Supporting Information

Enantioselective synthesis of spirooxindole-pyran derivatives via remote Inverse-Electron-Demand Diels–Alder reaction of β,γ-unsaturated amides

Yuzhen Chen,^a Jiajia Chen,^b Lin Zhong,^b Yili Zhang,^b Ruoting Zhan,^b Huicai Huang^{*b} and Yongbo Xue^{*a}

^aSchool of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, People's Republic of China.

Email: xueyb@mail.sysu.edu.cn

^bKey Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China. Email: huanghc@gzucm.edu.cn

Table of Contents

I. General Information.	2
II. Preparation of substrares	3
III. Reaction conditions optimization	4
IV. General procedure and the derivatizations of product	6
V. X-ray crystallographic analysis.	8
VI. Characterization data.	12
VII. ¹ H NMR and ¹³ C NMR spectra	29
VIII. HPLC Charts of products	68

I. General information.

Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker AV-400 spectrometer (400 MHz and 100 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CDCl₃: 7.26). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl₃: 77.16). Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz). High resolution mass spectra (EI) were measured on a Waters Micromass GCT spectrometer. High resolution mass spectrometry (ESI) were carried out using a Waters Quatro Macro triple quadrupole mass spectrometer. Optical rotations were measured on an Autopol III automatic polarimeter (Rudolph Research analytical). High performance liquid chromatography (HPLC) was performed on an Agilent 1200 Series chromatographs using chiral columns (DAICEL CHIRALPAK) as noted. All solvents and reagents were purchased from commercial sources (Adamas-beta) and used without purification unless otherwise noted.

II. Preparation of substrates.

1. β , γ -unsaturated pyrazolamide **1** were synthesized follow literature procedure.^{1,2}

2. N-protect isatin-derived oxodiene 2 were synthesized by the combination of literature procedure. 3

Step 1: To an oven-dried 50 mL Schlenk flask equipped with a stir bar and Graham condenser was added PPh₃ (2.62 g, 10 mmol). The flask was evacuated and back-filled with nitrogen. Next, bromide (10 mmol) and anhydrous MeCN (10 mL) was subsequently added via syringe. The homogeneous mixture was stirred at reflux for 36 h. The resulting colorless solution was cooled to room temperature and then Et₂O (30 mL) as added. After keeping at -20 \degree C for 4 h, the formed precipitate was filtered, washed with Et₂O (20 mL×3), and dried *in vacuo* to afford the triphenylphosphonium bromide as a white solid.

Step 2: To an oven-dried 50 mL Schlenk flask with a stir bar was charged with triphenylphosphonium bromide (10 mmol). The flask was evacuated and back-filled with nitrogen. Then, 20 mL anhydrous THF was added via syringe and the suspension was cooled to -20 \degree C. To the colorless suspension was added NaHMDS (2.5 M in THF) (8.8 mL, 22 mmol) dropwise via syringe over 5 min. The resulting orange solution was stirred at -20 \degree C for 30 min and became homogeneous gradually. Then a solution

of phenylpropyl aldehyde (1.19 mL, 9 mmol) in 2 mL anhydrous THF was added via syringe at -20 \C . The resulting mixture was allowed to warm to room temperature and stirred overnight, after which the heterogeneous mixture was quenched with H₂O (50 mL) and washed with DCM (50 mL \times 2). The aqueous phase was acidified to pH = 1 by aqueous 1M HCl solution, and then extracted with EtOAc (60 mL \times 3). The organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by silica gel column chromatography to afford the desired alkenoic acid. The trans-styrylacetic acid is commercially available.

Step 3: To the mixture of carboxylic acid (10.0 mmol, 1.0 equiv.) and 3,5-diphenylpyrazole (2.19 g, 10 mmol, 1.0 equiv) in 20 mL dry Dichloromethane was added EDCI (2.11g, 11 mmol, 1.1 equiv.) and a small amount of DMAP at rt. Then the mixture was stirred at rt for 1 h. After removal of solvent under reduced pressure, the crude was purified by silica gel column chromatography (hexane/ethyl acetate = 50/1) to afford desired *N*-acylpyrazole.

References

- 1. Liu, X.; An, R.; Zhang, X.; Luo, J.; Zhao, X. Angew. Chem. Int. Ed. 2016, 55, 5846.
- 2. Zhang, H.-J.; Shi, C.-Y.; Zhong, F.; Yin, L. J. Am. Chem. Soc. 2017, 139, 2196.
- 3. He, X.-L.; Zhao, H.-R.; Duan, C.-Q.; Du, W.; Chen, Y.-C. Org. Lett. 2018, 20, 804.

III. Reaction conditions optimization

Table S1. Screening data of Diels-Alder Reaction.

entry	catalyst	solvent	t (h)	yield (%) ^b	d.r. ^c	ee (%) ^d
1	C1	Toluene	24	99	>20:1	19
2	C2	Toluene	24	80	>20:1	-41
3	C3	Toluene	24	23	>20:1	70
4	C4	Toluene	24	99	>20:1	-47
5	C5	Toluene	24	60	>20:1	77
6	C6	Toluene	48	26	>20:1	67
7	C7	Toluene	24	83	>20:1	-13
8	C8	Toluene	24	58	>20:1	-11
9	С9	Toluene	24	37	>20:1	-41
10	C10	Toluene	24	59	>20:1	-38
11	C11	Toluene	24	38	>20:1	-17
12	C5	CH_2Cl_2	24	40	>20:1	57
13	C5	CHCl ₃	24	54	>20:1	65
14	C5	EtOAc	24	80	>20:1	65
15	C5	cyclohexane	24	52	>20:1	33
16	C5	PhCl	24	61	>20:1	74
17	C5	PhCF ₃	24	86	>20:1	65
18	C5	THF	24	No reaction	/	/
19 ^e	C5	Toluene	60	80	>20:1	75
20^{f}	C5	Toluene	72	84	>20:1	75

^aUnless otherwise noted, the reactions were performed with 1.0 equiv of **1a-a** (0.06 mmol), 1.2 equiv of **2a-a** (0.05 mmol), catalyst **C** (10 mol %) in 1.0 mL solvent at rt. ^bYield of the isolated product. ^cThe dr was determined by ¹H NMR analysis of the crude product. ^dDetermined by chiral HPLC analysis. ^eThe reaction was performed at 10 °C. ^fCatalyst **C5** (15 mol%) was used in the reaction and performed at 10 °C. ^e The reaction was performed at 0 °C. ^f The reaction was performed at -10 °C.

Table S2. The screening conditions of Diels-Alder Reaction^a

entry	catalyst	temp	solvent	t (h)	yield (%) ^b	d.r. ^c	ee (%) ^d
1	C1	rt	Toluene	12	76	>20:1	-20
2	C2	rt	Toluene	12	79	>20:1	-9
3	C3	rt	Toluene	12	32	>20:1	83
4	C4	rt	Toluene	12	trace	/	/
5	C5	rt	Toluene	24	61	>20:1	85
6	C6	rt	Toluene	24	60	>20:1	84
7	C6	rt	CH_2Cl_2	48	35	>20:1	81
8	C6	rt	CHCl ₃	48	trace	/	/
9	C6	rt	THF	48	No reaction	/	/
9	C6	rt	Et ₂ O	48	65	>20:1	79
9	C6	rt	PhCl	48	52	>20:1	85
10	C6	rt	PhCF ₃	48	81	>20:1	86
11	C6	10 °C	PhCF ₃	12	93	>20:1	87
12	C6	0 °C	PhCF ₃	36	98	>20:1	93
13	C6	-10 °C	PhCF ₃	48	96	>20:1	92
14	C6	-20 °C	PhCF ₃	96	53	>20:1	96

^aUnless otherwise noted, the reactions were performed with 1.0 equiv of **1a** (0.06 mmol), 1.2 equiv of **2a** (0.05 mmol), catalyst **C** (10 mol %) in 1.0 mL solvent at rt. ^bYield of the isolated product. ^cThe dr was determined by ¹H NMR analysis of the crude product. ^dDetermined by chiral HPLC analysis.

IV. General procedure and the derivatizations of product.

Step 1: PhCF₃ (2.0 mL) was added to a mixture of isatin-derived oxodiene **2** (0.10 mmol, 1.0 equiv), β , γ -unsaturated amides **1** (0.12 mmol, 1.2 equiv) and catalyst **C6** (7.3 mg, 0.010 mmol) at 0 °C and the reaction was stirred for 72h. Then mixture was directly loaded onto the flash column chromatography and was purified with CH₂Cl₂-hexane (1:1) to afford **3** as white solids.

Procedures for the derivatizations of product.

3a (80.5 mg, 0.10 mmol) in THF (2.0 mL), then $BnNH_2$ (21.4 mg, 0.2 mmol) was added and the mixture was stirred at 50 °C (bath oil) for 3 h. Then the solvent was removed under reduced pressure and the residue was purified by flash chromatography to give the product **5** (58.9 mg, white solids, 85% yield).

3a (80.5 mg, 0.10 mmol) in THF/H₂O (1.54 mL/0.42 mL), then NaBH₄ (30.26 mg, 0.8 mmol) was added in the 0 $^{\circ}$ C and the resulting mixture was stirred at rt for 2 h. Then the mixture was quenched by 1N HCl (10 mL), extracted with DCM (20 mL). The solvent was removed under reduced pressure and the residue was purified by flash chromatography to give the product **6** (58.5 mg, white solids, 99% yield).

V. X-ray crystallographic analysis of 4h.

The single crystal of compound **4j** was prepared from its solution in Dichloromethane/ n-hexane (1:10) by slow evaporation of the solvent (Figure S and Table 1).

CCDC 2074766 (**4j**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Centre via<u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Figure S1 ORTEP of 4j (at 50% level).

Table 1 Crystal data and structure refinement for YZ0644-1.

Identification code	YZ0644-1
Empirical formula	$C_{58}H_{46}BrN_4O_3$
Formula weight	926.90
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	11.2020(2)
b/Å	11.3554(2)
c/Å	18.8713(4)
$\alpha/^{\circ}$	103.7952(18)
β/°	102.2696(18)
$\gamma/^{\circ}$	93.4841(16)
Volume/Å ³	2262.21(8)
Z	2
$\rho_{calc}g/cm^3$	1.361
µ/mm ⁻¹	1.649
F(000)	962.0
Crystal size/mm ³	$0.05 \times 0.04 \times 0.03$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	4.96 to 154.146
Index ranges	$\text{-}14 \leq h \leq \!$
Reflections collected	30212

 $\begin{array}{ll} \mbox{Independent reflections} & 9179 \ [Rint = 0.0476, Rsigma = 0.0468] \\ \mbox{Data/restraints/parameters} & 9179/18/596 \\ \mbox{Goodness-of-fit on } F^2 & 1.065 \\ \mbox{Final R indexes [I>=2$\sigma (I)]} & R_1 = 0.0733, wR_2 = 0.2054 \\ \mbox{Final R indexes [all data]} & R_1 = 0.0798, wR_2 = 0.2130 \\ \mbox{Largest diff. peak/hole / e Å}^3 1.96/-0.85 \\ \end{array}$

VI. Characterization data.

3a-a:(2'S,3R,3'R)-1-benzyl-2'-(2-(3,5-dimethyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3',6'-diphenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 50.7 mg, 84% yield (hexanes/Dichloromethane, v:v = 2:1), Mp 218-220 °C. $[\alpha]_D^{tt} = +29.5$ (*c* 0.302, DCM), 93% ee, >20:1 d.r..

