Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Visible Light-driven Photocatalytic Sulfonative Oxidation of Benzyl Secondary Amines

Yong-Xiang Lü,^a Xin-Qian Wang,^a Ying-Ming Pan,^b Keyume Ablajan*^{a, b}

 ^a State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, PR China
^b State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Gui Lin, 541004, PR China

E-mail: ablajan209@hotmail.com, ablajan209@xju.edu.cn

Table of Contents

1. General information ······S1
2. General procedure ······S1
2.1 Optimization of reaction conditions
2.2 General procedures·····S1
2.3 Gram-scale reaction ·····S2
3. Mechanistic studies ······S2
3.1 ON/OFF experimentsS3
3.2 Control experiments S3
3.3 Electron paramagnetic resonance (EPR) experiments
3.4 HRMS study for identification of intermediates
4. Characterization data for products ······S6-S14
5. References······S14
6. Copies of ¹ H and ¹³ C NMR spectra ······S15-S53

1. General information

All starting materials and reagents were obtained from commercial suppliers and used without further purification. Thin-layer chromatography (TLC) was performed, and visualization of the compounds was accomplished with UV light (254 nm). Products were purified by flash chromatography on silica gel (200–300 mesh). The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel and eluted with petroleum/ethyl acetate to afford the desired product. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ operating at 600 MHz and 151 MHz. Proton chemical shifts are reported relative to the residual proton signals of the deuterated solvent CDCl₃ (7.26 ppm) or TMS. Carbon chemical shifts are reported in δ (parts per million) values. Coupling constants J are reported in Hz. Proton coupling patterns were described as singlet (s), doublet (d), triplet (t), quartet (q), and multiple (m).

2. General procedure

2.1 Optimization of reaction conditions

Table S1. Screening of reaction condition^a

	PC (5 mol%)			
NH +		EA, O ₂ , rt, 14h		
4a	2a			5a
entry	Photo-catalyst	Base (equiv.)	Solvent (ml)	Yield [%] ^b
1	Ir (III)	Et ₃ N	EA	0
2	Ir (III)	Na ₂ CO ₃	EA	0
3	Ir (III))	\	EA	62
4	Ru (II)	\	EA	trace
5	Eosin Y	\	EA	70

а

Reaction Conditions: Reaction conditions for **5a**: **4a** (0.4 mmol), **2a** (0.5 mmol), O₂ balloon (1 atm.), Eosin Y (5 mol%), ethyl acetate (3.5 mL), 18 W blue LED, room temperature, 14 h. ^b Isolated yields. Ru(II) = Tris(2,2'-bipyridine)ruthenium dichloride, Ir(III) = [Ir(ppy)₂(dtbbpy)][PF₆]

Scheme S1. Reaction mechanism for streptobenzylamine.

2.2 General procedures

A sealed pressure vessel was charged with 1,2,3,4-Tetrahydroisoquinoline (52µL, 0.4 mmol), benzenesulfonyl chloride (64µL, 0.5 mmol), Et₃N (139µL, 1.0 mmol) and [Ir(ppy)₂(dtbbpy)][PF₆] (5 mol%) were dissolved in dry ethyl acetate (3.5 mL). The reaction mixture was stirred and irradiated by 18 W Blue LEDs at room temperature under O₂ atmosphere (1 atm) for 14 h. The resulting mixture was partitioned between EtOAc and water. The combined organic phases were dried over MgSO₄ and concentrated under reduced pressure. Purification by column chromatography afforded the desired product. The solvents were removed via rotary evaporator, and the residue was purified with flash chromatography (silica gel, petroleum ether/ethyl acetate = 5:1) to give the product of 2-(phenylsulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (**3a**) in 82% yield (117.69 mg).

Figure S1. Photoreactors used in this research (18 W blue LEDs)

2.3 Gram-scale reaction

1,2,3,4-Tetrahydroisoquinoline **1a** (4 mmol, 0.8 equiv.), benzenesulfonyl chloride **2a** (5 mmol, 1.0 equiv.), Et_3N (5 mmol, 1.0 equiv.), $[Ir(ppy)_2(dtbbpy)][PF_6]$ (5 mol%), were dissolved in EtOAc. The reaction mixture was stirred and irradiated by 18 W Blue LED at room temperature under O₂

atmosphere (1 atm) for 14 h. After the reaction was completed, 20 mL water was added to the reaction mixture, the mixture was extracted with EtOAc (3×20 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Purification by column chromatography (petroleum ether/ethyl acetate 20:1 to 15:1) afforded the desired product in 46% yield (0.53 g).

