2:1 mixture of rotamers in CDCl₃) as a yellow oil (144 mg, 56%). R_f = 0.70 (ethyl acetate); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.82 – 6.79 (m, 25H, Ar-CH, both rotamers), 4.73 (d, *J* = 4.7 Hz, 1H, NCH₂Ph, major rotamer), 4.55 (d, *J* = 6.0 Hz, 1H, NCH₂Ph, major rotamer), 4.53 – 4.41 (m, 2H, NCH₂Ph, both rotamers), 4.39 (s, 1H, OCH₂, both rotamers), 4.28 – 4.17 (m, 1H, OCH₂, both rotamers), 3.78 (s, 1H, OCH₂CH), 3.60 – 3.21 (m, 6H, 3 × CH₂, both rotamers),


3.14 – 3.08 (m, 1H, CH₂, both rotamers), 2.80 (t, J = 6.8 Hz, 1H, CH₂, both rotamers), 2.40 – 1.83 (m, 2H, CH₂, both rotamers), 1.92 – 1.45 (m, 6H, 2 × 3H₂, both rotamers); $\delta_{\rm C}$ (100 MHz, CDCl₃) for major rotamer only: 174.1 (CO), 172.8 (CO), 171.3 (CO), 156.1 (COO), 144.0 (Ar-C), 143.9 (Ar-C), 141.5 (Ar-C), 137.6 (Ar-C), 137.3 (Ar-C), 2 × 128.9 (Ar-CH), 2 × 128.8 (Ar-CH), 2 × 128.1 (Ar-CH), 2 × 127.8 (Ar-CH), 127.7 (Ar-CH), 127.7 (Ar-C), 2 × 127.5 (Ar-CH), 127.3 (Ar-CH), 2 × 127.2 (Ar-CH), 2 × 124.9 (Ar-CH), 2 × 120.1 (Ar-CH), 67.4 (OCH₂), 51.8 (NCH₂Ph), 47.6 (Fmoc-Ar-CH), 47.4 (NCH₂Ph), 44.1 (CH₂), 43.5 (CH₂), 42.8 (CH₂), 38.9 (CH₂), 35.6 (CH₂), 35.4 (CH₂), 29.4 (CH₂), 24.3 (CH₂); Diagnostic ¹³C NMR resonances for the minor rotamers: 141.6 (Ar-C), 60.7 (OCH₂), 47.6 (Fmoc-Ar-CH), 35.7 (CH₂), 29.4 (CH₂); HRMS (ESI): calcd. for C₄₀H₄₁N₃NaO₅, 666.2938. Found: [MNa]⁺, 666.2943 (-0.6 ppm error)

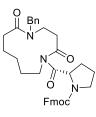
5,9-Dibenzyl-1,5,9-triazacyclotetradecane-2,6,10-trione (33)


The N-acylated product 2-25 (134 mg, 0.208 mmol) was then re-dissolved in DCM (4 mL) and DBU (0.60 mL, 4.00 mmol) was added, followed by stirring at RT overnight, before the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, ethyl acetate \rightarrow 9:1 ethyl acetate: methanol) afforded the *title compound* as (as a 10:5:1 mixture of rotamers, A:B:C) a colorless oil (74 mg, 85%); $R_f = 0.72$ (ethyl acetate); δ_H (400 MHz, CDCl₃) 7.38 – 6.97 (m, 22H, Ar-CH, all rotamers), 6.94 (t, J = 5.4 Hz, 1H, NH, rotamer B), 6.84 (t, J = 5.9 Hz, 1H, NH, rotamer A), 6.61 (t, J = 5.3 Hz, 1H, NH, rotamer C), 4.71 (s, 2H, NCH₂Ph, rotamer A), 4.62 (s, 2H, NCH2Ph, rotamer C), 4.60 (s, 2H, NCH2Ph, rotamer C), 4.56 (s, 2H, NCH2Ph, rotamer A), 4.54 (s, 2H, NCH₂Ph, rotamer B), 4.30 (s, 2H, NCH₂Ph, rotamer B), 3.75 – 3.50 (m, 8H, CH₂, all rotamers), 3.38 – 3.26 (m, 4H, CH₂, all rotamers), 2.68 – 2.37 (m, 12H, CH₂, all rotamers), 1.82 - 1.52 (m, 9H, CH₂, all rotamers); $\delta_{\rm C}$ (100 MHz, CDCl₃) data for the major rotamer only: 174.1 (CO), 173.0 (CO), 171.3 (CO), 137.1 (Ar-C), 137.0 (Ar-C), 2 × 129.1 (Ar-CH), 2 × 129.0 (Ar-CH), 128.8 (Ar-CH), 2 × 126.6 (Ar-CH), 2 × 126.2 (Ar-CH), 126.1 (Ar-CH), 53.6 (NCH₂Ph), 53.4 (NCH₂Ph), 44.6 (CH₂), 44.0 (CH₂), 38.6 (CH₂), 35.6 (CH₂), 33.5 (CH₂), 31.8 (CH₂), 29.0 (CH₂), 22.8 (CH₂); ¹³C NMR resonances for the minor rotamer: 174.3 (CO), 173.5 (CO), 173.4 (CO), 171.0 (CO), 170.7 (CO), 170.2 (CO), 137.7 (Ar-C), 137.6 (Ar-C), 137.6 (Ar-C), 135.8 (Ar-C), 129.2 (Ar-CH), 128.7 (Ar-CH), 128.7 (Ar-CH), 128.3 (Ar-CH), 128.1 (Ar-CH), 128.1 (Ar-CH), 128.0 (Ar-CH), 127.8 (Ar-CH), 127.7 (ArCH), 127.6 (Ar-CH), 127.6 (Ar-CH), 127.4 (Ar-CH), 126.5 (Ar-CH), 126.1 (Ar-CH), 51.3 (NCH₂Ph), 50.8 (NCH₂Ph), 48.9 (NCH₂Ph), 48.7 (NCH₂Ph), 44.5 (NCH₂), 43.9 (NCH₂), 43.1 (NCH₂), 42.2 (NCH₂), 39.6 (NHCH₂), 38.4 (NHCH₂), 35.2 (COCH₂), 35.1 (COCH₂), 33.2 (COCH₂), 33.0 (COCH₂), 32.6 (CH₂), 32.3 (CH₂), 28.1 (CH₂), 27.8 (CH₂), 24.0 (CH₂), 23.3 (CH₂); HRMS (ESI): calcd. for C₂₅H₃₁N₃NaO₃, 444.2258. Found: [MNa]⁺, 444.2261 (-0.7 ppm error).

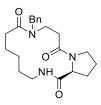
Benzyl-1-[2-(benzyloxy)benzoyl]-1,5-diazecane-2,6-dione (34)

A mixture of 5-benzyl-1,5-diazecane-2,6-dione 29 (103.7 mg, 0.40 mmol), CuO (6.4 mg, 0.08 mmol) and NMM (0.260 mL, 2.4 mmol) in benzene (3.0 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 18 (1.20 mmol, 1.50 equiv., freshly prepared from 2-benzyloxybenzoic acid using the general procedure) in benzene (2 mL) was added and the resulting mixture was refluxed at 80 °C for 18 h. The mixture was then diluted with DCM (30 mL) and washed with 10% aq. HCl (30 mL). The aqueous layer was then extracted with DCM (3×30 mL) and the combined organic extracts dried over MgSO₄ and concentrated in vacuo. Purification by flash column chromatography (SiO₂, 3:2 hexane:ethyl acetate) afforded the *title compound* as a yellow oil (173 mg, 92%). $R_f = 0.72$ (ethyl acetate); δ_H (400 MHz, CDCl₃) 7.46 – 7.40 (m, 1H, Ar-CH), 7.38 – 7.25 (m, 9H, Ar-CH), 7.21 – 7.17 (m, 2H, Ar-CH), 7.07 – 7.00 (m, 2H, Ar-CH), 5.10 (s, 2H, OCH2Ph), 4.12 – 1.39 (m, 14H, 6 × CH₂ + NCH₂Ph); δ_C (100 MHz, CDCl₃) 173.3 (CO), 173.3 (CO), 171.3 (CO), 155.2 (Ar-C), 137.3 (Ar-C), 135.9 (Ar-C), 132.5(Ar-CH), 2 × 128.8 (Ar-CH), 2 × 128.7 (Ar-CH), 128.5 (Ar-CH), 2 × 128.3 (Ar-CH), 2 × 127.5 (Ar-CH), 126.5 (Ar-C), 121.6 (Ar-CH), 113.1 (Ar-CH), 70.9 (OCH₂), 47.8 (NCH₂Ph), 46.8 (CH₂), 43.0 (CH₂), 38.9 (CH₂), 29.1 (CH₂), 24.7 (CH₂), 23.0 (CH₂); HRMS (ESI): calcd. for C₂₉H₃₀N₂NaO₄, 493.2098. Found: [MNa]⁺, 493.2099 (-0.1 ppm error).

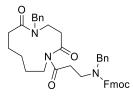
5-Benzyl-4,5,8,9,10,11-hexahydro-2*H*-1,5,11-benzoxadiazacyclotetradecine-2,6,12(3*H*,7*H*)-trione (35)


The N-acylated product 34 (121 mg, 0.257 mmol) was dissolved in ethyl acetate (2.5 mL) and placed under an argon atmosphere. Palladium on carbon (25 mg, Pd 10% on carbon) was then added and the reaction vessel was backfilled with hydrogen (via balloon) several times, then stirred at RT under a slight positive pressure of hydrogen (balloon) for 16 h. The reaction was then purged with argon, filtered through Celite, washed with methanol where the solvent was removed in vacuo. The crude material was then re-dissolved in chloroform (2.5 mL) and triethylamine (54 µL, 0.385 mmol) added, and stirred at RT for 16 h, then reduced *in vacuo*. Purification by flash column chromatography (SiO₂, 1:3 hexane: ethyl acetate \rightarrow ethyl acetate) afforded the *title compound* (as a 10:1 mixture of rotamers) as a colorless oil (93 mg, 95%); Rf = 0.52 (9:1 ethyl acetate: methanol); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.97 (dd, J = 7.8, 1.8 Hz, 1H, Ar-CH, major rotamer), 7.52 (dd, J = 7.6, 1.7 Hz, 1H, Ar-CH, minor rotamer), 7.46 (td, J = 7.8, 1.8 Hz, 1H, Ar-CH, major rotamer), 7.41 (td, J = 7.8, 1.7 Hz, 1H, Ar-CH, minor rotamer), 7.36 – 7.21 (m, 6H, Ar-CH, both rotamers), 7.11 – 7.03 (m, 3H, Ar-H, both rotamers), 6.55 (t, J = 6.1 Hz, 1H, NH, major rotamer), 6.35 (t, J = 6.1 Hz, 1H, NH, minor rotamer), 4.60 (s, 2H, NH₂Ph, both rotamers), 3.74 (t, J = 7.0 Hz, 2H, CH₂, minor rotamer), 3.60 (dd, J = 6.4, 4.2 Hz, 2H, CH₂, major rotamer), 3.57 - 3.45 (m, 2H, CH₂, both rotamers), 3.04 (t, J = 5.3 Hz, 2H, CH₂, major rotamer), 2.69 (t, J = 7.0 Hz, 2H, CH₂, minor rotamer), 2.61 – 2.52 (m, 2H, CH₂, minor rotamer), 2.46 – 2.32 (m, 2H, CH₂, major rotamer), 1.85 – 1.55 (m, 5H, 2 × CH₂, both rotamers); δ_{C} (100 MHz, CDCl₃) data for the major rotamer only: 174.7 (CO), 171.4 (CO), 165.3 (CO), 147.4 (Ar-C), 137.3 (Ar-C), 131.9 (Ar-CH), 131.3 (Ar-CH), 2 × 129.0 (Ar-CH), 127.9 (Ar-C), 2 × 126.7 (Ar-CH), 126.4 (Ar-CH), 126.4 (Ar-CH), 123.1 (Ar-CH), 54.4 (NCH₂Ph), 43.1 (CH₂), 38.7 (CH₂), 33.7 (CH₂), 33.5 (CH₂), 28.3 (CH₂), 23.4 (CH₂); ¹³C NMR resonances for the minor rotamers: 173.7 (CO), 169.4 (CO), 166.8 (CO), 147.3 (Ar-C), 137.2 (Ar-C), 130.0 (Ar-C), 128.8 (Ar-CH), 128.5 (Ar-CH), 128.0 (Ar-CH), 127.6 (Ar-CH), 122.8 (Ar-CH), 47.9 (NCH₂Ph), 42.7 (CH₂), 37.6 (CH₂), 34.4 (CH₂), 33.6 (CH₂), 29.0 (CH₂), 22.4 (CH₂); HRMS (ESI): calcd. for C₂₂H₂₄N₂NaO₄, 403.1628. Found: [MNa]⁺, 403.1634 (-1.5 ppm error).

5-Benzyl-1,5-diazacycloundecane-2,6-dione (36)


A mixture of ε -caprolactam (565.8 mg, 5.0 mmol), DMAP (61mg, 0.5 mmol) and pyridine (2.42 mL, 30 mmol) in DCM (35 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 17 (7.5 mmol, 1.50 equiv, freshly prepared from 3-[benzyl({[(9H-fluoren-9-yl)methoxy]carbonyl})amino]propanoic acid using the general procedure) in DCM (18 mL) was added and the resulting mixture was refluxed at 50 °C for 16 h. The mixture was then diluted with DCM (100 mL) and washed with 10% aq. HCl (100 mL). The aqueous layer was then extracted with DCM (3×100 mL) and the combined organic extracts dried over MgSO4 and concentrated in vacuo. The crude material was then re-dissolved in DCM (50 mL) and DBU (7.6 mL, 50 mmol) was added, followed by stirring at RT overnight, before the solvent was removed in vacuo. Purification by flash column chromatography (SiO2, 1:1 hexane: ethyl acetate \rightarrow 10:1 ethyl acetate: methanol) afforded the *title compound* (as a 5:1 mixture of rotamers) as a pale yellow solid (1.22 g, 89%). Rf = 0.37 (9:1 ethyl acetate: methanol); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.37 – 7.24 (m, 5H, Ar-CH, both rotamers), 5.92 (t, NH, J =6.1 Hz, 1H, both rotamers), 5.03 – 4.75 (m, 1H, NCH₂Ph, both rotamers), 4.48 – 4.30 (m, 1H, NCH₂Ph, both rotamers), 4.05 - 3.17 (m, 8H, NCH₂ + CH₂, both rotamers), 2.74 - 2.34 (m, 6H, CH₂, both rotamers); $\delta_{\rm C}$ (100 MHz, CDCl₃) data for the major rotamer only: 173.5 (CO), 171.5 (CO), 138.4 (Ar-C), 2 × 129.0 (Ar-CH), 2 × 128.3 (Ar-CH), 127.9 (Ar-CH), 49.0 (NCH2Ph), 45.1 (CH2), 41.7 (CH2), 37.0 (CH2), 28.5 (CH2), 25.3 (CH2), 24.4 (CH2), 22.8 (CH₂); Diagnostic ¹³C NMR resonances for the minor rotamer: 175.4 (CO), 171.1 (CO), 137.0 (Ar-C), 127.7 (Ar-CH), 126.6 (Ar-CH), 54.0 (NCH2Ph), 42.9 (CH2), 37.5 (CH2), 34.7 (CH2), 33.8 (CH2), 26.0 (CH2), 23.5 (CH2), 22.4 (CH2); HRMS (ESI): calcd. for C16H22N2NaO2, 297.1573. Found: [MNa]⁺, 297.1575 (-0.6 ppm error). Spectroscopic data are consistent with those previously reported.^[2]

(9*H*-Fluoren-9-yl)methyl 2-(5-benzyl-2,6-dioxo-1,5-diazacycloundecane-1 carbonyl)pyrrolidine-1-carboxylate (37)

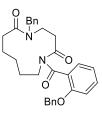

A mixture of 11-membered ring lactam **36** (109.7 mg, 0.4 mmol), CuO (6.4 mg, 0.08 mmol) and NMM (0.264 mL, 2.4 mmol) in dry benzene (2 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 16 (1.2 mmol, 3.0 equiv., freshly prepared from Fmoc-Pro-OH using the general procedure) in dry benzene (2 mL) was added and the resulting mixture was refluxed at 80 °C for 18 h. The mixture was then diluted with DCM (30 mL) and washed with 10% aq. HCl (30 mL). The aqueous layer was then extracted with DCM $(3 \times 30 \text{ mL})$ and the combined organic extracts dried over MgSO₄ and concentrated in vacuo. Purification by flash column chromatography (SiO₂, 2:1 hexane: ethyl acetate \rightarrow 2:3 hexane: ethyl acetate) afforded the title compound (as a 5:2 mixture of rotamers,) as a colorless oil (194 mg, 82%). $R_f = 0.55$ (ethyl acetate); δ_H (400 MHz, CDCl₃) 7.79 – 7.45 (m, 7H, Ar-CH, both rotamers), 7.43 - 7.09 (m, 14H, Ar-CH, both rotamers), 4.74 (ddd, J = 16.0, 8.4, 3.7 Hz, 1H, NCH, major rotamer), 4.67 (dd, J = 10.9, 6.4 Hz, 1H, NCH, minor rotamer), 4.48 – 4.22 (m, $OCH_2 + NCH_2Ph$, 7H, both rotamers), 4.11 (t, J = 6.1 Hz, 1H, Fmoc-CH, minor rotamer), 4.01 - 3.88 (m, 1H, Fmoc-CH, major rotamer), 3.84 - 3.01 (m, 9H, CH₂, both rotamers), 2.83 -2.08 (m, 7H, CH₂, both rotamers), 2.06 – 1.19 (m, 15H, CH₂, both rotamers); $\delta_{\rm C}$ (100 MHz, CDCl₃) for major rotamers only: 178.8 (CO), 176.2 (CO), 173.6 (CO), 155.0 (COO), 144.1 (Ar-C), 143.9 (Ar-C), 2 × 141.4 (Ar-C), 137.3 (Ar-C), 2 × 129.1 (Ar-CH), 2 × 128.7 (Ar-CH), 2 × 127.8 (Ar-CH), 127.5 (Ar-CH), 2 × 127.1 (Ar-CH), 2 × 126.7 (Ar-CH), 125.3 (Ar-CH), 2 × 120.1 (Ar-CH), 67.7 (COOCH₂), 60.3 (COCH), 47.3 (NCH₂Ph), 47.3 (Fmoc-CH), 47.1 (CH₂), 45.1 (CH₂), 44.0 (CH₂), 43.2 (CH₂), 32.0 (CH₂), 30.8 (CH₂), 29.6 (CH₂), 27.7 (CH₂), 24.3 (CH₂), 23.6(CH₂); HRMS (ESI): calcd. for C₃₆H₃₉N₃NaO₅, 616.2782. Found: [MNa]⁺, 616.3785 (-0.5 ppm error).