¹H NMR (500 MHz, chloroform-*d*) δ 7.84 – 7.71 (m, 2H), 7.48 – 7.46 (m, 1H), 7.45 – 7.43 (d, *J* = 7.0 Hz, 1H), 7.42 – 7.32 (m, 3H), 7.20 – 7.17 (m, 2H), 7.6 (s, 2H), 7.14 – 7.11 (m, 3H), 7.01 – 6.86 (m, 2H), 6.71 (dd, *J* = 7.3, 1.8 Hz, 2H), 6.37 (d, *J* = 7.5 Hz, 1H), 6.29 (ddd, *J* = 11.6, 8.9, 3.1 Hz, 1H), 5.94 (s, 1H), 4.81 (d, *J* = 14.1 Hz, 1H), 4.62 (d, *J* = 14.1 Hz, 1H), 3.57 (d, *J* = 11.1 Hz, 1H), 3.44 (dd, *J* = 14.7, 8.9 Hz, 1H), 3.37 (dd, *J* = 14.7, 3.1 Hz, 1H), 2.56 (s, 3H), 2.18 (s, 3H).

¹³C NMR (125 MHz, chloroform-*d*) δ 175.0, 169.9, 167.1, 152.2, 144.1, 143.0, 134.8, 133.7, 132.6, 1312, 129.4, 129.0, 128.6, 128.5, 128.3, 128.0, 127.2, 126.6, 123.4, 123.3, 117.5, 111.4, 109.8, 85.6, 73.5, 54.0, 50.1, 44.0, 38.9, 29.7, 14.5, 13.8.

HRMS (ESI+TOF): [M+H]⁺ Calcd for C₃₉H₃₂N₄O₃ 605.2547. Found 605.2556.

HPLC analysis: (IB column, Hexane: 2-propanol = 85:15, flow rate = 1.0 mL/min, wavelength = 254 nm): $Rt_1 = 20.741$, $Rt_2 = 23.349$.

3a:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3',6'-diphen yl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 78.8 mg, 98% yield (hexanes/Dichloromethane, v:v = 1:1), Mp 183-185 °C. $[\alpha]_{D}^{\pi} = +36.5$ (*c* 0.564, DCM), 93% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.86 (d, *J* =1.7 Hz, 1H), 7.84 (d, *J* = 1.3 Hz, 1H), 7.81 (d, *J* = 1.5 Hz, 1H), 7.79 (d, *J* = 1.5 Hz, 1H), 7.47 – 7.45 (m, 2H), 7.44 (d, *J* = 2.8 Hz, 1H), 7.43 (d, *J* = 1.6 Hz, 1H), 7.42 (s, 1H), 7.41 – 7.40 (m, 4H), 7.40 – 7.39 (m, 2H), 7.38 – 7.36 (m, 1H), 7.26 (s, 2H), 7.25 – 7.22 (m, 3H), 7.21 – 7.19 (m, 4H), 7.12 (d, *J* = 7.8 Hz, 2H), 7.09 – 7.04 (m, 3H), 6.94 (td, *J* = 7.9, 1.2 Hz, 1H), 6.82 (s, 1H), 6.71 (s, 1H), 6.52 (d, *J* = 8.0 Hz, 2H), 6.40-6.36 (m, 1H), 6.08 (d, *J* = 7.9 Hz, 1H), 3.64 – 3.58 (m, 2H), 3.51 – 3.45 (m, 1H).

¹³C NMR (100 MHz, chloroform-*d*) δ 175.3, 169.2, 166.9, 153.8, 147.4, 142.8, 137.0, 136.8, 133.7, 132.5, 131.6, 131.2, 130.8, 129.4, 129.2, 129.1, 129.0, 128.9, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.8, 127.3, 126.4, 123.4, 123.0, 117.5, 112.5, 110.1, 86.0, 73.8, 58.6, 53.4, 50.0, 39.6.

HRMS (ESI+TOF): [M+H]⁺ Calcd for C₅₅H₄₀N₄O₃ 805.3173. Found 805.3177.

HPLC analysis: (IA column, Hexane: 2-propanol = 96:4, flow rate = 0.6 mL/min, wavelength = 254 nm): $Rt_1 = 29.457$, $Rt_2 = 37.508$.

3b:(2'S,3R,3'R)-1-benzhydryl-3'-(3-bromophenyl)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethy l)-2-oxo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 81.0 mg, 92% yield (hexanes/Dichloromethane, v:v = 1:1), Mp 189-191 °C. $[\alpha]_D^{\pi} = +47.5$ (*c* 0.764, DCM), 92% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.87 (d, *J* = 0.8 Hz, 2H), 7.81 (s, 1H), 7.79 (d, *J* = 1.7 Hz, 1H), 7.64 – 7.46 (m, 2H), 7.45 – 7.42 (m, 4H), 7.41 (d, *J* = 3.6 Hz, 4H), 7.40 – 7.38 (m, 2H), 7.37 – 7.31 (m, 1H), 7.28 – 7.25 (m, 3H), 7.23 (d, *J* = 3.2 Hz, 2H), 7.20 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 7.2 Hz, 2H), 7.12 – 7.07 (m, 1H), 7.01 – 6.75 (m, 4H), 6.72 (s, 1H), 6.64 (s, 1H), 6.62 (s, 1H), 6.32 (s, 1H), 6.15 (d, *J* = 8.0 Hz, 1H), 3.78 – 3.55 (m, 2H), 3.50 – 3.34 (m, 1H).

¹³C NMR (100 MHz, chloroform-*d*) δ 174.9, 168.9, 166.8, 154.0, 147.4, 136.9, 136.8, 132.3, 131.5, 131.3, 130.7, 129.4, 129.2, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.0, 127.9, 127.8, 127.5, 126.4, 123.3, 117.3, 112.7, 110.2, 85.9, 73.4, 58.6, 53.3, 49.6, 26.9.

HRMS (ESI+TOF): [M+H]⁺ Calcd for C₅₅H₃₉BrN₄O₃ 883.2278. Found 883.2274.

HPLC analysis: (IA column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 11.944$, $Rt_2 = 22.649$.

3c:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-3'-(3-fluorophenyl)-2-oxo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 71.9 mg, 87% yield (hexanes/Dichloromethane, v:v = 1:1), Mp 200-202 °C. $[\alpha]_{D}^{\pi} = +61.6$ (*c* 0.631, DCM), 92% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.79 (d, *J* = 1.8 Hz, 1H), 7.77 (d, *J* = 1.5 Hz, 1H), 7.74 (d, *J* = 1.2 Hz, 1H), 7.72 (d, *J* = 1.6 Hz, 1H), 7.38 (d, *J* = 1.7 Hz, 1H), 7.36 (d, *J* = 1.6 Hz, 2H), 7.36 – 7.35 (m, 2H), 7.34 (s, 3H), 7.32 (d, *J* = 2.0 Hz, 2H), 7.18 – 7.17 (m, 5H), 7.16 (d, *J* = 2.4 Hz, 2H), 7.14 – 7.12 (m, 2H), 7.10 (d, *J* = 1.5 Hz, 1H), 7.08 (d, *J* = 1.2 Hz, 1H), 7.07 – 7.05 (m, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 6.89 (td, *J* = 7.8, 1.3 Hz, 2H), 6.80 (d, *J* = 8.4 Hz, 6.4 Hz, 1H), 6.77 (s, 1H), 6.65 (s, 1H), 6.59 (d, *J* = 7.6 Hz, 2H), 6.28 – 6.22 (m, 1H), 6.08 (d, *J* = 8.0 Hz, 1H), 3.54 (d, *J* = 10.7 Hz, 2H), 3.36 (s, 1H).

¹³C NMR (100 MHz, chloroform-*d*) δ 175.1, 168.9, 166.8, 153.9, 147.4, 142.7, 136.9, 136.2, 132.4, 131.5, 131.2, 130.7, 129.3, 129.1, 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 128.3, 128.3, 128.1, 128.0, 127.8, 127.5, 126.4, 123.3, 123.1, 117.3, 112.6, 110.1, 85.9, 73.5, 58.7, 53.2, 49.7, 26.9.

HRMS (ESI+TOF): [M+H]⁺ Calcd for C₅₅H₃₉FN₄O₃ 823.3079. Found 823.3077.

HPLC analysis: (IA column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 13.204$, $Rt_2 = 29.894$.

3d:(2'S,3R,3'R)-1-benzhydryl-3'-(3-chlorophenyl)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethy l)-2-oxo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 84.2 mg, 99% yield (hexanes/Dichloromethane, v:v = 1:2), Mp 187-189 °C. $[\alpha]_{D}^{\pi} = +66.5$ (*c* 0.793, DCM), 90% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.77 (d, *J* = 1.9 Hz, 1H), 7.76 (d, *J* = 1.5 Hz, 1H), 7.74 (d, *J* = 1.1 Hz, 1H), 7.72 (d, *J* = 1.6 Hz, 1H), 7.36 – 7.39 (m, 4H), 7.35 (d, *J* = 1.7 Hz, 2H), 7.34 (s, 4H), 7.30 – 7.32(m, 3H), 7.20 – 7.21 (m, 1H), 7.18 (s, 4H), 7.15 (d, *J* = 2.8 Hz, 3H), 7.13 – 7.14 (m, 1H), 7.10 (d, *J* = 2.0 Hz, 1H), 7.09 (s, 1H), 7.01 – 7.05 (m, 1H), 6.89 (d, *J* = 0.8 Hz, 1H), 6.75 (s, 1H), 6.64 (s, 1H), 6.57 (s, 1H), 6.55 (s, 1H), 6.24 (ddd, *J* = 11.6, 9.0, 2.9 Hz, 1H), 6.06 (d, *J* = 7.9 Hz, 1H), 3.49 – 3.54 (m, 2H), 3.38 (dd, *J* = 15.2, 9.0 Hz, 1H).

¹³C NMR (100 MHz, chloroform-*d*) δ 175.04, 168.91, 166.86, 153.89, 147.43, 142.70, 136.85, 136.71, 134.18, 132.35, 132.10, 131.54, 130.67, 129.36, 129.10, 128.99, 128.88, 128.84, 128.65, 128.56, 128.47, 128.45, 128.39, 128.35, 127.82, 127.58, 126.35, 123.31, 123.04, 117.32, 112.64, 110.16, 85.81, 73.48, 58.75, 53.27, 49.39, 39.40.