Scheme S2. Gram Scale reaction

3. Mechanistic studies

3.1 ON/OFF experiments

In order to further prove the effect of visible light irradiation, the "on/off" experiment was carried out under standard conditions. The reaction was carried out sequentially for 2 h when the lamp is turned on or turned off. It is loop for twice. The results indicated that visible light plays an important role in the reaction system.

3.2 Control experiments

1,2,3,4-Tetrahydroisoquinoline **1a** (0.4 mmol), and benzenesulfonyl chloride **2a** (0.5 mmol), Et₃N (1 mmol), were dissolved in ethyl acetate (3.5mL). The reaction mixture was stirred at room temperature for 14 h. After the reaction was completed, remove the solvent. Ethyl acetate as solvent, addition of Et₃N (1mmol) and, [Ir(ppy)₂(dtbbpy)][PF₆] (5 mol%). The reaction mixture was stirred and irradiated by 18 W Blue LED at room temperature under O₂ atmosphere (1 atm) for 14 h to give the target product **3a** in 80% yield. However, adding 1,2,3,4-tetrahydroisoquinoline **1a** (0.4 mmol) and then benzenesulfonyl chloride **2a** (0.5 mmol) under standard conditions did not yield sulfonated product **3a**.

3.3 Electron paramagnetic resonance (EPR) experiments

Measurement conditions: frequency: 9.6 GHz; power: 0.9187 mW; modulation amplitude: 5 G; time constant: 20.48 ms; Sweep time: 20 s; Number of scans: 3.

Figure S2. EPR measurement:

(a) A mixture of 1,2,3,4-Tetrahydroisoquinoline (**1a**, 0.4 mmol) and benzenesulfonyl chloride (**2a**, 0.5mmol), Et₃N (1.0 mmol), [Ir(ppy)₂(dtbbpy)][PF₆] (5 mol%), ethyl acetate (3.5 mL) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO, 10 mg) was irradiated by 18 W Blue LED for two minutes, but N₂ instead of O₂;

(b) A mixture of 1,2,3,4-Tetrahydroisoquinoline (**1a**, 0.4 mmol) and benzenesulfonyl chloride (**2a**, 0.5mmol), Et₃N (1 mmol), [Ir(ppy)₂(dtbbpy)][PF₆] (5 mol%), ethyl acetate (3.5 mL) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO, 10 mg) was irradiated by 18 W Blue LED for two minutes.

3.4 HRMS Study for Identification of Intermediates:

Figure S4. HRMS spectrum of reaction mixture

4. Characterization data for products:

(Phenylsulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (3a)

New compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate =18:1) with 82% yield (94.15 mg). M.p.: 157–158 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.12 – 8.09 (m, 2H), 7.99 (dd, J = 7.9, 1.4 Hz, 1H), 7.64 – 7.60 (m, 1H),

7.56 – 7.52 (m, 2H), 7.48 (td, J = 7.5, 1.4 Hz, 1H), 7.32 (td, J = 7.7, 1.2 Hz, 1H), 7.22 (d, J = 7.6 Hz, 1H), 4.25 (dd, J = 6.8, 5.8 Hz, 2H), 3.14 (t, J = 6.2 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 163.5, 139.4, 139.2, 133.8, 133.7, 129.3, 128.9, 128.6, 128.2, 127.6, 127.5, 44.9, 29.1; HRMS *m*/*z* (ESI): calcd for C₁₅H₁₃NO₃NaS [M + Na]⁺ 310.0514, found 310.0519.

