Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

# **Supporting Information**

# Visible Light-induced Metal-free Cascade Denitrogenative Borylation and Iodination of Nitroarenes

Jun-Wei Lit<sup>a</sup>, Tian-Shun Duant<sup>a</sup>, Bing Sun<sup>a</sup>, Fang-Lin Zhang<sup>\*a</sup>

<sup>a</sup>School of Chemistry, Chemical Engineering and Life Sciences . Wuhan University of Technology, Wuhan 430070, P. R. China. \*Emails: <u>fanglinzhang@whut.edu.cn</u>

# Contents

| 1. | General Information                | S2  |
|----|------------------------------------|-----|
| 2. | Borylation Reaction Conditions     | S3  |
| 3. | Iodization Reaction Conditions     | S6  |
| 4. | Plausible Pathway for the Reaction | S15 |
| 5. | NMR Spectra                        | S16 |
| 6. | References                         | S46 |

# **1. General Information**

**General Methods.** All reagents were bought from commercial sources and used as received without further purification. All reactions were carried out under under N<sub>2</sub> atmosphere unless otherwise noted. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light. <sup>1</sup>H NMR was recorded on Bruker instrument (500 MHz). Chemical shifts were quoted in parts per million (ppm) referenced to 0.0 ppm for tetramethylsilane. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Coupling constants, *J*, were reported in Hertz unit (Hz). <sup>13</sup>C NMR spectra were recorded on Bruker instrument (126 MHz), and were fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to either the center line of a triplet at 77.0 ppm of chloroform-*d* or referenced to the center line of a septet at 39.52 ppm of DMSO-*d*<sub>6</sub>. High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

**General Instrumental Data.** The photoreactors used in this research were bought from GeAo Chem and KeTai Chem: 10 W for every light bulb; every glass vessel was irradiated by 2 light bulbs from the side.



Figure S1. Experimental Apparatus

# 2. Borylation Reaction Conditions

|       | $\begin{array}{c} B_2(pin)_2 (3.2 \text{ eq}) \\ O \\ CO_2 \\ CO_2 Me \\ 1a \end{array} \xrightarrow{\begin{array}{c} B_2(pin)_2 (3.2 \text{ eq}) \\ O \\ CO_2 Ae \\ CO_2 Me \\ $ |                                  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Entry | Solvent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yield <b>2a</b> (%) <sup>b</sup> |
| 1     | MeOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28                               |
| 2     | EtOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33                               |
| 3     | <sup><i>i</i></sup> PrOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55                               |
| 4     | 1-butanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                               |
| 5     | THF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                               |
| 6     | 1,4-dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                               |
| 7     | CH <sub>3</sub> CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                               |
| 8     | DMF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N.D                              |
| 9     | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                |
| 10    | <sup><i>i</i></sup> PrOH/1,4-dioxane(1/1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59                               |
| 11    | <sup><i>i</i></sup> PrOH/THF(1/1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                               |
| 12    | <sup>i</sup> PrOH/CH3CN(1/1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56                               |

# 2.1 Screening of Solvent

**Table S1**: Screening of solvent. <sup>a</sup>Reaction conditions: **1a** (0.3 mmol,1.0 eq),  $B_2(pin)_2$  (3.2 eq) in solvent (3 mL, 0.1 M) stirred under 2 x 10 W purple LEDs at rt for 0.5 h. Then t-BuONO (2.0 eq) was added and stirred for 18 h. <sup>b</sup>Isolated yields.

# 2.2 Screening of light source

|       | $\begin{array}{c} & B_2(\text{pin})_2 (3.2 \text{ eq}) & C \\ & & \text{rt, } N_2, 0.5 \text{ h} \\ & & 2^{*10} \text{ W LEDs} \end{array} \\ \hline & & i\text{-PrOH/Dioxane(1/1)} \\ & & \text{then } t\text{-BuONO (2 eq)} \\ & & CO_2\text{Me} & 18 \text{ h} \\ \textbf{1a} \end{array}$ | D B O CO <sub>2</sub> Me <b>2a</b> |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Entry | Light source                                                                                                                                                                                                                                                                                  | Yield <b>2a</b> (%) <sup>b</sup>   |
| 1     | 2×10 W purple LEDs                                                                                                                                                                                                                                                                            | 59                                 |
| 2     | 2×10 W blue LEDs                                                                                                                                                                                                                                                                              | 8                                  |
| 3     | Dark                                                                                                                                                                                                                                                                                          | N.R.                               |

**Table S2**: Screening of light source. <sup>a</sup>Reaction conditions: **1a** (0.3 mmol,1.0 eq),  $B_2(pin)_2$  (3.2 eq) in <sup>*i*</sup>PrOH/1,4-dioxane (3 mL, 1/1) stirred under 2 x 10 W LEDs at rt for 0.5 h. Then t-BuONO (2.0 eq) was added and stirred for 18 h. <sup>b</sup>Isolated yields.

