Catalyst- and base-free visible light-enabled radical relay

trihalomethylation/functional group-migration/carbonylation

with CX₃SO₂Cl

Jinkai Hu, Chenglei Yang, Xiaotao Qin, Hui Liu, Tongtong Ma, Ao-tong Shi, Qing-Long Lv, Xingman Liu*, Jinhui Yang*, Dianjun Li *

College of Chemistry and Chemical Engineering, Ningxia University/State KeyLaboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Analysis and Testing Center, Ningxia University, China, E-mail: yang_jh@nxu.edu.cn; lidj2017@nxu.edu.cn

Supporting Information

1.General information	2
2.Reaction equipment and details	3
2.1. General procedure for synthesis of 2	3
2.2 General procedure for synthesis of 3	4
2.3. General procedure for synthesis of 5	4
2.4 General procedure for synthesis of 6	4
2.5 Transformation of the Product	5
2.6. Gram-scale reaction	5
2.6 The free radical clock experiment: synthesis of 8	6
2.7 General procedure for Free-radical inhibition experiments	6
2.8 General procedure for Free-radical trapping experiments	7
3. Analytical Data for products	8
References	3
Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra for products	4

1.General information

Unless otherwise noted, all reactions were carried out in flame-dried quartz tube under argon atmosphere. Anhydrous solvents were purified and dried by standard procedures. All commercially available reagents were used as received. Otherwise, diethylether was purchased from Sino pharm chemical reagent, ClSO₂CF₃ were purchased from Makllin. Other reagents were purchased from Innochem.diethylether were distilled over LiAlH₄ before use. Flash chromatography was carried out with silica gel (200-300 mesh). Analytical TLC was performed with silica gel GF254 plates, and the products were visualized by UV detection. Melting points were measured on SGW® X-4 melting point apparatus and uncorrected. ¹H NMR spectra were recorded on a Bruker AVANCE III 400 spectrometer at room temperature. Chemical shifts (ppm) were referenced to tetramethylsilane (TMS, $\delta = 0$ ppm) in CDCl₃ as an internal standard. ¹³C NMR spectra were obtained by the same NMR spectrometer and calibrated with CDCl₃ ($\delta = 77.00$ ppm). ¹⁹F NMR spectra were obtained by the same NMR spectrometer. Data for ¹H NMR were reported as follows: chemical shifts (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or unresolved, br = broad singlet), coupling constant (Hz) and integration. Data for ¹³C NMR are reported in terms of chemical shift and multiplicity where appropriate. High-Resolution Mass Spectrometry (HRMS) were performed on an ThermoFisher LTQ Orbitrap XL for HRMS. The starting materials 1 and 4 were prepared according to the literature^[1-3]

2. Reaction equipment and details

Our Photocatalytic Parallel Reactor is cooled by circulating water, which can ensure that the reaction temperature is kept at about 26 ± 3 °C, and the distance between the light source and the reaction quartz tube is 0.4 cm, the power is 3W.

2.1. General procedure for synthesis of 2

To a 25 mL of flame-dried quartz tube were added 2-hydroxy-2-arylhex-5enenitrile 1 (0.5 mmol, 1.0 equiv), The mixture was evacuated and backfilled with argon for three times, then add $ClSO_2CF_3$ (0.1ml, 2.0 equiv.) and diethylether (2.5 mL). The mixture was stirred for 48 h under 3 W blue LED irradiation at room temperature. After completion, adding silica gel (2g), concentrated under educed pressure. The residue was purified by chromatography on silica gel (PE / EtOAc), eluting with the mixture of ethyl acetate/petroleum ether to give products **2**.

2.2 General procedure for synthesis of 3

To a 25 mL of flame-dried quartz tube were added 2-hydroxy-2-arylhex-5enenitrile 1 (0.5 mmol, 1.0 equiv.), the mixture was evacuated and backfilled with argon for three times, then add $ClSO_2CCl_3$ (0.272g, 1.25mmol, 2.5 equiv.) and diethylether (2.5 mL). The mixture was stirred for 48 h under 3 W blue LED irradiation at room temperature. After completion, adding silica gel (2g), concentrated under reduced pressure. The residue was purified by chromatography on silica gel (PE / EtOAc), eluting with the mixture of ethyl acetate/petroleum ether to give products **3**.

2.3. General procedure for synthesis of 5

To a 25 mL of flame-dried quartz tube were added 1-(benzo[d]thiazol-2-yl)-1arylpent-4-en-1-ol 4 (0.5 mmol, 1.0 equiv.), the mixture was evacuated and backfilled with argon for three times, then add $CISO_2CF_3$ (0.1ml, 2.0 equiv.) and diethylether (2.5 mL). The mixture was stirred for 48 h under 3 W blue LED irradiation at room temperature. After completion, adding silica gel (2g), concentrated under reduced pressure. The residue was purified by chromatography on silica gel (PE / EtOAc), eluting with the mixture of ethyl acetate/petroleum ether to give products **5**.

2.4 General procedure for synthesis of 6

To a 25 mL of flame-dried quartz tube were added 1-(benzo[d]thiazol-2-yl)-1phenylpent-4-en-1-ol **4a** (0.147g, 0.5 mmol, 1.0 equiv.), the mixture was evacuated and backfilled with argon for three times, then add ClSO₂CCl₃ (0.272g, 1.25mmol, 2.5 equiv.) and diethylether (2.5 mL). The mixture was stirred for 48 h under 3 W blue LED irradiation at room temperature. After completion, adding silica gel (2g), concentrated under reduced pressure. The residue was purified by chromatography on silica gel (PE / EtOAc = 10:1), eluting with the mixture of ethyl acetate/petroleum ether to give products **6a** (0.161g, 78%).

2.5 Transformation of the Product

To a 25 mL of quartz tube were added 5-oxo-5-phenyl-2-(2,2,2-trifluoroethyl)pentanenitrile **2a** (0.048g, 0.2 mmol, 1.0 equiv.), hydroxylamine Hydrochloride (0.021g, 0.3 mmol, 1.0 equiv.), pyridine (0.039g, 0.5 mmol, 1.0 equiv.), CH₃OH (2ml). The mixture was stirred in air atmosphere for 12 h. After completion, adding silica gel (2g), concentrated under reduced pressure. The product was separate by PLC prepared plates (0.5mm, PE / EtOAc = 20:1), get products **7**.

2.6. Gram-scale reaction

To a 25 mL of flame-dried quartz tube were added 2-hydroxy-2-arylhex-5enenitrile **1** (5 mmol, 1.0 equiv), the mixture was evacuated and backfilled with argon for three times, then add $ClSO_2CF_3$ (1 ml, 2.0 equiv.) and diethylether (5 mL). The mixture was stirred for 48 h under 25 W blue LED irradiation at room temperature. After completion, adding silica gel (5 g), concentrated under educed pressure. The residue was purified by chromatography on silica gel (PE / EtOAc), eluting with the mixture of ethyl acetate/petroleum ether to give products **2**.