3-Tosyl-3,4-dihydroisoquinolin-1(2H)-one (3b)¹

Known compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 18:1) with 80% yield (96.35 mg). M.p.; 135-136 °C; ¹H NMR

(600 MHz, CDCl₃) δ 8.00 – 7.95 (m, 3H), 7.48 – 7.43 (m, 1H), 7.31 (t, *J* = 8.2 Hz, 3H), 7.21 (d, *J* = 7.6 Hz, 1H), 4.22 (t, *J* = 6.2 Hz, 2H), 3.11 (t, *J* = 6.3 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 163.3, 144.6, 139.1, 136.0, 133.4, 129.3, 129.0, 128.4, 128.0, 127.3, 44.6, 28.8, 21.5; HRMS *m*/*z* (ESI): calcd for C₁₆H₁₅NO₃NaS [M + Na]⁺ 333.0671, found 333.0676.

((4-Methoxyphenyl)sulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (3c)

New compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 18:1) with 75% yield (95.12 mg). M.p.: 123–124 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.02 (d, *J* = 8.5 Hz, 2H), 7.97 (d, *J* = 7.9 Hz, 1H),

7.45 (t, J = 7.5 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.20 (d, J = 7.6 Hz, 1H), 6.97 (d, J = 8.6 Hz, 2H), 4.20 (t, J = 6.2 Hz, 2H), 3.84 (s, 3H), 3.10 (t, J = 6.2 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 163.7, 163.4, 139.3, 133.5, 130.9, 130.4, 129.1, 128.2, 127.4, 113.9, 55.7, 44.7, 28.9; HRMS *m*/*z* (ESI): calcd for C₁₆H₁₅NO₄NaS [M + Na]⁺ 340.0619, found 340.0624.

((4-(Tert-butyl)phenyl)sulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (3d)

New compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 18:1) with 74% yield (101.56 mg). M.p.: 143–144 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.97 (m, 3H), 7.56 – 7.51 (m, 2H), 7.47 (td,

J = 7.5, 1.4 Hz, 1H), 7.31 (td, J = 7.6, 1.2 Hz, 1H), 7.24 – 7.19 (m, 1H), 4.24 (dd, J = 6.8, 5.7 Hz, 2H), 3.13 (t, J = 6.2 Hz, 2H), 1.32 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 163.4, 157.5, 139.2, 135.9, 133.4, 129.1, 128.3, 128.2, 127.4, 127.3, 125.8, 44.7, 35.2, 30.9, 28.9; HRMS *m*/*z* (ESI): calcd for C₁₉H₂₁NO₃NaS [M + Na]⁺ 366.4307, found 366.4312.

2-((2-Fluorophenyl)sulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (3e)

New compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 18:1) with 72% yield (87.89 mg). M.p.: 179–180 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.22

(td, J = 7.6, 1.8 Hz, 1H), 7.95 (dd, J = 7.9, 1.4 Hz, 1H), 7.61 (tdd, J = 7.4, 5.0, 1.8 Hz, 1H), 7.50 (td, J = 7.5, 1.4 Hz, 1H), 7.37 (td, J = 7.7, 1.1 Hz, 1H), 7.34 – 7.31 (m, 1H), 7.27 – 7.24 (m, 1H), 7.16 (ddd, J = 9.6, 8.3, 1.0 Hz, 1H), 4.33 (t, J = 6.3 Hz, 2H), 3.17 (t, J = 6.3 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 163.4, 159.6, 157.9, 139.4, 135.8, 135.8, 133.7, 132.3, 129.1, 127.9, 127.5, 127.4, 124.4, 124.4, 116.8, 116.7, 44.7, 44.7, 28.7; HRMS *m*/*z* (ESI): calcd for C₁₅H₁₂FNO₃NaS [M + Na]⁺ 328.0419, found 328.0423.

2-((4-Chlorophenyl)sulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (3f)

New compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 18:1) with 75% yield (89.89 mg). M.p.:138–139 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.08 – 8.02 (m, 2H), 7.99 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.55 –

7.45 (m, 3H), 7.33 (td, J = 7.6, 1.2 Hz, 1H), 7.23 (d, J = 7.6 Hz, 1H), 4.26 – 4.20 (m, 2H), 3.14 (t, J = 6.2 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 163.6, 140.5, 139.3, 137.6, 133.8, 130.2, 129.3, 129.2, 127.7, 127.5, 44.9, 29.0; HRMS *m*/*z* (ESI): calcd for C₁₅H₁₂ClNO₃NaS [M + Na]⁺ 344.0123, found 344.0126.