# 2.3 Screening of acid

|                  | $\begin{array}{c} B_2(\text{pin})_2 \ (3.2 \text{ eq})\\ \text{rt, } N_2, 0.5 \text{ h}\\ 2*10 \text{ W purple LEDs}\\ i\text{-PrOH/Dioxane}(1/1)\\ \hline \\ \text{then acid } (2 \text{ eq})\\ t\text{-BuONO} \ (2 \text{ eq})\\ \text{CO}_2 \text{Me} \\ 18 \text{ h}\\ 1a \end{array}$ | $O_BO$<br>$O_BO$<br>$O_2Me$<br>Za |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|
| Entry            | Acid                                                                                                                                                                                                                                                                                       | Yield <b>2a</b> (%) <sup>b</sup>  |  |
|                  |                                                                                                                                                                                                                                                                                            |                                   |  |
| 1                | HBF <sub>4</sub>                                                                                                                                                                                                                                                                           | 64                                |  |
| 1<br>2           | HBF <sub>4</sub><br>CH <sub>3</sub> COOH                                                                                                                                                                                                                                                   | 64<br>60                          |  |
| 1<br>2<br>3      | HBF4<br>CH3COOH<br>MsOH                                                                                                                                                                                                                                                                    | 64<br>60<br>70                    |  |
| 1<br>2<br>3<br>5 | HBF4<br>CH3COOH<br>MsOH<br>CF3SO3H                                                                                                                                                                                                                                                         | 64<br>60<br>70<br>67              |  |

**Table S3**: Screening of acid. <sup>a</sup>Reaction conditions: **1a** (0.3 mmol,1.0 eq),  $B_2(pin)_2$  (3.2 eq) in <sup>*i*</sup>PrOH/1,4-dioxane (3 mL, 1/1) stirred under 2 x 10 W purple LEDs at rt for 0.5

h. Then t-BuONO (2.0 eq) and acid (2.0 eq) was added and stirred for 18 h. <sup>b</sup>Isolated yields.

| NO <sub>2</sub><br>CO <sub>2</sub> Me<br>1a | Additive (1.0 eq)<br>B <sub>2</sub> (pin) <sub>2</sub> (3.2 equiv)<br>rt, N <sub>2</sub> ,0.5 h<br>2*10 W purple LEDs<br><i>i</i> -PrOH/Dioxane (1/1)<br>then MsOH (2.0 eq)<br><i>t</i> -BuONO (2.0 eq)<br>18 h | $O_BO$<br>$O_BO$<br>$O_2Me$<br><b>2a</b> |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Entry                                       | Additive                                                                                                                                                                                                        | Yield <b>2a</b> (%) <sup>b</sup>         |
| 1                                           | NaBF <sub>4</sub>                                                                                                                                                                                               | 75                                       |
| 2                                           | NaF                                                                                                                                                                                                             | 70                                       |
| 3                                           | KF                                                                                                                                                                                                              | 68                                       |
| 4                                           | AgF                                                                                                                                                                                                             | 60                                       |

# 2.4 Screening of additive

**Table S4**: Screening of additive. <sup>a</sup>Reaction conditions: **1a** (0.3 mmol, 1.0 eq),  $B_2(pin)_2$  (3.2 eq) and additive (1.0 eq) in <sup>*i*</sup>PrOH/1,4-dioxane (3 mL, 1/1) stirred under 2 x 10 W purple LEDs at rt for 0.5 h. Then t-BuONO (2.0 eq) and MsOH (2.0 eq) was added and stirred for 18 h. <sup>b</sup>Isolated yields.