2.6 The free radical clock experiment: synthesis of 8

To a 25 mL of flame-dried quartz tube were added N-methyl-N-phenylmethacrylamide (0.087g, 0.5 mmol, 1.0 equiv.), the mixture was evacuated and backfilled with argon for three times, then add $ClSO_2CF_3$ (0.1ml, 2.0 equiv.) and diethylether (2.5 mL). The mixture was stirred for 48 h under 3 W blue LED irradiation at room temperature. After completion, adding silica gel (2g), concentrated under reduced pressure. The residue was purified by chromatography on silica gel (PE / EtOAc = 10:1), eluting with the mixture of ethyl acetate/petroleum ether to give products **8** (0.070g, 58%).

2.7 General procedure for Free-radical inhibition experiments

To a 25 mL of flame-dried quartz tube were added 2-hydroxy-2-phenylhex-5enenitrile **1a** (0.094g, 0.5 mmol, 1.0 equiv.), TEMPO (0.312g, 2.0 mmol, 4.0 equiv.), or BHT (0.440g, 2.0 mmol, 4.0 equiv.), or 1,1-Diphenylethylene (0.360g, 2.0 mmol, 4.0 equiv.). The mixture was evacuated and backfilled with argon for three times, then add $ClSO_2CF_3$ (0.1ml, 2.0equiv.) and diethylether (2.5 mL). The mixture was stirred for 48 h under 3 W blue LED irradiation at room temperature. After completion, adding silica gel (2g), concentrated under reduced pressure, and was purified by chromatography on silica gel.

2.8 General procedure for Free-radical trapping experiments

To a 25 mL of flame-dried quartz tube were added TEMPO (0.312g, 2.0 mmol, 2.0 equiv.), or BHT (0.440g, 2.0 mmol, 2.0 equiv.), or 1,1-Diphenylethylene (0.360g, 2.0 mmol, 2.0 equiv.). The mixture was evacuated and backfilled with argon for three times, then add ClSO₂CF₃ (0.1ml, 1.0equiv.) and diethylether (2.5 mL). The mixture was stirred for 48 h under 3 W blue LED irradiation at room temperature. After completion, capture compound by HRMS.

3. Analytical Data for products

5-oxo-5-phenyl-2-(2,2,2-trifluoroethyl)pentanenitrile (2a)

White solid, melting point: 82-85°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 8.0 Hz, 2H), 7.61 (t, *J* = 7.0 Hz, 1H), 7.49 (t, *J* = 7.0 Hz, 2H), 3.28 (t, *J* = 6.0 Hz, 2H), 3.10-3.19 (m, 1H), 2.52-2.67 (m, 1H), 2.37-2.50 (m, 1H), 2.21-2.31 (m, 1H), 2.10 - 1.97 (m, 1H).¹³C NMR (101 MHz, Chloroform-d) δ 197.77, 136.25, 133.81, 128.91, 128.11, 125.12 (q, *J* = 277.0 Hz), 119.54, 36.82 (q, *J* = 30.0 Hz), 35.13, 26.42, 25.15 (q, *J* = 3.0 Hz).¹⁹F NMR (376 MHz, Chloroform-d) δ -64.77.HRMS (ESI-TOF) m/z [M +H⁺] calculated for C₁₃H₁₃F₃NO⁺: 256.0944, found: 256.0940.

5-(4-chlorophenyl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanenitrile (2b)

Yellow solid, melting point: 90-95°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, *J* = 8.2 Hz, 2H), 7.49 (d, *J* = 8.2 Hz, 2H), 3.27 (t, *J* = 6.8 Hz, 2H), 3.18-3.12 (m, 1H), 2.66-2.57 (m, 1H), 2.50-2.43 (m, 1H), 2.32-2.23 (m, 1H), 2.09-2.00 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 196.46, 140.09, 134.48, 129.40, 129.09, 125.05 (q, *J* = 277.2 Hz), 119.39, 36.58 (q, *J* = 30.0 Hz), 35.03, 26.17, 24.98 (q, *J* = 2.9 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -64.75. HRMS (ESI-TOF) m/z [M - H⁺] calculated for C₁₃H₁₀ClF₃NO⁻: 288.0408, found: 288.0410.

5-oxo-2-(2,2,2-trifluoroethyl)-5-(4-(trifluoromethyl)phenyl)pentanenitrile5-(2-methoxyphenyl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanenitrile (2c)

White solid, melting point: 54-56°C. ¹H NMR (500 MHz, Chloroform-d) \delta8.11 (d, J =

8.1 Hz, 1H), 7.79 (d, J = 8.1 Hz, 1H), 3.34-3.31 (m, 1H), 3.19-3.14 (m, 1H), 2.67-2.60 (m, 1H), 2.50-2.44 (m, 1H), 2.34-2.28 (m, 1H), 2.12-2.06 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 196.78, 138.72, 134.89 (q, *J* = 32.9 Hz), 128.37, 125.88 (q, *J* = 3.6 Hz), 124.99 (q, *J* = 277.4 Hz), 123.48 (q, *J* = 272.8 Hz), 119.30, 36.64 (q, *J* = 29.9 Hz), 35.41, 26.08, 24.98 (q, *J* = 2.9 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -63.20, -64.79. HRMS (ESI-TOF) m/z [M - H⁺] calculated for C₁₄H₁₀F₆NO⁻: 322.0672, found: 322.0674.

methyl 4-(4-cyano-6,6,6-trifluorohexanoyl)benzoate (2d)

White solid, melting point: 84-86°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (d, *J* = 8.1 Hz, 2H), 8.03 (d, *J* = 8.1 Hz, 2H), 3.96 (s,3H), 3.31 (t, *J* = 6.7 Hz, 2H), 3.19-3.18 (m, 1H), 2.65-2.56 (m, 1H), 2.49-2.40 (m, 1H), 2.32-2.24 (m, 1H), 2.10-2.01 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 197.15, 166.04, 139.27, 134.43, 129.99, 127.93, 124.98 (q, *J* = 277.3 Hz), 119.28, 52.52, 36.72 (q, *J* = 30.0 Hz), 35.46, 31.57, 26.20, 25.03 (q, *J* = 2.9 Hz), 22.64, 14.10. ¹⁹F NMR (376 MHz, Chloroform-d) δ - 64.76. HRMS (ESI-TOF) m/z [M + H⁺] calculated for C₁₅H₁₅F₃NO₃⁺ 314.0998, found: 314.0995

5-(4-fluorophenyl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanenitrile (2e)

White solid, melting point: 41-43°C. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.04-8.01(m, 2H), 7.18 (t, *J* = 8.6 Hz, 2H), 3.27 (t, *J* = 6.8 Hz, 2H), 3.18-3.10 (m, 1H), 2.64-2.53 (m, 1H), 2.50-2.38 (m, 1H), 2.25-2.22 (m, 1H), 2.08-1.98 (m, 1H).¹³C NMR (101 MHz, Chloroform-d) δ 196.00, 166.08, (d, *J* = 255.8 Hz), 132.63 (d, *J* = 3.0 Hz), 130.71 (d, *J* = 9.4 Hz) ,124.98 (q, *J* = 277.2 Hz), 119.34, 115.98 (d, *J* = 22.1 Hz), 36.77 (q, *J* = 30.1 Hz), 34.97 26.31 25.06 (q, *J* = 3.0 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -64.76, 104.03. HRMS (ESI-TOF) m/z [M + H⁺] calculated for C₁₃H₁₂F₄NO⁺: 274.0849, found: 274.0846.