2-((4-Bromophenyl)sulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (3g)

New compound. The title compound was isolated as a white solid Br after flash chromatography (petroleum ether/ethyl acetate = 18:1) with 71% yield (104.21 mg). M.p.:163-164 °C; ¹H NMR (600

MHz, CDCl₃) δ 8.01 – 7.92 (m, 3H), 7.71 – 7.63 (m, 2H), 7.48 (td, J = 7.5, 1.4 Hz, 1H), 7.32 (t, J = 7.4 Hz, 1H), 7.22 (d, J = 7.6 Hz, 1H), 4.22 (t, J = 6.3 Hz, 2H), 3.13 (t, J = 6.2 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 163.4, 139.1, 137.9, 133.7, 132.0, 130.1, 129.1, 128.9, 127.8, 127.5, 127.4, 44.7, 28.8; HRMS m/z (ESI): calcd for C₁₅H₁₂BrNONaS [M + Na]⁺ 387.9618, found 387.9623.

3-((4-(Trifluoromethyl)phenyl)sulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (3h)

New compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 18:1) with 56% yield (79.53 mg). M.p.: 157–158°C; ¹H NMR (600 MHz, CDCl₃) δ 8.23 (d, *J* = 8.2 Hz, 2H), 7.97 (dd, *J* = 8.0,

1.4 Hz, 1H), 7.80 (d, J = 8.3 Hz, 2H), 7.49 (td, J = 7.5, 1.4 Hz, 1H), 7.33 (td, J = 7.7, 1.2 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 4.27 – 4.24 (m, 2H), 3.16 (t, J = 6.2 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 163.4, 142.4, 139.2, 135.2, 135.0, 133.8, 129.1, 127.7, 127.5, 127.4, 125.9, 125.9, 125.8, 123.9, 122.1, 44.8, 28.84; HRMS m/z (ESI): calcd for C₁₆H₁₂F₃NO₃NaS [M + Na]+ 378.0387, found 378.0391.

2-(Naphthalen-1-ylsulfonyl)-3,4-dihydroisoquinolin-1(2H)-one(3i)

New compound. The title compound was isolated as white solid after flash chromatography (petroleum ether/ethyl acetate = 12:1) with 60% yield (80.90 mg). M.p.: 189–190 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.72 (d, *J* = 1.9 Hz, 1H), 8.05 – 7.99 (m, 2H), 7.96 (d, *J* =

8.6 Hz, 2H), 7.89 (d, J = 8.1 Hz, 1H), 7.63 (dddd, J = 22.9, 8.1, 6.9, 1.3 Hz, 2H), 7.46 (td, J = 7.5,

1.4 Hz, 1H), 7.33 – 7.27 (m, 1H), 7.22 (d, J = 7.6 Hz, 1H), 4.32 (t, J = 6.2 Hz, 2H), 3.16 (t, J = 6.2 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 163.4, 139.2, 135.9, 135.3, 133.5, 131.8, 130.7, 129.6, 129.2, 129.1, 128.9, 128.1, 127.8, 127.4, 127.4, 127.3, 122.9, 44.8, 28.9; HRMS *m*/*z* (ESI): calcd for C₁₉H₁₅NO₃NaS [M + Na]⁺ 360.0670, found 360.0675.

6-Bromo-2-((4-(tert-butyl)phenyl)sulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (3j)

New compound. The title compound was isolated as white solid after flash chromatography (petroleum ether/ethyl acetate = 12:1) with 64% yield (108.30 mg). M.p.: 181–182 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, *J* = 8.4

Hz, 2H), 7.85 (d, J = 8.4 Hz, 1H), 7.54 (d, J = 8.4 Hz, 2H), 7.45 (dd, J = 8.4, 1.9 Hz, 1H), 7.39 (d, J = 1.9 Hz, 1H), 4.23 (t, J = 6.2 Hz, 2H), 3.11 (t, J = 6.2 Hz, 2H), 1.33 (s, 9H), ¹³C NMR (151 MHz, CDCl₃) δ 162.7, 157.7, 140.9, 135.7, 130.9, 130.8, 130.40, 128.5, 128.4, 127.1, 125.9, 44.5, 35.2, 30.9, 28.7; HRMS m/z (ESI): calcd for C₁₉H₂₀BrNO₃NaS [M + Na]+ 444.0244, found 444.0248.