### 2.5 General procedure for the synthesis of 2a – 2d

A sealed tube with magnetic stir bar was charged with 1 (0.3 mmol,1.0 eq), Bis(pinacolato)diboron (0.96 mmol, 3.2 eq), NaBF<sub>4</sub> (0.3 mmol, 1.0 eq) in nitrogen atmosphere, followed by *i*-PrOH/1,4-Dioxane (1/1, 3 mL). MsOH (0.6 mmol, 2.0 eq) and t-BuONO (0.6 mmol, 2.0 eq) were added to the reaction solution half an hour after irradiation by the photoreaction device (380 nm light). The mixture was stirred until complete conversion of the **2** (monitored by TLC). The product was purified on silica gel (petroleum ether/ethyl acetate, gradient from 40:1 to 10:1).

# 2.6 Characterization of products

Methyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (2a)

Bpin White solid, yield 76%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, J = 8.1Hz, 2H), 7.89 (d, J = 8.1 Hz, 2H), 3.92 (s, 3H), 1.36 (s, 12H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  167.2, 134.7, 132.3, 128.6, 84.2, 52.2, 24.9. HRMS CO<sub>2</sub>Me (ESI) m/z: [M+H]<sup>+</sup> calculated for C<sub>14</sub>H<sub>20</sub>BO<sub>4</sub> 263.1449, found 263.1445.

### 1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethan-1-one (2b)

Bpin

White solid, yield 37%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.93 – 7.86 (m, 4H), 2.60 (s, 3H), 1.34 (s, 12H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  198.4, 139.0, 134.9, 127.3, 83.5, 25.0, 24.9. HRMS (ESI) *m/z*: [M+H]<sup>+</sup> calculated for C<sub>14</sub>H<sub>20</sub>BO<sub>3</sub> 247.1205, found 247.1207.

### 4,4,5,5-tetramethyl-2-(p-tolyl)-1,3,2-dioxaborolane (2c)



White solid, yield 20%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 (d, J = 7.9 Hz, 2H), 7.19 (d, J = 7.9 Hz, 2H), 2.37 (s, 3H), 1.34 (s, 12H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  141.5, 135.0, 128.7, 83.8, 25.0, 21.9. HRMS (ESI) *m/z*: [M+H]<sup>+</sup> calculated for C<sub>13</sub>H<sub>20</sub>BO<sub>2</sub> 219.1551, found 219.1547.

### 2-(4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2d)



White solid, yield 53%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 (d, J = 2.1 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 3.83 (s, 3H), 1.33 (s, 12H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  162.3, 136.6, 113.5, 83.7, 55.2, 25.0. HRMS (ESI) m/z: [M+H]<sup>+</sup> calculated for C<sub>13</sub>H<sub>20</sub>BO<sub>3</sub> 235.1500, found 235.1504.

# 3. Iodization Reaction Conditions

# 3.1 Screening of iodizing reagent

|       | NO <sub>2</sub> <sup><i>i</i></sup> Pr<br>CO <sub>2</sub> Me<br>1a | B <sub>2</sub> (pin) <sub>2</sub> (2.1 eq)<br>OH/Dioxane , rt, N <sub>2</sub> , 0.5 h<br>2*10 W purple LEDs<br>then MsOH (2.0 eq)<br><i>t</i> -BuONO (2.0 eq)<br>"I " Source (5.0 eq)<br>18 h | CO <sub>2</sub> Me<br>3a |                                  |
|-------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------|
| Entry |                                                                    | Iodizing reagent                                                                                                                                                                              |                          | Yield <b>3a</b> (%) <sup>b</sup> |
| 1     |                                                                    | NIS                                                                                                                                                                                           |                          | 46                               |
| 2     |                                                                    | $CH_2I_2$                                                                                                                                                                                     |                          | 72                               |
| 3     |                                                                    | NaI                                                                                                                                                                                           |                          | 34                               |
| 4     |                                                                    | NH <sub>4</sub> I                                                                                                                                                                             |                          | 28                               |

**Table S5**: Screening of iodizing reagent. aReaction conditions: 1a (0.3 mmol,1.0 eq), $B_2(pin)_2$  (2.1 eq) in PrOH/1,4-dioxane (3 mL, 1/1) stirred under 2 x 10 W purpleLEDs at rt for 0.5 h. Then t-BuONO (2.0 eq), Iodizing reagent (5.0 eq) and MsOH (2.0 eq) was added and stirred for 18 h. bIsolated yields.