9-Benzyldodecahydropyrrolo[2,1-c][1,4,8]triazacyclotetradecine-1,8,12(9H)-trione (38)

The N-acylated product 37 (155 mg, 0.261 mmol) was re-dissolved in DCM (3 mL) and DBU (0.390 mL, 2.6 mmol) was added, followed by stirring at RT overnight, before the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, ethyl acetate \rightarrow 9:1 ethyl acetate: methanol) afforded the *title compound* as (as a 20:1 mixture of rotamers) a colorless oil (87 mg, 90%); $R_f = 0.18$ (9:1 ethyl acetate: methanol); $[\alpha]_D^{21} = -1.9$ (0.8 mg/mL in CHCl₃); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.36 – 7.27 (m, 3H, Ar-CH, both rotamers), 7.20 – 7.16 (m, 2H, Ar-CH, both rotamers), 4.83 (d, J = 16.8 Hz, 1H, NCH₂Ph, major rotamer), 4.63 (d, J =16.9 Hz, 1H, NCH₂Ph, major rotamer), 4.79 – 4.67 (m, 2H, NCH₂Ph, minor rotamer), 4.57 (d, J = 1.9 Hz, 1H, NCH, minor rotamer), 4.51 (dd, J = 8.5, 2.1 Hz, 1H, NCH, major rotamer), 4.43 (ddd, J = 13.2, 9.8, 3.2 Hz, 1H, NCH₂, major rotamer), 4.34 – 4.30 (m, 1H, NCH₂, minor rotamer), 3.75 (ddd, J = 9.7, 8.0, 2.5 Hz, 1H, NCH₂, major rotamer), 3.40 (qd, J = 9.8, 5.8 Hz, 2H, NCH₂, major rotamer), 3.33 - 3.18 (m, 1H, NHCH₂, major rotamer), 3.00 (ddd, J = 13.6, 6.2, 4.5 Hz, 1H, NHCH₂, major rotamer), 2.89 (ddd, J = 14.8, 6.2, 3.5 Hz, 1H, CH₂, major rotamer), 2.55 (ddd, J = 14.8, 11.5, 3.0 Hz, 1H, CH₂, major rotamer), 2.41 (ddd, J = 14.5, 9.7, 4.5 Hz, 1H, CH₂, major rotamer), 2.28 (ddt, J = 11.4, 8.7, 3.0 Hz, 1H, CH₂, major rotamer), 2.14 (ddd, J = 15.2, 5.7, 3.2 Hz, 1H, CH₂, major rotamer), 2.08 - 1.73 (m, 4H, CH₂, both rotamers), 1.69 - 1.58 (m, 1H, CH₂, major rotamer), 1.43 (dddd, J = 16.0, 8.4, 5.5, 2.8 Hz, 1H, CH₂, major rotamer), 1.38 - 1.14 (m, 3H, CH₂, both rotamers); δ_C (100 MHz, CDCl₃) data for the major rotamer only: 175.0 (CO), 171.4 (CO), 171.1 (CO), 136.9 (Ar-C), 2 × 129.0 (Ar-CH), 127.7 (Ar-CH), 2 × 126.6 (Ar-CH), 61.0 (NCH), 52.5 (NCH₂Ph), 47.4 (CH₂), 42.6 (CH₂), 36.8 (CH₂), 33.8 (CH₂), 32.4 (CH₂), 28.4 (CH₂), 26.9 (CH₂), 24.8 (CH₂), 23.4 (CH₂), 21.8 (CH₂); ¹³C NMR resonances for the minor rotamers: 173.8 (CO), 171.7 (CO), 171.5 (CO), 137.7 (Ar-C), 128.8 (Ar-CH), 127.4 (Ar-CH), 126.6 (Ar-CH), 61.2 (NCH), 53.2 (NCH₂Ph), 46.8 (CH₂), 42.0 (CH₂), 38.1 (CH₂), 34.8 (CH₂), 31.8 (CH₂), 29.7 (CH₂), 26.4 (CH₂), 25.1 (CH₂), 24.3 (CH₂), 22.4 (CH₂); HRMS (ESI): calcd. for C₂₁H₂₉N₃NaO₃, 394.2101. Found: [MNa]⁺, 394.2101 (0.0 ppm error).

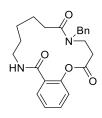
(9*H*-Fluoren-9-yl)methyl benzyl[3-(5-benzyl-2,6-dioxo-1,5-diazacycloundecan-1-yl)-3oxopropyl]carbamate (39)

A mixture of 5-benzyl-1,5-diazacycloundecane-2,6-dione 36 (109.7 mg, 0.4 mmol), CuO (6.4 mg, 0.08 mmol) and NMM (0.260 mL, 2.4 mmol) in benzene (3.0 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 17 (1.2 mmol, 3.00 equiv., freshly prepared using the general procedure) in benzene (2 mL) was added and the resulting mixture was refluxed at 80 °C for 18 h. The mixture was then diluted with DCM (30 mL) and washed with 10% aq. HCl (30 mL). The aqueous layer was then extracted with DCM $(3 \times 30 \text{ mL})$ and the combined organic extracts dried over MgSO₄ and concentrated in vacuo. Purification by flash column chromatography (SiO₂, 2:1 hexane: ethyl acetate \rightarrow 1:1 hexane: ethyl acetate) afforded the title compound as a colorless oil (138 mg, 53%). $R_f = 0.65$ (ethyl acetate); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.79 – 6.94 (m, 18H, Ar-CH), 4.91 – 4.15 (m, 7H, OCH₂CH + $OCH_2 + 2 \times NCH_2Ph$), 3.94 - 3.02 (m, 6H, $3 \times CH_2$), 2.89 - 2.08 (m, 4H, $2 \times CH_2$), 1.95 - 2.08 (m, 4H, $2 \times CH_2$), 1.95 - 2.08 (m, 4H, $2 \times CH_2$), 1.95 - 2.08 (m, 4H, $2 \times CH_2$), 1.95 - 2.08 (m, 4H, $2 \times CH_2$), 1.95 - 2.08 (m, 4H, $2 \times CH_2$), 1.95 - 2.08 (m, 4H, $2 \times CH_2$), 1.95 - 2.08 (m, 4H, $2 \times CH_2$), 1.95 - 2.08 (m, 4H, $2 \times CH_2$), 1.95 - 2.08 (m, 4H, $2 \times CH_2$), 1.95 - 2.08 (m, 4H, $2 \times CH_2$), 1.95 - 2.08 (m, 4H, $2 \times CH_2$), 1.95 - 2.08 (m, 4H, $2 \times CH_2$), 1.95 - 2.08 (m, 2.08 - 2.08) (m, 2.08 - 2.08 - 2.08) (m, 2.08 - 2.08 - 2.08) (m, 2.08 - 2.08 - 2.08 - 2.08) (m, 2.08 - 2.08 - 2.08) (m, 2.08 - 2.08 - 2.08) (m, 2.08 - 2.08 - 2.08 - 2.01.16 (m, 8H, $4 \times CH_2$); δ_C (100 MHz, CDCl₃) 175.0 (CO), 174.5 (CO), 172.8 (CO), 156.1 (COO), 144.0 (Ar-C), 143.9 (Ar-C), 141.5 (Ar-C), 141.4 (Ar-C), 137.5 (Ar-C), 137.5 (Ar-C), 129.0 (Ar-CH), 128.8 (Ar-CH), 2 × 128.7 (Ar-CH), 2 × 128.2 (Ar-CH), 2 × 127.8 (Ar-CH), 2 × 127.4 (Ar-CH), 127.2 (Ar-CH), 127.1 (Ar-CH), 2 × 126.7 (Ar-CH), 2 × 124.9 (Ar-CH), 2 × 120.1 (Ar-CH), 67.4 (OCH₂), 51.7 (NCH₂Ph), 47.7 (NCH₂Ph), 47.3 (Fmoc-Ar-CH), 44.1 (CH₂), 44.0 (CH₂), 43.1 (CH₂), 37.6 (CH₂), 35.7 (CH₂), 31.9 (CH₂), 26.7 (CH₂), 25.3 (CH₂), 22.9 (CH₂); HRMS (ESI): calcd. for C₄₁H₄₃N₃NaO₅, 680.3095. Found: [MNa]⁺, 680.3110 (-2.2 ppm error).


5,9-Dibenzyl-1,5,9-triazacyclopentadecane-2,6,10-trione (40)

The *N*-acylated product **39** (71.6 mg, 0.11 mmol) was dissolved in DCM (4 mL) and DBU (0.6 mL, 4 mmol) was added, followed by stirring at RT overnight, before the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:1 hexane: ethyl acetate \rightarrow 10:1

ethyl acetate: methanol) afforded the title compound as (as a 2:1 mixture of rotamers) a colorless oil (38 mg, 79%); $R_f = 0.32$ (9:1 ethyl acetate: methanol); δ_H (400 MHz, CDCl₃) 7.40 -7.04 (m, 15H, Ar-CH, both rotamers), 6.72 (t, J = 5.9 Hz, 1H, NH, major rotamer), 6.49 (t, J = 5.8 Hz, 1H, NH, minor rotamer), 4.85 (s, 2H, NCH₂Ph, major rotamer), 4.75 (s, 2H, NCH₂Ph, minor rotamer), 4.59 (s, 2H, NCH₂Ph, major rotamer), 4.57 (s, 2H, NCH₂Ph, minor rotamer), 3.80 - 3.23 (m, 10H, NHCH₂ + 2 × NCH₂, both rotamers), 2.88 - 2.37 (m, 10H, 3 × CH₂, both rotamers), 1.82 - 1.29 (m, 11H, $3 \times CH_2$, both rotamers); δ_C (100 MHz, CDCl₃) data for the major rotamer only: 174.5 (CO), 173.7 (CO), 170.8 (CO), 137.6 (Ar-C), 136.4 (Ar-C), 2 × 129.1 (Ar-CH), 2 × 129.0 (Ar-CH), 128.2 (Ar-CH), 126.7 (Ar-CH), 2 × 126.6 (Ar-CH), 2 × 126.2 (Ar-CH), 54.6 (NCH₂Ph), 51.4 (NCH₂Ph), 44.4 (CH₂), 42.0 (CH₂), 39.0 (CH₂), 35.2 (CH₂), 32.5 (CH₂), 31.5 (CH₂), 28.5 (CH₂), 25.6 (CH₂), 25.0 (CH₂); ¹³C NMR resonances for the minor rotamer: 174.5 (CO), 171.7 (CO), 170.6 (CO), 138.0 (Ar-C), 137.2 (Ar-C), 129.0 (Ar-CH), 128.7 (Ar-CH), 127.7 (Ar-CH), 127.6 (Ar-CH), 53.7 (NCH₂Ph), 49.4 (NCH₂Ph), 44.7 (CH₂), 44.2 (CH₂), 37.6 (CH₂), 36.9(CH₂), 32.3 (CH₂), 31.9 (CH₂), 26.8 (CH₂), 24.1 (CH₂), 23.3 (CH₂); HRMS (ESI): calcd. for C₂₆H₃₃N₃NaO₃, 458.2414. Found: [MNa]⁺, 458.2416 (-0.3 ppm error).

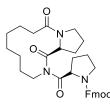

5-Benzyl-1-[2-(benzyloxy)benzoyl]-1,5-diazacycloundecane-2,6-dione (41)

A mixture of 11-membered ring lactam **36** (109.7 mg, 0.4 mmol), CuO (6.4 mg, 0.08 mmol) and NMM (0.264 mL, 2.4 mmol) in dry benzene (2 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride **18** (1.2 mmol, 3.0 equiv., freshly prepared from 2-benzyloxybenzoic acid using the general procedure) in dry benzene (2 mL) was added and the resulting mixture was refluxed at 80 °C for 18 h. The mixture was then diluted with DCM (30 mL) and washed with 10% aq. HCl (30 mL). The aqueous layer was then extracted with DCM (3×30 mL) and the combined organic extracts dried over MgSO4 and concentrated in vacuo. Purification by flash column chromatography (SiO₂, 2:1 hexane: ethyl acetate) afforded the *title compound* (as a 10:1 mixture of rotamers) as a colorless oil (180 mg, 93%). R_f = 0.65 (ethyl acetate); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.51 – 7.27 (m, 9H, Ar-CH, both rotamers), 7.25 – 7.18 (m, 2H, Ar-CH, both rotamers), 7.11 – 6.90 (m, 3H, Ar-CH, both rotamers), 5.09 (s, 2H, OCH₂Ph, both rotamers), 4.82 (d, *J* = 16.6 Hz, 1H, NCH₂Ph, major

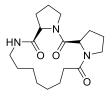
rotamer), 4.38 (d, J = 16.6 Hz, 1H, NCH₂Ph, major rotamer), 4.17 – 3.55 (m, 4H, CH₂, both rotamers), 3.34 – 2.54 (m, 2H, CH₂, both rotamers), 2.40 – 1.11 (m, 9H, CH₂, both rotamers); $\delta_{\rm C}$ (100 MHz, CDCl₃) for major rotamer: 174.8 (CO), 173.1 (CO), 172.5 (CO), 154.8 (Ar-C), 137.6 (Ar-C), 136.0 (Ar-C), 132.4 (Ar-CH), 2 × 128.7 (Ar-CH), 2 × 128.6 (Ar-CH), 2 × 128.2 (Ar-CH), 2 × 127.2 (Ar-CH), 126.6 (Ar-C), 121.5 (Ar-CH), 112.8 (Ar-CH), 70.6 (OCH₂), 47.7 (NCH₂Ph), 46.4 (NCH₂), 44.3 (NCH₂), 37.1 (COCH₂), 32.2 (COCH₂), 29.1 (CH₂), 25.3 (CH₂), 23.8 (CH₂); Diagnostic ¹³C NMR resonances for the minor rotamer: 178.2 (NCO), 174.4 (NCO), 170.3 (NCO), 154.8 (Ar-COBn), 137.3 (Ar-C), 136.2 (Ar-C), 132.2 (Ar-CH), 129.6(Ar-CH), 129.2 (Ar-CH), 128.9 (Ar-CH), 128.3 (Ar-CH), 128.1 (Ar-CH), 127.6 (Ar-CH), 127.3 (Ar-CH), 127.2 (Ar-CH), 126.3 (Ar-C), 112.9 (Ar-CH), 70.7 (OCH₂Ph), 44.7 (NCH₂Ph), 36.5 (CH₂), 26.4 (CH₂), 22.8 (CH₂), 22.4 (CH₂); HRMS (ESI): calcd. for C₃₀H₃₂N₂NaO₄, 507.2254. Found: [MNa]⁺, 507.2261 (–1.3 ppm error).

5-Benzyl-4,5,7,8,9,10,11,12-octahydro-1,5,12-benzoxadiazacyclopentadecine-2,6,13(3*H*)-trione (42)

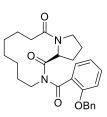
This *N*-acylated product **41** (175 mg, 0.362 mmol) was re-dissolved in ethyl acetate (4.0 mL) and placed under an argon atmosphere. Palladium on carbon (36 mg, Pd 10% on carbon) was then added and the reaction vessel was backfilled with hydrogen (via balloon) several times, then stirred at RT under a slight positive pressure of hydrogen (balloon) for 16 h. The reaction was then purged with argon, filtered through Celite, washed with methanol where the solvent was removed *in vacuo*. The crude material was then re-dissolved in chloroform (4.0 mL) and triethylamine (76 μ L, 0.543 mmol) added, and stirred at RT for 4 h, then reduced *in vacuo*. Purification by flash column chromatography (SiO₂, 1:3 hexane: ethyl acetate) afforded the *title compound* (as a 10:1 mixture of rotamers) as a colorless oil (82 mg, 57%); R_f = 0.45 (ethyl acetate); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.86 (dd, J = 7.8, 1.8 Hz, 1H, Ar-CH, major rotamer), 7.44 (td, J = 7.8, 1.7 Hz, 1H, Ar-CH, major rotamer), 7.53 (dd, J = 7.6, 1.8 Hz, 1H, Ar-CH, both rotamers), 6.97 (dd, J = 8.1, 1.0 Hz, 1H, Ar-CH, major rotamer), 6.49 (t, J = 6.0 Hz, 1H, NH, major rotamer), 4.61 (s, 2H, NCH₂Ph, minor rotamer), 3.74 (t, J = 6.8 Hz, 2H, CH₂, minor rotamer), 4.61 (s, 2H, NCH₂Ph, minor rotamer), 3.74 (t, J = 6.8 Hz, 2H, CH₂, minor rotamer),


3.61 – 3.55 (m, 3H, CH₂, major rotamer), 3.44 (q, J = 6.0 Hz, 2H, CH₂, major rotamer), 3.14 – 3.05 (m, 2H, CH₂, major rotamer), 2.79 (t, J = 6.8 Hz, 2H, CH₂, minor rotamer), 2.51 (t, J = 7.4 Hz, 2H, CH₂, minor rotamer), 2.47 – 2.42 (m, 2H, CH₂, major rotamer), 1.80 – 1.71 (m, 2H, CH₂, both rotamers), 1.59 (dt, J = 11.6, 6.4 Hz, 2H, CH₂, both rotamers), 1.46 – 1.35 (m, 2H, CH₂, both rotamers); δ_{C} (100 MHz, CDCl₃) data for the major rotamer only: 174.5 (CO), 171.9 (CO), 165.5 (CO), 147.6 (Ar-C), 137.3 (Ar-C), 131.8 (Ar-CH), 130.7 (Ar-CH), 128.9 (Ar-C), 2 × 128.9 (Ar-CH), 127.6 (Ar-CH), 126.6 (Ar-CH), 2 × 126.6 (Ar-CH), 122.9 (Ar-CH), 54.0 (NCH₂Ph), 42.6 (CH₂), 39.5 (CH₂), 33.1 (CH₂), 33.1 (CH₂), 29.2 (CH₂), 25.4 (CH₂), 25.1 (CH₂); Diagnostic ¹³C NMR resonances for the minor rotamer: 173.9 (CO), 169.9 (CO), 166.4 (CO), 147.9 (Ar-C), 137.4 (Ar-C), 131.4 (Ar-CH), 129.6 (Ar-CH), 128.8 (Ar-CH), 128.2 (Ar-CH), 127.5 (Ar-CH), 126.3 (Ar-CH), 123.1(Ar-CH), 48.7 (NCH₂Ph), 42.1 (CH₂), 37.9 (CH₂), 34.8 (CH₂), 33.6 (CH₂), 28.2 (CH₂), 25.8 (CH₂), 24.5 (CH₂); HRMS (ESI): calcd. for C₂₃H₂₆N₂NaO₄, 417.1785. Found: [MNa]⁺, 417.1784 (0.1 ppm error).

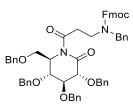
Dodecahydropyrrolo[1,2-a][1,4]diazacyclododecine-1,10-dione (43)


A mixture of azocan-2-one (706 mg, 5 mmol), DMAP (61 mg, 0.5 mmol) and pyridine (2.42 mL, 30 mmol) in DCM (35 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 16 (7.5 mmol, 1.50 equiv., freshly prepared from Fmoc-Pro-OH using the general procedure) in DCM (18 mL) was added and the resulting mixture was refluxed at 50 °C for 16 h. The mixture was then diluted with DCM (100 mL) and washed with 10% aq. HCl (100 mL). The aqueous layer was then extracted with DCM (3×100 mL) and the combined organic extracts dried over MgSO4 and concentrated in vacuo. The crude material was then re-dissolved in DCM (50 mL) and DBU (7.6 mL, 50 mmol) was added, followed by stirring at RT overnight, before the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1:1 hexane: ethyl acetate \rightarrow ethyl acetate \rightarrow 10:1 ethyl acetate: methanol) afforded the *title compound* (as a 3:2 mixture of rotamers) as a white solid (940 mg, 79%); $R_f = 0.25$ (9:1 ethyl acetate: methanol); $[\alpha]_D^{21} = 2.4$ (2.9 mg/mL in CHCl₃); δ_H (400 MHz, CDCl₃) 7.51 (d, J = 9.1 Hz, 1H, NH, minor rotamer), 5.85 (d, J = 9.6 Hz, 1H, NH, major rotamer), 4.81 (dd, J = 8.0, 1.5 Hz, 1H, NCH, minor rotamer), 4.37 (dd, J = 8.7, 2.8 Hz, 1H, NCH, major rotamer), 3.88 - 3.50 (m, 4H, CH₂, both rotamers), 3.45 (dd, J = 9.7, 9.1 Hz, 1H, CH₂, both rotamers), 3.02 (dd, J = 14.0, 5.4 Hz, 1H, CH₂, both rotamers), 2.84 - 2.65 (m, 1H, CH₂, both rotamers), 2.51 – 2.44 (m, 1H, CH₂, both rotamers), 2.43 – 2.33 (m, 2H, CH₂, both rotamers), 2.32 – 2.06 (m, 6H, CH₂, both rotamers), 1.84 – 1.02 (m, 24H, CH₂, both rotamers); $\delta_{\rm C}$ (100 MHz, CDCl₃) data for the major rotamer: 173.8 (CO), 171.8 (CO), 62.0 (NCH), 47.0 (CH₂), 39.9 (CH₂), 31.8 CH₂), 31.2 (CH₂), 27.9 (CH₂), 24.6 (CH₂), 24.6 (CH₂), 24.5 (CH₂), 24.4 (CH₂), 22.9 (CH₂); ¹³C data for the minor rotamer: 174.7 (CO), 171.1 (CO), 58.5 (NCH), 47.3 (CH₂), 39.1 (CH₂), 35.0 (CH₂), 27.5 (CH₂), 26.9 (CH₂), 25.2 (CH₂), 25.1 (CH₂), 25.0 (CH₂), 23.8 (CH₂), 23.2 (CH₂); HRMS (ESI): calcd. for C₁₃H₂₂N₂NaO₂, 261.1573. Found: [MNa]⁺, 261.1570 (1.3 ppm error).