HRMS (ESI+TOF): [M+H]⁺ Calcd for C₅₅H₃₉ClN₄O₃ 839.2783. Found 839.2788.

HPLC analysis: (IA column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 22.700$, $Rt_2 = 28.976$.

3e:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-6'-phenyl-3' -(m-tolyl)-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 75.6 mg, 92% yield (hexanes/Dichloromethane, v:v = 1:2), Mp 201-203 °C. $[\alpha]_{D}^{\pi} = +19.7$ (*c* 0.378, DCM), 95% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.79 (d, *J* = 1.9 Hz, 1H), 7.77 (d, *J* = 1.5 Hz, 1H), 7.74 (d, *J* = 1.4 Hz, 1H), 7.72 (d, *J* = 1.7 Hz, 1H), 7.37 (dd, *J* = 7.2, 1.6 Hz, 2H), 7.34 (d, *J* = 3.2 Hz, 2H), 7.33–7.22 (m, 5H), 7.31 – 7.30 (m, 2H), 7.30 – 7.28 (m, 1H), 7.18 – 7.16 (m, 1H), 7.15 – 7.14 (m, 3H), 7.12 – 7.10 (m, 3H), 7.03 (d, *J* = 7.9 Hz, 2H), 7.00 (d, *J* = 2.0 Hz, 1H), 6.98 – 6.90 (m, 2H), 6.83 (t, *J* = 7.6 Hz, 2H), 6.63 (s, 1H), 6.45 (s, 1H), 6.43 (s, 1H), 6.31 – 6.21 (m, 2H), 5.99 (d, *J* = 8.0 Hz, 1H), 3.59 – 3.36 (m, 2H), 3.41 – 3.34 (m 1H), 1.34 (s, 3H).

¹³C NMR (100 MHz, chloroform-*d*) δ 175.3, 169.3, 166.9, 153.8, 147.4, 142.8, 136.8, 133.6, 132.6, 131.6, 131.2, 130.8, 129.3, 129.1, 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 128.3, 128.0, 127.8, 127.3, 126.4, 123.4, 122.9, 117.5, 112.5, 110.1, 86.0, 73.9, 53.4, 50.1, 39.7, 34.7, 27.0.

HRMS (ESI+TOF): $[M+H]^+$ Calcd for $C_{56}H_{42}N_4O_3$ 819.3330. Found 819.3336.

HPLC analysis: (IA column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 11.546$, $Rt_2 = 23.421$

3f:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-3'-(4-methoxyphe nyl)-2-oxo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

Colorless solid, 79.9 mg, 96% yield (hexanes/Dichloromethane, v:v = 1:2), Mp 211-213 °C. $[\alpha]_D^{\pi} = +$ 55.6 (*c* 0.681, DCM), 98% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.86 (t, *J* = 1.9 Hz, 1H), 7.85 (t, *J* = 1.6 Hz, 1H), 7.82 (t, *J* = 1.4 Hz, 1H), 7.80 (t, *J* = 1.6 Hz, 1H), 7.46 – 7.34 (m, 4H), 7.43 – 7.42 (m, 3H), 7.41 (s, 2H), 7.41 – 7.36 (m, 4H), 7.27 – 7.24 (m, 2H), 7.22 (d, *J* = 2.4 Hz, 2H), 7.21 – 7.19 (m, 3H), 7.14 – 7.11 (m, 2H), 7.08 (dd, *J* = 7.6, 0.8 Hz, 1H), 6.94 (td, *J* = 7.8, 1.3 Hz, 1H), 6.84 (s, 1H), 6.71 (s, 1H), 6.57 (d, *J* = 1.6 Hz, 2H), 6.55 (d, *J* = 1.6 Hz, 2H), 6.30 (ddd, *J* = 11.1, 9.2, 2.9 Hz, 1H), 6.11 (d, *J* = 7.9 Hz, 1H), 3.71 (s, 3H), 3.62 (dd, *J* = 14.6, 2.9 Hz, 1H), 3.54 (d, *J* = 11.2 Hz, 1H), 3.52 – 3.46 (m, 1H).

¹³C NMR (100 MHz, chloroform-*d*) δ 175.3, 169.3, 166.8, 159.3, 153.7, 147.4, 142.8, 137.0, 136.7, 132.5, 131.6, 131.1, 130.7, 129.3, 129.2, 129.1, 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.8, 127.3, 126.3, 125.4, 123.3, 122.9, 117.5, 114.0, 112.5, 110.0, 85.9, 73.9, 58.4, 55.0, 53.5, 49.2, 39.6.

HRMS (ESI+TOF): $[M+H]^+$ Calcd for $C_{56}H_{42}N_4O_4$ 835.3279. Found 835.3279.

HPLC analysis: (IC column, Hexane: 2-propanol = 85:15, flow rate = 1.0 mL/min, wavelength = 254 nm): $Rt_1 = 13.918$, $Rt_2 = 15.763$.

3g:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-6'-phenyl-3' -(p-tolyl)-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 59.8 mg, 73% yield (hexanes/Dichloromethane, v:v = 1:2), Mp 180-182 °C. $[\alpha]_D^{\pi} = +42.0$ (*c* 0.544, DCM), 96% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.79 (t, *J* = 2.0 Hz, 1H), 7.77 (t, *J* = 1.6 Hz, 1H), 7.74 (t, *J* = 1.6 Hz, 1H), 7.72 (t, *J* = 2.4 Hz, 1H), 7.38 (d, *J* = 0.8 Hz, 1H), 7.36 (d, *J* = 2.0 Hz, 2H), 7.35 – 7.34 (m, 2H), 7.34 – 7.33 (m, 3H), 7.33 – 7.31 (m, 2H), 7.31 – 7.30 (m, 1H), 7.20 – 7.17 (m, 4H), 7.15 (d, *J* = 2.1 Hz, 2H), 7.13 (d, *J* = 2.2 Hz, 2H), 7.11 – 7.09 (m, 1H), 7.04 (d, *J* = 7.5 Hz, 2H), 7.01 (s, 1H), 6.86 (td, *J* = 7.8, 1.3 Hz, 1H), 6.77 (d, *J* = 8.4 Hz, 2H), 6.75 (s, 1H), 6.63 (s, 1H), 6.49 (d, *J* = 8.2 Hz, 2H), 6.27 (td, *J* = 8.8, 4.2 Hz, 1H), 6.01 (s, 1H), 3.52 (dd, *J* = 16.3, 2.9 Hz, 1H), 3.47 (d, *J* = 11.1 Hz, 1H), 3.40 (dd, *J* = 16.3, 9.3 Hz, 1H), 2.19 (s, 3H).

¹³C NMR (100 MHz, chloroform-*d*) δ 175.3, 169.2, 166.8, 153.7, 147.4, 142.8, 137.6, 137.1, 136.8, 132.6, 131.6, 131.1, 130.8, 130.6, 129.3, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.0, 127.8, 127.2, 126.4, 123.4, 122.9, 117.5, 112.5, 110.0, 86.0, 73.9, 58.9, 53.4, 49.6, 39.6, 21.2.

HRMS (ESI+TOF): $[M+H]^+$ Calcd for $C_{56}H_{42}N_4O_3$ 819.3330. Found 819.3328.

HPLC analysis: (IA column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 19.092$, $Rt_2 = 25.534$.

3h:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-6'-phenyl-3' -(o-tolyl)-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 57.5 mg, 70% yield (hexanes/Dichloromethane, v:v = 1:2), Mp 168-188 °C. $[\alpha]_D^{\pi} = +37.9$ (*c* 0.544, DCM), 90% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.84 (d, *J* = 1.8 Hz, 1H), 7.82 (d, *J* = 1.4 Hz, 2H), 7.80 (d, *J* = 1.6 Hz, 1H), 7.48 – 7.47 (m, 1H), 7.46 – 7.44 (m, 1H), 7.43 (d, *J* = 1.6 Hz, 2H), 7.42 (s, 1H), 7.41 – 7.40 (m, 2H), 7.39 – 7.38 (m, 3H), 7.38 – 7.37 (m, 1H), 7.26 – 7.24 (m, 2H), 7.23 (s, 2H), 7.22 (d, *J* = 3.2 Hz, 2H), 7.21 – 7.19 (m, 1H), 7.12 (d, *J* = 1.6 Hz, 2H), 7.11 – 7.04 (m, 2H), 7.02 (dd, *J* = 7.2, 0.8 Hz, 1H), 6.98 (d, *J* = 7.2 Hz, 1H), 6.92 (dd, *J* = 7.9, 1.3 Hz, 1H), 6.90 (s, 1H), 6.86 (t, *J* = 7.6 Hz, 1H), 6.65 (s, 1H), 6.63 (s, 1H), 6.25 (ddd, *J* = 10.8, 8.7, 3.3 Hz, 1H), 6.09 (d, *J* = 7.8 Hz, 1H), 4.06 (d, *J* = 10.8 Hz, 1H), 3.49 (dd, *J* = 15.2, 3.3 Hz, 1H), 3.37 (dd, *J* = 15.2, 8.7 Hz, 1H), 2.05 (s, 3H).

¹³C NMR (100 MHz, chloroform-*d*) δ 175.9, 169.1, 167.1, 153.7, 147.3, 142.8, 137.5, 137.0, 136.8, 132.6, 132.5, 131.6, 131.2, 131.0, 130.7, 129.3, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.3, 127.0, 126.3, 124.3, 122.5, 117.4, 112.4, 110.0, 86.6, 74.9, 58.7, 53.8, 44.6, 39.1, 20.2.

HRMS (ESI+TOF): [M+H]⁺ Calcd for C₅₆H₄₂N₄O₃ 819.3330. Found 819.3324.

HPLC analysis: (IA column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 11.015$, $Rt_2 = 26.167$.

3i:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-3'-(2-fluorophenyl)-2-oxo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 65.8 mg, 80% yield (hexanes/Dichloromethane, v:v = 1:2), Mp 183-185 °C. $[\alpha]_{D}^{\pi} = +48.9$ (*c* 0.629, DCM), 90% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.78 (d, *J* = 1.9 Hz, 1H), 7.76 (d, *J* = 1.5 Hz, 1H), 7.75 (d, *J* = 1.2 Hz, 1H), 7.73 (d, *J* = 1.7 Hz, 1H), 7.42 (d, *J* = 7.7 Hz, 1H), 7.38 (t, *J* = 2.8 Hz, 1H), 7.37 – 7.35 (m, 2H), 7.34 (d, *J* = 1.6 Hz, 2H), 7.33 – 7.32 (m, 4H), 7.32 (s, 1H), 7.31 – 7.30 (m, 1H), 7.22 – 7.18 (m, 1H), 7.18 (s, 1H), 7.17 (s, 2H), 7.15 (d, *J* = 4.0 Hz, 1H), 7.14 (s, 1H), 7.12 – 7.11 (m, 1H), 7.08 – 7.04 (m, 3H), 7.00 (td, *J* = 7.6, 1.0 Hz, 1H), 6.86 (td, *J* = 7.9, 1.3 Hz, 1H), 6.80 (s, 1H), 6.75 (ddd, *J* = 9.7, 8.3, 1.2 Hz, 1H), 6.69 (td, *J* = 7.7, 1.2 Hz, 1H), 6.65 (s, 1H), 6.63 (d, *J* = 3.6 Hz, 2H), 6.31 (ddt, *J* = 11.9, 8.8, 2.2 Hz, 1H), 6.05 (d, *J* = 7.9 Hz, 1H), 4.08 (d, *J* = 11.1 Hz, 1H), 3.48 – 3.42 (m, 1H), 3.38 – 3.33 (m, 1H).