# 3.2 Screening of acid

|                 | NO <sub>2</sub> <sup>i</sup> Pr | B <sub>2</sub> (pin) <sub>2</sub> (2.1 eq)<br>OH/Dioxane , rt, N <sub>2</sub> , 0.5 h<br>2*10 W purple LEDs |                          |                                                    |  |
|-----------------|---------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------|--|
|                 | CO <sub>2</sub> Me              | then acid (2.0 eq)<br><i>t</i> -BuONO (2.0 eq)<br>CH <sub>2</sub> I <sub>2</sub> (5.0 eq)<br>18 h           | CO <sub>2</sub> Me<br>3a |                                                    |  |
|                 |                                 |                                                                                                             |                          |                                                    |  |
| Entry           |                                 | Acid                                                                                                        |                          | Yield <b>6a</b> (%) <sup>b</sup>                   |  |
| Entry1          |                                 | Acid<br>HBF <sub>4</sub>                                                                                    |                          | Yield <b>6a</b> (%) <sup>b</sup><br>77             |  |
| Entry<br>1<br>2 |                                 | Acid<br>HBF <sub>4</sub><br>CH <sub>3</sub> COOH                                                            |                          | Yield <b>6a</b> (%) <sup>b</sup><br>77<br>70       |  |
| Entry 1 2 3     |                                 | Acid<br>HBF <sub>4</sub><br>CH <sub>3</sub> COOH<br>CH <sub>3</sub> SO <sub>3</sub> H                       |                          | Yield <b>6a</b> (%) <sup>b</sup><br>77<br>70<br>72 |  |

**Table S6**: Screening of acid. <sup>a</sup>Reaction conditions: **1a** (0.3 mmol,1.0 eq),  $B_2(pin)_2$  (2.1 eq) in <sup>*i*</sup>PrOH/1,4-dioxane (3 mL, 1/1) stirred under 2 x 10 W purple LEDs at rt for 0.5 h. Then t-BuONO (2.0 eq), CH<sub>2</sub>I<sub>2</sub> (5.0 eq) and acid (2.0 eq) was added and stirred for 18 h. <sup>b</sup>Isolated yields.

### 3.3 General procedure for the synthesis of 3a – 3r

A sealed tube with magnetic stir bar was charged with 1 (0.3 mmol,1.0 eq), Bis(pinacolato)diboron (0.63 mmol, 2.1 eq),  $CH_2I_2$  (1.5 mmol, 5.0 eq) in nitrogen atmosphere, followed by 'PrOH/1,4-dioxane (1/1, 2 mL). HBF<sub>4</sub> (0.6 mmol, 2.0 eq) and t-BuONO (0.6 mmol, 2.0 eq) were added to the reaction solution half an hour after irradiation by the photoreaction device (380 nm light). The mixture was stirred until complete conversion of the **3** (monitored by TLC). The product was purified on silica gel (petroleum ether/ethyl acetate, gradient from 40:1 to 10:1).

# **3.4** General procedure for the synthesis of 3s – 3u

A sealed tube with magnetic stir bar was charged with 1 (0.3 mmol,1.0 eq), Bis(pinacolato)diboron (0.63 mmol, 2.1 eq), CCl<sub>3</sub>Br (1.5 mmol, 5.0 eq) in nitrogen atmosphere, followed by 'PrOH/1,4-dioxane (1/1, 2 mL). HBF<sub>4</sub> (0.6 mmol, 2.0 eq) and t-BuONO (0.6 mmol, 2.0 eq) were added to the reaction solution half an hour after irradiation by the photoreaction device (380 nm light). The mixture was stirred until complete conversion of the **3** (monitored by TLC). The product was purified on silica gel (petroleum ether/ethyl acetate, gradient from 40:1 to 10:1).

# 3.5 Characterization of products

### Methyl 4-iodobenzoate (3a)



White solid, yield 77%. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 (d, J = 8.6 Hz, 2H), 7.74 (d, J = 8.5 Hz, 2H), 3.91 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  166.7, 137.8, 131.1, 129.7, 100.7, 52.3. **HRMS** (ESI) *m/z*: [M+H]<sup>+</sup> calculated for C<sub>8</sub>H<sub>8</sub>IO<sub>2</sub> 292.9563, found 292.9568.