5-oxo-5-(p-tolyl)-2-(2,2,2-trifluoroethyl)pentanenitrile (2f)

White solid, melting point: 69-71°C, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (d, *J* = 7.9 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 3.26 (t, *J* = 6.8 Hz, 2H), 3.20-3.13 (m, 1H), 2.65-2.54 (m, 1H), 2.51-2.41 (m, 4H), 2.32-2.23 (m, 1H), 2.09-2.01 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 197.31, 144.63, 133.73, 129.47, 128.13, 125.03 (q, *J* = 277.6 Hz), 119.46, 36.69 (q, *J* = 30.3 Hz), 34.88, 26.41, 25.07 (q, *J* = 2.8 Hz), 21.69 (q, *J* = 6.3 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -64.76. HRMS (ESI-TOF) m/z [M + H⁺] calculated for C₁₄H₁₅F₃NO⁺: 270.1100, found: 270.1095.

5-(4-methoxyphenyl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanenitrile (2g)

Colourless liquid, $R_f = 0.19$ (PE:EA = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, J = 7.8 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 3.28 (t, J = 6.8 Hz, 2H), 3.20-3.13 (m, 1H), 2.65-2.59 (m, 1H), 2.57-2.39 (m, 4H), 2.32-2.22 (m, 1H), 2.09-2.02 (m, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 197.22, 144.60, 133.79, 129.47, 128.13, 125.01 (q, J = 277.9 Hz), 119.39, 36.81 (q, J = 30.2 Hz), 34.88, 26.46, 25.12 (q, J = 3.0 Hz), 21.67. ¹⁹F NMR (376 MHz, Chloroform-d) δ -64.76. HRMS (ESI-TOF) m/z [M+Na⁺] calculated for C₁₄H₁₄F₃NO₂Na⁺: 308.0869, found: 308.0880.

5-(2-fluorophenyl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanenitrile (2h)

White solid, melting point: 48-51°C. ¹H NMR (400 MHz, Chloroform-*d*) 7.93-7.89 (m, 1H), 7.60-7.54 (m, 1H), 7.27 (t, J = 6.4 Hz, 1H), 7.18 (dd, J = 11.4, 8.3 Hz, 1H), 3.31-3.26 (m, 2H), 3.18-3.11 (m, 1H), 2.67-2.53 (m, 1H), 2.50-2.37(m, 1H), 2.29-2.21 (m, 1H), 2.09-2.01 (m, 1H), ¹³C NMR (101 MHz, Chloroform-d) δ 196.11(d, J = 0.3Hz), 162.47(d, J = 256.1Hz), 135.51(d, J = 9.1Hz), 130.81(d, J = 2.5Hz), 125.74(q,

J = 278.4 Hz), 125.01, 124.89 (d, J = 3.4 Hz), 119.55, 117.12(d, J = 26.0 Hz), 40.25(d, J = 8.4 Hz), 36.96 (q, J = 30.1 Hz), 26.57(d, J = 2.1 Hz), 25.21(q, J = 3.3 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -64.75, 108.58. HRMS (ESI-TOF) m/z [M +H⁺] calculated for C₁₃H₁₂F₄NO⁺: 274.0849, found: 274.0845.

5-(2-chlorophenyl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanenitrile (2i)

Colourless liquid, $R_f = 0.14$ (PE:EA = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 (d, J = 7.0 Hz, 1H), 7.49 – 7.42 (m, 2H), 7.37 (t, J = 6.8 Hz, 1H), 3.27 (t, J = 7.0 Hz, 2H), 3.21 – 3.06 (m, 1H), 2.69 – 2.53 (m, 1H), 2.52 – 2.37 (m, 1H), 2.34 – 2.18 (m, 1H), 2.17 – 1.94 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 200.76, 138.30, 132.32, 131.00, 130.77, 129.04, 127.16, 125.01 (q, J = 277.3 Hz), 119.25, 39.41, 36.59 (q, J = 29.4 Hz), 26.36 (q, J = 4.8 Hz), 24.92 (d, J = 3.0 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -64.75. HRMS (ESI-TOF) m/z [M - H⁺] calculated for C₁₃H₁₀ClF₃NO⁻: 288.0408, found: 288.0410.

5-oxo-5-(o-tolyl)-2-(2,2,2-trifluoroethyl)pentanenitrile (2j)

Faint yellow solid, melting point: 35-38°C, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, J = 7.8 Hz, 1H), 7.43-7.39 (m, 1H), 7.31-7.26 (m, 2H), 3.21 (t, J = 6.9 Hz, 2H), 3.16-3.09 (m, 1H), 2.62-2.56 (m, 1H), 2.51 (s,3H), 2.46-2.38 (m, 1H), 2.27-2.19 (m, 1H), 2.05-1.97 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 201.21, 138.64, 136.67, 132.29, 132.01, 128.72, 125.94, 125.01 (q, J = 277.3 Hz,), 119.37, 37.62, 36.76 (q, J = 30.0 Hz,), 26.53, 25.03 (q, J = 3.0 Hz,), 21.57. ¹⁹F NMR (376 MHz, Chloroform-d) δ -64.76. HRMS (ESI-TOF) m/z [M + H⁺] calculated for C₁₄H₁₅F₃NO⁺: 270.1100, found: 270.1096.

5-(2-methoxyphenyl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanenitrile (2k)

Yellow liquid, Rf = 0.14(PE:EA = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 (d, J = 7.7 Hz, 1H), 7.41 (t, J = 7.8 Hz, 1H), 6.92 (q, J = 7.1 Hz, 2H), 3.85 (s, 3H), 3.19 (t, J = 6.9 Hz, 2H), 3.05-2.89 (m, 1H), 2.54-2.43 (m, 1H), 2.38-2.27 (m, 1H), 3.15-3.07 (m, 1H), 1.96-1.87 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 199.77, 158.94, 134.23, 130.42, 127.13, 125.13 (q, J = 277.3 Hz), 120.77, 119.64, 111.67, 55.54, 40.35, 36.69 (q, J = 29.9 Hz), 26.83, 25.09 (q, J = 3.0 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -64.79. HRMS (ESI-TOF) m/z [M - H⁺] calculated for C₁₄H₁₃F₃NO₂⁺: 284.0903, found: 284.0905.