3-((2-Fluorophenyl)sulfonyl)-6,7-dimethoxy-3,4-dihydroisoquinolin-1(2H)-one (3k)

New compound. The title compound in-1(2H)-one was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 6:1) with 54% yield (78.86 mg). M.p.: 171–172°C; ¹H NMR (600 MHz, CDCl₃) δ 8.20 (td, *J* = 7.6, 1.8 Hz, 1H), 7.63 –

7.57 (m, 1H), 7.41 (s, 1H), 7.35 (td, J = 7.7, 1.1 Hz, 1H), 7.15 (ddd, J = 9.6, 8.3, 1.1 Hz, 1H), 6.67 (s, 1H), 4.30 (t, J = 6.3 Hz, 2H), 3.92 (s, 3H), 3.81 (s, 3H), 3.09 (t, J = 6.3 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 163.3, 159.5, 157.8, 153.6, 148.3, 135.7, 135.6, 133.9, 132.1, 127.7, 127.6, 124.4, 124.4, 120.0, 116.8, 116.7, 110.5, 109.3, 56.1, 55.9, 44.9, 44.9, 28.4; HRMS *m*/*z* (ESI): calcd for C₁₇H₁₆FNO₅NaS [M + Na]⁺ 388.0630, found 388.0635.

2-((4-Chlorophenyl)sulfonyl)-6,7-dimethoxy-3,4-dihydroisoquinolin-1(2H)-one (3l)

New compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 6:1) with 53% yield (80.78 mg). M.p.: 183–184 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.99 – 7.93 (m, 2H), 7.43 (d, *J*

= 8.7 Hz, 2H), 7.37 (s, 1H), 6.57 (s, 1H), 4.13 (t, J = 6.2 Hz, 2H), 3.85 (s, 3H), 3.77 (s, 3H), 3.00 (t, J = 6.3 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 163.3, 153.6, 148.4, 140.2, 137.6, 133.7, 130.0, 129.0, 110.5, 109.2, 56.1, 56.0, 45.0, 28.5; HRMS *m*/*z* (ESI): calcd for C₁₇H₁₆CINO₅NaS [M + Na]⁺ 404.0335, found 404.0342.

3-((4-Bromophenyl)sulfonyl)-6,7-dimethoxy-3,4-dihydroisoquinolin-1(2H)-one (3m)

New compound. The title compound was isolated as white solid after flash chromatography (petroleum ether/ethyl acetate = 6:1) with 48% yield (81.68 mg). M.p.: 168–169 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.97 – 7.92 (m, 2H), 7.68 –

7.63 (m, 2H), 7.42 (s, 1H), 6.64 (s, 1H), 4.19 (t, J = 6.2 Hz, 2H), 3.91 (s, 3H), 3.83 (s, 3H), 3.06 (t, J = 6.3 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 163.3, 153.6, 148.4, 138.1, 133.7, 132.0, 130.0,

128.8, 110.5, 109.2, 56.1, 56.0, 45.0, 28.5; HRMS m/z (ESI): calcd for C₁₇H₁₆BrNO₅NaS [M + Na]⁺ 447.9830, found 447.9838.

6,7-Dimethoxy-2-((4-nitrophenyl)sulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (3n)

New compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate 6:1) with 63% yield (98.80 mg); M.p.: 208–209 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.37 (d, *J* = 8.9 Hz, 2H), 8.27

(d, J = 8.9 Hz, 2H), 7.40 (s, 1H), 6.66 (s, 1H), 4.24 (dd, J = 6.8, 5.8 Hz, 2H), 3.93 (s, 3H), 3.83 (s, 3H), 3.10 (t, J = 6.3 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 163.5, 154.1, 150.6, 148.7, 144.9, 134.0, 130.1, 124.1, 119.8, 110.7, 109.5, 56.3, 56.2, 45.3, 28.7; HRMS *m*/*z* (ESI): calcd for C₁₇H₁₆N₂O₇NaS [M + Na]⁺ 415.3717, found 415.3721.