#### 4-iodobenzenesulfonamide (3b)



White solid, yield 90%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.93 (d, J = 8.5 Hz, 2H), 7.56 (d, J = 8.5 Hz, 2H), 7.40 (s, 2H). <sup>13</sup>C NMR (126 MHz, DMSO)  $\delta$  144.2, 138.3, 127.9, 99.9. HRMS (ESI) m/z: [M+H]<sup>+</sup> calculated for C<sub>6</sub>H<sub>7</sub>INO<sub>2</sub>S 283.9237, found 283.9239.

### N-(tert-butyl)-4-iodobenzenesulfonamide (3c)



White solid, yield 65%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.95 (d,
J = 8.5 Hz, 2H), 7.60 (d, J = 2.8 Hz, 2H), 7.58 (s, 1H), 1.09 (s,
9H). <sup>13</sup>C NMR (126 MHz, DMSO) δ 144.5, 138.4, 128.5, 100.0, 53.9, 30.2. HRMS (ESI) *m/z*: [M+H]<sup>+</sup> calculated for

C<sub>10</sub>H<sub>15</sub>INO<sub>2</sub>S 339.9863, found 339.9867.

### 4-Iodoacetophenone (3d)



Yellow solid, yield 72%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 2.56 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.3, 137.9, 136.4, 129.7, 101.1, 26.5. HRMS (ESI) m/z: [M+H]<sup>+</sup> calculated for C<sub>8</sub>H<sub>8</sub>IO 246.9614, found 246.9612.

# 4-iodobenzonitrile (3e)



Yellow solid, yield 60%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.5 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  138.5, 133.2, 118.2, 111.8, 100.3. HRMS (ESI) m/z: [M+H]<sup>+</sup> calculated for C<sub>7</sub>H<sub>5</sub>IN 229.9461, found 229.9455.

# 4-Iodoanisole (3f)



White solid, yield 56%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (d, J = 8.8 Hz, 2H), 6.68 (d, J = 8.9 Hz, 2H), 3.78 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  159.5, 138.2, 116.4, 82.7, 55.3. HRMS (ESI) m/z: [M+H]<sup>+</sup> calculated for C<sub>7</sub>H<sub>8</sub>IO 234.9614, found 234.9618.

# 3-iodo-1,1'-biphenyl (3g)



White solid, yield 21%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.95 (s, 1H), 7.68 (d, J = 7.9 Hz, 1H), 7.55 (d, J = 7.2 Hz, 3H), 7.45 (t, J = 7.5 Hz, 2H), 7.38 (d, J = 7.3 Hz, 1H), 7.18 (t, J = 7.8 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  143.5, 140.0, 136.2, 136.2, 130.4, 128.9, 127.9, 127.1, 126.4, 94.8.

**HRMS** (ESI) m/z: [M+H]<sup>+</sup> calculated for C<sub>12</sub>H<sub>10</sub>I 280.9822, found 280.9823.

# 1-(3-iodophenyl)ethan-1-one (3h)



Yellow oil, yield 41%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.24 (s, 1H), 7.90 – 7.83 (m, 2H), 7.18 (t, J = 7.9 Hz, 1H), 2.55 (s, 3H). <sup>13</sup>C NMR (126

MHz, DMSO) δ 191.8, 137.1, 134.0, 132.5, 125.6, 122.7, 89.7, 21.8. **HRMS (ESI)** *m/z*: [M+H]<sup>+</sup> calculated for C<sub>8</sub>H<sub>8</sub>IO 246.9614, found 246.9618.

#### Methyl 3-iodobenzoate (3i)



White solid, yield 56%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.37 (s, 1H), 7.99 (d, *J* = 7.9 Hz, 1H), 7.87 (d, *J* = 7.8 Hz, 1H), 7.17 (t, *J* = 7.8 Hz, 1H), 3.91 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 165.6, 141.7, 138.5, 132.0, 130.1, 128.7, 93.8, 52.4. HRMS (ESI) *m/z*: [M+H]<sup>+</sup>

calculated for C<sub>8</sub>H<sub>8</sub>IO<sub>2</sub> 262.9563, found 262.9567.

#### 3-iodobenzenesulfonamide (3j)



calculated for  $C_6H_7INO_2S$  282.9237, found 282.9235.