5-(3-fluorophenyl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanenitrile (21)

White liquid, $R_f = 0.58$ (PE:EA = 5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (d, J = 8.0 Hz, 1H), 7.65 (m, 1H), 7.48 (m, 1H), 7.31 (m, 1H), 3.24-3.27 (m, 2H), 3.18-3.10 (m, 1H), 2.67-2.53 (m, 1H), 2.50-2.38 (m,1H), 2.31-2.22 (m, 1H), 2.08-1.99 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 196.41 (d, J = 2.04Hz), 162.92 (d, J = 249.5Hz), 138.20(d, J = 6.2Hz), 130.55 (d, J = 7.8Hz), 124.98 (q, J = 278.3Hz), 123.80 (d, J = 3.1Hz), 120.76 (d, J = 21.4Hz), 119.30, 114.75 (d, J = 22.6Hz), 36.72(q, J = 30.3Hz), 35.26, 26.21, 25.02 (q, J = 2.8Hz).¹⁹F NMR (376 MHz, Chloroform-d) δ -64.76, -111.35. HRMS (ESI-TOF) m/z [M + H⁺] calculated for C₁₃H₁₂F₄NO⁺: 274.0849, found: 274.0845.

5-(3-chlorophenyl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanenitrile (2m)

Yellow liquid, $R_f = 0.13$ (PE:EA = 10:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.97 (s,1H), 7.87 (d, J = 7.7 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.47 (t, J = 7.9 Hz, 1H), 3.28 (t, J = 6.6 Hz, 2H), 3.19-3.12 (m, 1H), 2.68-2.55 (m, 1H), 2.50-2.39 (m, 1H), 2.31-2.23 (m, 1H), 2.09-2.00 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 196.39, 137.62, 135.19, 133.64, 130.18 , 128.13, 126.11, 124.98 (q, J = 277.8 Hz), 119.31, 36.71 (q, J = 28.2 Hz), 35.22, 26.16, 25.02 (q, J = 2.7 Hz). ¹⁹F NMR (376 MHz,

Chloroform-d) δ -64.74. HRMS (ESI-TOF) m/z [M - H⁺] calculated for $C_{13}H_{10}ClF_3NO^-$: 288.0408, found: 288.0411.

5-oxo-2-(2,2,2-trifluoroethyl)-5-(3-(trifluoromethyl)phenyl)pentanenitrile (2n)

Yellow oil liquid, $R_f = 0.11$ (PE:EA = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.24 (s, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 7.89 (d, *J* = 7.7 Hz, 1H), 7.67 (t, *J* = 7.8 Hz, 1H), 3.33 (t, *J* = 6.6 Hz, 2H), 3.22-3.15 (m, 1H), 2.68-2.57 (m, 1H), 2.53-2.42 (m, 1H), 2.35-2.06 (m, 1H), 2.13-2.03 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 196.30, 136.61, 131.49 (q, *J* = 33.1 Hz), 131.15, 130.10 (q, *J* = 3.5 Hz), 129.56, 124.97 (q, *J* = 277.3 Hz), 124.86 (q, *J* = 3.9 Hz), 123.58 (q, *J* = 276.0 Hz), 119.28, 36.71 (q, *J* = 30.6 Hz), 35.25, 26.12, 25.00 (q, *J* = 2.8 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -64.83, -64.77. HRMS (ESI-TOF) m/z [M - H⁺] calculated for C₁₄H₁₀F₆NO⁻: 322.0672, found: 322.0674.

5-oxo-5-(m-tolyl)-2-(2,2,2-trifluoroethyl)pentanenitrile (20)

Colourless liquid, $R_f = 0.14$ (PE:EA = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (d, J = 7.6 Hz, 2H), 7.44-7.37 (m, 2H), 3.28 (t, J = 6.9 Hz, 2H), 3.16 (m,1H), 2.65-2.56 (m, 1H), 2.50-2.38 (m, 4H), 2.31-2.23 (m, 1H), 2.09-2.01 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 197.90, 138.66, 136.21, 134.47, 128.68, 128.55, 125.23, 125.01 (q, J = 279.4 Hz), 119.45, 36.73 (q, J = 25.9 Hz), 35.08, 26.36, 25.07 (q, J = 2.6 Hz), 21.35 (q, J = 5.2 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -64.77. HRMS (ESI-TOF) m/z [M + H⁺] calculated for C₁₄H₁₅F₃NO⁺: 270.1100, found: 270.1095.

5-(3-methoxyphenyl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanenitrile (2p)

Colourless liquid, $R_f = 0.32$ (PE:EA = 5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 (d, J = 7.9 Hz, 1H), 7.48-7.49 (m, 1H), 7.40 (t, J = 7.9 Hz, 1H), 7.16-7.13 (m, 1H), 3.87 (s, 3H), 3.27 (t, J = 6.8 Hz, 2H), 3.18-3.11 (m, 1H), 2.63-2.55 (m, 1H), 2.50-2.37 (m, 1H), 2.30-2.22 (m, 1H), 2.08-1.99 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 197.50, 159.97, 137.52, 129.82, 125.00 (q, J = 277.3 Hz), 120.64, 120.15, 119.39, 112.25, 55.50, 36.78 (q, J = 30.1 Hz), 35.16, 26.42, 25.07 (q, J = 3.0 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -64.77. HRMS (ESI-TOF) m/z [M + H⁺] calculated for C₁₄H₁₅F₃NO₂⁺: 286.1049, found: 286.1045

5-(naphthalen-2-yl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanenitrile (2q)

Yellow solid, melting point: 109-112°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.50 (s, 1H), 8.04-8.00 (m, 2H), 7.93-7.88 (m, 2H), 7.65-7.56 (m, 2H), 3.44-3.40 (m, 2H), 3.23-3.15 (m, 1H), 2.69-2.56 (m, 1H), 2.53-2.40 (m, 1H), 2.37-2.29 (m, 1H), 2.14-2.05 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 197.55, 135.84, 133.51, 132.47, 129.93, 129.66, 128.84, 128.75, 127.85, 127.05, 125.02 (q, *J* = 277.1 Hz), 123.49, 119.46, 36.82 (q, *J* = 30.1 Hz), 35.13, 26.51, 25.16 (q, *J* = 2.7 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -64.74. HRMS (ESI-TOF) m/z [M - H⁺] calculated for C₁₇H₁₃F₃NO⁻: 304.0954, found: 304.0956.

5-oxo-7-phenyl-2-(2,2,2-trifluoroethyl)heptanenitrile (2r)

Colourless liquid, $R_f = 0.39$ (PE:EA = 5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 (t, J = 7.2 Hz, 2H), 3.04-2.96 (m, 1H), 2.95 (t, J = 7.5 Hz, 2H), 2.81 (t, J = 7.4 Hz, 2H), 2.68 (t, J = 6.8 Hz, 2H), 2.55-2.47 (m, 1H), 2.39-2.30 (m, 1H), 2.09-2.01 (m, 1H), 1.88-1.80 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 207.74, 140.54, 128.62, 128.30, 126.33, 124.99 (q, J = 276.9 Hz), 119.28, 44.28, 39.22, 36.54 (q, J = 29.9 Hz), 29.70, 25.77, 24.82 (q, J = 2.7 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ - 64.78. HRMS (ESI-TOF) m/z [M - H⁺] calculated for C₁₅H₁₅F₃NO⁻: 282.1111, found: 282.1113.