2-(Thiophen-2-ylsulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (30)

New compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 12:1) with 61% yield (71.50 mg). M.p.: 125–126 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.06 (dd, J = 8.0, 1.4 Hz, 1H), 7.97 (dd, J = 3.9, 1.4 Hz, 1H), 7.67 (dd, J = 5.1,

1.4 Hz, 1H), 7.49 (td, J = 7.5, 1.4 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.22 (d, J = 7.6 Hz, 1H), 7.11 (dd, J = 5.1, 3.8 Hz, 1H), 4.20 (t, J = 6.2 Hz, 2H), 3.14 (t, J = 6.2 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 163.49, 139.24, 138.75, 135.25, 133.73, 133.63, 129.23, 127.99, 127.50, 127.42, 127.15, 44.99, 28.76; HRMS *m*/*z* (ESI): calcd for C₁₃H₁₁NO₃NaS₂ [M + Na]⁺ 316.0077, found 316.0081.

2-((3-chlorothiophen-2-yl)sulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (3p)

New compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 12:1) with 64% yield (83.71 mg). M.p.: 158–159 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.08 (dd, J = 7.9, 1.4 Hz, 1H), 7.75 (d, J = 4.1 Hz, 1H), 7.51 (td, J = 7.5, 1.4 Hz, 1H), 7.36 (td, J = 7.7, 1.2 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 6.95 (d,

J = 4.1 Hz, 1H), 4.17 (dd, J = 6.8, 5.8 Hz, 2H), 3.14 (t, J = 6.2 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 163.83, 139.67, 139.37, 136.53, 134.78, 133.99, 129.44, 127.95, 127.76, 127.64, 126.59, 45.20, 28.90; HRMS m/z (ESI): calcd for C₁₃H₁₀ClNO₃NaS₂ [M + Na]+ 349.9688, found 349.9691.

2-((2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)sulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (3q)

New compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 12:1) with 66% yield (91.10 mg). M.p.: 173-174 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.01 (dd, J = 7.9, 1.4 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.47 (td,

J = 7.5, 1.4 Hz, 1H), 7.32 (td, J = 7.7, 1.2 Hz, 1H), 7.21 (d, J = 7.6 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 4.30 (dd, J = 5.8, 2.5 Hz, 2H), 4.27 (dd, J = 5.7, 2.5 Hz, 2H), 4.21 (t, J = 6.2 Hz, 2H), 3.12 (t, J = 6.2 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 163.53, 148.45, 143.38, 139.40, 133.60, 131.46, 129.35, 128.41, 127.58, 127.49, 122.66, 118.23, 117.59, 64.72, 64.21, 44.92, 29.09; HRMS m/z (ESI): calcd for C₁₇H₁₅NO₅NaS [M + Na]⁺ 368.0568, found 368.0562.

3-(Phenylsulfonyl)isoindolin-1-one (3r)

New compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 12:1) with 66% yield (72.09 mg). M.p.: 159–160 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.18 – 8.14 (m, 2H), 7.84 – 7.80 (m, 1H), 7.67 – 7.61 (m, 2H), 7.58 – 7.52 (m,

2H), 7.48 (dt, J = 7.4, 3.4 Hz, 2H), 4.93 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 166.08, 141.00, 138.37, 134.09, 133.93, 130.15, 129.15, 128.88, 128.10, 125.12, 123.34, 49.86; HRMS *m*/*z* (ESI): calcd for C₁₄H₁₁NO₃NaS [M + Na]⁺ 296.0357, found 296.0363.

2-((4-Methoxyphenyl)sulfonyl)isoindolin-1-one (3s)

New compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 12:1) with 70% yield (84.86 mg). M.p.: 182–183 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.10 – 8.05 (m, 2H), 7.81 – 7.77 (m, 1H), 7.63 (td, *J* = 7.5,

1.2 Hz, 1H), 7.46 (t, J = 7.4 Hz, 2H), 7.05 – 6.93 (m, 2H), 4.90 (s, 2H), 3.85 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.10, 164.03, 140.98, 133.78, 130.43, 130.26, 129.78, 128.76, 124.95, 123.30, 114.25, 55.66, 49.79; HRMS m/z (ESI): calcd for C₁₅H₁₃NO₄NaS [M + Na]+ 326.0462, found 326.0468.