¹³C NMR (100 MHz, chloroform-*d*) δ 175. 5, 168.2, 166.9, 153.8, 147.4, 142.4, 137.0, 136.9, 132.5, 131.6, 131.2, 130.7, 129.3, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.0,

127.9, 127.8, 127.4, 126.4, 125.0, 124.3, 123.0, 121.3, 117.2, 115. 7, 115.5, 112.1, 110.1, 86.3, 73.6, 58.8, 52.9, 40.6, 39.6.

HRMS (ESI+TOF): [M+H]⁺ Calcd for C₅₅H₃₉FN₄O₃ 823.3079. Found 823.3085.

HPLC analysis: (IA column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 13.411$, $Rt_2 = 31.323$.

3j:(2'S,3R,3'R)-1-benzhydryl-3'-(3,5-dimethylphenyl)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxo ethyl)-2-oxo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 45.8 mg, 55% yield (hexanes/Dichloromethane, v:v = 1:2), Mp 215-217 °C. $[\alpha]_{D}^{\pi} = + 81.5$ (*c* 0.694, DCM), 91% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.84 (d, *J* = 1.8 Hz, 1H), 7.82 – 7.83 (m, 2H), 7.80 (d, *J* = 1.6 Hz, 1H), 7.44 – 7.48 (m, 3H), 7.43 (dd, *J* = 3.2 Hz, 1.2 Hz, 2H), 7.40 – 7.42 (m, 2H), 7.39 (s, 4H), 7.37 – 7.38 (m, 1H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.26 (s, 1H), 7.24 – 7.25 (m, 1H), 7.23 (s, 1H), 7.22 (d, *J* = 1.6 Hz, 1H), 7.21 (s, 1H), 7.19 – 7.20 (m, 1H), 7.12 (t, *J* = 7.6 Hz, 2H), 7.03 (td, *J* = 7.5, 1.0 Hz, 1H), 6.92 (dd, *J* = 7.9, 1.4 Hz, 1H), 6.70 (s, 1H), 6.79 (s, 1H), 6.69 (s, 1H), 6.66 (s, 1H), 6.63 (d, *J* = 6.4 Hz, 2H), 6.21 (ddd, *J* = 10.8, 8.6, 3.3 Hz, 1H), 6.08 (d, *J* = 7.9 Hz, 1H), 4.00 (d, *J* = 10.8 Hz, 1H), 3.49 (dd, *J* = 16.0, 3.3 Hz, 1H), 3.38 (dd, *J* = 16.0, 8.7 Hz, 1H), 2.20 (s, 3H), 1.99 (s, 3H).

¹³C NMR (100 MHz, chloroform-*d*) δ 175.9, 169.2, 167.1, 153.6, 147.3, 142.8, 137.2, 137.1, 136.8, 132.5, 131.7, 131.6, 131.1, 130.8, 129.4, 129.3, 129.1, 129.0, 128.9, 128.8, 128.7, 128.5, 128.4, 128.3, 128.2, 128.1, 127.9, 127.8, 127.6, 127.3, 127.2, 126.3, 124.3, 122.4, 117.5, 112.4, 110.0, 86.5, 74.9, 58.8, 53.8, 44.3, 39.0, 21.0, 20.1.

HRMS (ESI+TOF): [M+H]⁺ Calcd for C₅₇H₄₄N₄O₃ 833.3486. Found 833.3489.

HPLC analysis: (IA column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 13.204$, $Rt_2 = 26.562$.

3k:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-6'-phenyl-3' -(thiophen-2-yl)-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 77.4 mg, 96% yield (hexanes/Dichloromethane, v:v = 1:2), Mp 226-228 °C. $[\alpha]_{D}^{\pi} = + 84.6$ (*c* 0.731, DCM), 96% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.87 (t, *J* = 2.0 Hz, 1H), 7.86 (t, *J* = 1.6 Hz, 1H), 7.79 (d, *J* = 1.2 Hz, 1H), 7.77 (d, *J* = 1.6 Hz, 1H), 7.44 - 7.46 (m, 2H), 7.42 - 7.43 (m, 3H), 7.41 (d, *J* = 0.8 Hz, 4H), 7.39 - 7.40 (m, 2H), 7.37 - 7.38 (d, *J* = 2.8 Hz, 1H), 7.31 - 7.35 (m, 1H), 7.25 (d, *J* = 0.8 Hz, 2H), 7.24 (s, 2H), 7.22 - 7.23 (d, *J* = 3.2 Hz, 1H), 7.19 - 7.20 (m, 1H), 7.17 - 7.18 (m, 1H), 7.11 (t, *J* = 7.6 Hz, 1H), 7.03 (dd, *J* = 4.8, 0.4 Hz, 1H), 6.98 (td, *J* = 7.8, 1.3 Hz, 1H), 6.87 (s, 1H), 6.84 (dd, *J* = 3.6, 1.0 Hz, 1H), 6.75 (t, *J* = 2.6 Hz, 2H), 6.73 (t, *J* = 1.7 Hz, 1H), 6.71 (s, 1H), 6.28 (ddd, *J* = 11.4, 8.7, 3.0 Hz, 1H), 6.18 (d, *J* = 7.9 Hz, 1H), 3.92 (d, *J* = 10.9 Hz, 1H), 3.71 - 3.75 (m, 1H), 3.56 (dd, *J* = 16.5, 8.7 Hz, 1H).

¹³C NMR (100 MHz, chloroform-*d*) δ 175.4, 169.4, 166.8, 153.8, 147.4, 143.0, 137.0, 136.9, 134.9, 132.4, 131.6, 131.2, 130.7, 129.3, 129.2, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.32, 128.2, 128.0, 127.8, 127.6, 127.5, 127.4, 127.1, 126.6, 126.4, 125.2, 123.3, 123.1, 117.3, 112.5, 110.08, 85.6, 73.9, 58.7, 53.2, 45.2, 39.3.

HRMS (ESI+TOF): $[M+H]^+$ Calcd for $C_{53}H_{38}N_4O_3S$ 811.2737. Found 811.2729.

HPLC analysis: (IA column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 20.116$, $Rt_2 = 42.101$.

3l:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-3'-(furan-2-yl)-2-o xo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 70.7 mg, 89% yield (hexanes/Dichloromethane, v:v = 1:2), Mp 219-221 °C. $[\alpha]_{D}^{\pi} = + 81.5$ (*c* 0.694, DCM), 85% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.78 (d, *J* = 1.9 Hz, 1H), 7.76 (d, *J* = 1.6 Hz, 1H), 7.71 (d, *J* = 2.0 Hz, 1H), 7.69 (d, *J* = 1.7 Hz, 1H), 7.34 – 7.36 (m, 2H), 7.32 (s, 3H), 7.31 – 7.32 (m, 3H), 7.30 (s, 2H), 7.28 (d, *J* = 1.2 Hz, 2H), 7.17 (s, 2H), 7.17 (s, 4H), 7.14 - 7.16 (m, 2H), 6.98 (t, *J* = 7.5 Hz, 1H), 6.93 (s, 1H), 6.92 (d, *J* = 0.8 Hz, 2H), 6.89 (s, 1H), 6.86 (s, 1H), 6.62 (s, 1H), 6.18 – 6.13 (m, 2H), 5.97 (dd, *J* = 3.3, 1.8 Hz, 1H), 5.82 (d, *J* = 3.2 Hz, 1H), 3.78 (d, *J* = 10.9 Hz, 1H), 3.48 (s, 1H), 3.47 (s, 1H).

¹³C NMR (100 MHz, chloroform-*d*) δ 175.4, 168.8, 167.0, 153.7, 147.7, 147.4, 142.8, 137.1, 137.0,
132.4, 131.6, 131.2, 130.7, 129.3, 129.2, 129.1, 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 128.3, 128.0,
127.8, 127.6, 126.3, 123.3, 123.1, 117.3, 112.4, 110.4, 110.1, 110.0, 85.6, 72.7, 58.9, 51.8, 44.1, 38.8.

HRMS (ESI+TOF): [M+H]⁺ Calcd for C₅₃H₃₈N₄O₄ 795.2966. Found 795.2958.

HPLC analysis: (IA column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 19.662$, $Rt_2 = 62.790$.

4a:(2'S,3R,3'R)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-1,3',6'-triphenyl-2',3'-dih ydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 70.9 mg, 99% yield (hexanes/Dichloromethane, v:v = 1:4), Mp 200-202 °C. $[\alpha]_D^{\pi} = +31.5$ (*c* 0.379, DCM), 69% ee, >20:1 d.r..

¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, J = 2.0 Hz, 2H), 7.83 (d, J = 1.6 Hz, 2H), 7.52 (dd, J = 7.1, 1.5 Hz, 1H), 7.49 – 7.46 (m, 1H), 7.46 – 7.43 (m, 2H), 7.42 – 7.41 (m, 6H), 7.40 – 7.39 (m, 3H), 7.39 – 7.28 (m, 3H), 7.25 (s, 1H), 7.23 – 7.22 (m, 1H), 7.21 (d, J = 0.8 Hz, 1H), 7.19 (dd, J = 2.8, 1.6 Hz, 1H), 7.16 (dd, J = 7.6, 1.5 Hz, 1H), 7.01 – 6.98 (m, 1H), 6.89 (d, J = 7.2 Hz, 2H), 6.71 (s, 1H), 6.44 (dd, J = 7.5, 1.3 Hz, 1H), 6.31 (ddd, J = 11.6, 9.1, 2.9 Hz, 1H), 3.65 (dd, J = 16.4, 2.9 Hz, 1H), 3.59 (d, J = 11.1 Hz, 1H), 3.51 (dd, J = 16.4, 9.1 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 174.3, 169.1, 167.5, 153.8, 147.4, 143.9, 133.8, 133.5, 132.5, 131.6, 131.2, 130.7, 129.5, 129.41, 129.3, 129.0, 128.9, 128.8, 128.7, 128.5, 128.4, 128.3, 128.2, 128.0, 126.7, 126.4, 123.7, 123.6, 117.5, 114.1, 110.1, 109.7, 85.0, 73.4, 54.2, 50.9, 39.4, 29.7.