(9*H*-Fluoren-9-yl)methyl 2-(1,10-dioxododecahydropyrrolo[1,2*a*][1,4] diazacyclododecine-2(1*H*)-carbonyl)pyrrolidine-1-carboxylate (44)

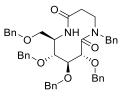

A mixture of 12 membered lactam 43 (95.3 mg, 0.4 mmol), CuO (3.2 mg, 0.04 mmol) and NMM (0.260 mL, 2.4 mmol) in benzene (2.0 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 18 (1.2 mmol, 3.0 equiv., freshly prepared from Fmoc-Pro-OH using the general procedure) in dry benzene (2 mL) was added and the resulting mixture was refluxed at 80 °C for 18 h. The mixture was then diluted with DCM (10 mL) and washed with 10% aq. HCl (10 mL). The aqueous layer was then extracted with DCM $(3 \times 10 \text{ mL})$ and the combined organic extracts dried over MgSO₄ and concentrated in vacuo. Purification by flash column chromatography (SiO₂, 1:1 hexane: ethyl acetate \rightarrow ethyl acetate \rightarrow 9:1 ethyl acetate: methanol) afforded the *title compound* (as a 5:1 mixture of rotamers) as a colorless oil (90 mg, 40%). $R_f = 0.55$ (9:1 ethyl acetate: methanol); δ_H (400 MHz, CDCl₃); 7.75 (t, J = 7.1 Hz, 3H, Ar-CH, both rotamers), 7.65 - 7.55 (m, 3H, Ar-CH, both rotamers), 7.43 - 7.45 - 7.457.34 (m, 3H, Ar-CH, both rotamers), 7.33 - 7.26 (m, 3H, Ar-CH, both rotamers), 5.54 (d, J =8.8 Hz, 1H, NCH, minor rotamer), 5.40 (dd, J = 8.8, 1.7 Hz, 1H, NCH, major rotamer), 4.77 (dd, J = 8.6, 4.0 Hz, 1H, NCH, major rotamer), 4.58 (dd, J = 10.8, 7.1 Hz, 1H, NCH, minor)rotamer), 4.49 - 4.30 (m, 3H, OCH₂, both rotamers), 4.25 (t, J = 7.2 Hz, 1H, OCH₂CH, major rotamer), 3.84 - 3.58 (m, 5H, NCH₂, both rotamers), 3.29 (ddd, J = 14.8, 6.5, 2.8 Hz, 1H, NCH₂, major rotamer), 2.46 (dt, J = 14.5, 7.4 Hz, 1H, NCH₂, major rotamer), 2.39 - 2.26 (m, 2H, COCH₂, both rotamers), 2.15 - 1.08 (m, 25H, $9 \times$ CH₂, both rotamers); $\delta_{\rm C}$ (100 MHz, CDCl₃) data for the major rotamer only: 177.6 (CO), 176.1 (CO), 172.7 (CO), 154.8 (COO), 2×144.1 (Ar-C), 2×141.4 (Ar-C), 2×127.8 (Ar-CH), 2×127.1 (Ar-CH), 2×125.3 (Ar-CH), 2×120.1 (Ar-CH), 67.7 (OCH₂), 62.8 (NCH), 59.9 (NCH), 47.3 (OCH₂CH), 47.0 (CH₂), 47.0 (CH₂), 44.3 (CH₂), 32.6 (CH₂), 31.6 (CH₂), 30.0 (CH₂), 27.3 (CH₂), 26.3 (CH₂), 25.7 (CH₂), 25.2 (CH₂), 24.4 (CH₂), 23.9 (CH₂), 21.9 (CH₂); 13 C NMR resonances for the minor rotamers: 177.0 (CO), 175.2 (CO), 172.2 (CO), 154.3 (COO), 144.0 (Ar-C), 143.5 (Ar-C), 141.3 (Ar-C), 141.2 (Ar-C), 127.9 (Ar-CH), 127.8 (Ar-CH), 127.1 (Ar-CH), 127.0 (Ar-CH), 120.2 (Ar-CH), 68.2 (OCH₂), 47.7 (OCH₂CH), 47.2 (CH₂), 46.9 (CH₂), 44.1 (CH₂), 31.4 (CH₂), 21.2 (CH₂), 22.8 (CH₂), 27.0 (CH₂), 25.8 (CH₂), 25.0 (CH₂), 23.2 (CH₂), 22.9 (CH₂); HRMS (ESI): calcd. for C₃₃H₃₉N₃NaO₅, 580.2782. Found: [MNa]⁺, 580.2790 (-1.4 ppm error).

Tetradecahydro-1*H*-dipyrrolo[1,2-*a*:1',2'-*d*][1,4,7]triazacyclopentadecine-5,14,19(19a*H*)-trione (45)


The N-acylated product 44 (85 mg, 0.15 mmol) was then re-dissolved in DCM (4 mL) and DBU (0.6 mL, 4 mmol) was added, followed by stirring at RT overnight, before the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, ethyl acetate \rightarrow 9:1 ethyl acetate: methanol) afforded the *title compound* as (as a 10:1:1:1 mixture of rotamers, A:B:C:D) a colorless oil (39 mg, 72%); $R_f = 0.18$ (9:1 ethyl acetate: methanol); $[\alpha]_D^{21} = -13.2$ $(5.4 \text{ mg/mL in CHCl}_3); \delta_H (400 \text{ MHz, CDCl}_3) 8.57 (d, J = 4.2 \text{ Hz}, 1\text{H}, \text{NH}, \text{rotamer A}), 7.45$ (d, J = 7.3 Hz, 1H, NH, rotamer B), 6.15 (t, J = 5.7 Hz, 1H, NH, rotamer C), 4.80 (dd, J = 8.4)2.9 Hz, 1H, NCH, rotamer B), 4.71 (dd, J = 8.0, 2.0 Hz, 1H, NCH, rotamer C), 4.58 – 4.49 (m, 1H, NCH, rotamer D), 4.50 - 4.41 (m, 1H, NCH, rotamer B), 4.36 (td, J = 8.6, 1.6 Hz, 1H, NCH, rotamer C), 4.24 (d, J = 7.8 Hz, 1H, NCH, rotamer A), 4.11 (t, J = 7.7 Hz, 1H, NCH, rotamer A), 3.77 – 3.20 (m, 8H, NCH₂+ NHCH₂, all rotamers), 2.92 – 2.47 (m, 3H, COCH₂, all rotamers), 2.44 - 0.76 (m, 36H, $7 \times CH_2$, all rotamers); δ_C (100 MHz, CDCl₃) data for the major rotamer only: 173.2 (CO), 171.2 (CO), 171.0 (CO), 61.9 (NCH), 59.3 (NCH), 47.7 (CH₂), 47.0 (CH₂), 38.9 (CH₂), 34.7 (CH₂), 32.3 (CH₂), 28.8 (CH₂), 28.3 (CH₂), 28.2 (CH₂), 26.3 (CH₂), 25.7 (CH₂), 24.2 (CH₂), 22.5 (CH₂), 22.0 (CH₂); HRMS (ESI): calcd. for C₁₈H₂₉N₃NaO₃, 358.2101. Found: [MNa]⁺, 358.2104 (-0.7 ppm error).

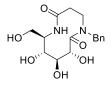
2-[2-(Benzyloxy)benzoyl]dodecahydropyrrolo[1,2-*a*][1,4]diazacyclododecine-1,10-dione (46)

A mixture of 12-membered lactam 43 (95.3 mg, 0.4 mmol), CuO (6.4 mg, 0.08 mmol) and NMM (0.264 mL, 2.4 mmol) in dry benzene (2 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 18 (1.2 mmol, 3.0 equiv., freshly prepared from 2-benzyloxybenzoic acid using the general procedure) in dry benzene (2 mL) was added and the resulting mixture was refluxed at 80 °C for 18 h. The mixture was then diluted with DCM (30 mL) and washed with 10% aq. HCl (30 mL). The aqueous layer was then extracted with DCM (3×30 mL) and the combined organic extracts dried over MgSO₄ and concentrated in vacuo. Purification by flash column chromatography (SiO₂, 1:1 hexane: ethyl acetate \rightarrow ethyl acetate) afforded the *title compound* (as a 10:1 mixture of rotamers) as a pale-yellow oil (130 mg, 73%). $R_f = 0.40$ (ethyl acetate); δ_H (400 MHz, CDCl₃) 7.95 (dd, J = 7.7, 1.8 Hz, 1H, Ar-CH, minor rotamer), 7.44 (ddd, J = 8.3, 7.5, 1.7 Hz, 1H, Ar-CH, major rotamer), 7.38 – 7.27 (m, 6H, Ar-CH, both rotamers), 7.08 – 7.01 (m, 2H, Ar-CH, both rotamers), 5.10 – 4.95 (m, 2H, OCH₂Ph, both rotamers), 4.40 (ddd, J = 14.2, 10.9, 3.0 Hz, 1H, NCH, major rotamer), 3.96 (ddd, J = 13.4, 7.6, 2.7 Hz, 1H, NCH, minor rotamer), 3.65 (dt, J = 11.8, 5.7 Hz, 2H, CH₂, both rotamers), 3.53 - 3.42 (m, 1H, CH₂, both rotamers), 3.25 (dt, J = 14.4, 4.0 Hz, 1H, CH₂, both rotamers), 2.41 (dt, J = 13.9, 7.2 Hz, 1H, CH₂, both rotamers), 2.09 – 1.91 (m, 2H, CH₂, both rotamers), 1.71 – 1.50 (m, 6H, CH₂, both rotamers), 1.43 – 1.08 (m, 8H, CH₂, both rotamers); $\delta_{\rm C}$ (100 MHz, CDCl₃) data for the major rotamer only: 175.9 (CO), 172.9 (CO), 172.6 (CO), 154.4 (Ar-C), 135.7 (Ar-C), 132.3 (Ar-CH), 128.7 (Ar-CH), 128.7 (Ar-CH), 2 × 128.5 (Ar-CH), 2 × 127.7 (Ar-CH), 125.8 (Ar-C), 121.4 (Ar-CH), 112.2 (Ar-CH), 70.6 (OCH₂Ph), 61.9 (NCH), 46.8 (CH₂), 46.5 (CH₂), 32.3 (CH₂), 30.7 (CH₂), 26.9 (CH₂), 26.7 (CH₂), 26.2 (CH₂), 24.9 (CH₂), 23.2 (CH₂), 22.1 (CH₂); Diagnostic ¹³C NMR resonances for the minor rotamer: 177.0 (CO), 171.2 (CO), 154.8 (Ar-C), 135.9 (Ar-C), 132.5 (Ar-CH), 128.1 (Ar-CH), 127.4 (Ar-C), 127.2 (Ar-CH), 121.8 (Ar-CH), 112.4 (Ar-CH), 70.8 (OCH₂Ph), 60.4 (NCH), 58.0 (CH₂), 44.8 (CH₂), 34.7 (CH₂), 27.4 (CH₂), 25.9 (CH₂), 25.1 (CH₂), 23.6 (CH₂), 22.8 (CH₂), 21.1 (CH₂); HRMS (ESI): calcd. for C₂₇H₃₂N₂NaO₄, 471.2254. Found: [MNa]⁺, 471.2249 (1.1 ppm error).

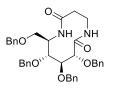

(9*H*-Fluoren-9-yl)methyl 3,4,5-tris(benzyloxy)-2-[(benzyloxy)methyl]-6-oxopiperidine-1carboxylate (49)

A mixture of lactam 48³ (107.5 mg, 0.2 mmol), DMAP (2.4 mg, 0.02 mmol) and pyridine (0.097 mL, 1.2 mmol) in dry DCM (1.0 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride (1.0 mmol, 3.0 equiv., freshly prepared from acid using the general procedure) in dry DCM (1.0 mL) was added and the resulting mixture was refluxed at 50 °C for 18 h. The mixture was then diluted with DCM (10 mL) and washed with 10% aq. HCl (10 mL). The aqueous layer was then extracted with DCM (3×10 mL) and the combined organic extracts dried over MgSO4 and concentrated in vacuo. Purification by flash column chromatography (SiO₂, 2:1 hexane: ethyl acetate \rightarrow 1:1 hexane: ethyl acetate) afforded the *title compound* (as a 5:4 rotamers) as a colorless oil (132 mg, 72%). $R_f = 0.60$ (1:1 hexane: ethyl acetate); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.77 – 7.71 (m, 2H, Fmoc-CH, both rotamers), 7.63 (d, J = 7.1 Hz, 1H, Fmoc-CH, both rotamers), 7.49 – 7.19 (m, 36H, Ar-CH, both rotamers), 7.12 (d, J = 6.4 Hz, 1H, Fmoc-CH, both rotamers), 5.04 - 4.93 (m, 2H, OCH₂Ph, both rotamers), 4.75 $(dd, J = 13.7, 10.1 \text{ Hz}, 1\text{H}, \text{CONCH}, \text{major rotamer}), 4.65 (t, J = 10.3 \text{ Hz}, 1\text{H}, \text{COOCH}_2\text{CH},$ major rotamer), 4.60 - 4.36 (m, 11H, $3 \times \text{OCH}_2\text{Ph} + \text{NCH}_2\text{Ph} + \text{OCH}_2\text{CH}$, both rotamers), 4.24 (dt, J = 12.9, 6.6 Hz, 1H, OCH, both rotamers), 4.01 (dd, J = 4.0, 2.2 Hz, 1H, OCH, major rotamer), 3.88 (dd, J = 8.9, 4.3 Hz, 1H, OCH, major rotamer), 3.78 (dd, J = 10.5, 8.8 Hz, 1H, OCH, minor rotamer), 3.67 - 3.56 (m, 2H, BnOCH₂, both rotamers), 3.47 (td, J = 9.8, 5.3 Hz, 2H, NCH₂, both rotamers), 3.40 - 3.09 (m, 2H, COCH₂, both rotamers); $\delta_{\rm C}$ (101 MHz, CDCl₃) for major rotamer only: 173.6 (NCO), 172.1 (NCO), 156.2 (OCO), 144.1 (Ar-C), 141.4 (Ar-C), 138.0 (Ar-C), 137.8 (Ar-C), 137.7 (Ar-C), 137.5 (Ar-C), 128.8 (Ar-CH), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.3 (Ar-CH), 128.1 (Ar-CH), 128.0 (Ar-CH), 128.0 (Ar-CH), 127.8 (Ar-CH), 127.7 (Ar-CH), 127.4 (Ar-CH), 127.3 (Ar-CH), 127.2 (Ar-CH), 125.1 (Ar-CH), 120.0 (Ar-CH), 81.7 (OCH), 79.8 (OCH), 76.5 (OCH), 74.4 (OCH₂), 73.6 (OCH₂), 73.3 (OCH₂), 71.7 (OCH₂), 69.3 (OCH₂), 67.6 (OCH₂), 55.5 (NCH₂), 50.6 (NCH), 47.4 (Ar-CCH), 43.2 (NCH₂), 37.7 (COCH₂); Diagnostic ¹³C NMR resonances for the minor rotamer: 173.5 (NCO), 172.1 (NCO), 156.6 (OCO), 144.2 (Ar-C), 141.4 (Ar-C), 137.8 (Ar-C), 137.8 (Ar-C), 137.7 (Ar-C), 137.4 (Ar-C), 128.7 (Ar-CH), 128.6 (Ar-CH), 128.0 (Ar-CH), 127.7 (Ar-CH), 127.5 (Ar-CH), 127.2 (Ar-CH), 125.1 (Ar-CH), 120.1 (Ar-CH), 81.5 (OCH), 79.6 (OCH), 74.5

(OCH₂), 73.8 (OCH₂), 73.4 (OCH₂), 71.9 (OCH₂), 69.6 (OCH₂), 67.6 (OCH₂), 55.7 (NCH₂), 50.8 (NCH₂), 47.5 (Ar-CCH), 42.2 (NCH₂), 38.2(COCH₂); HRMS (ESI): calcd. for C₅₉H₅₆N₂NaO₈, 943.3929. Found: [MNa]⁺, 943.3966 (-4.0 ppm error).

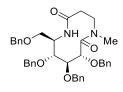

5-Benzyl-7,8,9-tris(benzyloxy)-10-[(benzyloxy)methyl]-1,5-diazecane-2,6-dione (50)

The N-acylated product (120 mg, 0.13 mmol) was then re-dissolved in DCM (1.3 mL) and DBU (0.194 mL, 1.3 mmol) was added, followed by stirring at RT overnight, before the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 10:1 hexane: ethyl acetate \rightarrow 1:2 hexane: ethyl acetate) afforded the *title compound* as (as a 10:3:2 mixture of rotamers A:B:C) a colorless oil (61 mg, 67%); $R_f = 0.24$ (1:1 hexane: ethyl acetate); $[\alpha]_D^{21} = -$ 7.4 (10.9 mg/mL in CHCl₃); v_{max}/cm⁻¹ (thin film) 3408, 3062, 3030, 2924, 2864, 1660, 1453, 1098, 736, 698; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.56 – 7.06 (m, 57H, Ar-CH, all rotamers), 6.90 (dd, J = 7.2, 2.3 Hz, 2H, Ar-CH, all rotamers), 5.93 (d, J = 10.3 Hz, 1H, CONH, rotamer A), 5.56 (d, J = 10.3 Hz, 1H, CONH, rotamer C), 5.43 (d, J = 10.2 Hz, 1H, CONH, rotamer B), 5.22 – 3.68 (m, 36H, $5 \times \text{OCH}_2 + \text{NCH}_2 + 3 \times \text{OCH} + \text{NHCH}$, all rotamers), 3.63 - 3.23 (m, 3H, NCH₂, all rotamers), 2.84 – 2.71 (m, 2H, CH₂, rotamer A), 2.50 – 2.41 (m, 2H, CH₂, rotamer B), 2.34 -2.25 (m, 2H, CH₂, rotamer C); $\delta_{\rm C}$ (101 MHz, CDCl₃) data for the major rotamer only: 172.0 (NHCO), 169.6 (NCO), 138.9 (Ar-C), 138.2 (Ar-C), 138.2 (Ar-C), 137.8 (Ar-C), 136.1 (Ar-C), 128.9 (Ar-CH), 128.8 (Ar-CH), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.5 (Ar-CH), 128.4 (Ar-CH), 128.3 (Ar-CH), 128.1 (Ar-CH), 127.9 (Ar-CH), 126.9 (Ar-CH), 78.8 (OCH), 78.5 (OCH), 74.2 (OCH₂), 74.0 (OCH₂), 73.2 (OCH₂), 72.7 (OCH), 72.2 (OCH₂), 69.2 (OCH₂), 53.1 (NHCH), 51.2 (NCH₂Ph), 41.1 (NCH₂), 34.9 (COCH₂); Diagnostic ¹³C NMR resonances for the minor rotamer: 171.8 (NHCO), 171.7 (NHCO), 171.5 (NCO), 166.2 (NCO), 151.9 (Ar-C), 138.5 (Ar-C), 138.2 (Ar-C), 138.1 (Ar-C), 138.1 (Ar-C), 138.0 (Ar-C), 138.0 (Ar-C), 137.4 (Ar-C), 137.4 (Ar-C), 135.9 (Ar-C), 129.4 (Ar-CH), 129.2 (Ar-CH), 129.0 (Ar-CH), 128.7 (Ar-CH), 128.7 (Ar-CH), 128.4 (Ar-CH), 128.3 (Ar-CH), 128.2 (Ar-CH), 128.2 (Ar-CH), 128.2 (Ar-CH), 128.0 (Ar-CH), 128.0 (Ar-CH), 128.0 (Ar-CH), 127.9 (Ar-CH), 127.5 (Ar-CH), 127.5 (Ar-CH), 105.9 (OCH), 90.6 (OCH), 81.9 (OCH), 81.5 (OCH), 76.2 (OCH), 75.8 (OCH), 75.8 (OCH), 74.9 (OCH₂), 74.2 (OCH), 73.9 (OCH₂), 73.6 (OCH₂), 73.1 (OCH₂), 71.6 (OCH₂), 70.1 (OCH₂), 68.2 (OCH₂), 67.3 (OCH₂), 53.3 (NHCH), 52.6 (NHCH), 50.8


(NCH₂Ph), 50.4 (NCH₂Ph), 49.9 (NCH₂Ph), 47.3 (NCH₂), 44.9 (NCH₂), 44.1 (NCH₂), 37.9 (COCH₂), 37.7 (COCH₂), 36.0 (COCH₂), 29.8 (COCH₂); HRMS (ESI): calcd. for $C_{44}H_{46}N_2NaO_6$, 721.3248. Found: [MNa]⁺, 721.3268 (-2.7 ppm error).