#### 4-iodo-2-methoxybenzonitrile (3k)



White solid, yield 53%. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (d, J = 2.0 Hz, 1H), 7.78 (d, J = 3.1 Hz, 1H), 6.75 (d, J = 9.5 Hz, 1H), 3.90 (s, 3H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>)  $\delta$  161.1, 143.1, 141.6, 114.8, 113.5, 104.2, 81.3, 56.3. **HRMS** (ESI) *m/z*: [M+H]<sup>+</sup> calculated for C<sub>8</sub>H<sub>7</sub>INO 259.9567, found 259.9567

#### Methyl 2-bromo-4-iodobenzoate (3l)



White solid, yield 54%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, J = 1.7 Hz, 1H), 7.70 (dd, J = 8.2, 1.7 Hz, 1H), 7.51 (d, J = 8.2 Hz, 1H), 3.91 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  166.0, 142.5, 136.4, 132.4, 131.4, 122.6, 98.7, 52.6. HRMS (ESI) m/z: [M+H]<sup>+</sup> calculated for C<sub>8</sub>H<sub>6</sub>BrIO<sub>2</sub> 340.8669, found 340.8665.

#### 2-bromo-4-iodo-1-methoxybenzene (3m)



White solid, yield 40%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, J = 2.1 Hz, 1H), 7.54 (dd, J = 8.6, 2.1 Hz, 1H), 6.65 (d, J = 8.6 Hz, 1H), 3.87 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  156.0, 141.0, 137.3, 113.9, 113.0, 82.4, 56.3. HRMS (ESI) m/z: [M+H]<sup>+</sup> calculated for C<sub>7</sub>H<sub>7</sub>BrIO 312.8719, found 312.8719.

4-chloro-3-iodobenzenesulfonamide (3n)

H<sub>2</sub>NO<sub>2</sub>S

White solid, yield 70%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.31 (d, J = 2.0 Hz, 1H), 7.82 (dd, J = 8.4, 2.0 Hz, 1H), 7.78 (d, J = 8.3 Hz, 1H), 7.53 (s, 2H). <sup>13</sup>C NMR (126 MHz, DMSO-d<sub>6</sub>)  $\delta$  144.3, 141.4, 137.4, 130.4, 127.5, 99.9. HRMS (ESI) m/z:

 $[M+H]^+$  calculated for C<sub>6</sub>H<sub>6</sub>ClINO<sub>2</sub>S 317.8847, found 317.8847.

### 2-chloro-5-iodobenzenesulfonamide (30)

CL



White solid, yield 61%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.22 (d, *J* = 2.1 Hz, 1H), 7.95 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.72 (s, 2H), 7.43 (d, *J* = 8.3 Hz, 1H). <sup>13</sup>C NMR (126 MHz, DMSO)  $\delta$  143.0, 142.3, 137.3, 133.9, 130.8, 93.0. HRMS (ESI) *m/z*: [M+H]<sup>+</sup> calculated for C<sub>6</sub>H<sub>6</sub>ClINO<sub>2</sub>S 317.8847, found 317.8846.

### 3-iodo-5-methylbenzonitrile (3p)



White solid, yield 51%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (s, 2H), 7.42 (s, 1H), 2.35 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  142.6, 141.2, 137.5, 131.8, 117.3, 113.9, 93.8, 20.8. HRMS (ESI) *m/z*: [M+H]<sup>+</sup> calculated for C<sub>8</sub>H<sub>7</sub>IN 243.9618, found 243.9617.

#### Methyl 4-iodo-2-methylbenzoate (3q)



White solid, yield 38%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (s, 1H), 7.62 - 7.57 (m, 2H), 3.88 (s, 3H), 2.54 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  167.5, 142.2, 140.6, 135.0, 131.9, 129.0, 99.5, 52.0, 21.4. HRMS (ESI) *m/z*: [M+H]<sup>+</sup> calculated for C<sub>9</sub>H<sub>10</sub>IO<sub>2</sub> 276.9720, found 276.9725.

### 7-iodo-3,4-dihydronaphthalen-1(2H)-one (3r)



Yellow solid, yield 30%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.34 (d, J = 1.9 Hz, 1H), 7.76 (dd, J = 8.1, 2.0 Hz, 1H), 7.01 (d, J = 8.1 Hz, 1H), 2.90 (t, J = 6.1 Hz, 2H), 2.66 – 2.62 (m, 2H), 2.13 (p, J = 6.5 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.9, 143.7, 141.9, 136.1,

134.2, 130.8, 91.6, 38.8, 29.3, 22.9. **HRMS** (ESI) *m/z*: [M+H]<sup>+</sup> calculated for C<sub>10</sub>H<sub>10</sub>IO 272.9771, found 272.9765.