HRMS (ESI+TOF): $[M+H]^+$ Calcd for $C_{48}H_{34}N_4O_3$ 715.2704. Found 715.2708.

HPLC analysis: (IA column, Hexane: 2-propanol = 75:25, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 30.940$, $Rt_2 = 34.639$.

4b:(2'S,3R,3'R)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-1-methyl-2-oxo-3',6'-diphenyl-2' ,3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 54.4 mg, 84% yield (hexanes/Dichloromethane, v:v = 1:4), Mp 216-218 °C. $[\alpha]_D^{\pi} = + 80.0$ (*c* 0.528, DCM), 75% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.79 (d, *J* = 1.7 Hz, 1H), 7.77 (d, *J* = 1.3 Hz, 1H), 7.75 (d, *J* = 1.1 Hz, 1H), 7.73 (d, *J* = 1.7 Hz, 1H), 7.40 – 7.38 (m, 3H), 7.36 (d, *J* = 1.6 Hz, 2H), 7.35 – 7.34 (m, 5H), 7.33 – 7.31 (m, 3H), 7.18 (s, 3H), 7.15 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.10 (d, *J* = 7.2 Hz, 1H), 7.05 (d, *J* = 7.6 Hz, 1H), 6.64 (s, 1H), 6.45 (d, *J* = 7.7 Hz, 1H), 6.23 (ddd, *J* = 11.6, 9.3, 2.9 Hz, 1H), 3.54 – 3.49 (m, 1H), 3.42 – 3.35 (m, 2H), 2.80 (s, 3H).

¹³C NMR (100 MHz, chloroform-*d*) δ 174.8, 169.1, 167.4, 153.8, 147.4, 143.6, 133.4, 132.6, 131.6, 131.2, 130.7, 129.5, 129.3, 129.1, 129.0, 128.9, 128.8, 128.5, 128.3, 128.1, 1280, 126.4, 123.4, 123.2, 117.5, 110.1, 108.4, 84.7, 73.4, 54.0, 50.8, 39.6, 26.2.

HRMS (ESI+TOF): [M+H]⁺ Calcd for C₄₃H₃₂N₄O₃ 653.2574. Found 653.2569.

HPLC analysis: (IA column, Hexane: 2-propanol = 75:25, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 12.944$, $Rt_2 = 16.351$.

4c:(2'S,3R,3'R)-1-benzyl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3',6'-diphenyl-2', 3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 72.8 mg, 99% yield (hexanes/Dichloromethane, v:v = 1:2), Mp 230-232 °C. $[\alpha]_{D}^{\pi} = +63.8$ (*c* 0.694, DCM), 84% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.79 (d, *J* = 1.9 Hz, 1H), 7.78 (d, *J* = 1.4 Hz, 1H), 7.75 (d, *J* = 1.2 Hz, 1H), 7.73 (d, *J* = 1.6 Hz, 1H), 7.48 – 7.41 (m, 1H), 7.40 – 7.39 (m, 1H), 7.38 (d, *J* = 2.8 Hz, 1H), 7.37 (s, 1H), 7.36 – 7.35 (m, 1H), 7.35 – 7.34 (m, 5H), 7.33 (d, *J* = 2.0 Hz, 1H), 7.32 (s, 1H), 7.31 – 7.28 (m, 1H), 7.17 (s, 2H), 7.05 – 7.01 (m, 2H), 7.08 (d, *J* = 2.1 Hz, 2H), 7.06 (d, *J* = 2.8 Hz, 1H), 7.05 – 7.03 (m, 1H), 6.67 – 6.65 (m, 1H), 6.42 (s, 1H), 6.63 – 6.62 (m, 1H), 6.33 – 6.27 (m, 2H), 4.75 – 4.71 (m, 1H), 4.55 – 4.51 (m, 1H), 3.58 – 3.53 (m, 1H), 3.51 (d, *J* = 11.2 Hz, 1H), 3.41 (dd, *J* = 15.2, 9.3 Hz, 1H).

¹³C NMR (100 MHz, chloroform-*d*) δ 174.9, 169.2, 167.1, 153.8, 147.4, 143.0, 134.7, 133.7, 132.5, 131.6, 131.2, 130.8, 129.5, 129.3, 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 128.1, 128.0, 127.3, 126.7, 126.4, 123.5, 123.3, 117.4, 110.1, 109.9, 85.7, 73.8, 53.9, 50.0, 44.0, 39.7.

HRMS (ESI+TOF): $[M+H]^+$ Calcd for $C_{49}H_{36}N_4O_3$ 729.2860. Found 729.2864.

HPLC analysis: (IA column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 29.564$, $Rt_2 = 34.927$.

4d:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-5-methyl-2-oxo-3' ,6'-diphenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 74.4 mg, 91% yield (hexanes/Dichloromethane, v:v = 1:1), Mp 150-152 °C. $[\alpha]_{D}^{\pi} = +50.8$ (*c* 0.680, DCM), 94% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.85 (s, 1H), 7.84 (s, 1H), 7.82 (s, 1H), 7.80 (d, J = 1.7 Hz, 1H), 7.46 – 7.43 (m, 3H), 7.42 (s, 1H), 7.40 (d, J = 2.3 Hz, 5H), 7.38 (s, 2H), 7.36 – 7.34 (m, 1H), 7.27 –

7.23 (m, 3H), 7.22 (s, 1H), 7.21 – 7.18 (m, 5H), 7.09 (t, J = 5.2 Hz, 2H), 7.06 (t, J = 7.6 Hz, 2H), 6.80 (s, 1H), 6.71 (d, J = 7.6 Hz, 1H), 6.70 (s, 1H), 6.50 (d, J = 7.6 Hz, 2H), 6.36 (ddd, J = 11.6, 9.2, 2.9 Hz, 1H), 5.96 (d, J = 8.1 Hz, 1H), 3.64 – 3.57 (m, 2H), 3.50 – 3.44 (m, 1H), 2.33 (s, 3H).

¹³C NMR (100 MHz, chloroform-*d*) δ 175.8, 169.2, 166.5, 153.7, 147.3, 138.2, 138.0, 134.7, 133.9, 132.8, 132.6, 131.7, 131.0, 130.7, 130.2, 130.1, 129.0, 129.9, 128.8, 128.5, 128.3, 128.2, 128.0, 127.4, 127.1, 126.4, 122.2, 117.9, 110.0, 86.6, 73.9, 52.9, 50.0, 39.7, 30.2, 20.9.

HRMS (ESI+TOF): $[M+H]^+$ Calcd for $C_{56}H_{42}N_4O_3$ 819.3330. Found 819.3329.

HPLC analysis: (IA column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 14.208$, $Rt_2 = 23.789$.

4e:(2'S,3R,3'R)-1-benzhydryl-5-bromo-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3', 6'-diphenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 76.4 mg, 86% yield (hexanes/Dichloromethane, v:v = 1:1), Mp 213-215 °C. $[\alpha]_{D}^{\pi} = +31.0$ (*c* 0.686, DCM), 86% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.86 (d, *J* = 1.8 Hz, 1H), 7.84 (s, 1H), 7.82 (s, 1H), 7.79 (d, *J* = 1.7 Hz, 1H), 7.59 (d, *J* = 2.0 Hz, 1H), 7.47 (d, *J* = 7.2 Hz, 1H), 7.45 (s, 1H), 7.44 (s, 1H), 7.42 (s, 6H), 7.40 (d, *J* = 1.2 Hz, 2H), 7.38 (s, 1H), 7.25 – 7.28 (d, *J* = 6.8 Hz, 2H), 7.24 (s, 2H), 7.21 (d, *J* = 7.2 Hz, 2H), 7.18 (d, *J* = 2.2 Hz, 1H), 7.16 (s, 1H), 7.13 (s, 1H), 7.11 (s, 1H), 7.11 (s, 1H), 7.08 – 7.09 (m, 1H), 7.05 (dd, *J* = 8.6, 2.0 Hz, 1H), 6.80 (s, 1H), 6.71 (s, 1H), 6.47 (s, 1H), 6.45 (s, 1H), 6.32 (ddd, *J* = 11.5, 8.7, 3.2 Hz, 1H), 5.95 (d, *J* = 8.5 Hz, 1H), 3.57 – 3.61 (m, 2H), 3.51 (dd, *J* = 6.8 Hz, 15.0Hz, 8.8 Hz, 1H).

¹³C NMR (100 MHz, chloroform-*d*) δ 174.8, 169.0, 167.2, 153.8, 147.4, 141.8, 136.6, 136.3, 133.3, 132.3, 131.9, 131.5, 131.3, 131.2, 130.7, 129.3, 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 128.3, 128.0, 127.9, 127.5, 126.5, 126.3, 117.3, 115.8, 113.9, 110.1, 85.3, 73.7, 58.6, 53.5, 49.9, 39.3.

HRMS (ESI+TOF): [M+H]⁺ Calcd for C₅₅H₃₉BrN₄O₃ 883.2278. Found 883.2270.

HPLC analysis: (IA column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 15.225$, $Rt_2 = 19.427$.

4f:(2'S,3R,3'R)-1-benzhydryl-7-chloro-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3', 6'-diphenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

Colorless solid, 71.1 mg, 85% yield (hexanes/Dichloromethane, v:v = 1:1), Mp 176-178 °C. $[\alpha]_{D}^{rt} = + 46.8 (c \ 0.687, DCM), 94\%$ ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.75 (d, *J* = 2.4 Hz, 1H), 7.73 (d, *J* = 1.7 Hz, 1H), 7.69 (s, 1H), 7.67 (d, *J* = 1.7 Hz, 1H), 7.38 – 7.37 (m, 1H), 7.36 – 7.35 (m, 2H), 7.33 – 7.31 (m, 4H), 7.30 (s, 1H), 7.29 – 7.28 (m, 4H), 7.26 – 7.23 (m, 1H), 7.20 – 7.18 (m, 4H), 7.16 – 7.13 (m, 5H), 7.10 (d, *J* = 8.4 Hz, 2H), 7.07 (s, 1H), 7.05 (d, *J* = 8.0 Hz, 2H), 7.03 – 6.95 (m, 3H), 6.61 (s, 1H), 6.17 (t, *J* = 10.3 Hz, 1H), 3.51 (dd, *J* = 15.2, 2.8 Hz, 1H), 3.43 (d, *J* = 11.0 Hz, 1H), 3.29 – 3.29 (m, 1H).

¹³C NMR (100 MHz, chloroform-*d*) δ 175.3, 169.0, 167.1, 153.8, 147.4, 139.9, 137.9, 133.1, 132.8, 132.4, 131.6, 131.3, 130.6, 129.3, 128.9, 128.8, 128.5, 128.3, 128.2, 128.1, 128.0, 128.0, 127.4, 126.4, 124.1, 122.5, 117.6, 110.1, 85.5, 73.8, 53.0, 49.9, 39.6, 31.5.