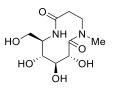
5-Benzyl-7,8,9-trihydroxy-10-(hydroxymethyl)-1,5-diazecane-2,6-dione (51)

5-Benzyl-7,8,9-tris(benzyloxy)-10-[(benzyloxy)methyl]-1,5-diazecane-2,6-dione 50 (122 mg, 0.175 mmol) was dissolved in methanol (3 mL) and ethanol (1 mL), then palladium hydroxide on carbon (20 mg, 20% w/w) was added, together with 1 drop 1 M aqueous HCl solution. The mixture was stirred for 48 hours under a positive pressure of hydrogen (via balloon). The mixture was then filtered through Celite, washed with methanol where the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 9:1 ethyl acetate: methanol \rightarrow 3:1 ethyl acetate: methanol) afforded the *title compound* as a pale yellow oil (37 mg, 62%); R_f = 0.26 (3:1 ethyl acetate: methanol); $[\alpha]_D^{21} = -11.5$ (2.2 mg/mL in methanol); $[\alpha]_D^{21} = -14.0$ $(2.7 \text{ mg/mL in methanol}); v_{\text{max}}/\text{cm}^{-1}$ (thin film) 3307, 1634, 1496, 1453, 1364, 1076, 1049, 735, 698; $\delta_{\rm H}$ (400 MHz, methanol- d_4) 7.37 – 7.10 (m, 5H, Ar-CH), 5.38 (d, J = 15.1 Hz, 1H, CONH), 4.82 – 4.92 (m, 1H, COCHOH), 4.17 (s, 1H, CHOH), 3.96 (s, 1H, CHOH), 3.86 – 3.67 (m, 4H, CH₂OH + NCH₂Ph), 3.54 (dd, J = 8.8, 3.5 Hz, 1H, NHCH), 3.47 – 3.24 (m, 2H, NCH₂), 2.51 (td, J = 12.4, 2.9 Hz, 1H, COCH₂), 2.21 (dd, J = 12.5, 4.2 Hz, 1H, COCH₂); δ_c (101 MHz, methanol-d₄) 176.2 (NHCO), 174.3 (NCO), 138.2 (Ar-C), 129.7 (Ar-CH) × 2, 128.8 (Ar-CH) × 2, 128.6 (Ar-CH), 81.0 (COCHOH), 75.2 (CHOH), 65.0 (CHOH), 63.2 (CH₂OH), 52.8 (NHCH), 49.8 (NCH₂Ph), 45.6 (NCH₂), 37.4 (COCH₂); HRMS (ESI): calcd. for C₁₆H₂₂N₂NaO₆, 361.1370. Found: [MNa]⁺, 361.1372 (-0.5 ppm error).

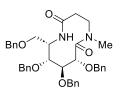

7,8,9-Tris(benzyloxy)-10-[(benzyloxy)methyl]-1,5-diazecane-2,6-dione (56)

A mixture of lactam 48^3 (107.5 mg, 0.2 mmol), DMAP (2.4 mg, 0.02 mmol) and pyridine (0.097 mL, 1.2 mmol) in dry DCM (1.0 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 52 (0.6 mmol, 3.0 equiv., freshly prepared from

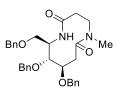
Fmoc- β -alanine using the general procedure) in dry DCM (1.0 mL) was added and the resulting mixture was refluxed at 50 °C for 18 h. The solvent was concentrated in vacuo, loaded onto a short silica plug and eluted with 2:1 hexane: ethyl acetate, to remove the majority of excess carboxylic acid and pyridine residues (28% starting lactam left), and concentrated in vacuo. The crude material (128 mg) was then re-dissolved in DCM (2 mL) and DBU (300 mL, 2.0 mmol) was added, followed by stirring at RT for 30 min, before the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the title compound as a colorless oil (36 mg, 30%); $R_f = 0.21$ (1:1 hexane: ethyl acetate); $[\alpha]_D^{21} = 6.4$ (9.6 mg/mL in CHCl₃); δ_H (400 MHz, CDCl₃-d) 7.31 – 7.08 (m, 20H, Ar-CH), 6.78 (dd, J = 10.2, 2.8 Hz, 1H, NH), 5.85 (d, J = 10.4 Hz, 1H, NH), 4.82 (t, J = 10.7 Hz, 2H, OCH₂CH), 4.60 – 4.50 (m, 3H, OCH₂ + OCH), 4.46 – 4.33 (m, 4H, OCH₂), 4.26 -4.04 (m, 1H, OCH), 3.92 - 3.82 (m, $3H,OCH_2 + OCH$), 3.61 (dd, J = 8.8, 6.3 Hz, 1H, NHCH), 3.31 (dd, J = 9.2, 2.8 Hz, 1H, COCH₂), 3.15 – 3.02 (m, 1H, COCH₂), 2.68 (ddd, J = 14.2, 8.1, 3.4 Hz, 1H, NHCH₂), 2.39 (dt, J = 14.3, 8.6 Hz, 1H, NHCH₂); $\delta_{\rm C}$ (101 MHz, CDCl₃d) 173.6 (NHCO), 169.5 (NHCO), 138.6 (Ar-C), 138.4 (Ar-C), 138.2 (Ar-C), 137.3 (Ar-C), 128.5 (Ar-CH), 128.3 (Ar-CH), 128.3 (Ar-CH), 128.3 (Ar-CH), 128.1 (Ar-CH), 127.8 (Ar-CH), 127.7 (Ar-CH), 127.7 (Ar-CH), 127.6 (Ar-CH), 127.6 (Ar-CH), 85.1 (OCH), 83.6 (OCH), 76.1 (OCH), 75.6 (OCH₂), 75.3 (OCH₂), 73.4 (OCH₂), 73.3 (OCH₂), 69.5 (OCH₂CH), 53.0 (NHCH), 36.9 (COCH₂), 34.0 (NHCH₂); HRMS (ESI): calcd. for C₃₇H₄₀N₂NaO₆, 631.2779. Found: [MNa]⁺, 631.2786 (-1.2 ppm error).


(7*R*,8*S*,9*R*,10*R*)-7,8,9-Tris(benzyloxy)-10-[(benzyloxy)methyl]-5-methyl-1,5-diazecane-2,6-dione (57)

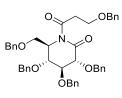
A mixture of lactam 48^3 (107.5 mg, 0.2 mmol), DMAP (2.4 mg, 0.02 mmol) and pyridine (0.097 mL, 1.2 mmol) in dry DCM (1.0 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride **53** (0.6 mmol, 3.0 equiv., freshly prepared from Fmoc-*N*-methyl- β -alanine using the general procedure) in dry DCM (1.0 mL) was added and the resulting mixture was refluxed at 50 °C for 18 h. The solvent was concentrated *in vacuo*, loaded onto a short silica plug and eluted with 2:1 hexane:ethyl acetate, to remove the majority of excess carboxylic acid and pyridine residues, and concentrated *in vacuo*. The crude material (166 mg) was then re-dissolved in DCM (2 mL) and DBU (300 mL, 2.0 mmol) was added,


followed by stirring at RT for 30 min, before the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 2:1 dichloromethane: ethyl acetate) afforded the title compound (mixture of 4 rotamers, $\approx 10:1:1:1$) as a colorless oil (66 mg, 53%); $[\alpha]_D^{21} = 2.2$ (30.8) mg/mL in CHCl₃); $\delta_{\rm H}$ (400 MHz, CDCl₃-d) 7.51 – 7.18 (m, 30 H, Ar-CH, all rotamers), 6.29 (d, J = 10.1 Hz, 1H, NH, minor rotamer), 5.89 (d, J = 10.0 Hz, 1H, NH, major rotamer), 5.64(d, J = 10.2 Hz, 1H, NH, minor rotamer), 5.28 (d, J = 10.4 Hz, 1H, NH, minor rotamer), 5.02-4.83 (m, 3H, 3 × OCH, all rotamers), 4.72 - 4.32 (m, 10H, 5 × OCH₂, all rotamers) 4.26 -4.11 (m, 2H, CH₂, all rotamers), 3.83 – 3.35 (m, 3H, CH + CH₂, all rotamers), 3.00 (s, 3H, NCH₃, minor rotamer), 2.90 (s, 3H, NCH₃, minor rotamer), 2.84 (s, 3H, NCH₃, minor rotamer), 2.59 (s, 3H, NCH₃, major rotamer); $\delta_{\rm C}$ (101 MHz, CDCl₃-d) data for the major rotamer only: 171.7 (NHCO), 169.4 (NHCO), 138.9 (Ar-C), 138.4 (Ar-C), 138.2 (Ar-C), 138.0 (Ar-C), 128.5 (Ar-CH), 128.5 (Ar-CH), 128.4 (Ar-CH), 128.4 (Ar-CH), 128.2 (Ar-CH), 128.0 (Ar-CH), 127.9 (Ar-CH), 127.7 (Ar-CH), 127.7 (Ar-CH), 78.4 (OCH), 78.2 (OCH), 74.1 (OCH₂), 74.1 (OCH2), 73.2 (OCH2), 72.4 (OCH), 72.0 (OCH2), 69.1 (OCH2CH), 53.0 (NHCH), 43.7 (COCH₂), 35.7 (NCH₃), 34.9 (NHCH₂); HRMS (ESI): calcd. for C₃₈H₄₂N₂NaO₆, 645.2935. Found: [MNa]⁺, 645.2939 (-0.7 ppm error).

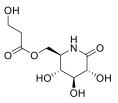
(7*R*,8*S*,9*R*,10*R*)-7,8,9-trihydroxy-10-(hydroxymethyl)-5-methyl-1,5-diazecane-2,6-dione (58)


7,8,9-Tris(benzyloxy)-10-[(benzyloxy)methyl]-5-methyl-1,5-diazecane-2,6-dione **57** (66 mg, 0.106 mmol) was dissolved in methanol (1 mL) and ethanol (0.3 mL), then palladium hydroxide on carbon (10 mg, 20% w/w) was added, together with 1 drop 1 M aqueous HCl solution. The mixture was stirred for 48 hours under a positive pressure of hydrogen (via balloon). The mixture was then filtered through Celite, washed with methanol where the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 3:1 ethyl acetate: methanol) afforded the *title compound* as a pale-yellow oil (20 mg, 72%); $R_f = 0.26$ (3:1 ethyl acetate: methanol); δ_H (400 MHz, methanol- d_4) 4.64 – 3.98 (m, 4H, 4 × CH), 3.96 – 3.58 (m, 2H, CH₂OH), 3.29 – 3.22 (m, 2H, CH₂), 3.07 – 2.86 (m, 2H, CH₂), 2.72 (s, 3H, NCH₃); δ_C (101 MHz, methanol- d_4) 174.8 (CO), 171.5 (CO), 73.3 (CHOH), 72.8 (CHOH), 68.6 (CHOH), 63.4 (CH₂OH), 54.5 (CHNH), 45.9 (NCH₃), 34.3 (CH₂), 31.5 (CH₂); HRMS (ESI): calcd. for C₁₀H₁₉N₂O₆, 263.1238. Found: [MH]⁺, 263.1232 (2.2 ppm error).

(7*R*,8*S*,9*R*,10*S*)-7,8,9-Tris(benzyloxy)-10-[(benzyloxy)methyl]-5-methyl-1,5-diazecane-2,6-dione (59)

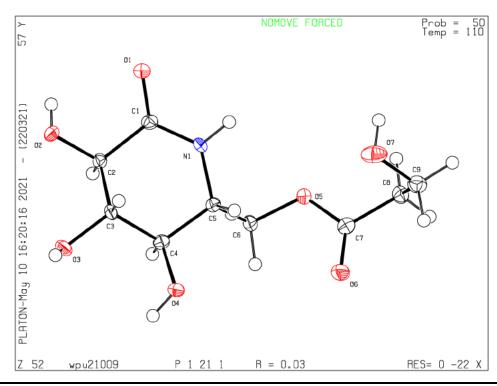

A mixture of lactam 54⁴ (87 mg, 0.16 mmol), DMAP (2.4 mg, 0.02 mmol) and pyridine (0.097 mL, 1.2 mmol) in dry DCM (2.0 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 53 (0.6 mmol, freshly prepared from Fmoc-N-methyl-βalanine using the general procedure) in dry DCM (1.0 mL) was added and the resulting mixture was refluxed at 50 °C for 18 h. The solvent was concentrated in vacuo, loaded onto a short silica plug and eluted with 2:1 hexane: ethyl acetate, to remove the majority of excess carboxylic acid and pyridine residues, and concentrated in vacuo. The crude material was then re-dissolved in DCM (2 mL) and DBU (275 µL, 2.0 mmol) was added, followed by stirring at RT for 30 min, before the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1:2 hexane: ethyl acetate) afforded the title compound as a colorless oil (41 mg, 41%); $[\alpha]_D^{21} = 2.8$ (30.8 mg/mL in CHCl₃); δ_H (400 MHz, CDCl₃-d) 7.41 – 7.18 (m, 20H, Ar-CH), 5.80 (d, J = 9.5 Hz, 1H, NH), 4.90 (d, J = 11.6 Hz, 1H, OCH), 4.83 (d, J = 11.9 Hz, 1H, OCH), 4.71 (d, J = 10.6 Hz, 1H, OCH), 4.64 (ddd, J = 19.0, 10.5, 3.7 Hz, 3H, OCH₂ + OCH₂), 4.50 (d, J = 11.7 Hz, 1H, OCH₂), 4.41 (dd, J = 8.6, 4.0 Hz, 1H, OCH₂), 4.37 (d, J =11.7 Hz, 1H, OCH₂), 4.05 (dd, J = 11.3, 9.6 Hz, 2H, OCH₂), 3.69 (d, J = 4.0 Hz, 1H, OCH₂), 3.44 – 3.25 (m, 3H, OCH₂ + CH₂), 2.94 – 2.83 (m, 1H, NHCH), 2.77 (s, 3H, NCH₃), 2.20 – 2.10 (m, 2H, CH₂); δ_C (101 MHz, CDCl₃-d) 170.7 (NHCO), 170.4 (NHCO), 138.3 (2 × Ar-C), 138.2 (Ar-C), 137.6 (Ar-C), 129.2 (2 × Ar-CH), 128.5 (2 × Ar-CH), 128.4 (4 × Ar-CH), 128.4 (3 × Ar-CH), 128.3 (2 × Ar-CH), 128.0 (2 × Ar-CH), 127.9 (Ar-CH), 127.8 (2 × Ar-CH), 127.7 (Ar-CH), 127.6 (Ar-CH), 78.0 (OCH), 75.9 (OCH), 75.3 (OCH), 75.0 (OCH₂), 73.1 (OCH₂), 72.6 (OCH₂), 71.9 (OCH₂), 69.2 (OCH₂), 46.9 (CH₂), 46.9 (NHCH), 36.9 (CH₂), 34.0 (NCH₃); HRMS (ESI): calcd. For C₃₈H₄₂N₂NaO₆, 645.2935. Found: [MNa]⁺, 645.2942 (-1.0 ppm error).

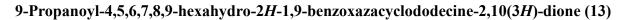
(8*S*,9*R*,10*R*)-8,9-Bis(benzyloxy)-10-[(benzyloxy)methyl]-5-methyl-1,5-diazecane-2,6dione (60)

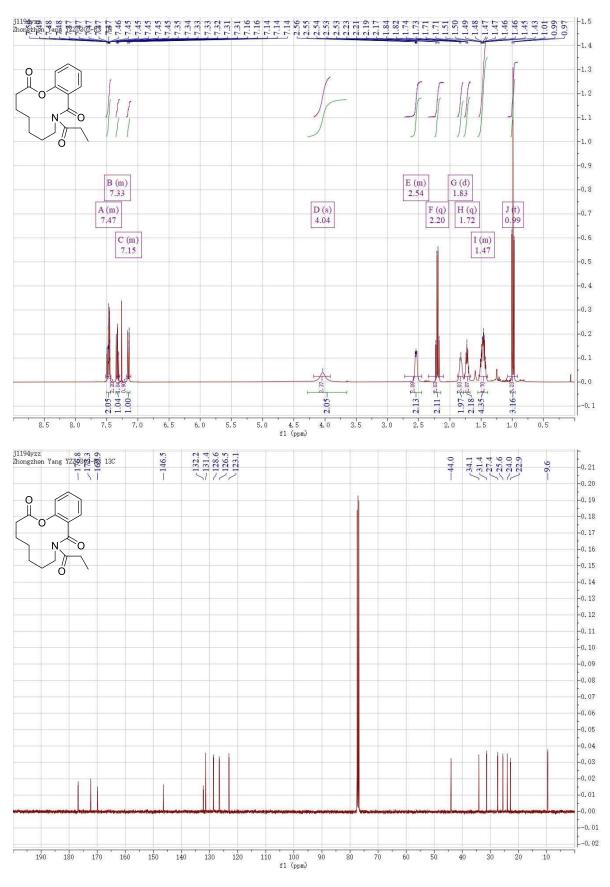

A mixture of sugar lactam 55⁵ (84 mg, 0.19 mmol), DMAP (2.4 mg, 0.02 mmol) and pyridine (0.097 mL, 1.2 mmol) in dry DCM (1.0 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 53 (0.6 mmol, freshly prepared from Fmoc-N-methyl- β -alanine using the general procedure) in dry DCM (1.0 mL) was added and the resulting mixture was refluxed at 50 °C for 18 h. The solvent was concentrated in vacuo, loaded onto a short silica plug and eluted with 1:1 hexane: ethyl acetate, to remove the majority of excess carboxylic acid and pyridine residues and concentrated in vacuo. The crude material was then re-dissolved in DCM (2 mL) and DBU (275 µL, 2.0 mmol) was added, followed by stirring at RT for 30 min, before the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 9:1 ethyl acetate: methanol) afforded the title compound (exist as a 3:1 mixture of rotamers in CDCl₃ at 50 °C) as a colorless oil (35 mg, 36%); $[\alpha]_D^{21} = 24.5$ (1.8 mg/mL in CHCl₃); $\delta_{\rm H}$ (400 MHz, CDCl₃-d at 50 °C) 7.37 – 7.14 (m, 15H, Ar-CH, both rotamers), 6.13 - 5.87 (m, 1H, NH, both rotamers), 5.05 - 4.26 (m, 6H, OCH₂ + 2 × OCH, both rotamers), 4.16 - 3.33 (m, 6H, $2 \times \text{OCH}_2 + \text{CH}_2$, both rotamers), 2.96 (s, 3H, NCH₃, major rotamer), 2.81 (s, 3H, NCH₃, minor rotamer), 2.56 – 1.47 (m, 5H, NHCH + 2 × CH₂, both rotamers); δ_C (101 MHz, CDCl₃-d at 50 °C) for major rotamer only: 172.1 (CO, brs), 170.5 (CO, brs), 138.9 (Ar-C), 138.8 (Ar-C), 138.0 (Ar-C), 128.5 – 127.4 (multiple peaks, Ar-CH), 79.1 (OCH), 76.3 (OCH), 75.3 (OCH₂, brs), 73.5 (OCH₂, brs), 73.0 (OCH₂, brs), 69.8 (OCH₂), 48.2 (NHCH), 36.9 (CH₂, brs), 34.0 (NCH₃, brs), 30.6 (CH₂), 29.9 (CH₂); Diagnostic 13C NMR resonances for the minor rotamer:172.5 (CO), 169.6 (CO), 138.2 (Ar-C), 23.3 (CH₂); HRMS (ESI): calcd. For C₃₁H₃₆N₂NaO₅, 539.2516. Found: [MNa]⁺, 539.2519 (-0.4 ppm error).