#### Methyl 4-bromobenzoate (3s)



White solid, yield 60%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (d, J = 8.1 Hz, 2H), 7.58 (d, J = 8.3 Hz, 2H), 3.91 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  166.4, 131.7, 131.1, 129.1, 128.0, 52.3. HRMS (ESI) *m/z*: [M+H]<sup>+</sup> Calculated for C<sub>8</sub>H<sub>8</sub>BrO<sub>2</sub> 214.9702, Found 214.9705.

#### 1-bromo-4-methoxybenzene (3t)



Yellow, yield39%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 158.73, 132.25, 115.75, 112.84, 55.45. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 158.7, 132.3, 115.8, 112.8, 55.5. HRMS (ESI) *m/z*: [M+H]<sup>+</sup> Calculated for C<sub>7</sub>H<sub>8</sub>BrO 186.9753, Found 186.9754.

#### 1-(4-bromophenyl)ethan-1-one (3u)



White solid, yield 43%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, J = 8.6 Hz, 2H), 7.62 (d, J = 8.6 Hz, 2H), 2.60 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.0, 135.9, 131.9, 129.8, 128.3, 26.5. HRMS (ESI) *m/z*: [M+H]<sup>+</sup> Calculated for C<sub>8</sub>H<sub>8</sub>BrO 198.9753, Found 198.9758.

### 3.5 Synthesis of 5



Synthesis of 4,4,4-Trifluoro-1-(4-nitrophenyl)-1,3-butanedione: Add a solution of acetophenone (825.7 mg, 5 mmol) in dry THF (20 mL) dropwise over 0.5 h to a mixture of NaH (480 mg, 20 mmol) and ethyl trifluoroacetate (2840 mg, 20 mmol) in dry THF (20 mL) and reflux the reaction mixture for 8 h. The reaction was quenched with dilute acetic acid aqueous solution (20 mL) and extracted into DCM (3 x 15 mL). The combined organic fractions were washed with brine, dried over MgSO<sub>4</sub> and evaporated under reduced pressure. Purification by column chromatography (PE/EtOAc 3:1) afforded 4,4,4-Trifluoro-1-(4-nitrophenyl)-1,3-butanedione as gray-green solid (562 mg, yield 43%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.38 (d, J = 8.5 Hz, 2H), 8.14 (d, J = 8.5 Hz, 2H), 6.64 (s, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  182.4, 179.2,178.9(d, J = 37.8 Hz), 150.7, 138.2, 128.6, 124.1, 120.2, 117.9(q, J = 284.8 Hz), 115.7, 113.4, 93.4. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -76.7. HRMS (ESI) *m/z*: [M+H]<sup>+</sup> calculated for C<sub>10</sub>H<sub>7</sub>F<sub>3</sub>NO<sub>4</sub> 262.0322, found 262.0330.



**Synthesis** of 4-(5-(4-nitrophenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl)benzenesulfonamide (Celecoxib-G): To a solution of 4,4,4-trifluoro-1-(4bromophenyl)butane-1,3-dione (261 mg, 1 mmol) in EtOH (20 mL) at r.t. was added 4-Hydrazinylbenzenesulfonamide hydrochloride (246 mg, 1.1 mmol), the mixture was let to stir for 24 h at 70 °C, The reaction was quenched with H<sub>2</sub>O (20 mL) and extracted into DCM (3 x 15 mL). The combined organic fractions were washed with brine, dried over MgSO<sub>4</sub> and evaporated under reduced pressure. Purification by column chromatography (PE/ EtOAc 2:1) afforded 4-(5-(4-nitrophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide as White solid(164 mg, yield 40%). <sup>1</sup>H NMR  $(500 \text{ MHz}, \text{DMSO-}d_6) \delta 8.23 \text{ (d}, J = 8.9 \text{ Hz}, 2\text{H}), 7.87 \text{ (d}, J = 8.6 \text{ Hz}, 2\text{H}), 7.58 \text{ (dd}, J$ = 13.7, 8.8 Hz, 4H), 7.50 (s, 2H), 7.41 (s, 1H). <sup>13</sup>C NMR (126 MHz, DMSO- $d_6$ )  $\delta$ 148.1, 144.8, 143.6, 143.4, 143.1, 142.8(q, J= 37.8 Hz), 142.5, 141.1, 135.0, 130.8, 127.5, 127.2, 126.6, 124.8, 124.4, 122.7, 120.5, 108.2. <sup>19</sup>F NMR (471 MHz, DMSO-*d*<sub>6</sub>) δ -60.3. HRMS (ESI) m/z: [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>12</sub>F<sub>3</sub>N<sub>4</sub>O<sub>4</sub>S 413.0526, found 413.0531.