5-oxo-6-phenyl-2-(2,2,2-trifluoroethyl)hexanenitrile (2s)

Faint yellow liquid, $R_f = 0.51$ (PE:EA = 5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37-7.21 (m, 5H), 3.73 (s,2H), 3.00-2.93 (m, 1H), 2.75-2.71 (m, 2H), 2.51-2.42 (m, 1H), 2.33-2.28 (m, 1H), 2.05-1.96 (m, 1H), 1.85-1.76 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 206.16, 133.46, 129.35, 128.98, 127.42, 124.91 (q, *J* = 277.5 Hz), 119.16, 50.22, 38.16, 36.60 (q, *J* = 30.0 Hz), 25.94, 24.78 (q, *J* = 3.1 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -64.83. HRMS (ESI-TOF) m/z [M - H⁺] calculated for C₁₄H₁₃F₃NO⁻: 268.0954, found: 268.0957.

5-oxo-2-(2,2,2-trifluoroethyl)tetradecanenitrile (2t)

Colourless liquid, $R_f = 0.39$ (PE:EA = 5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 3.00-2.92 (m, 1H), 2.62 (t, J = 6.9 Hz, 2H), 2.50-2.41 (m, 1H), 2.37 (t, J = 7.5 Hz, 2H), 2.33-2.25 (m, 1H), 2.02-1.94 (m, 1H), 1.80-1.68 (m, 1H), 1.51 (t, J = 6.8 Hz, 2H), 1.20 (s, 12H), 0.81 (t, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 208.89, 125.00 (q, J = 277.2 Hz), 119.27, 42.93, 38.82, 36.58 (q, J = 30.0 Hz), 31.82, 29.37, 29.33, 29.21, 29.14, 25.86, 24.84 (q, J = 3.0 Hz), 23.76, 22.62, 14.03. ¹⁹F NMR (376 MHz, Chloroform-d) δ -64.89. HRMS (ESI-TOF) m/z [M - H⁺] calculated for C₁₆H₂₆F₃NO⁻: 304.1893, found: 304.1895.

5-oxo-5-phenyl-2-(2,2,2-trichloroethyl)pentanenitrile (3a)

White solid, melting point: 104-107 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, J = 7.8 Hz, 2H), 7.52 (t, J = 7.3 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 3.23-3.15 (m, 4H), 2.83 (d, J = 13.4 Hz, 1H), 2.25-2.17 (m, 1H), 2.05-1.95 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 197.69, 136.24, 133.67, 128.81, 128.04, 120.40, 96.56, 56.49, 35.07,

28.67, 27.27. HRMS (ESI-TOF) m/z [M + Na⁺] calculated for $C_{13}H_{12}Cl_3NONa^+$: 325.98767, found: 325.98779.

5-oxo-5-(o-tolyl)-2-(2,2,2-trichloroethyl)pentanenitrile (3b)

White solid, melting point: 77-82°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 7.6 Hz, 1H), 7.33 (t, *J* = 7.5 Hz), 7.21 (q, *J* = 6.5 Hz, 1H), 3.22-3.12 (m,4H), 2.81 (d, *J* = 12.5 Hz, 1H), 2.44 (s, 3H), 2.21-2.13 (m, 1H), 2.04-1.95 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 201.28, 138.59, 136.76, 132.27, 131.98, 128.76, 125.94, 120.39, 96.56, 56.44, 37.68, 28.62, 27.42, 21.60. HRMS (ESI-TOF) m/z [M - H⁺] calculated for C₁₄H₁₃Cl₃NO⁻: 316.0068, found: 316.0069.

5-(2-chlorophenyl)-5-oxo-2-(2,2,2-trichloroethyl)pentanenitrile (3c)

Colourless liquid, $R_f = 0.12$ (PE:EA = 5:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.55-7.53 (m, 1H), 7.46-7.41 (m, 2H), 7.38-7.34 (m, 1H), 3.30-3.23 (m, 4H), 2.91 (d, J = 13.1 Hz, 1H), 2.32-2.25 (m, 1H), 2.16-2.09 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 200.80, 138.30, 132.36, 130.92, 129.14, 127.17, 120.24, 96.53, 56.27, 39.43, 28.51, 27.27. HRMS (ESI-TOF) m/z [M + H⁺] calculated for $C_{13}H_{12}Cl_4NO^+$:337.9667, found: 337.9655.

5-oxo-2-(2,2,2-trichloroethyl)-5-(3-(trifluoromethyl)phenyl)pentanenitrile (3d)

Yellow liquid , $R_f = 0.13$ (PE:EA = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 (s,1H), 8.09 (d, J = 7.8 Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.58 (t, J = 7.8 Hz, 1H), 3.27-3.17 (m, 4H), 2.85 (d, J = 13.0 Hz, 1H), 2.29-2.20 (m, 1H), 2.10-2.01 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 196.34, 136.69, 131.49 (q, J = 33.0 Hz),

131.17, 130.06 (q, J = 3.6 Hz), 129.55, 124.87 (q, J = 4.0 Hz), 123.58 (q, J = 272.6 Hz), 120.26, 96.46, 56.47, 35.27, 28.60, 27.06. ¹⁹F NMR (376 MHz, Chloroform-d) δ -62.79. HRMS (ESI-TOF) m/z [M - H⁺] calculated for C₁₄H₁₀Cl₃F₃NO⁻: 369.9785, found: 369.9787.

5-oxo-5-(p-tolyl)-2-(2,2,2-trichloroethyl)pentanenitrile (3e)

White solid, melting point: 101-102°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, J = 7.9 Hz, 2H), 7.35-7.28 (m, 2H), 3.24-3.16 (q, J = 7.1 Hz, 4H), 2.84 (d, J = 12.8 Hz, 1H), 2.36 (s, 3H), 2.26-2.18 (m, 1H), 2.05-1.97 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 197.90, 138.66, 136.27, 134.44, 128.68, 128.56, 125.26, 120.43, 96.53, 56.54, 35.11, 28.70, 27.32, 21.38. HRMS (ESI-TOF) m/z [M + Na⁺] calculated for C₁₄H₁₄Cl₃NO⁻: 318.0213, found: 318.0204.

5-(4-chlorophenyl)-5-oxo-2-(2,2,2-trichloroethyl)pentanenitrile (3f)

Yellow solid, melting point: 105-107°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (d, J = 8.4 Hz, 2 H), 7.39 (d, J = 8.3 Hz, 2 H), 3.23-3.15 (m, 4 H), 2.83 (d, J = 12.8 Hz, 1 H), 2.25-2.17 (m, 1 H), 2.05-1.99 (m, 1 H). ¹³C NMR (101 MHz, Chloroform-d) δ 196.44, 140.16, 134.55, 129.44, 129.14, 120.30, 96.50, 56.48, 35.08, 28.64, 27.17. HRMS (ESI-TOF) m/z [M + Na⁺] calculated for C₁₃H₁₁Cl₄NONa⁺: 363.94280, found: 363.94406.