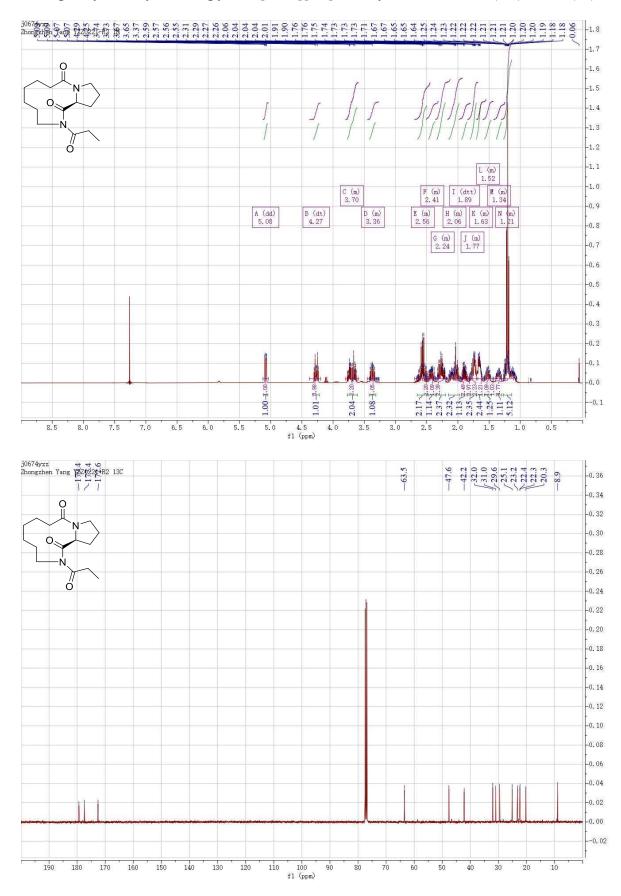
3,4,5-Tris(benzyloxy)-6-[(benzyloxy)methyl]-1-[3(benzyloxy) propanoyl] piperidin-2-one (62)

A mixture of lactam 48³ (161.3 mg, 0.3 mmol), DMAP (3.7 mg, 0.03 mmol) and pyridine (0.146 mL, 1.8 mmol) in dry DCM (1.5 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of propanoic acid chloride 61 (0.9 mmol, 3.00 eq. prepared using the general procedure) in dry DCM (1.5 mL) was added and the resulting mixture was refluxed at 50 °C for 18 h. The solvent was concentrated in vacuo, and purification by flash column chromatography (SiO₂, 3:1 hexane: ethyl acetate \rightarrow ethyl acetate) afforded the title compound 62 as a colorless oil (135 mg, 50%). 27% yield of the stating lactam 48 was also recovered. Rf = 0.70 (1:2 hexane: ethyl acetate); $\delta_{\rm H}$ (400 MHz, CDCl₃-*d*) 7.41 – 7.18 (m, 25H, Ar-CH), 4.97 (d, *J* = 11.3 Hz, 2H, OCH₂), 4.72 (d, *J* = 11.4 Hz, 1H, OCH₂), 4.61 (d, *J* = 11.4 Hz, 1H, OCH₂), 4.54 (s, 5H, OCH₂), 4.39 (d, J = 1.9 Hz, 2H, OCH₂), 4.35 (d, J = 8.5 Hz, 1H, OCH₂), 4.00 (dd, J = 4.1, 2.0 Hz, 1H, OCH), 3.88 - 3.74 (m, 3H, $2 \times \text{OCH} + \text{NCH}$), 3.60 (dd, J = 9.6, 6.5 Hz, 1H, OCH₂CH), 3.46 (dd, *J* = 9.6, 3.9 Hz, 1H, OCH₂CH), 3.29 (td, *J* = 6.2, 3.7 Hz, 2H, COCH₂); δ_C (101 MHz, CDCl₃-d) 173.6 (NCO), 172.2 (NCO), 138.4 (Ar-C), 138.0 (Ar-C), 137.7 (Ar-C), 137.6 (Ar-C), 137.5 (Ar-C), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.5 (Ar-CH), 128.3 (Ar-CH), 128.1 (Ar-CH), 128.0 (Ar-CH), 128.0 (Ar-CH), 128.0 (Ar-CH), 127.9 (Ar-CH), 127.8 (Ar-CH), 127.8 (Ar-CH), 127.7 (Ar-CH), 81.8 (OCH), 79.8 (OCH), 76.5 (OCH), 74.4 (OCH₂), 73.7 (OCH₂), 73.4 (OCH₂), 73.2 (OCH₂), 71.7 (OCH₂), 69.5 (OCH₂), 65.7 (OCH₂), 55.6 (NCH), 39.7 (COCH₂).

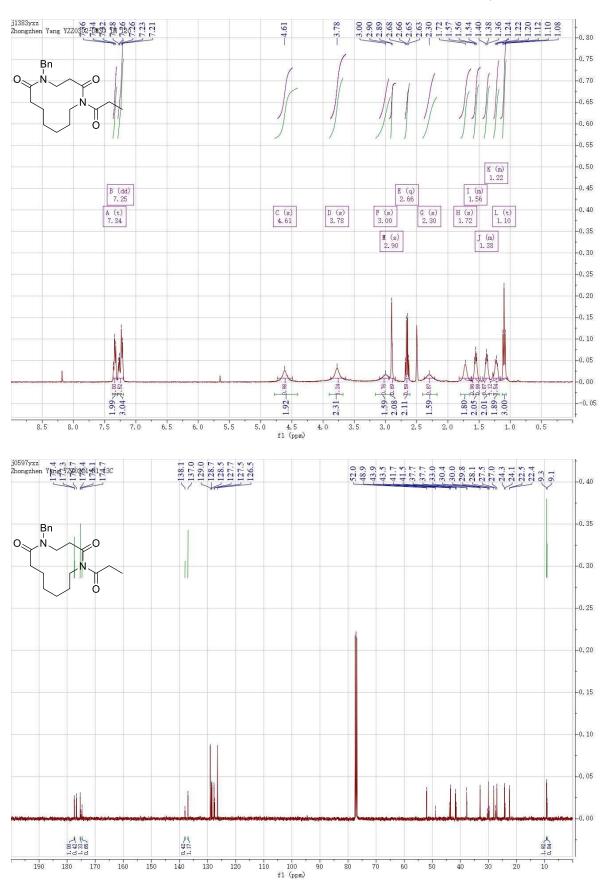

3,4,5-Trihydroxy-6-(hydroxymethyl)-1-(3-hydroxypropanoyl)piperidin-2-one (65)


Imide **62** was dissolved in MeOH (5.0 mL)/EtOH (1.5 mL) and placed under an argon atmosphere. Palladium hydroxide on coal (30 mg, 20% w/w) was added, together with a few aqueous HCl solution (1M). Then the reaction vessel was backfilled with hydrogen (via balloon) several times, then stirred at RT under a slight positive pressure of hydrogen (balloon) for 48 h. The reaction was then purged with argon, filtered through Celite, washed with


methanol where the solvent was removed *in vacuo*. The crude material was then re-dissolved in chloroform (3.0 mL, not dissolved well) and triethylamine (60 µL, 0.3 mmol) added, and stirred at RT for 16 h, then reduced *in vacuo*. Purification by flash column chromatography (SiO₂, ethyl acetate \rightarrow 3:1 ethyl acetate: methanol) afforded the title compound as a colorless oil (53 mg, 71%); R_f= 0.20 (3:1 ethyl acetate: methanol); $\delta_{\rm H}$ (400 MHz, methanol-*d*₄) 4.39 (dd, J = 11.6, 2.6 Hz, 1H, HOCH), 4.21 (dd, J = 11.6, 5.2 Hz, 1H, HOCH), 3.91 – 3.86 (m, 1H, HOCH), 3.83 (t, J = 6.0 Hz, 2H, HOCH₂); 3.67 – 3.59 (m, 2H, OCH₂), 3.47 – 3.42 (m, 1H, NHCH), 2.61 – 2.56 (m, 2H, COCH₂); $\delta_{\rm C}$ (101 MHz, methanol-*d*₄) 174.0 (NHCO), 173.5 (COO), 75.3 (HOCH), 72.5 (HOCH), 69.7 (HOCH), 64.7 (HOCH₂), 58.6 (OCH₂), 56.5 (NHCH), 38.3 (COCH₂); HRMS (ESI): calcd. for C₉H₁₄NO₇, 248.0776. Found: [MH]⁺, 248.0762 (5.4 ppm error). X-ray crystallographic data for this compound can be accessed via www.ccdc.cam.ac.uk/data_request/cif (CCDC 2303504).


Datablock wpu21009 - ellipsoid plot

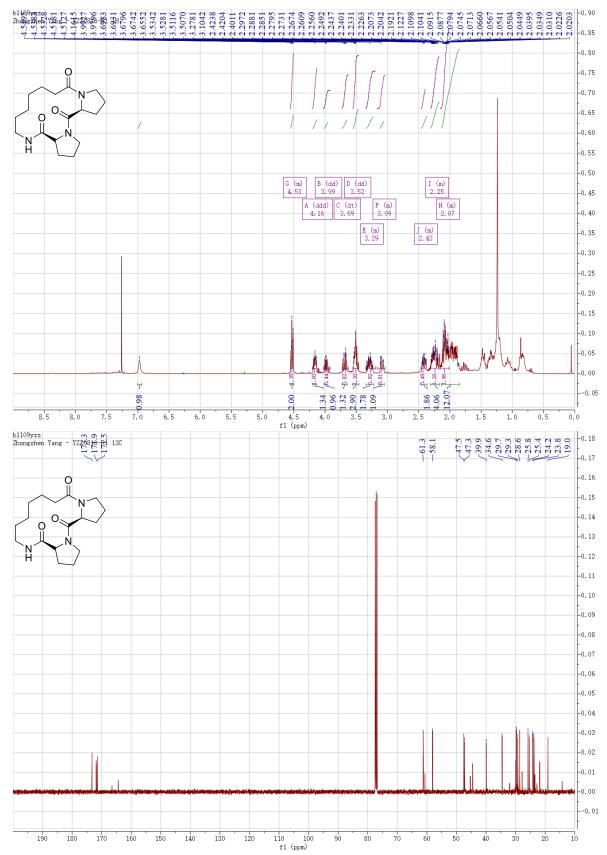
4) ¹H and ¹³C NMR spectra



2-Propanoyldecahydro-1*H*-pyrrolo[1,2-*a*][1,4]diazacycloundecine-1,9(2*H*)-dione (14)

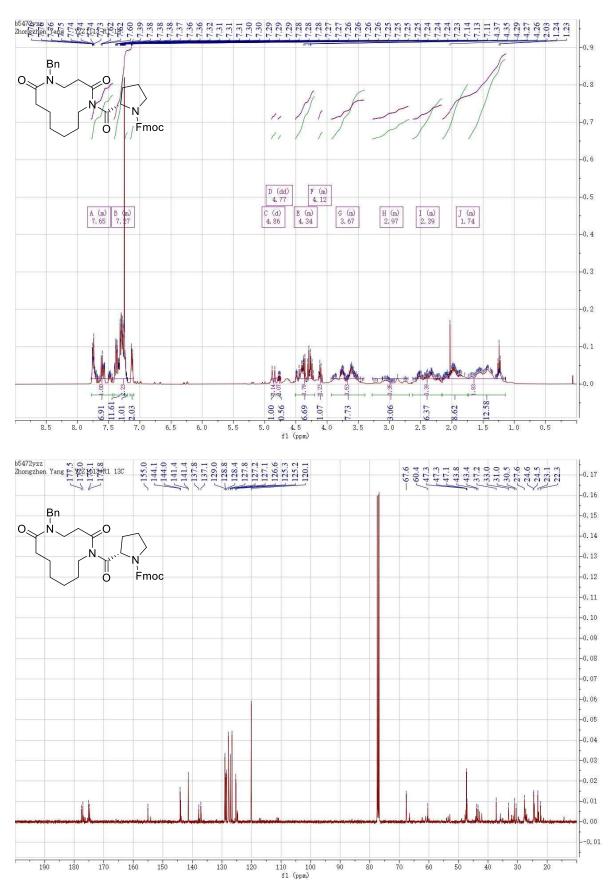
1-(1-Oxopropyl)-5-(phenylmethyl)-1,5-diazacyclododecane-2,6-dione (15) (¹H NMR in

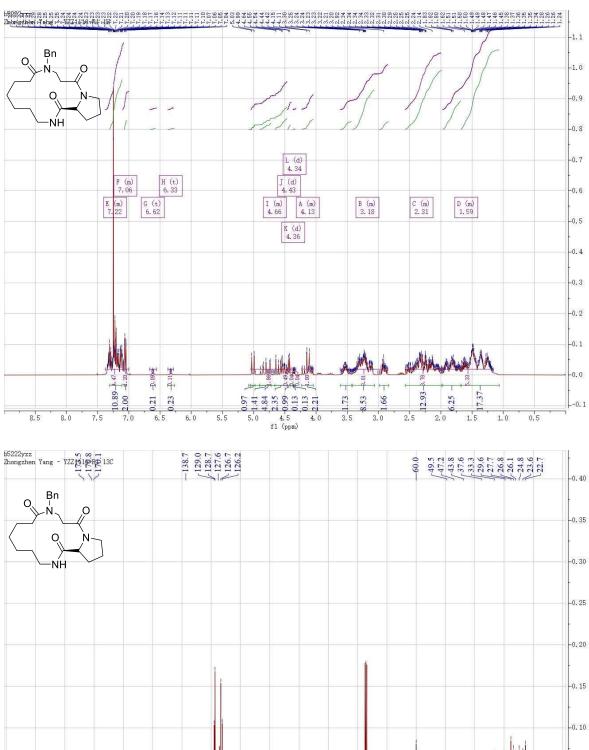

DMSO-d₆ at 120 °C; 13C NMR in CDCl3 at RT and shows a 3:1 mixture of rotamers).



(9H-Fluoren-9-yl)methyl

2-(1,9-dioxodecahydro-1*H*-pyrrolo[1,2-

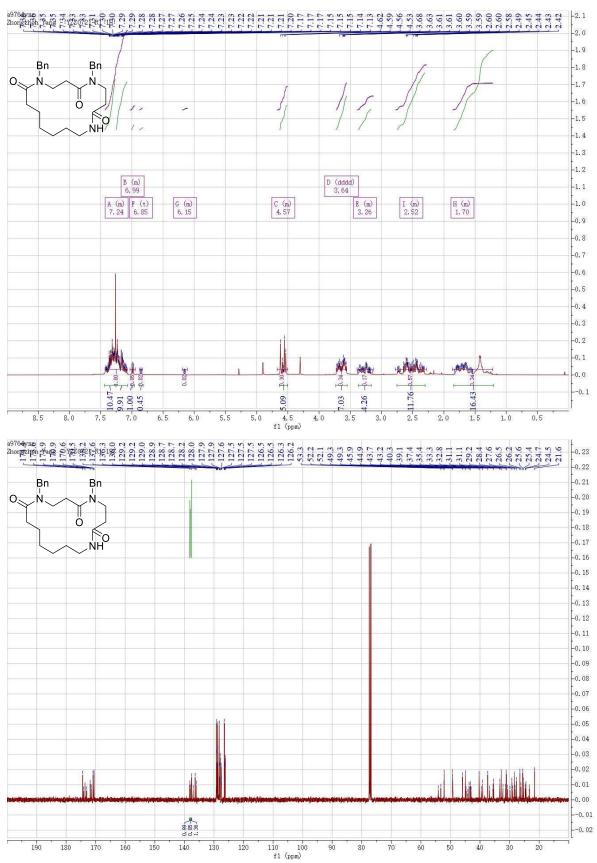

a][1,4]diazacycloundecine-2(3*H*)-carbonyl)pyrrolidine-1-carboxylate (19) (as a 10:1 mixture of rotamers)



Dodecahydro-1*H*,5*H*-dipyrrolo[1,2-*a*:1',2'-*d*][1,4,7]triazacyclotetradecine 5,13,18(6*H*,18*aH*)-trione (20) (as a 3: 1 mixture of rotamers)

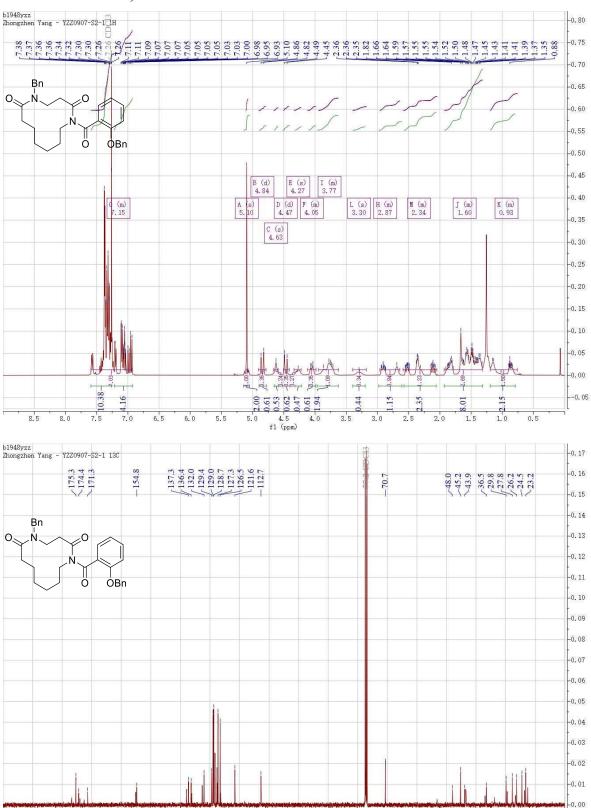
(9*H*-Fluoren-9-yl)methyl 2-(5-benzyl-2,6-dioxo-1,5-diazacyclododecane-1carbonyl)pyrrolidine-1-carboxylate (21) (as 2:1 mixture rotamers)

10-Benzyldodecahydro-1*H***-pyrrolo**[**2**,**1**-*c*][**1**,**4**,**8**]triazacyclopentadecine-1,**9**,**13**(2*H*,**10***H*)-trione (**22**) (as a 10:5:1:1 mixture of rotamers)


110 100 f1 (ppm)

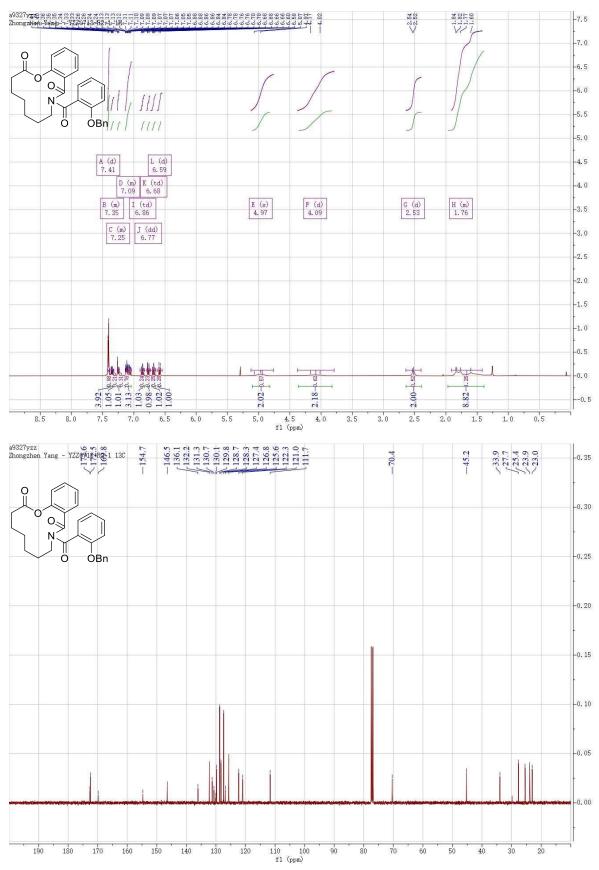
-0.05

-0.00

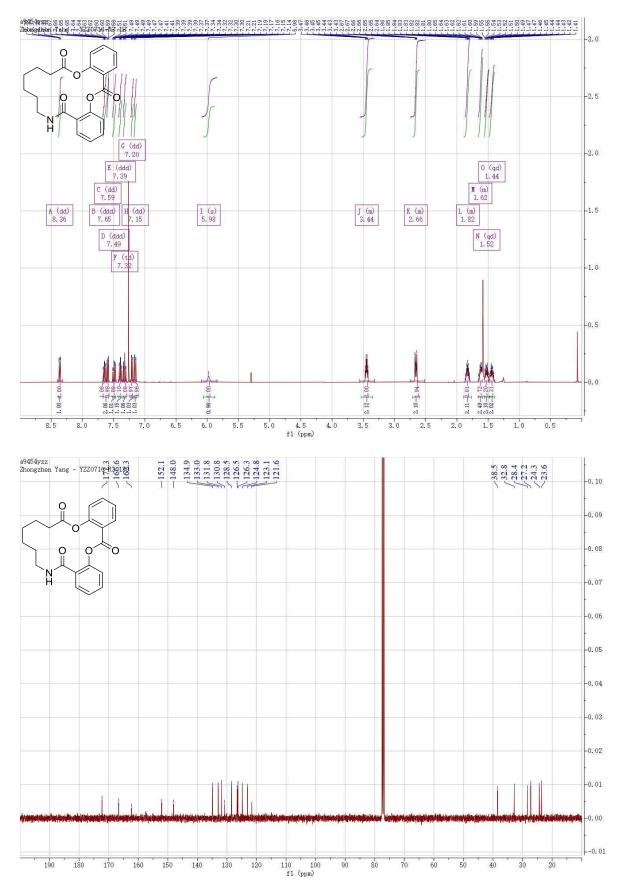

5,9-Dibenzyl-1,5,9-triazacyclohexadecane-2,6,10-trione (24) (as a 4:2:1 mixture of