HRMS (ESI+TOF): [M+H]⁺ Calcd for C₅₅H₃₉ClN₄O₃ 839.2783. Found 839.2789.

HPLC analysis: (IA column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 10.884$, $Rt_2 = 16.461$.

4g:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-5,7-dimethyl-2-ox o-3',6'-diphenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 42.1 mg, 51% yield (hexanes/Dichloromethane, v:v = 1:1), Mp 195-197 °C. $[\alpha]_{D}^{rt} = +11.7$ (*c* 0.381, DCM), 95% ee, >20:1 d.r..

¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (d, J = 2.1 Hz, 1H), 7.82 (d, J = 1.6 Hz, 1H), 7.79 (d, J = 1.2 Hz, 1H), 7.77 (d, J = 1.7 Hz, 1H), 7.46 – 7.44 (m, 1H), 7.42 (d, J = 1.6 Hz, 1H), 7.41 (d, J = 1.6 Hz, 1H), 7.41 – 7.40 (m, 3H), 7.39 – 7.37 (m, 5H), 7.36 (s, 1H), 7.26 – 7.25 (m, 2H), 7.24 (d, J = 2.0 Hz, 2H), 7.23 – 7.19 (m, 2H), 7.18 (s, 1H), 7.17 – 7.16 (m, 2H), 7.23 – 6.99 (m, 5H), 6.91 – 6.79 (m, 2H), 6.73 (s, 1H), 6.69 (s, 1H), 6.30 (t, J = 6.4 Hz, 1H), 3.61 (dd, J = 16.0, 2.8 Hz, 1H), 3.55 (d, J = 11.1 Hz, 1H), 3.38 (dd, J = 16.0, 9.3 Hz, 1H), 2.37 (s, 3H), 1.57 (s, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 169.2, 166.5, 153.7, 147.3, 138.2, 138.0, 134.7, 133.9, 132.8, 132.6, 131.6, 131.0, 130.7, 130.2, 129.2, 129.0, 128.9, 128.8, 128.4, 128.3, 128.2, 128.0, 127.3, 127.1, 126.4, 122.2, 117.9, 110.0, 86.6, 73.9, 52.9, 50.0, 39.7, 29.7, 26.9, 20.9.

HRMS (ESI+TOF): [M+H]⁺ Calcd for C₅₇H₄₄N₄O₃ 833.3486. Found 833.3490.

HPLC analysis: (IB column, Hexane: 2-propanol = 85:15, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 12.588$, $Rt_2 = 14.470$.

4h:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-6'-(4-fluorophenyl)-2-oxo-3'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 67.4 mg, 82% yield (hexanes/Dichloromethane, v:v = 1:2), Mp 188-190 °C. $[\alpha]_D^{\pi} = +60.1$ (*c* 0.651, DCM), 90% ee, >20:1 d.r..

¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (d, *J* = 1.9 Hz, 1H), 7.84 – 7.85 (m, 1H), 7.82 – 7.83 (m, 1H), 7.79 – 7.81 (m, 1H), 7.46 (d, *J* = 1.4 Hz, 1H), 7.44 (s, 1H), 7.42 (s, 4H), 7.40 – 7.41 (m, 1H), 7.25 (s, 1H), 7.22 – 7.23 (m, 3H), 7.21 (s, 1H), 7.20 (s, 1H), 7.19 (s, 1H), 7.18 (s, 1H), 7.13 (s, 1H), 7.11 (s, 1H), 7.08 – 7.10 (m, 3H), 7.06 (s, 2H), 7.04 (d, *J* = 2.0 Hz), 6.94 (td, *J* = 7.8, 1.3 Hz, 1H), 6.81 (s, 1H), 6.72 (s, 1H), 6.53 (s, 1H), 6.51 (s, 1H), 6.36 (ddd, *J* = 11.7, 9.2, 2.9 Hz, 1H), 6.09 (d, *J* = 7.9 Hz, 1H), 3.59 – 3.63 (m, 1H), 3.57 (d, *J* = 7.2 Hz, 1H), 3.48 (dd, *J* = 15.2Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 175.2, 169.1, 165.7, 153.8, 147.4, 142.7, 137.1, 136.7, 133.6, 131.6, 130.7, 130.6, 129.3, 129.1, 129.0, 128.9, 128.8, 128.6, 128.5, 128.3, 128.2, 128.1 128.0, 127.8, 127.3, 126.3, 123.4, 122.9, 117.4, 115.6, 115.4, 112.5, 110.1, 85.9, 73.8, 58.7, 53.3, 49.9, 39.5.

HRMS (ESI+TOF): [M+H]⁺ Calcd for C₅₅H₃₉FN₄O₃ 823.3079. Found 823.3077.

HPLC analysis: (IA column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 16.495$, $Rt_2 = 54.563$.

4i:(2'S,3R,3'R)-1-benzhydryl-6'-(4-chlorophenyl)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 79.1 mg, 94% yield (hexanes/Dichloromethane, v:v = 1:2), Mp 218-220 °C. $[\alpha]_{D}^{\pi} = +60.2$ (*c* 0.751, DCM), 84% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.86 (d, *J* = 1.9 Hz, 1H), 7.84 (s, 1H), 7.76 (s, 1H), 7.73 (s, 1H), 7.45 (s, 1H), 7.44 (s, 2H), 7.42 (s, 4H), 7.41 (s, 2H), 7.34 - 7.36 (m, 3H), 7.25 (s, 1H), 7.23 (s, 2H), 7.21 (s, 1H), 7.20 (d, *J* = 2.1 Hz, 2H), 7.18 (s, 1H), 7.12 (d, *J* = 7.4 Hz, 2H), 7.04 - 7.09 (m, 4H), 6.94 (t, *J* = 7.8 Hz, 1H), 6.81 (s, 1H), 6.72 (s, 1H), 6.53 (s, 1H), 6.51 (s, 1H), 6.35 (ddd, *J* = 11.4, 9.2, 2.9 Hz, 1H), 6.09 (d, *J* = 8.0 Hz, 1H), 3.63 - 3.56 (m, 2H), 3.48 (dd, *J* = 15.2, 9.2 Hz, 1H).

¹³C NMR (100 MHz, chloroform-*d*) δ 175.1, 169.1, 165.6, 153.8, 147.4, 142.7, 137.2, 136.9, 136.7, 133.5, 131.5, 130.9, 130.7, 129.7, 129.3, 129.1, 129.0, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.8, 127.3, 126.3, 123.4, 123.0, 117.2, 112.5, 110.1, 86.4, 73.9, 58.7, 53.3, 49.8, 39.4.

HRMS (ESI+TOF): [M+H]⁺ Calcd for C₅₅H₃₉ClN₄O₃ 839.2783. Found 839.2788.

HPLC analysis: (IA column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 16.017$, $Rt_2 = 77.164$.

4j:(2'S,3R,3'R)-1-benzhydryl-6'-(4-bromophenyl)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 87.5 mg, 99% yield (hexanes/Dichloromethane, v:v = 1:1), Mp 194-196 °C. $[\alpha]_D^{\pi} = + 62.0$ (*c* 0.864, DCM), 89% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.77 (s, 1H), 7.75 (s, 1H), 7.60 (s, 1H), 7.58 (s, 1H), 7.42 (s, 1H), 7.40 (s, 1H), 7.34 (d, *J* = 8.0 Hz, 4H), 7.32 (d, *J* = 8.5 Hz, 5H), 7.29 – 7.28 (m, 1H), 7.18 – 7.16 (m, 1H), 7.13 (d, *J* = 7.7 Hz, 3H), 7.11 – 7.09 (m, 4H), 7.03 (d, *J* = 7.8 Hz, 2H), 7.00 (s, 1H), 6.96 (t, *J* = 6.4 Hz, 2H), 6.84 (t, *J* = 7.8 Hz, 1H), 6.72 (s, 1H), 6.62 (s, 1H), 6.43 (d, *J* = 7.6 Hz, 2H), 6.27 (ddd, *J* = 11.5, 9.1, 2.9 Hz, 1H), 6.00 (d, *J* = 8.0 Hz, 1H), 3.53 – 3.48 (m, 2H), 3.40 (dd, *J* = 15.2, 9.1 Hz, 1H).

¹³C NMR (100 MHz, chloroform-*d*) δ 175.1, 169.1, 165.6, 153.8, 147.4, 142.7, 136.9, 136.7, 133.5, 132.2, 131.56, 131.4, 130.7, 129.9, 129.5, 129.3, 129.0, 128.9, 128.7, 128.6, 128.5, 128.5, 128.3, 128.2, 128.1, 128.0, 127.8, 127.3, 127.0, 126.3, 125.7, 123.4, 123.0, 117.1, 112.5, 110.1, 86.4, 73.9, 58.7, 53.3, 49.8, 39.4.

HRMS (ESI+TOF): $[M+H]^+$ Calcd for $C_{55}H_{39}BrN_4O_3$ 883.2278. Found 883.2281.

HPLC analysis: (IC column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 9.764$, $Rt_2 = 16.967$.

4k:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-6'-(4-methoxyphe nyl)-2-oxo-3'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

White solid, 76.2 mg, 91% yield (hexanes/Dichloromethane, v:v = 1:2), Mp 211-213 °C. $[\alpha]_D^{\pi} = +56.7$ (*c* 0.565, DCM), 93% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.79 (d, *J* = 1.8 Hz, 1H), 7.77 (t, *J* = 1.7 Hz, 1H), 7.71 (d, *J* = 2.0 Hz, 1H), 7.69 (d, *J* = 2.1 Hz, 1H), 7.39 (s, 1H), 7.36 – 7.37 (m, 2H), 7.35 (s, 3H), 7.34 (s, 1H), 7.18 (s, 5H), 7.15 (d, *J* = 1.7 Hz, 2H), 7.14 (s, 2H), 7.11 (d, *J* = 7.2 Hz, 2H), 7.04 (d, *J* = 7.6 Hz, 2H), 7.02 (s, 1H), 6.98 (t, *J* = 7.6 Hz, 2H), 6.85 (td, *J* = 7.8, 1.2 Hz, 1H), 6.81 (s, 1H), 6.79 (s, 1H), 6.74 (s, 1H), 6.64 (s, 1H), 6.46 (s, 1H), 6.45 (s, 1H), 6.25 – 6.30 (m, 1H), 6.01 (d, *J* = 7.9 Hz, 1H), 3.75 (s, 3H), 3.48 – 3.56 (m, 2H), 3.38 (dd, *J* = 15.2, 9.3 Hz, 1H).