5-oxo-2-(2,2,2-trichloroethyl)-5-(4-(trifluoromethyl)phenyl)pentanenitrile (3g)

Yellow solid, melting point: 88-96°C ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (d, *J* = 8.2 Hz, 2H), 7.67 (d, *J* = 8.2 Hz, 2H), 3.25-3.15 (m, 4H), 2.83 (d, *J* = 12.9 Hz, 1H),

2.26-2.18 (m, 1H), 2.08-1.99 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 196.77, 138.82, 134.81 (q, *J* = 32.8 Hz), 128.39, 125.87 (q, *J* = 3.7 Hz), 123.50 (q, *J* = 272.8 Hz), 120.26, 96.49, 56.39, 35.43, 28.57, 27.01. ¹⁹F NMR (376 MHz, Chloroform-d) δ -63.13.HRMS (ESI-TOF) m/z [M - H⁺] calculated for C₁₄H₁₀Cl₃F₃NO⁻: 369.9785, found: 369.9786.

5-(4-fluorophenyl)-5-oxo-2-(2,2,2-trichloroethyl)pentanenitrile (3h)

Colourless liquid, $R_f = 0.10$ (PE:EA = 10:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.05 (dd, J = 8.28, 5.7 Hz, 2H), 7.18 (m, 2H), 4.48-4.43 (m, 1H), 3.39 (dd, J = 15.66, 5.7 Hz, 1H), 3.29-3.21 (m, 3H), 2.58-2.52 (m, 1H), 2.24-2.16 (m, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 196.84, 165.91 (d, J = 254.8 Hz), 133.09 (d, J = 2.9 Hz), 130.66 (d, J = 9.3 Hz), 115.81 (d, J = 22.0 Hz), 96.55, 62.51, 57.33, 35.03, 33.10. ¹⁹F NMR (376 MHz, Chloroform-d) δ -104.74. HRMS (ESI-TOF) m/z [M + Na⁺] calculated for C₁₃H₁₂Cl₃FNO⁺: 321.9963, found: 321.9953.

5-oxo-7-phenyl-2-(2,2,2-trichloroethyl)heptanenitrile (3i)

Colourless liquid, $R_f = 0.16$ (PE:EA = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.22-7.17 (m, 2H), 7.15-7.08 (m, 3H), 3.11-3.02 (m, 2H), 2.84 (t, J = 7.5 Hz, 2H), 2.73-2.67 (m, 3H), 2.59 (t, J = 7.0 Hz, 2H), 2.02-1.93 (m, 1H), 1.84-1.75 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 207.73, 140.57, 128.64, 128.32, 126.35, 120.26, 96.55, 56.31, 44.34, 39.25, 29.73, 28.44, 26.69. HRMS (ESI-TOF) m/z [M + Na⁺] calculated for C₁₅H₁₆Cl₃NONa⁺: 354.01897, found: 354.01953.

4-(benzo[d]thiazol-2-yl)-6,6,6-trifluoro-1-phenylhexan-1-one (5a)

Colourless liquid, Rf = 0.16(PE:EA = 10:1). ¹H NMR (500 MHz, CDCl3), 8.02 (d, J = 8.1 Hz, 1H), 7.89-7.87 (m, 3H), 7.56-7.49 (m, 2H), 7.44-7.40 (m, 3H), 3.74-3.69 (m, 1H), 3.02-2.99 (m, 2H), 2.78-2.54(m, 2H), 2.49-2.40 (m, 1H), 2.38-2.32 (m, 1H), ¹³C NMR (126 MHz, Chloroform-d) δ 198.62, 172.08, 153.03, 136.61, 134.66, 133.18, 128.58, 127.96, 126.24, 126.12 (d, J = 277.38 Hz), 125.26, 123.00, 121.72, 39.34 (q, J = 28.43 Hz), 37.97 (d, J = 2.55 Hz), 35.28, 30.00. ¹⁹F NMR (376 MHz, Chloroform-d) δ -62.04. HRMS (ESI-TOF) m/z [M + H⁺] calculated for C₁₉H₁₇F₃NOS⁺: 364.0972, found: 364.0977.

4-(benzo[d]thiazol-2-yl)-1-(4-chlorophenyl)-6,6,6-trifluorohexan-1-one (5b)

White solid, melting point: 87-95°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (d, *J* = 8.2 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 8.5 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 1H), 7.31-7.25 (m, 3H), 3.62-3.55 (m, 1H), 2.92-2.78 (m, 3H), 2.60-2.47 (m, 1H), 2.36-2.18 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 197.39, 171.92, 153.03, 139.65, 134.87, 134.64, 129.38, 128.90, 126.29, 126.11 (q, *J* = 277.4 Hz), 125.32, 123.01, 121.75, 39.33 (q, *J* = 28.5 Hz), 37.90 (q, *J* = 2.5 Hz), 35.23, 29.87. ¹⁹F NMR (376 MHz, Chloroform-d) δ -64.01. HRMS (ESI-TOF) m/z [M + H⁺] calculated for C₁₉H₁₆ClF₃NOS⁺: 398.05877, found: 398.05893.

4-(benzo[d]thiazol-2-yl)-1-(4-bromophenyl)-6,6,6-trifluorohexan-1-one (5c)

White solid, melting point: 109-112°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, J = 8.1 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 8.1 Hz, 2H), 7.45 (d, J = 8.2 Hz, 2H), 7.40 (t, J = 7.6 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 3.62-3.56 (m, 1H), 2.92-2.79 (m, 3H), 2.61-2.48 (m, 1H), 2.37-2.19 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ

197.59, 171.93, 152.97, 135.26, 134.61, 131.90, 129.49, 128.40, 126.31, 126.09 (q, J = 277.4 Hz), 125.34, 122.99, 121.76, 39.34 (q, J = 28.5 Hz), 37.88 (q, J = 2.5 Hz), 35.22, 29.85. ¹⁹F NMR (376 MHz, Chloroform-d) δ -64.02. HRMS (ESI-TOF) m/z [M + Na⁺] calculated for C₁₉H₁₅BrF₃NOSNa⁺: 463.99020, found: 463.99081.

4-(benzo[d]thiazol-2-yl)-6,6,6-trifluoro-1-(4-iodophenyl)hexan-1-one (5d)

White solid, melting point: 109-111°C. ¹H NMR (500 MHz, Chloroform-*d*)8.02 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 8.0 Hz, 2H), 7.52 (t, J = 7.6 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 3.71 (s,1H), 3.01-2.92 (m, 3H), 2.69-2.64 (m, 1H), 2.46-2.42 (m, 1H), 2.39-2.31 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 197.90, 171.92, 152.96, 137.91, 135.79, 134.60, 129.35, 126.31, 126.08 (q, J = 277.4 Hz), 125.34, 122.99, 121.75, 101.20, 39.34 (q, J = 28.6 Hz), 37.88 (q, J = 2.5 Hz), 35.16, 29.84. ¹⁹F NMR (376 MHz, Chloroform-d) δ -64.03. HRMS (ESI-TOF) m/z [M + Na⁺] calculated for C₁₉H₁₅IF₃NOSNa⁺: 511.97633, found: 511.97717.