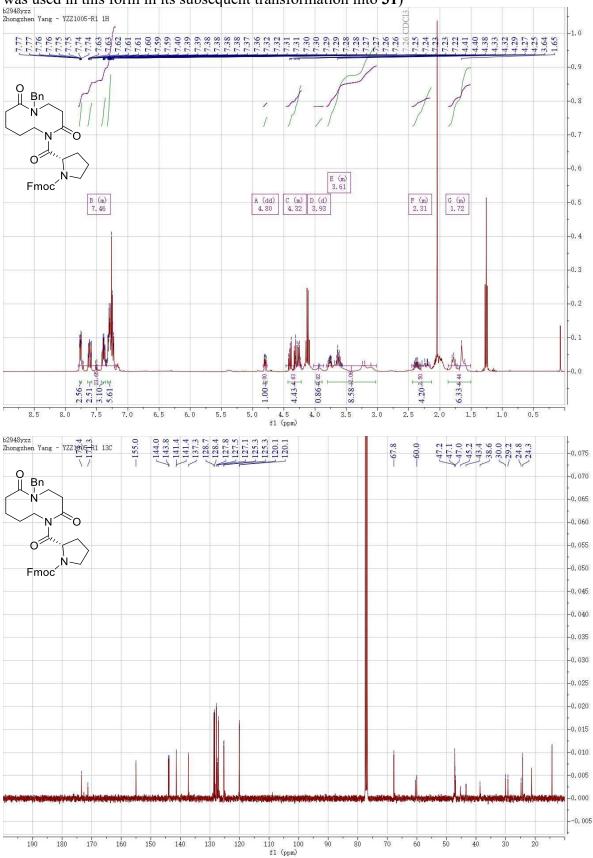
5-Benzyl-1-[2-(benzyloxy) benzoyl]-1,5-diazacyclododecane-2,6-dione (25) (as a 4:3

mixture of rotamers)

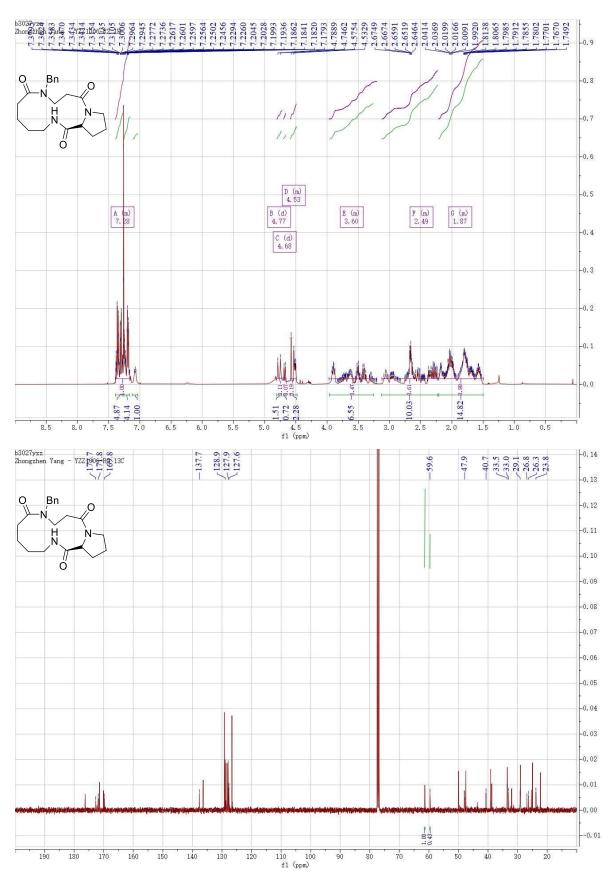


110 100 fl (ppm) --0.01

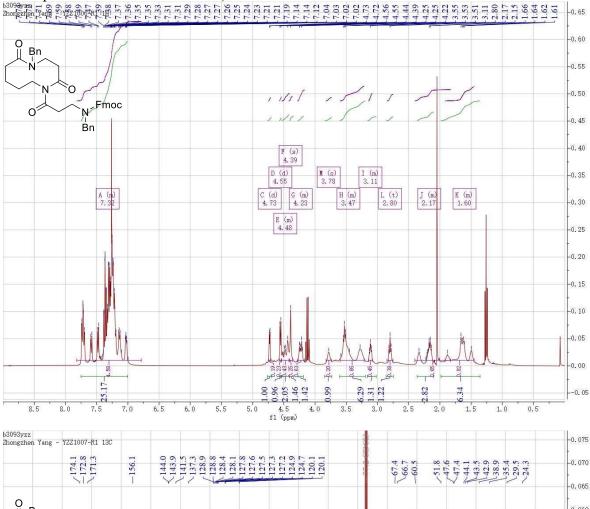

5-Benzyl-4,5,8,9,10,11,12,13-octahydro-2*H*-1,5,13-benzoxadiazacyclohexadecine-2,6,14(3*H*,7*H*)-trione (26)

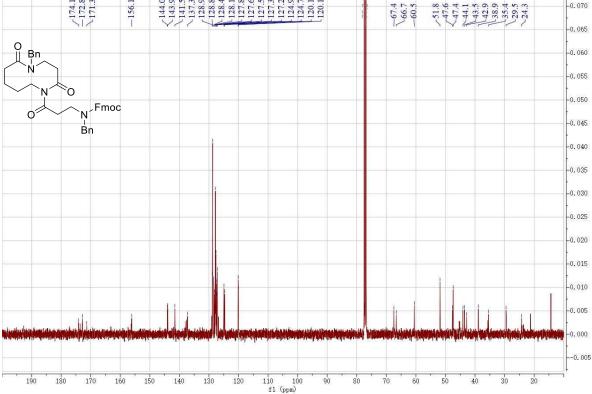

9-[2-(Benzyloxy)benzoyl]-4,5,6,7,8,9,10a,14a-octahydro-2*H*-1,9-benzoxaza-cyclododecine-2,10(3*H*)-dione (27)

8,9,10,11,12,13-Hexahydro-4a*H*,6*H*-dibenzo[*b*,*f*][1,5,9]dioxazacyclohexadecine-6,14,20(7*H*,20a*H*)-trione (28)

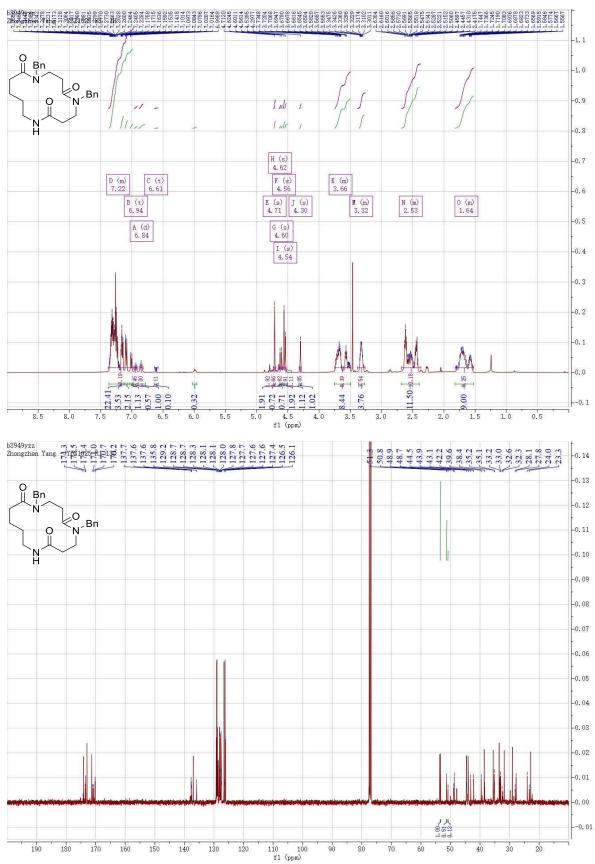


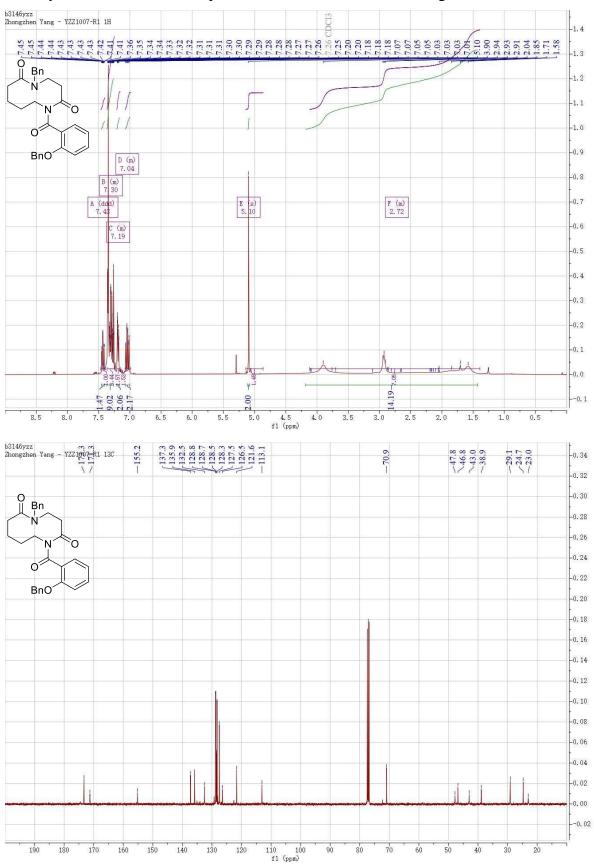
(9*H*-Fluoren-9-yl)methyl 2-(5-benzyl-2,6-dioxo-1,5-diazecane-1-carbonyl)pyrrolidine-1carboxylate (30) (some EtOAc is clearly evident in the NMR spectra of this material, but it was used in this form in its subsequent transformation into 31)



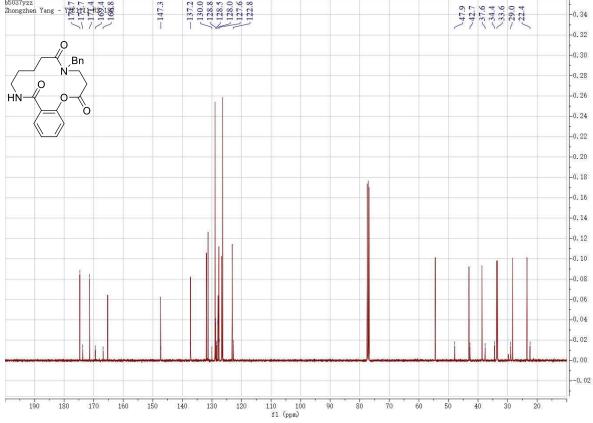

8-Benzyldecahydro-1*H*-pyrrolo[2,1-*c*][1,4,8]triazacyclotridecine-1,7,11(2*H*,8*H*)-trione

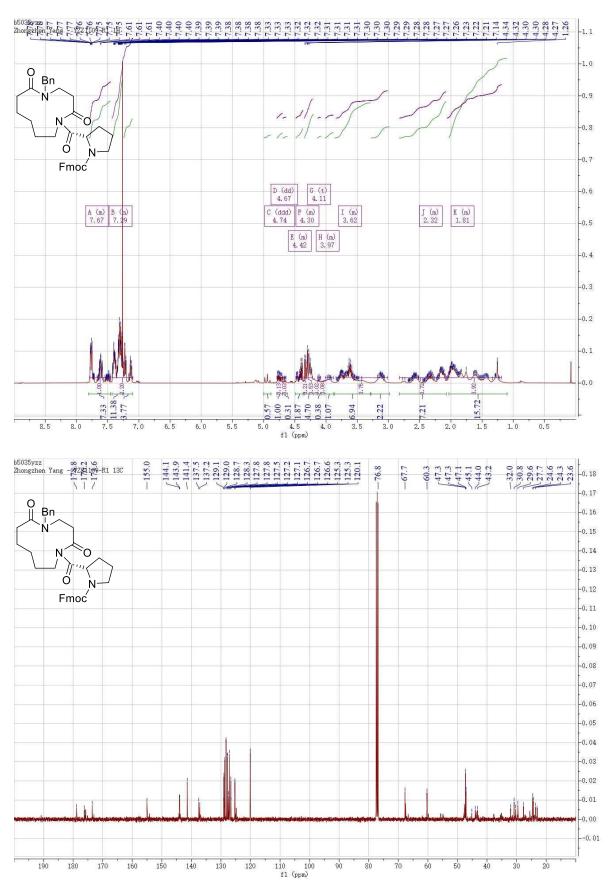
(31) (as a 2:1 mixture of rotamers)


(9*H*-Fluoren-9-yl)methyl benzyl[3-(5-benzyl-2,6-dioxo-1,5-diazecan-1-yl)-3oxopropyl]carbamate (32) (exist as a 2:1 mixture of rotamers in CDCl₃. Some EtOAc is clearly evident in the NMR spectra of this material, but it was used in this form in its subsequent transformation into 33)


5,9-Dibenzyl-1,5,9-triazacyclotetradecane-2,6,10-trione (33) (as a 10:5:1 mixture of

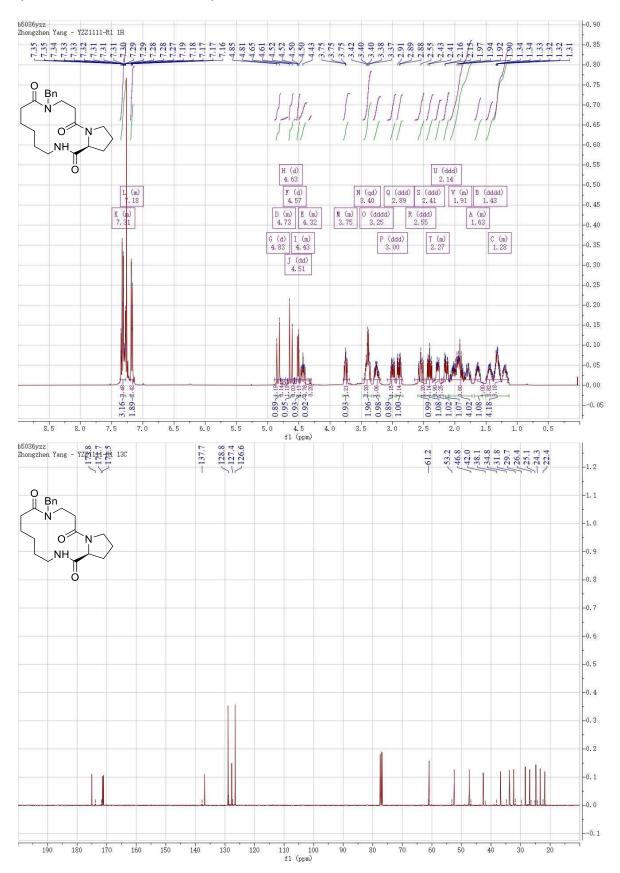
Benzyl-1-[2-(benzyloxy)benzoyl]-1,5-diazecane-2,6-dione (34) – the ¹H NMR resonances


are very broad in the ¹H NMR spectrum due to rotameric broadening.

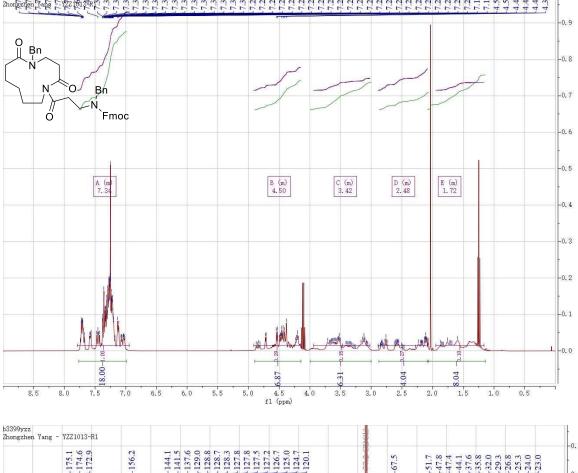

5-Benzyl-4,5,8,9,10,11-hexahydro-2H-1,5,11-benzoxadiazacyclotetradecine-

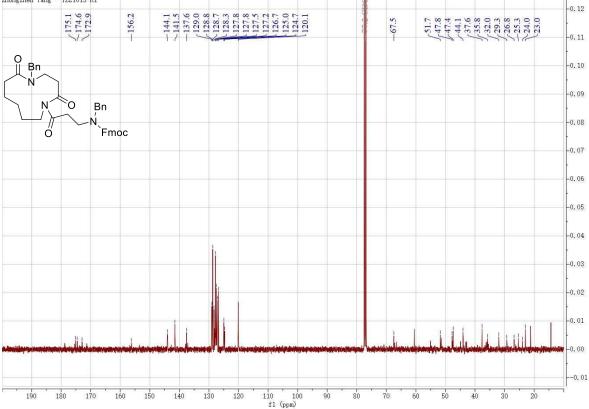
-0. 90 -0.85 0 -0.80 ,Bn -0.75 N 0 -0.70 2)1 HN 0 1 $\overset{\scriptscriptstyle ()}{\circ}$ -0.65 ſ 1 -0.60 E (m) 7.30 -0.55 -0.50 C (td) 7.46 0 (t) 2.69 H (t) 6.35 K (t) 3.60 -0.45 A (dd) 7.97 B (dd) 7.52 F (m) 7.07 G (t) 6.55 I (s) 4.60 J (t) 3.74 II (t) 3.04 N (m) 2.40 Q (m) 1.71 -0.40 D (td) 7.41 L (m) 3.50 P (m) 2.57 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 1.02 十.03 1 -0.00 88 L.04-0.21 0.39 --0.05 2.46-2.07-2.06-5.04-4.5 fl (ppm) 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 b5037yzz Zhongzhen Yang - Yzziti Ligi Sg 137.2 130.0 128.8 128.5 128.5 128.5 127.6 127.6 -147.3\47.9 37.6 33.6 33.6 -29.0 -22.4 -0.34 -0.32 Ó -0.30 Bn Ν -0.28

2,6,12(3H,7H)-trione (35) (as a 10:1 mixture of rotamers)

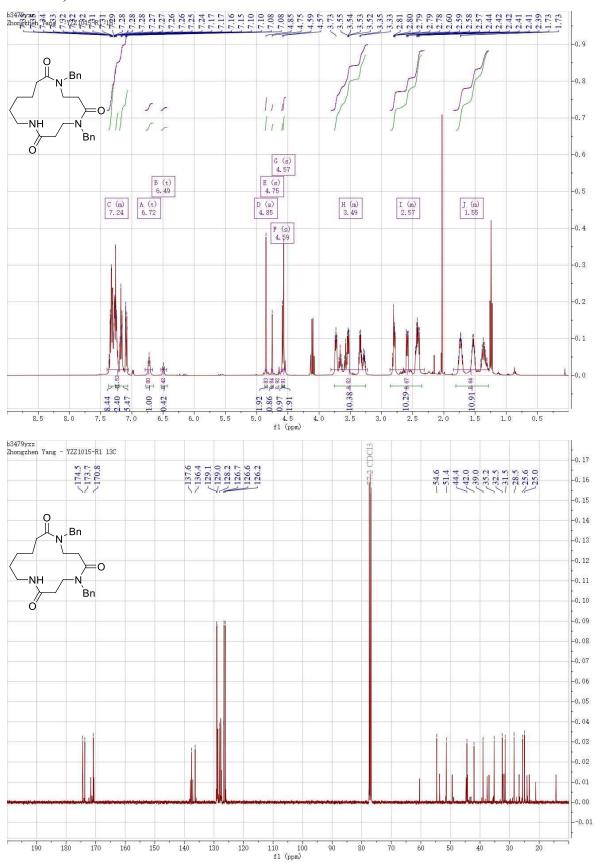


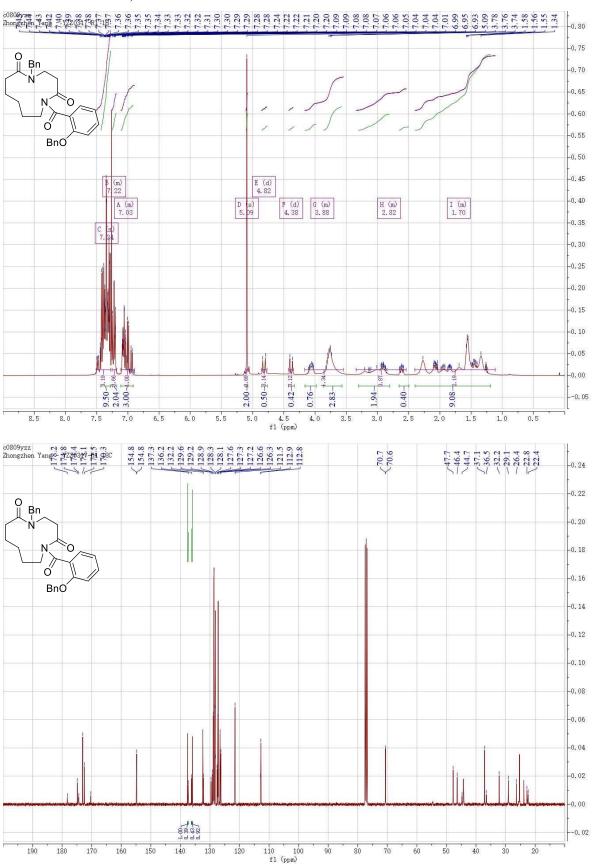
(9*H*-Fluoren-9-yl)methyl 2-(5-benzyl-2,6-dioxo-1,5-diazacycloundecane-1 carbonyl)pyrrolidine-1-carboxylate (37) (as a 5:2 mixture of rotamers)




9-Benzyldodecahydropyrrolo[2,1-c][1,4,8]triazacyclotetradecine-1,8,12(9H)-trione (38)

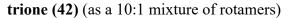
(as a 20:1 mixture of rotamers)

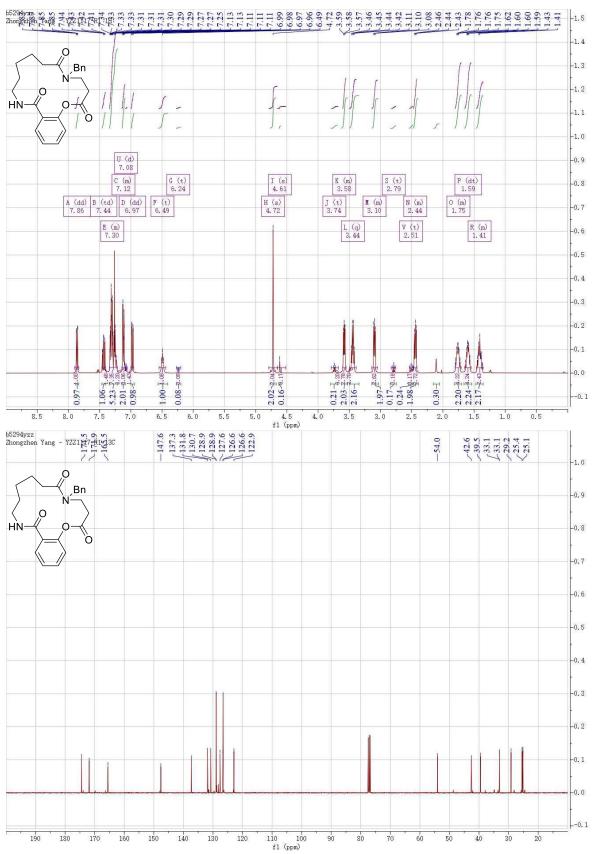

(9*H*-Fluoren-9-yl)methyl benzyl[3-(5-benzyl-2,6-dioxo-1,5-diazacycloundecan-1-yl)-3-oxopropyl]carbamate (39). Some EtOAc is clearly evident in the NMR spectra of this material, but it was used in this form in its subsequent transformation into 40). The ¹H NMR resonances are very broad in the ¹H NMR spectrum due to rotameric broadening.