Synthesisof4-(5-(4-iodophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide(Celecoxib-H): Prepared from Celecoxib-G (123.7 mg, 0.3mmol) as starting materials according to General Procedure II and purified by flash

column chromatography (PE/EA 1:1) afforded **Celecoxib-H** as White solid, yield 35%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (d, J = 8.7 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.7 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 6.77 (s, 1H), 5.28 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  144.7, 144.4, (q, J = 37.8 Hz), 144.1, 143.8, 142.1, 141.8, 138.3, 130.4, 128.0, 127.7, 125.6, 124.1, 122.0(q, J = 269.6 Hz), 119.8, 117.7, 106.7, 95.9. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -60.9. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>12</sub>F<sub>3</sub>IN<sub>3</sub>O<sub>2</sub>S 493.9642, found 493.9645.

# 4. Plausible Pathway for the Reaction



Based on the mechanism of Májek et al. and combined with our experimental results, we propose a possible reaction pathway.<sup>1-3</sup> Nitroarenes are treated with B<sub>2</sub>pin<sub>2</sub> and purple LEDs to produce aniline **IN1**, followed by tert-butyl nitrite and fluoroborate to produce diazonium salt **IN2**. Diazo salts **IN2** easily lose nitrogen to form aryl radicals **IN3**. Then, the aryl radical **IN3** is trapped by B<sub>2</sub>pin<sub>2</sub> to form radical intermediates **IN4**. Finally, the transition state **IN4** leads to B-B bond fission, and the final product 2 is formed. The way of forming iodine products is similar to the boration reaction.

# 5. NMR Spectra





<sup>13</sup>C NMR Spectrum of **2b** 



<sup>13</sup>C NMR Spectrum of **2c** 







<sup>13</sup>C NMR Spectrum of **3a** 



<sup>13</sup>C NMR Spectrum of **3b** 







<sup>13</sup>C NMR Spectrum of **3d** 



<sup>13</sup>C NMR Spectrum of **3e** 



<sup>13</sup>C NMR Spectrum of **3f** 

# 



<sup>13</sup>C NMR Spectrum of **3g** 



<sup>13</sup>C NMR Spectrum of **3h** 



<sup>13</sup>C NMR Spectrum of **3i** 

#### 8.15 7.98 7.83 7.82 7.82 7.46 7.33 7.36



<sup>13</sup>C NMR Spectrum of **3**j



<sup>13</sup>C NMR Spectrum of **3**k



<sup>13</sup>C NMR Spectrum of **3**l



<sup>13</sup>C NMR Spectrum of **3m** 



<sup>13</sup>C NMR Spectrum of **3n** 





<sup>13</sup>C NMR Spectrum of **30** 



<sup>13</sup>C NMR Spectrum of **3p** 



<sup>13</sup>C NMR Spectrum of **3**q





40 30 20

10

10 200 190



<sup>13</sup>C NMR Spectrum of **3s** 



<sup>13</sup>C NMR Spectrum of **3t** 



<sup>13</sup>C NMR Spectrum of **3u** 



<sup>13</sup>C NMR Spectrum of **F** 



<sup>1</sup>H NMR Spectrum of 4



<sup>19</sup>F NMR Spectrum of 4





<sup>13</sup>C NMR Spectrum of **5** 



<sup>19</sup>F NMR Spectrum of **5** 

# 6. References

1. H.-S. Bao and L.-F. Wang, Org. Lett., 2023, 25, 8872-8876.

2. S. Andrejčák, P. Kisszékelyi, M. Májek, and R. Šebesta, Eur. J. Org. Chem., 2023, 26, e202201399.

3. S. S. Gholap, Lett. Org. Chem., 2018, 15, 594-599.