3-((4-(Tert-butyl)phenyl)sulfonyl)isoindolin-1-one (3t)

New compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 12:1) with 68% yield (89.52 mg). M.p.: 186–187 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.08 – 8.05 (m, 2H), 7.83 – 7.79 (m, 1H), 7.63 (td, *J* = 7.5, 1.2 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.47 (t, *J* = 7.4 Hz, 2H), 4.91 (s, 2H), 1.31 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 166.08, 158.02, 141.00, 135.27, 133.82, 130.25, 128.79, 127.92, 126.17, 125.01, 123.32, 49.83, 35.25, 30.95; HRMS *m/z* (ESI): calcd for C₁₈H₁₉NO₃NaS [M + Na]⁺ 352.0983, found 352.0987.

2-((2-Fluorophenyl)sulfonyl)isoindolin-1-one (3u)

New compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 12:1) with 64% yield(74.51 mg). M.p.: 180–181 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.25 (td, *J* = 7.6, 1.8 Hz, 1H), 7.80 (d, *J* = 7.7 Hz, 1H), 7.72 – 7.59 (m, 2H), 7.57 – 7.47 (m, 2H), 7.37 (t, *J* = 7.7 Hz, 1H), 7.19 – 7.13 (m, 1H),

5.10 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 166.26, 160.11, 158.42, 141.68, 136.63, 136.57, 134.33, 132.55, 129.96, 129.06, 126.68, 126.59, 125.33, 124.84, 124.82, 123.68, 117.25, 117.11, 50.11, 50.08; HRMS (ESI): calcd *m*/*z* for C₁₄H₁₀FNO₃NaS [M + Na]⁺ 314.0262, found 314.0267.

3-((4-Chlorophenyl)sulfonyl)isoindolin-1-one (3v)

New compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 12:1) with 62% yield (76.14 mg). M.p.: 197-198 °C; ¹H NMR (600 MHz,

CDCl₃) δ 8.12 – 8.07 (m, 2H), 7.82 (d, J = 7.7 Hz, 1H), 7.66 (td, J = 7.6, 1.1 Hz, 1H), 7.54 – 7.47

(m, 4H), 4.92 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 163.47, 140.39, 139.22, 137.48, 133.73, 130.12, 129.16 (d, J = 17.3 Hz), 127.93, 127.57, 127.44, 44.80, 28.90; HRMS m/z (ESI): calcd for C₁₄H₁₀ClNO₃NaS [M + Na]⁺ 329.9967, found 329.9969.

(Cyclopropylsulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (3w)

New compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 12:1), with 61% yield (61.26 mg). M.p.: 82–83 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.10 (dd, J = 7.9, 1.4 Hz, 1H), 7.50 (td, J = 7.5, 1.4 Hz, 1H), 7.36 (td, J = 7.6, 1.2 Hz,

1H), 7.23 (d, J = 7.6 Hz, 1H), 4.02 (dd, J = 6.8, 5.8 Hz, 2H), 3.37 (tt, J = 8.1, 4.8 Hz, 1H), 3.06 (t, J = 6.3 Hz, 2H), 1.37 – 1.30 (m, 2H), 1.08 (ddd, J = 8.1, 3.9, 2.8 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 164.37, 139.19, 133.50, 128.95, 127.98, 127.35, 44.52, 31.48, 28.66, 5.86; HRMS *m*/*z* (ESI): calcd for C₁₂H₁₃NO₃NaS [M + Na]⁺ 274.0513, found 274.0519.

(Ethylsulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (**3**x)

New compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 12:1) with 60% yield (57.37 mg). M.p.: 93–94 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.11 (dd, J = 7.9, 1.4 Hz, 1H), 7.53 (td, J = 7.5, 1.4 Hz, 1H), 7.40 (td, J = 7.7, 1.2 Hz,

1H), 7.29 – 7.21 (m, 1H), 4.12 – 4.07 (m, 2H), 3.71 (q, J = 7.4 Hz, 2H), 3.10 (t, J = 6.2 Hz, 2H), 1.38 (t, J = 7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 164.74, 139.48, 133.91, 129.40, 128.18, 127.75, 127.61, 48.78, 44.52, 28.95, 8.14; HRMS m/z (ESI): calcd for C₁₁H₁₃NO₃NaS [M + Na]⁺ 262.0513, found 262.0518.