4-(benzo[d]thiazol-2-yl)-6,6,6-trifluoro-1-(4-phenoxyphenyl)hexan-1-one (5e)

White solid, melting point: 96-98°C. ¹H NMR (400 MHz, Chloroform-*d*) δ , 7.87 (d, *J* = 8.2 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 3H), 7.33 (t, *J* = 7.7 Hz, 1H), 7.23 (t, *J* = 7.8 Hz, 3H), 7.04 (t, *J* = 7.4 Hz, 1H), 6.90 (d, *J* = 8.0 Hz, 2H), 6.80 (d, *J* = 8.4 Hz, 2H), 3.60-3.53 (m, 1H), 2.89-2.75 (m, 3H), 2.57-2.44 (m, 1H), 2.33-2.15 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 197.16, 172.13, 162.07, 155.45, 153.08, 134.71, 131.29, 130.27, 130.08, 126.26, 126.20 (q, *J* = 277.4 Hz), 125.28, 124.67, 123.02, 121.76, 120.18, 117.30, 39.32 (q, *J* = 28.4 Hz), 38.00 (q, *J* = 2.5 Hz), 35.05, 30.15. ¹⁹F NMR (376 MHz, Chloroform-d) δ -63.93. HRMS (ESI-TOF) m/z [M + H⁺] calculated for $C_{25}H_{21}F_3NO_2S^+$: 456.1240, found: 456.1264.

4-(benzo[d]thiazol-2-yl)-6,6,6-trifluoro-1-(4-isopropylphenyl)hexan-1-one (5f)

White solid, melting point: 104-107°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (d, J = 8.2 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 8.2 Hz, 2H), 7.34 (t, J = 7.6 Hz, 1H), 7.25 (t, J = 7.6 Hz, 1H), 7.12 (d, J = 8.2 Hz, 2H), 3.61-3.54 (m, 1H), 2.88-2.76 (m, 4H), 2.58-2.45 (m, 1H), 2.32-2.18 (m, 2H), 1.11 (d, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 198.31, 172.17, 154.74, 153.10, 134.71, 134.51, 128.25, 126.68, 126.22, 126.20 (q, J = 277.4 Hz), 125.24, 123.01, 121.74, 39.32 (q, J = 28.5 Hz), 38.01 (q, J = 2.4 Hz), 35.18, 34.23, 30.15, 23.62. ¹⁹F NMR (376 MHz, Chloroform-d) δ -63.97. HRMS (ESI-TOF) m/z [M + Na⁺] calculated for C₂₂H₂₂F₃NOSNa⁺: 430.12244, found: 430.12460.

4-(benzo[d]thiazol-2-yl)-6,6,6-trichloro-1-phenylhexan-1-one (6a)

Yellow liquid, $R_f = 0.13$ (PE:EA = 10:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.03 (d, J = 8.2 Hz, 1H), 7.89 (dd, $J_1 = 8.03$, $J_2 = 3.6$ Hz,3H), 7.53 (dt, , J = 23.86, 7.5 Hz, 2H), 7.44-7.39 (m, 3H), 3.91-3.86 (m, 1H), 3.81 (dd, $J_1 = 14.85$, $J_2 = 7.6$ Hz, 1H), 3.21 (dd, $J_1 = 2.70$, $J_2 = 14.9$ Hz, 1H), 3.10-2.98 (m, 1H), 2.51-2.38 (m, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 198.67, 173.02, 153.07, 136.66, 134.88, 133.17, 128.59, 127.97, 126.17, 125.17, 122.99, 121.70, 98.29, 59.50, 41.91, 35.42, 31.28. HRMS (ESI-TOF) m/z [M + H⁺] calculated for C₁₉H₁₇Cl₃NOSH⁺: 412.00909, found: 412.00919.

(E)-5-(hydroxyimino)-5-phenyl-2-(2,2,2-trifluoroethyl)pentanenitrile (7a)

Colourless liquid, $R_f = 0.17$ (PE:EA = 5:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.91 (s,1H), 7.64-7.62 (m, 2H), 7.45 (t, J = 2.0 Hz, 2H), 3.08-3.05 (m, 2H), 2.99-2.93 (m, 1H), 2.63-2.52 (m, 1H), 2.47-2.37 (m, 1H), 2.03 (m, 2H). ¹³C NMR (126 MHz, Chloroform-d) δ 157.34, 134.51, 129.86, 128.93, 126.13, 125.03 (d, J = 277.3 Hz), 119.32, 36.21 (q, J = 30.0 Hz), 28.67, 25.58 (q, J = 3.0 Hz), 23.38.¹⁹F NMR (376 MHz, Chloroform-d) δ -64.84. HRMS (ESI-TOF) m/z [M + Na⁺] calculated for C₁₃H₁₄IF₃NO₂⁺: 271.1053, found: 271.1042.

(Z)-5-(hydroxyimino)-5-phenyl-2-(2,2,2-trifluoroethyl)pentanenitrile (7b)

Colourless liquid, $R_f = 0.28$ (PE:EA = 5:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.67 (s,1H), 7.46-7.41 (m, 4H), 3.10-3.04 (m, 1H), 2.88-2.74 (m, 2H), 2.60-2.505 (m, 1H), 2.40-2.30 (m, 1H), 2.05-1.908 (m, 2H). ¹³C NMR (126 MHz, Chloroform-d) δ 156.12, 132.56, 129.39, 128.52, 127.66, 125.01 (q, J = 277.3 Hz), 119.28, 36.43 (q, J = 30.0Hz), 32.39, 28.65, 24.91 (q, J = 2.8Hz).¹⁹F NMR (376 MHz, Chloroform-d) δ - 64.83. HRMS (ESI-TOF) m/z [M + Na⁺] calculated for C₁₃H₁₄IF₃NO₂⁺: 271.1053, found: 271.1042.

1,2,3-trimethyl-3-(trifluoromethyl)indoline (8a)

Colourless liquid, $R_f = 0.25$ (PE:EA = 10:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.33 (td, $J_1 = 7.7$ Hz, $J_2 = 1.0$ Hz, 1H), 7.28 (d, J = 7.0 Hz, 1H), 7.11 (t, J = 7.0 Hz, 1H), 6.90 (d, J = 7.0 Hz, 1H), 3.25 (s, 3H), 2.83 (dq, J = 15.2, 10.0 Hz, 1H), 2.67 (dq, J = 15.2, 10.0 Hz, 1H), 1.42 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 178.46,

142.88, 131.04, 128.51, 125.26 (q, J = 278.2 Hz), 123.54, 122.62, 108.42, 44.37 (q, J = 2.1 Hz), 40.65 (q, J = 28.3 Hz), 26.38, 24.95.¹⁹F NMR (376 MHz, Chloroform-d) δ -61.96. HRMS (ESI-TOF) m/z [M + H⁺] calculated for C₁₂H₁₂F₃NOH⁺: 244.0943, found: 244.093

References

1. Zhang, Y.; Yin, Z.; Wang, H.; Wu, X.-F., Iron-catalyzed carbonylative cyclization of γ , δ -unsaturated aromatic oxime esters to functionalized pyrrolines. *Chem. Commun.* 2020, **56**, 7045-7048.