5,9-Dibenzyl-1,5,9-triazacyclopentadecane-2,6,10-trione (40) (as a 2:1 mixture of

rotamers)



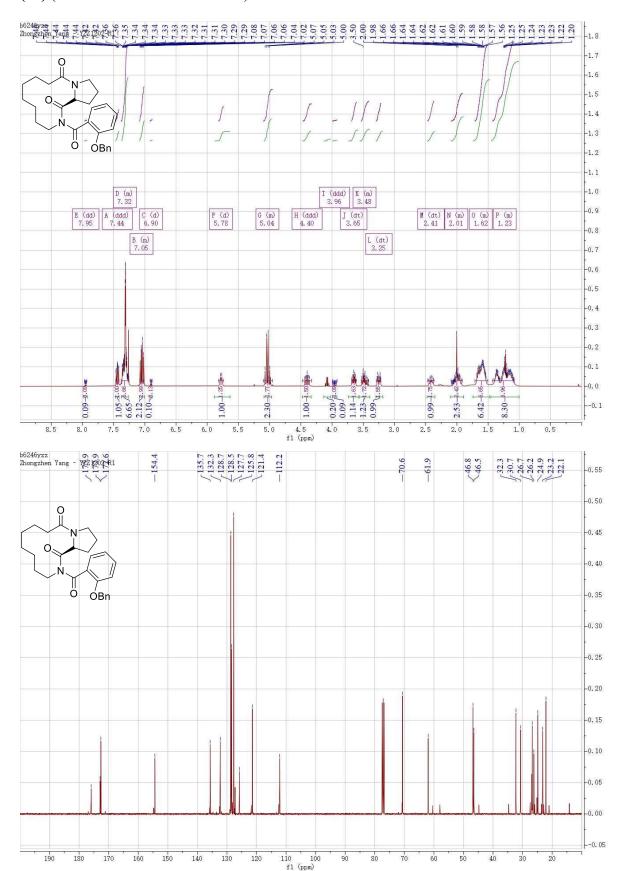

5-Benzyl-1-[2-(benzyloxy)benzoyl]-1,5-diazacycloundecane-2,6-dione (41) (as a 10:1

mixture of rotamers)

5-Benzyl-4,5,7,8,9,10,11,12-octahydro-1,5,12-benzoxadiazacyclopentadecine-2,6,13(3H)-

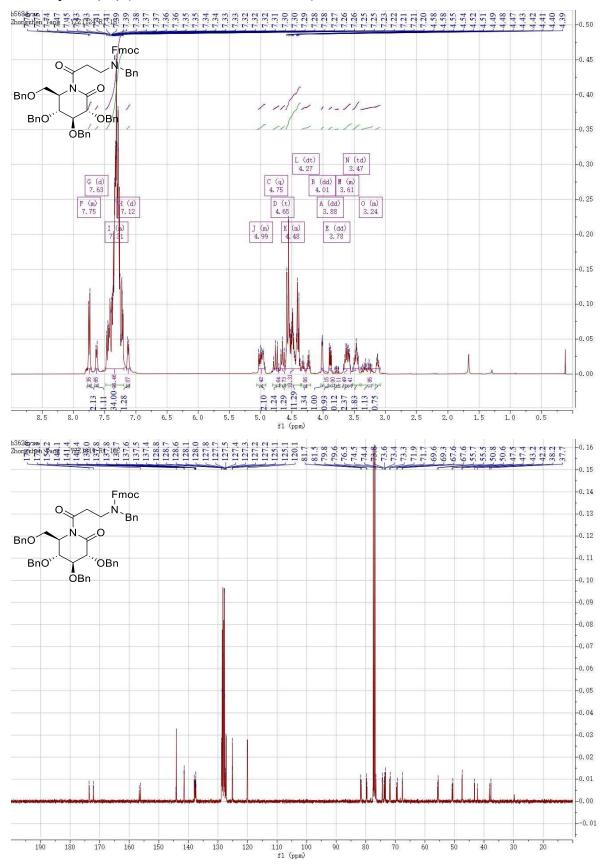
(9H-Fluoren-9-yl)methyl 2-(1,10-dioxododecahydropyrrolo[1,2a][1,4]

diazacyclododecine-2(1H)-carbonyl)pyrrolidine-1-carboxylate (44) (as a 5:1 mixture of



Tetradecahydro-1*H*-dipyrrolo[1,2-*a*:1',2'-*d*][1,4,7]triazacyclopentadecine-

5,14,19(19aH)-trione (45) (as a 10:1:1:1 mixture of rotamers)


2-[2-(Benzyloxy)benzoyl]dodecahydropyrrolo[1,2-*a*][1,4]diazacyclododecine-1,10-dione

(46) (as a 10:1 mixture of rotamers)

9H-Fluoren-9-yl)methyl 3,4,5-tris(benzyloxy)-2-[(benzyloxy)methyl]-6-oxopiperidine-1-

carboxylate (49) (as a 5:4 mixture of rotamers)

5-Benzyl-7,8,9-tris(benzyloxy)-10-[(benzyloxy)methyl]-1,5-diazecane-2,6-dione (50) (as a

-0.85 -0.80 -0.75

-0.70

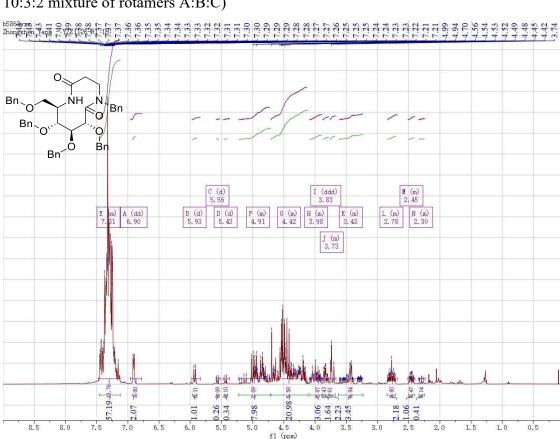
-0.65

-0.60

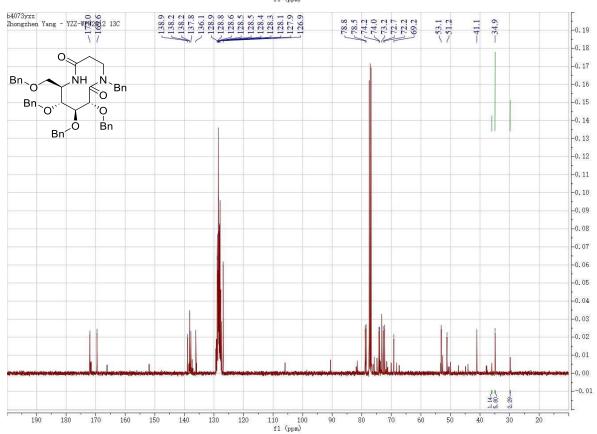
-0.55 -0.50

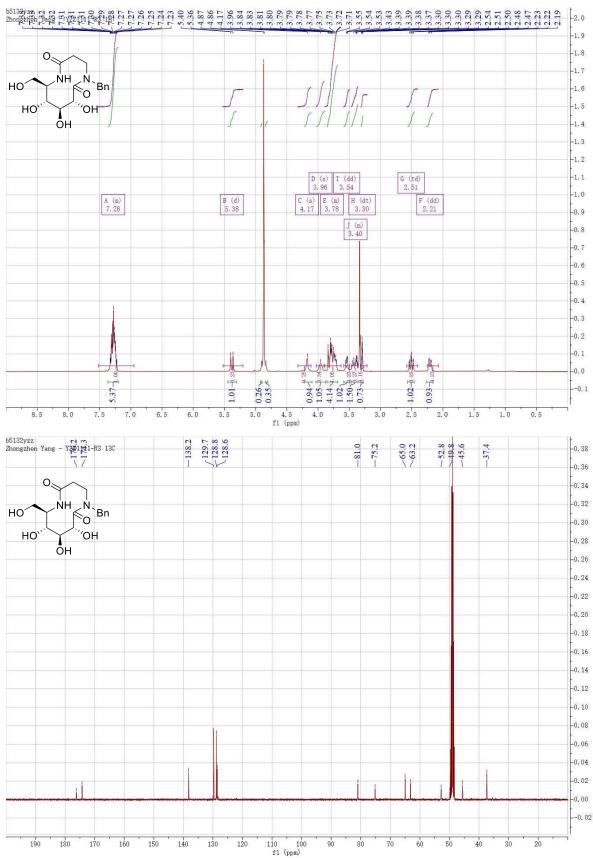
-0.45

-0.40 -0.35

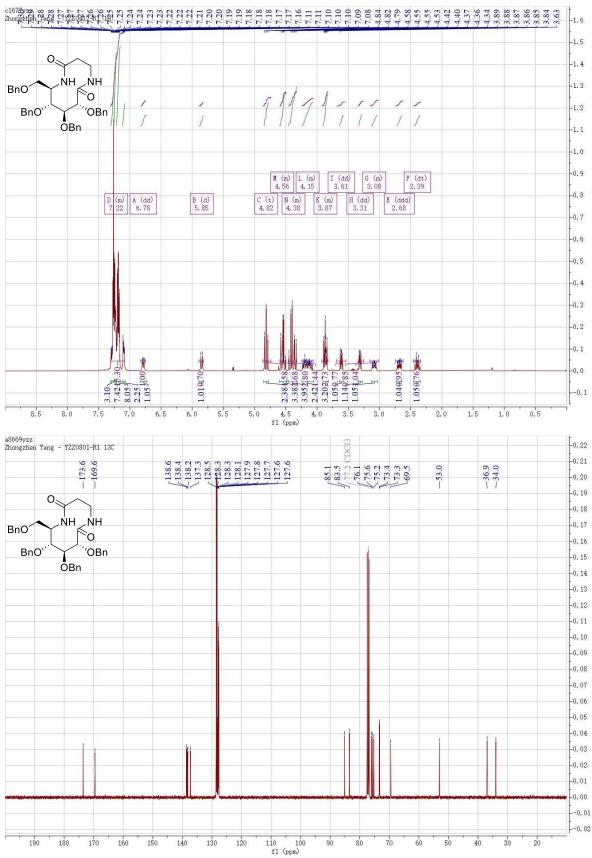

-0.30 -0.25 -0.20 -0.15 -0.10 -0.05

-0.00

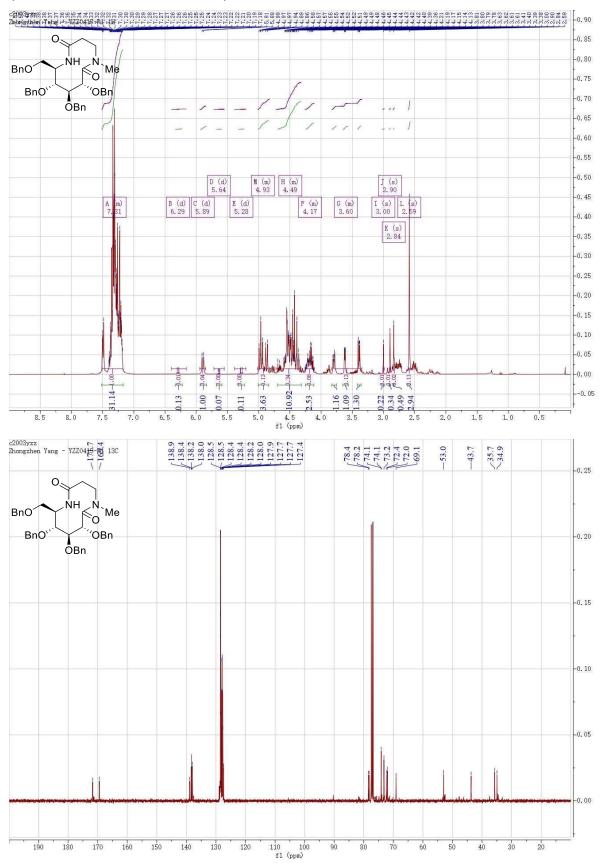

--0.05

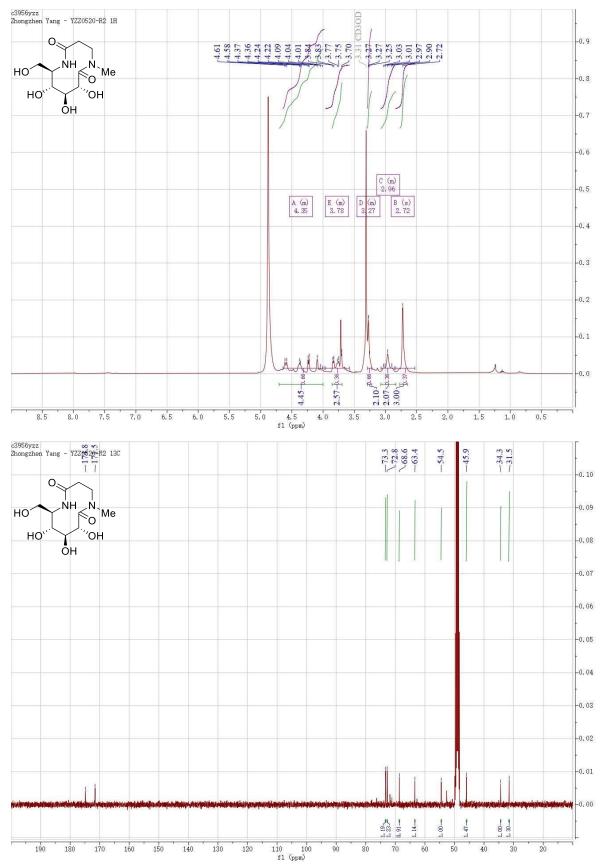

1.0

0.5

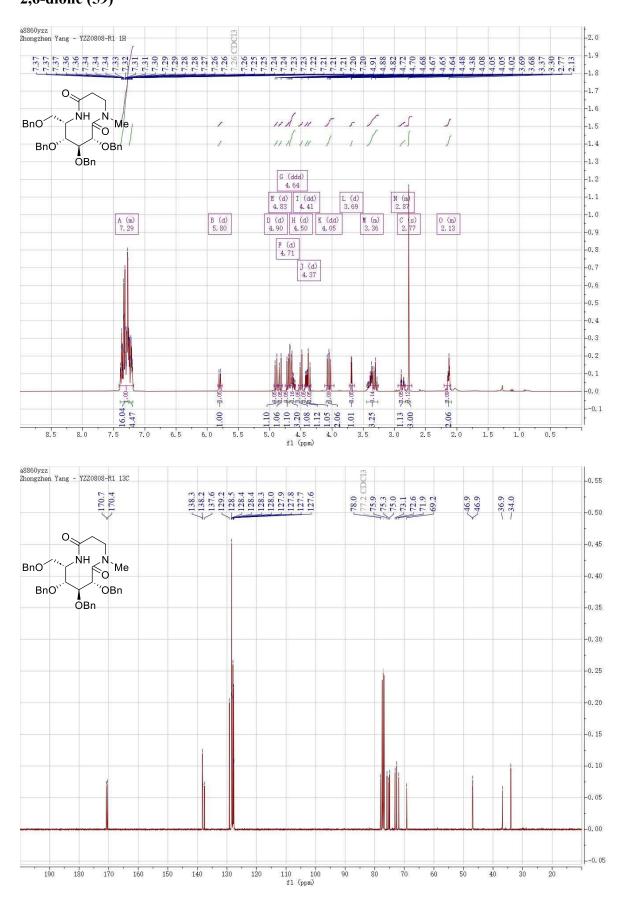


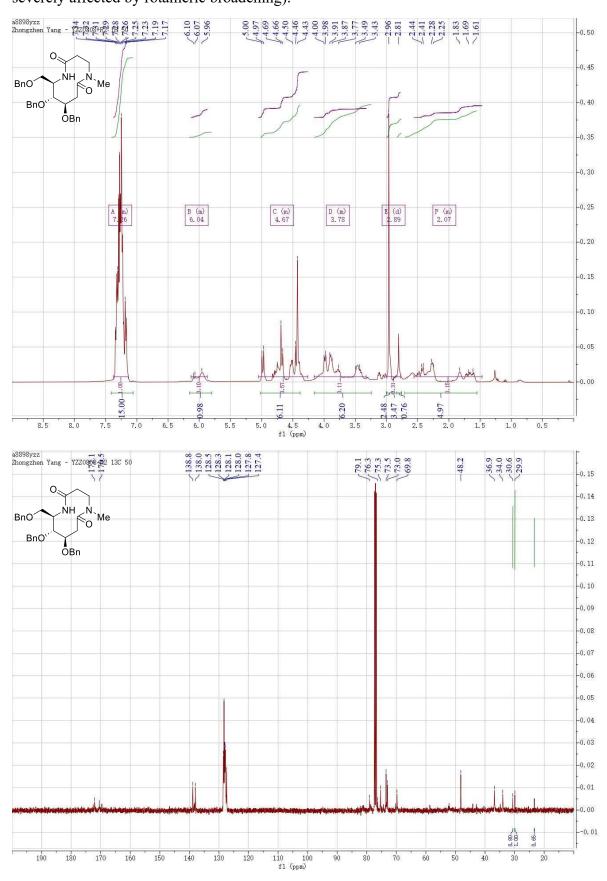
10:3:2 mixture of rotamers A:B:C)

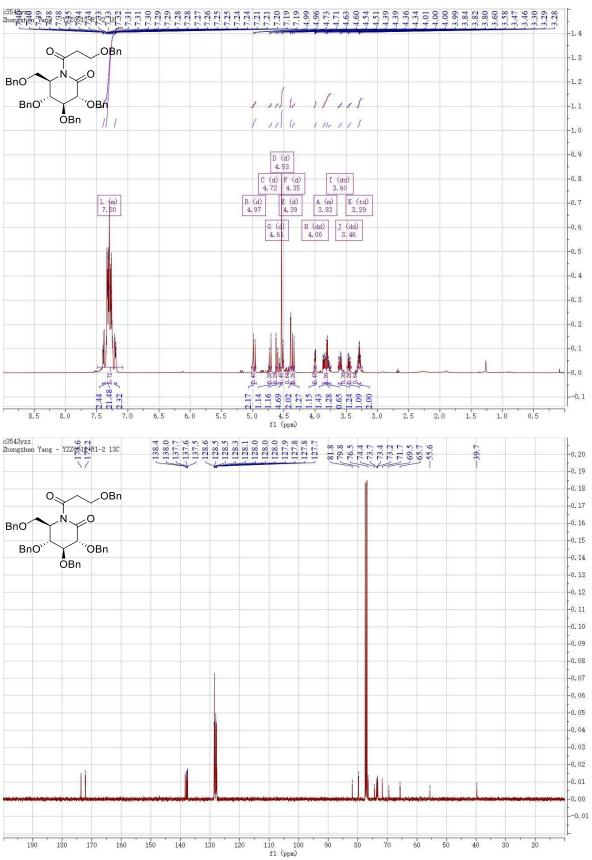

5-Benzyl-7,8,9-trihydroxy-10-(hydroxymethyl)-1,5-diazecane-2,6-dione (51)