¹³C NMR (100 MHz, chloroform-*d*) δ 175.4, 169.2, 166.4, 161.8, 153.8, 147.4, 142.7, 137.0, 136.8, 133.8, 131.6, 130.8, 130.1, 129.3, 129.2, 129.0, 128.9, 128.8, 128.6, 128.5, 128.3, 128.1, 128.0, 127.8, 127.2, 126.4, 124.8, 123.8, 122.9, 117.9, 113.6, 112.4, 110.1, 84.5, 73.6, 58.6, 55.4, 53.4, 50.1, 39.6.

HRMS (ESI+TOF): $[M+H]^+$ Calcd for $C_{56}H_{42}N_4O_4$ 835.3279. Found 835.3270.

HPLC analysis: (IC column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 19.145$, $Rt_2 = 28.956$.

5:2-((2'S,3R,3'R)-1-benzhydryl-5'-cyano-2-oxo-3',6'-diphenyl-2',3'-dihydrospiro[indoline-3,4'-pyr an]-2'-yl)-N-benzylacetamide

White solid, 58.9 mg, 85% yield (hexanes/ ethyl acetate, v:v = 2:1), Mp 206-208 °C. $[\alpha]_{D}^{\pi} = +37.2$ (*c* 0.574, DCM), 99% ee, >20:1 d.r..

¹H NMR (400 MHz, chloroform-*d*) δ 7.66 (d, *J* = 7.6 Hz, 2H), 7.38 – 7.27 (m, 4H), 7.17 (s, 2H), 7.16 – 7.15 (m, 2H), 7.15 (d, *J* = 2.0 Hz, 1H), 7.14 (s, 1H), 7.14 – 7.13 (m, 2H), 7.12 – 7.11 (m, 3H), 7.10 – 7.10 (m, 2H), 7.03 (d, *J* = 7.6 Hz, 2H), 6.99 (d, *J* = 6.4 Hz, 1H), 6.97 – 6.91 (m, 2H) 6.83 (td, *J* = 7.8, 1.2 Hz, 1H), 6.73 (s, 1H), 6.43 (d, *J* = 7.7 Hz, 2H), 6.05 – 5.96 (m, 2H), 5.92 (t, *J* = 5.8 Hz, 1H), 4.38 – 4.28 (m, 2H), 3.42 (d, *J* = 11.0 Hz, 1H), 2.55 (dd, *J* = 15.1, 3.1 Hz, 1H), 2.27 (dd, *J* = 15.1, 8.2 Hz, 1H).

¹³C NMR (100 MHz, chloroform-*d*) δ 175.4, 168.6, 166.8, 142.7, 137.9, 136.9, 136.7, 133.7, 132.5, 131.2, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.1, 128.0, 127.8, 127.6, 127.3, 123.3, 122.9, 117.3, 112.5, 86.4, 74.1, 58.7, 53.3, 49.8, 43.7, 39.8.

HRMS (ESI+TOF): [M+H]⁺ Calcd for C₄₇H₃₇N₃O₃ 692.2908. Found 692.2900.

HPLC analysis: (IC column, Hexane: 2-propanol = 85:15, flow rate = 0.6 mL/min, wavelength = 254 nm): $Rt_1 = 33.406$, $Rt_2 = 38.946$.

6.(2'S,3R,3'R)-1-benzhydryl-2'-(2-hydroxyethyl)-2-oxo-3',6'-diphenyl-2',3'-dihydrospiro[indoline -3,4'-pyran]-5'-carbonitrile

White solid, 58.5 mg, 99% yield (hexanes/ ethyl acetate, v:v = 3:1), Mp 190-192 °C. $[\alpha]_{D}^{\pi} = +59.3$ (*c* 0.582, DCM), 93% ee, >20:1 d.r..

¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 1.6 Hz, 1H), 7.74 (d, *J* = 1.9 Hz, 1H), 7.38 – 7.36 (m, 1H), 7.35 (d, *J* = 2.0 Hz, 1H), 7.32 – 7.34 (m, 2H), 7.18 – 7.16 (m, 2H), 7.14 – 7.13 (m, 2H), 7.12 (d, *J* = 2.0 Hz, 2H), 7.11 – 7.06 (m, 3H), 7.04 – 7.01 (m, 2H), 6.99 (d, *J* = 2.0 Hz, 1H), 6.93 (t, *J* = 7.6 Hz, 2H), 6.82 (td, *J* = 7.8, 1.3 Hz, 1H), 6.73 (s, 1H), 6.43 (d, *J* = 7.4 Hz, 2H), 5.98 (d, *J* = 7.9 Hz, 1H), 5.74 (ddd, *J* = 11.5, 9.7, 2.3 Hz, 1H), 3.80 (ddt, *J* = 14.6, 10.8, 5.3 Hz, 2H), 3.25 (d, *J* = 11.0 Hz, 1H), 2.06 – 1.97 (m, 1H), 1.84 (dtd, *J* = 14.4, 7.7, 7.1, 2.4 Hz, 1H), 1.62 (ddt, *J* = 14.9, 10.3, 5.4 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 174.6, 166.0, 141.6, 135.9, 135.6, 133.1, 131.7, 130.2, 128.1, 127.8, 127.5, 127.4, 127.3, 127.2, 127.0, 126.8, 126.7, 126.3, 122.2, 121.9, 116.5, 111.5, 84.9, 73.7, 58.1, 57.6, 52.4, 49.6, 34.2.

HRMS (ESI+TOF): $[M+H]^+$ Calcd for $C_{40}H_{32}N_2O_3$ 589.2486. Found 589.2489.

HPLC analysis: (IA column, Hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, wavelength = 254 nm): $Rt_1 = 8.790$, $Rt_2 = 42.218$.

VII. ¹H NMR and ¹³C NMR spectra.

3a-a:(2'S,3R,3'R)-1-benzyl-2'-(2-(3,5-dimethyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3', 6'-diphenyl-2-oxo-3', 6'-diphenyl-3-oxo-3', 6'-diphenyl-3-oxo-3', 6'-diphenyl-3-oxo-3', 6'-diphenyl-3-oxo-3', 6'-diphenyl-3-oxo-3', 6'-diphenyl-3-oxo-3', 6'-diphenyl-3-oxo-3', 6'-diphenyl-3-oxo-3-oxo-3', 6'-diphenyl-3-oxo-3-ox0-3-oxo-3-oxo-3-ox0-

2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

fl (ppm)

3a:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3',6'-diphen yl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

3b:(2'S,3R,3'R)-1-benzhydryl-3'-(3-bromophenyl)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethy l)-2-oxo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

3c:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-3'-(3-fluorophenyl)-2-oxo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

3d:(2'S,3R,3'R)-1-benzhydryl-3'-(3-chlorophenyl)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethy l)-2-oxo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

3e:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-6'-phenyl-3' -(m-tolyl)-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

3f:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-3'-(4-methoxyphe nyl)-2-oxo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

3g:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-6'-phenyl-3' -(p-tolyl)-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

3h:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-6'-phenyl-3' -(o-tolyl)-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

3i:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-3'-(2-fluorophenyl)-2-oxo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

3j:(2'S,3R,3'R)-1-benzhydryl-3'-(3,5-dimethylphenyl)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxo ethyl)-2-oxo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

3k:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-6'-phenyl-3' -(thiophen-2-yl)-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

3l:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-3'-(furan-2-yl)-2-o xo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

4a:(2'S,3R,3'R)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-1,3',6'-triphenyl-2',3'-dih ydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

4b:(2'S,3R,3'R)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-1-methyl-2-oxo-3',6'-diphenyl-2' ,3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

fl (ppm)

4c:(2'S,3R,3'R)-1-benzyl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3',6'-diphenyl-2', 3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

4d:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-5-methyl-2-oxo-3' ,6'-diphenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

4e:(2'S,3R,3'R)-1-benzhydryl-5-bromo-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3', 6'-diphenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

4f:(2'S,3R,3'R)-1-benzhydryl-7-chloro-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3', 6'-diphenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

4g:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-5,7-dimethyl-2-ox o-3',6'-diphenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

4h:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-6'-(4-fluorophenyl)-2-oxo-3'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

4i:(2'S,3R,3'R)-1-benzhydryl-6'-(4-chlorophenyl)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

4j:(2'S,3R,3'R)-1-benzhydryl-6'-(4-bromophenyl)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

4k:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-6'-(4-methoxyphe nyl)-2-oxo-3'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

5:2-((2'S,3R,3'R)-1-benzhydryl-5'-cyano-2-oxo-3',6'-diphenyl-2',3'-dihydrospiro[indoline-3,4'-pyr an]-2'-yl)-N-benzylacetamide

6:(2'S,3R,3'R)-1-benzhydryl-2'-(2-hydroxyethyl)-2-oxo-3',6'-diphenyl-2',3'-dihydrospiro[indoline -3,4'-pyran]-5'-carbonitrile

VII. HPLC Charts of products

3a-a:(2'S,3R,3'R)-1-benzyl-2'-(2-(3,5-dimethyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3',6'-diphenyl -2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

3a:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3',6'-diphe nyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

2.5 5.0	7.5 10.0 12.5 15.0	17.5 20.0 22.5	25.0 27.5 30.0	32.5 35.0 37.5 40.0	
	Retention	Area	High	Area%	
1	30.574	3716848	22837	49.315	
2	37.706	3820166	18516	50.685	
2.5 5.0	• 7.5 100 12.5 15	0 17.5 200	225 250 275	30. 245 350 375	

	Retention	Area	High	Area%
1	29.457	44566365	332898	96.449
2	37.508	1640995	12333	3.551

3b:(2'S,3R,3'R)-1-benzhydryl-3'-(3-bromophenyl)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethy l)-2-oxo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

3c:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-3'-(3-fluorophenyl)-2-oxo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

500						
250	25 50 75	5 10.0 12.5	15.0 17.5 20	0 225 250	27.5 30.0 33	25 min
		Retention	Area	High	Area%	1
	1		7070701	200452	50.012	-
	1	13.356	/8/8/01	209452	50.012	
	2	30.536	7874885	86956	49.988	
1000						
750- 500- 250-		~			\bigwedge	
0.0	2.5 5.0 7.5	10.0 12.5	15.0 17.5 20.0	22.5 25.0	27.5 30.0 32.5	35.0 min
		Retention	Area	High	Area%	
	1	13.204	2442841	65702	3.923	
	2	29.894	59827147	645117	96.077	

3d:(2'S,3R,3'R)-1-benzhydryl-3'-(3-chlorophenyl)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethy l)-2-oxo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

mV						
500-						
250				\bigwedge	\sim	
•				· · · · · · · · · · · · · · · · · · ·		
0.0	2.5 5.0 7.5	10.0 12.5 15.0	0 17.5 20.0	22.5 25.0 27.5	30.0 32.5 35.0	min
		Retention	Area	High	Area%	
	1	23.045	18324782	241784	50.621	
	2	30.472	17875244	161532	49.379	
1500 mV						
1000						
500-				/	\frown	
0.0	2.5 5.0 7.5	10.0 12.5 15.0	0 17.5 20.0	22.5 25.0 27.5	30.0 32.5 35.0	min
		Retention	Area	High	Area%	
	1	22.700	3484731	51510	4.957	