2. Kwon, Y.; Wang, Q., Copper-catalyzed 1, 2-aminocyanation of unactivated alkenes via cyano migration. *Org. Lett.* 2020, **22**, 4141-4145.

3. Tian, T.; Wang, X.; Lv, L.; Li, Z., Iron-catalyzed acylation-functionalization of unactivated alkenes with aldehydes. *Chem. Commun.* 2020, **56**, 14637-14640.

Copies of ¹ H, ¹³C and ¹⁹F NMR Spectra for products

(2a) ¹H NMR (400 MHz, CDCl3)

(2b) ¹H NMR (400 MHz, CDCl3)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

(2b) ¹⁹F NMR (376 MHz, CDCl3)

(2c) ¹H NMR (500 MHz, CDCl3)

(2c) ¹³C NMR (101 MHz, CDCl3)

(2d) ¹⁹F NMR (376 MHz, CDCl3)

(2e) ¹H NMR (400 MHz, CDCl3)

(2f) ¹⁹F NMR (376 MHz, CDCl3)

210 200 190 180 170 160 150 140 130 120 110 100 90

80 70 60 50 40 30 20

ppm

(2f) ¹³C NMR (101 MHz, CDCl3)

(2g) ¹H NMR (400 MHz, CDCl3)

-55 -65 -70 -75 -60 -80 -85 -90 -95 -100 -105 -110

ppm

-35

-40

-45

-50

(2i)¹H NMR (400 MHz, CDCl3)

(2j) ¹H NMR (400 MHz, CDCl3)

(2k) ¹H NMR (400 MHz, CDCl3)

(2k) ¹⁹F NMR (376 MHz, CDCl3)

-70 -75 -80

ppm

(2m) ¹H NMR (500 MHz, CDCl3)

(2n) ¹H NMR (400 MHz, CDCl3)

(2n) ¹⁹F NMR (376 MHz, CDCl3)

(2n) ¹³C NMR (101 MHz, CDCl3)

(20) ¹H NMR (400 MHz, CDCl3)

(2p) ¹H NMR (400 MHz, CDCl3)

(2p) ¹³C NMR (101 MHz, CDCl3)

(2p) ¹⁹F NMR (376 MHz, CDCl3)

(2q) ¹H NMR (400 MHz, CDCl3)

(2r) ¹H NMR (400 MHz, CDCl3)

(2r) ¹³C NMR (101 MHz, CDCl3)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

(2r) ¹⁹F NMR (376 MHz, CDCl3)

(2s) ¹H NMR (400 MHz, CDCl3)

(2s) ¹⁹F NMR (376 MHz, CDCl3)

(2t) ¹H NMR (400 MHz, CDCl3)

(2t) ¹³C NMR (101 MHz, CDCl3)

(3a) ¹H NMR (400 MHz, CDCl3)

(3b) ¹H NMR (400 MHz, CDCl3)

(3c) ¹H NMR (400 MHz, CDCl3)

(3d) ¹H NMR (400 MHz, CDCl3)

(3e) ¹H NMR (400 MHz, CDCl3)

(3e) ¹³C NMR (101 MHz, CDCl3)

(3g) ¹³C NMR (101 MHz, CDCl3)

(3g) ¹⁹F NMR (376 MHz, CDCl3)

(3h) ¹H NMR (400 MHz, CDCl3)

(3i) ¹³C NMR (126 MHz, CDCl3)

(5a) ¹H NMR (500 MHz, CDCl3)

Contraction ()
 Contract

(5a) ¹³C NMR (126 MHz, CDCl3)

(5a) ¹⁹F NMR (376 MHz, CDCl3)

[53, 03]
[33, 65]
[334, 87]
[334, 87]
[334, 64]
[334, 64]
[33, 24]
[30, 24]
[26, 29]
[26, 29]
[27, 48]
[26, 29]
[27, 48]
[27, 48]
[27, 48]
[27, 48]
[27, 48]
[27, 48]
[27, 48]
[27, 48]
[27, 48]
[27, 48]
[27, 48]
[27, 48]
[27, 48]
[27, 48]
[27, 48]
[27, 48]
[27, 48]
[27, 48]
[27, 48]
[27, 48]
[21, 75]
[21, 75]
[21, 75]

76 19 91

(5b) ¹³C NMR (101 MHz, CDCl3)

-35

-40

-45

-50

-55

-60

-65

-70

-75

-80

-85

-90

-95

-100

-105 -110

ppm

(5c) ¹H NMR (400 MHz, CDCl3)

(5c) ¹⁹F NMR (376 MHz, CDCl3)

(5d) ¹H NMR (500 MHz, CDCl3)

(5e) ¹H NMR (400 MHz, CDCl3)

(5d) ¹³C NMR (101 MHz, CDCl3)

(5f) ¹H NMR (400 MHz, CDCl3)

0	Ś		> <	\supset	9	S	m) u	n	ഹ	4	• •	n	9	c	N		\$	0	η	2	c	V	-	\subset		~	9	\subset	0	S	Ч	0	4.1	n	୦	5	\sim	\supset	σ	m.) (0	0	1	4	~	+ (α	ß	2	σ	9	0	n v	Q	0	S) ال	0 0	η	ഹ	œ		> '	Q
00	9	22	23	-	8	8	9		T.	2	Ŷ	2	d.	2	10	ņ.	ᅼ	5	10	2	0	0	0	5	9	2 :	4	00	α.	ς ι	Ω.	4	2	1.	1	0	0	0	x	6	9	0	g	2	ŝ	4	1.2	2.	-	0	<u>_</u>		9	2 14	29	N	\sim	0	α) C	_	ŝ	Ϋ́) (V	5
ω.	a		. '	ς.	۳.	9		•		•••	0			~	5		٦.	a	. `		ц,				ч		••	ω.	a		·.	ω.	α		υ.	ω.	17	L.	2	5	17				ц).	ч					4	4	4		г (10	. V	~	0	10		
		۰r	- 1	-	[∽	1		- [-	~		- [-	5	ſ	~	~	ć) (η	m	0	0	m	ć	2	n	\sim	0	10	N	\sim	0	10	N	\sim	\sim	С	N	\sim	2	1 c	N	\sim	\sim	0	c	10	N	\sim	\sim	\sim	0	1 c	10	N	\sim	\sim	0	10	N	\sim	0	1 c	V C	\sim
Ļ	_	-	5	5	5	\leq	、 '	<	7	1	Ζ	/	1	2	_	_	7	L	-	-	-	-	-	-			-				5								5		5		5	5	\sim	1	/	2			1					4	\$	-			-	4	_	-	-	_

(5f) ¹³C NMR (101 MHz, CDCl3)

(5f) ¹⁹F NMR (376 MHz, CDCl3)

(6a) ¹H NMR (500 MHz, CDCl3)

(6a) ¹³C NMR (126 MHz, CDCl3)

(7a) ¹H NMR (500 MHz, CDCl3)

(8a) ¹H NMR (500 MHz, CDCl3)

(8a) ¹³C NMR (126 MHz, CDCl3)

(8a) ¹⁹F NMR (376 MHz, CDCl3)