7,8,9-Tris(benzyloxy)-10-[(benzyloxy)methyl]-1,5-diazecane-2,6-dione (56)

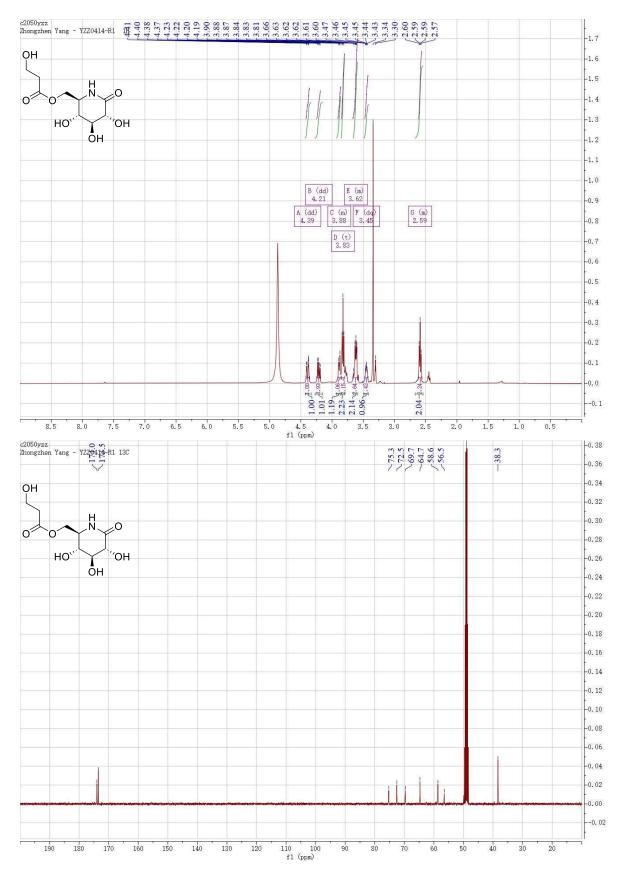
7,8,9-Tris(benzyloxy)-10-[(benzyloxy)methyl]-5-methyl-1,5-diazecane-2,6-dione (57)


(mixture of 4 rotamers, $\approx 10:1:1:1$)


(7*R*,8*S*,9*R*,10*R*)-7,8,9-trihydroxy-10-(hydroxymethyl)-5-methyl-1,5-diazecane-2,6-dione (58)



(7*R*,8*S*,9*R*,10*S*)-7,8,9-Tris(benzyloxy)-10-[(benzyloxy)methyl]-5-methyl-1,5-diazecane-2,6-dione (59)



(8*S*,9*R*,10*R*)-8,9-Bis(benzyloxy)-10-[(benzyloxy)methyl]-5-methyl-1,5-diazecane-2,6dione (60) (exist as a 3:1 mixture of rotamers in CDCl₃ at 50 °C; both NMR spectra are severely affected by rotameric broadening).

3,4,5-Tris(benzyloxy)-6-[(benzyloxy)methyl]-1-[3(benzyloxy) propanoyl] piperidin-2-one (62)

3,4,5-Trihydroxy-6-(hydroxymethyl)-1-(3-hydroxypropanoyl)piperidin-2-one (65)

5) Bioassay Information

E. coli MIC Assay Protocol

Stock solution preparation:

20 μ L stock solutions of each macrocycle were prepared in 50% (v/v) DMSO/ sterile H₂O at 5 μ M, 10 μ M, 50 μ M, 100 μ M, 200 μ M, 300 μ M, 400 μ M, 500 μ M and 1 mM. Stocks were stored at -20 °C.

E. coli K12 BW25113 pre-culture set up:

A single colony of freshly streaked BW25113 cells were inoculated into 5 mL of supplemented M9 minimal media at pH 7.2. The pre-culture was incubated at 37 °C at 180 rpm agitation, overnight.

E. coli BW25113 culture set up:

25 mL of supplemented M9 minimal media (pH 7.2) was inoculated to an OD_{600nm} of 0.025 with preculture.

Plate design:

Plate details: Thermo Scientific Nunc 2.0 96-Well Plate. Flat bottomed, CAT. # 267427, LOT 175233.

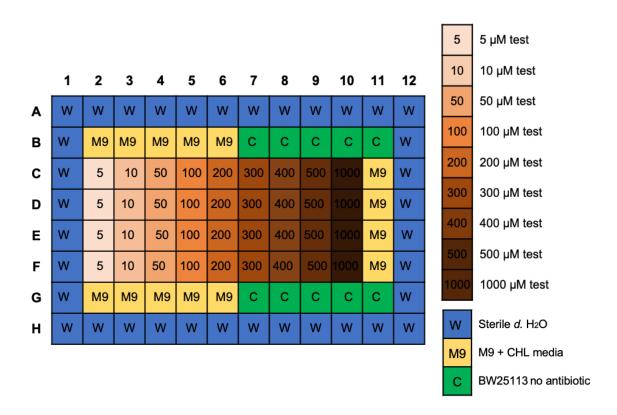
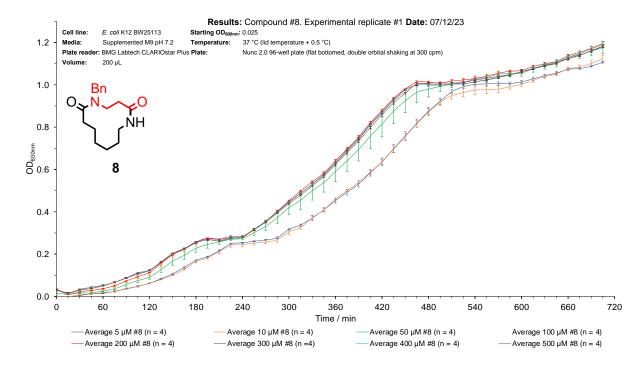
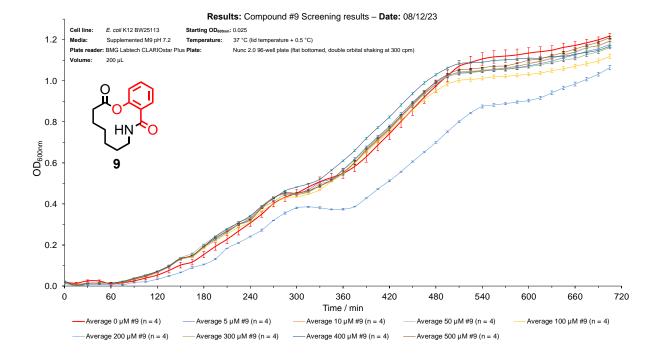
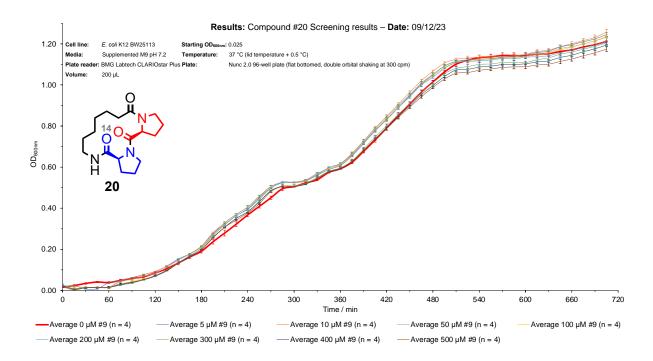
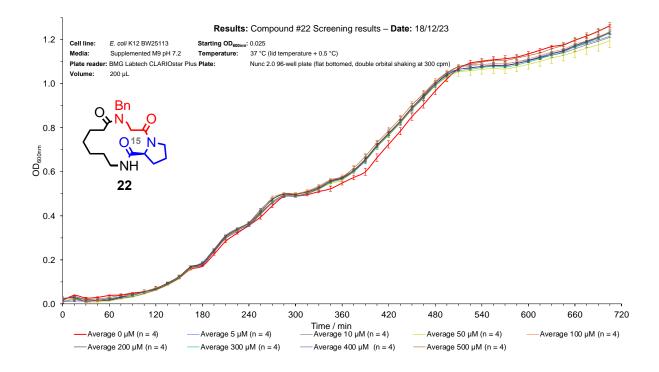


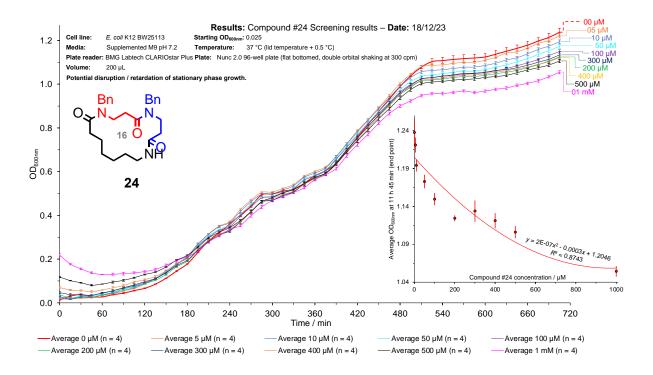
Figure S1: Plate design. Each sample ran in quadruplicate against control wells.

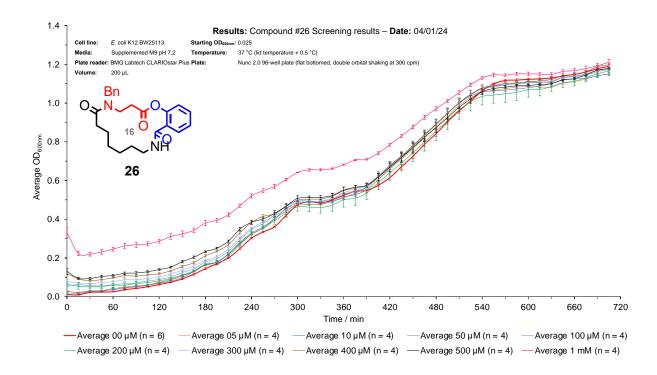

Code	Contents
5-1000	2 μL of respective medium-ring or macrocycle stock, 198 μL BW25113 culture'
M9	4 μ L chlorofenacol*, 196 μ L M9 supplemented media
С	200 μL BW25113 culture*
W	200 μ L sterile H ₂ O

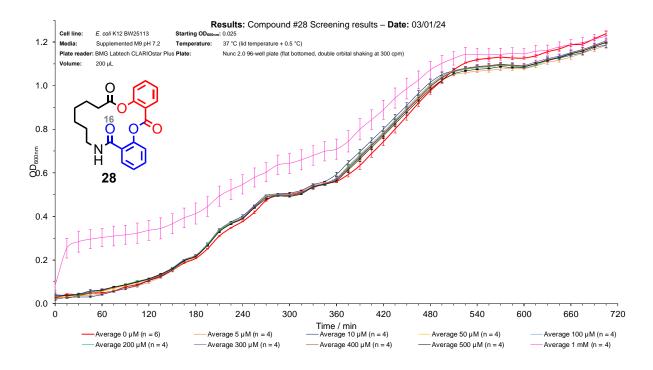

Plate reader assay:

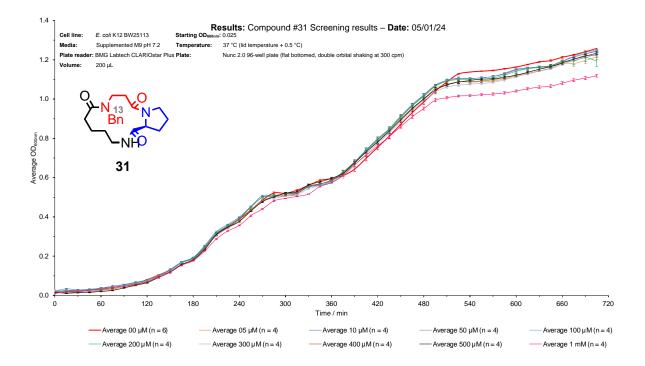

Incubator in plate reader pre-heated to 37 °C before insertion of 96-well plate. OD_{600nm} measurements taken every 15 mins for 12 h, at 37 °C. Measurements taken in a spiral pattern with 300 cpm double orbital plate shaking.

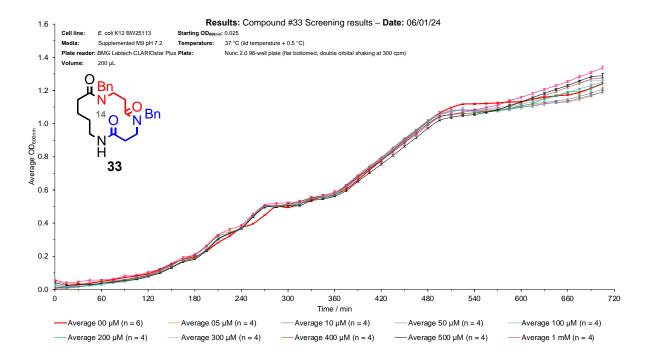

E. coli MIC Assay Results

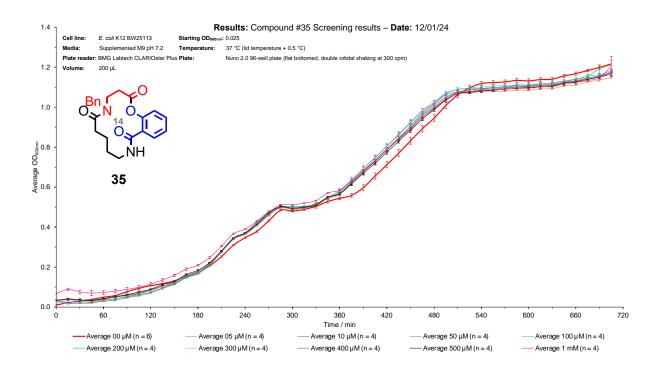

E. coli MIC Curves

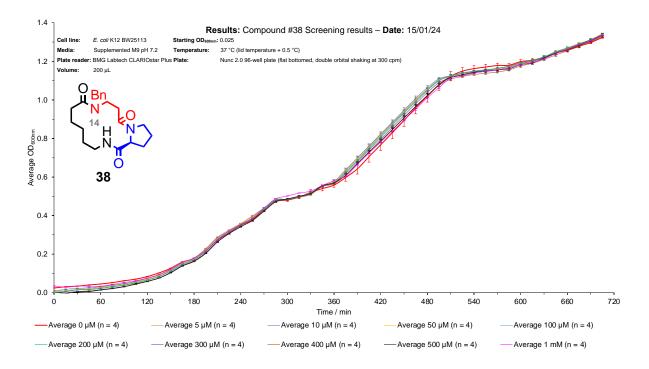


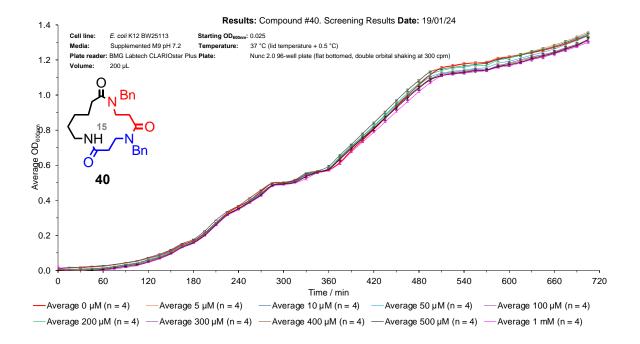


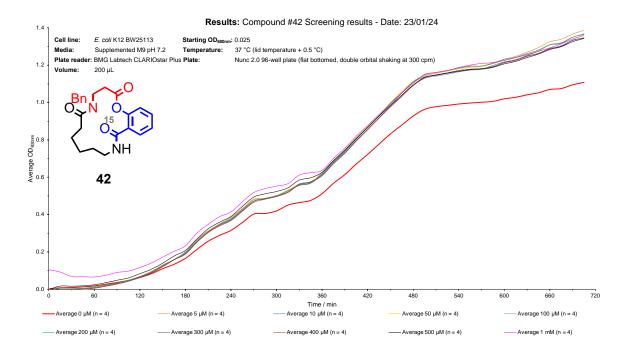


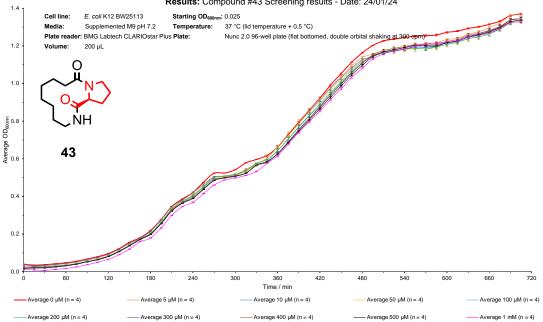


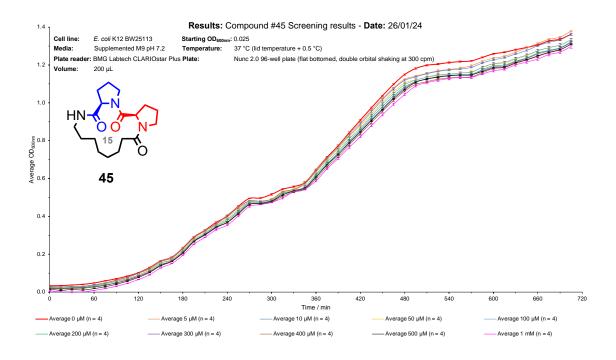


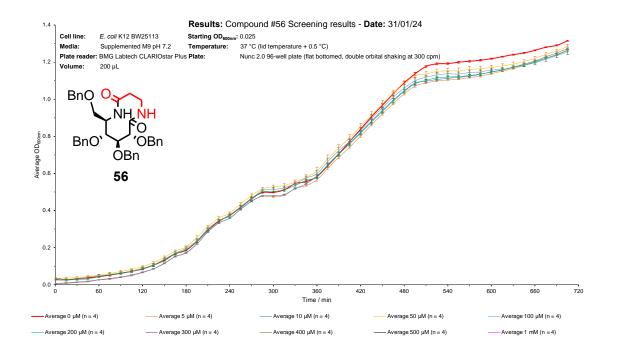


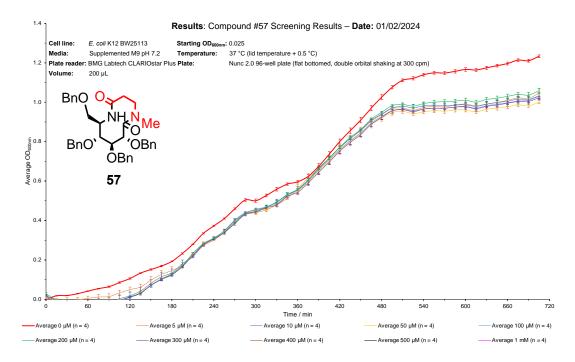












Results: Compound #43 Screening results - Date: 24/01/24

Compound 56 was insoluble in the assay conditions at concentrations >200 μ M.

Compound 57 was insoluble in assay conditions at concentrations $>300 \ \mu M$.

6) References

[1] T. C. Stephens, A. Lawer, T. French and W. P. Unsworth, Chem. Eur. J., 2018, 24, 13947.

[2] T. C. Stephens, M. Lodi, A. M. Steer, Y. Lin, M. T. Gill and W. P. Unsworth, *Chem. Eur. J.*, 2017, **23**, 13314.

[3] P. Compain, C. Decroocq, J. Iehl, M. Holler, D. Hazelard, T. M. Barragán, C. O. Mellet and J. F. Nierengarten, *Angew. Chem. Int. Ed.*, 2010, **49**, 5753.

[4] D. Hazelard, M. L. Lepage, J. P. Schneider, M. M. Pichon, F. Massicot, P. Compain in Carbohydrates Chemistry: Proven Synthetic Methods Vol. 4, C. Vogel & P. Murphy Eds, CRC Press, 2018, pp 303-314.

[5] M. M. Pichon, F. Stauffert, L. G. Addante-Moya, A. Bodlenner and P. Compain, *Eur. J. Org. Chem.*, 2018, 1538.