66810541

616543

95.043

2

28.976

3e:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-6'-phenyl-3' -(m-tolyl)-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $								
		Retention	Area	High	Area%			
	1	14.383	14607890	272964	49.399			
	2	16.632	14963226	248903	50.601			
2000 1500 1000								
		Retention	Area	High	Area%			
	1	13.918	64046786	1048453	99.059			
	2	15.763	608537	73	0.941			

$\label{eq:sigma} 3f: (2'S, 3R, 3'R) - 1 - benzhydryl - 2' - (2 - (3, 5 - diphenyl - 1H - pyrazol - 1 - yl) - 2 - oxoethyl) - 3' - (4 - methoxyphenyl) - 2' - (2 - (3, 5 - diphenyl - 1H - pyrazol - 1 - yl) - 2 - oxoethyl) - 3' - (4 - methoxyphenyl) - 2' - (2 - (3, 5 - diphenyl - 1H - pyrazol - 1 - yl) - 2 - oxoethyl) - 3' - (4 - methoxyphenyl) - 2' - (2 - (3, 5 - diphenyl - 1H - pyrazol - 1 - yl) - 2 - oxoethyl) - 3' - (4 - methoxyphenyl) - 2' - (2 - (3, 5 - diphenyl - 1H - pyrazol - 1 - yl) - 2 - oxoethyl) - 3' - (4 - methoxyphenyl) - 2' - (2 - (3, 5 - diphenyl - 1H - pyrazol - 1 - yl) - 2 - oxoethyl) - 3' - (4 - methoxyphenyl) - 2' - (3 - gyran) - 5' - carbonitrile$

3g:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-6'-phenyl-3' -(p-tolyl)-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

1500						
1000						
500		\wedge			\sim	
0.0	2.5 5.0	7.5 10.0	15.0 17.5	20.0 22.5	25.0 27.5	30.0 min
		Retention	Area	High	Area%	
	1	11.062	18063225	639513	50.641	
	2	26.439	17605640	230787	49.359	
1500 mV						
1000						
500-		~¥				
0.0	2.5 5.0	7.5 10.0 1	12.5 15.0 17.5	20.0 22.5	25.0 27.5	30.0 min
		Retention	Area	High	Area%	
	1	11.015	1836273	60458	5.063	
	2	26.167	34432186	438707	94.937	

3h:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-6'-phenyl-3' -(o-tolyl)-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

3i:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-3'-(2-fluorophenyl)-2-oxo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

1750 1500 1250 1000-750-500-250-4 2.5 5.0 7.5 10.0 40.0 47.5 min 15.0 17.5 25.0 27.5 30.0 32.5 35.0 37.5 42.5 45.0 12.5 20.0 22.5 Retention High Area% Area 20.155 49493384 868445 50.659 1 2 48206086 373985 49.341 42.583 1750 1500-1250-1000-750-500-250-0 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 min 2.5 5.0 7.5 10.0 12.5 Retention Area High Area% 2513926 36925 2.233 20.116 1

110059122

793441

97.767

2

42.101

3k:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-6'-phenyl-3' -(thiophen-2-yl)-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

3l:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-3'-(furan-2-yl)-2-o xo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

4a:(2'S,3R,3'R)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-1,3',6'-triphenyl-2',3'-dih ydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

mV 750 500 250 0 0.0 250	5 5.0 7.5 10.0 12		, zł., zł., zł., zł., zł., zł.	5 35.0 37.5 40.0 42	¥ .5 45.0 47.5 50.0 \$2.5 55.0 m		
		Retention	Area	High	Area%		
	1	30.718	24925969	312388	49.058		
	2	34.771	25883104	276427	50.942		
1000- 750- 250- 0- 0.0	000 500 200 0 0 0 0 0 0 0 0 0 0 0 0						
		Retention	Area	High	Area%		
	1	30.940	9328310	122380	15.588		
	2	34.639	50514612	549528	84.412		

4b:(2'S,3R,3'R)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-1-methyl-2-oxo-3',6'-diphenyl-2' ,3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

1500 mV				\wedge		
0.0	1.0 2.0 3.0 4.0	5.0 6.0 7.0 8	0 9.0 10.0 11.0	120 13.0 14.0 15	lo 160 170 180	19.0 min
		Retention	Area	High	Area%	
	1	12.942	26155028	774178	50.616	
	2	16.451	25518525	569088	49.384	
1250 1000 750 250						
0.0	1.0 2.0 3.0 4.0	Retention	Area	12.0 13.0 14.0 15 High	Area%	19.0 min
	1	12.944	3410076	108766	12.482	
	2	16.351	23910326	547223	87.518	

4c:(2'S,3R,3'R)-1-benzyl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3',6'-diphenyl-2', 3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

150 mV						
100-				\wedge	\wedge	
0.0	2.5 5.0 7.5	10.0 12.5 15.0	17.5 20.0 22.5	25.0 27.5 30.0	32.5 35.0 37.5	40.0 min
		Retention	Area	High	Area%	
	1	29.233	6636547	78097	50.058	
	2	34.975	6621073	63192	49.942	
300 200						
100		<u></u>	·	·		*
0.0	2.5 5.0 7.5	10.0 12.5 15.0	17.5 20.0 22.5	25.0 27.5 30.0	32.5 35.0 37.5	40.0 min
		Retention	Area	High	Area%	
	1	29.564	1116007	16325	8.100	
	2	34.927	12661454	124242	91.900	
4d:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-5-methyl-2-oxo-3' ,6'-diphenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

4e:(2'S,3R,3'R)-1-benzhydryl-5-bromo-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3', 6'-diphenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

4f:(2'S,3R,3'R)-1-benzhydryl-7-chloro-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3', 6'-diphenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

	Retention	Area	High	Area%
1	10.884	2330347	63866	3.134
2	16.461	72020781	1449493	96.866

	10 20 30 4			····	140 150 160 17	.0' ' min'
		Retention	Area	High	Area%	
	1	12.773	7972650	211721	49.409	
	2	14.461	8163483	218487	50.591	
3000 2000 1000 0 0 0 0 0 0 0 0 0 0 0 0	, 10 20 30 4	0 50 60 70	80 20 100	11.0 12.0 13.0		.0 min
		Retention	Area	High	Area%	
	1	12.588	53935039	1499736	97.528	
	2	14.470	1366914	45051	2.472	

4g:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-5,7-dimethyl-2-ox o-3',6'-diphenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

4h:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-6'-(4-fluorophenyl)-2-oxo-3'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

4i:(2'S,3R,3'R)-1-benzhydryl-6'-(4-chlorophenyl)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

	Retention	Area	High	Area%
1	16.017	1979595	46199	7.990
2	77.164	22797634	83129	92.010

mV						
/50						
500-						
250			\wedge		\sim	
0.0 1	1.0 2.0 3.0 4.0	5.0 6.0 7.0 8.0	9.0 10.0 11.0 12.0	13.0 14.0 15.0 16.0	17.0 18.0 19.0 20.0	21.0 min
						
		Retention	Area	High	Area%	
	1	0.957	6592026	200260	50 222	
	1	9.837	0382020	200200	30.322	
	2	16 900	6497820	115142	49 678	
	2	10.900	0177020	110112	191070	
mV T						
2000-						
1000-			\wedge			
0.0	1.0 2.0 3.0 4.0	5.0 6.0 7.0 8	8.0 9.0 10.0 11.0	12.0 13.0 14.0 15	i.0 16.0 17.0 18.0	19.0 min
		Potention	Aroo	Uich	Aroo0/	l
		Retention	Alea	nıgli	Alea%	
	1	9 764	46016997	1370728	94 483	
	<u> </u>	2		10/0/20	2.1100	
	2	16.967	2686995	56682	5.517	

4j:(2'S,3R,3'R)-1-benzhydryl-6'-(4-bromophenyl)-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-oxo-3'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

500						
250	25 50 75	100 125			275 300 5	*
		Retention	Area	High	Area%	
	1	19.723	15440271	166439	51.298	
	2	28.837	14659117	129701	48.702	
1500- 1000- 500-						
0.0	2.5 5.0 7.5	Retention	15.0 17.5 20 Area	0 22.5 25.0 High	Area%	125 min
	1	19.145	64104388	736362	96.615	
	2	28.956	2246298	23236	3.385	

4k:(2'S,3R,3'R)-1-benzhydryl-2'-(2-(3,5-diphenyl-1H-pyrazol-1-yl)-2-oxoethyl)-6'-(4-methoxyphe nyl)-2-oxo-3'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile

5:2-((2'S,3R,3'R)-1-benzhydryl-5'-cyano-2-oxo-3',6'-diphenyl-2',3'-dihydrospiro[indoline-3,4'-pyr an]-2'-yl)-N-benzylacetamide

mV					
150-					
100-					
50-				<u> </u>	
0.0	2.5 5.0 7.5 10.0	12.5 15.0 17.5 2	0.0 22.5 25.0 27.5	30.0 32.5 35.0 37	.5 40.0 42.5 45.0 47.5 min
		Detention	A	II: -1-	A === = 0/
		Retention	Area	High	Area%
	1	36.866	8535198	61886	49.373
	2	42.912	8752144	56580	50.627
1000 T					
750-					
500-					
250-				\sim	
0.0	2.5 5.0 7.5 10.0	12.5 15.0 17.5 20	0.0 22.5 25.0 27.5	30.0 32.5 35.0 37	.5 40.0 42.5 45.0 47.5 min
		Retention	Area	High	Area%
	1	33.406	49987784	281625	99.596

202530

8

38.946

2

0.404

6:(2'S,3R,3'R)-1-benzhydryl-2'-(2-hydroxyethyl)-2-oxo-3',6'-diphenyl-2',3'-dihydrospiro[indoline -3,4'-pyran]-5'-carbonitrile

1000 J						
750						
500						
250	Λ					
					\sim	ų
0.0 2	.5 5.0 7.5 10.0	12.5 15.0 17.5 20	0.0 22.5 25.0 27.5	30.0 32.5 35.0 37	.5 40.0 42.5 45.0	47.5 min
г		D		x x · · ·	4 9/	٦
		Retention	Area	High	Area%	
	1	8.790	14954825	473677	50.171	
·	2	40.621	14852918	109155	49 829	
	2	10.021	11052710	107155	19.029	
mV]
300						
200-						
					~	
100-						
0						*
0.0 2	.5 5.0 7.5 10.0	12.5 15.0 17.5 20	0.0 22.5 25.0 27.5	30.0 32.5 35.0 37	.5 40.0 42.5 45.0	47.5 min
		Retention	Aroo	High	Aroa%	
		Retention	Alca	Ingn	Alca/0	
	1	0.700	600100	22001	0.744	
	1	8.790	609198	22991	5.744	
	2	42.218	15661874	111958	96.256	
						1