N-Methyl-N-(phenylsulfonyl)benzamide (5a)

New compound. The title compound was isolated as white liquid after flash chromatography (petroleum ether/ethyl acetate = 25:1) with 70% yield (77.02 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.97 – 7.93 (m, 2H), 7.67 – 7.63 (m, 1H), 7.57 – 7.49 (m, 5H), 7.43 – 7.39 (m, 2H), 3.30 (s,

3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.58, 138.34, 134.54, 133.95, 132.18, 129.16, 128.65, 128.52, 128.47, 35.80; HRMS m/z (ESI): calcd for C₁₄H₁₃NO₃NaS [M + Na]+ 298.0513, found 298.0519.

N-((4-(Tert-butyl)phenyl)sulfonyl)-N-methylbenzamide (5b)

New compound. The title compound was isolated as a white liquid after flash chromatography (petroleum ether/ethyl acetate = 20:1) with 87% yield (115.23 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.88 – 7.82 (m, 2H), 7.59 – 7.48 (m, 5H), 7.41 (t, *J* = 7.7 Hz, 2H),

3.29 (s, 3H), 1.35 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 171.64, 157.91, 135.22, 134.72, 132.07, 128.65, 128.41, 128.39, 126.18, 35.68, 35.44, 31.18; HRMS m/z (ESI): calcd for C₁₈H₂₁NO₃NaS [M + Na]+ 354.1138, found 354.114.

N-Methyl-N-((4-nitrophenyl)sulfonyl)benzamide (5c)

New compound. The title compound was isolated as a white liquid

after flash chromatography (petroleum ether/ethyl acetate = 18:1) with 77% yield (98.57 mg); ¹H NMR (600 MHz, CDCl₃) δ 8.43 – 8.36 (m, 2H), 8.27 – 8.21 (m, 2H), 7.55 (td, *J* = 5.5, 4.9, 2.7 Hz, 3H), 7.49 – 7.39 (m, 2H), 3.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.34, 150.81, 143.94, 133.37, 132.78, 130.19, 129.32, 128.83, 128.66, 124.26, 36.54; HRMS *m*/*z* (ESI) calcd for C₁₄H₁₂N₂O₅NaS [M + Na]⁺ 343.0364, found 343.0368.

N-Methyl-N-((4-(trifluoromethyl)phenyl)sulfonyl)benzamide (5d)

 $\begin{array}{l} {\mathsf{F}}\\ {\mathsf{K}}\\ {\mathsf{K}}$

7.44 (t, J = 7.7 Hz, 2H), 3.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.42, 141.83, 135.63, 135.41, 133.79, 132.58, 129.31, 128.72, 128.67, 126.31, 126.28, 126.26, 126.24, 124.15, 122.34, 36.29; HRMS *m*/*z* (ESI): calcd for C₁₅H₁₂F₃NO₃NaS [M + Na]⁺ 366.0387, found 366.0392.

N-Methyl-N-(thiophen-2-ylsulfonyl)benzamide (5e)

New compound. The title compound was isolated as a white liquid after flash chromatography (petroleum ether/ethyl acetate = 18:1) with 74% yield (83.18 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.83 (dd, *J* = 3.8, 1.4 Hz, 1H), 7.70 (dd, *J* = 5.0, 1.4 Hz, 1H), 7.63 – 7.57 (m, 2H), 7.57 – 7.51 (m,

1H), 7.44 (dd, J = 8.5, 7.1 Hz, 2H), 7.14 (dd, J = 5.0, 3.8 Hz, 1H), 3.29 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.64, 138.07, 135.19, 134.16, 134.04, 132.44, 128.78, 128.58, 127.46, 36.07; HRMS m/z (ESI): calcd for C₁₂H₁₁NO₃NaS₂ [M + Na]⁺ 304.0078, found 304.0082.

N-((3-Chlorothiophen-2-yl)sulfonyl)-N-methylbenzamide (5f)

New compound. The title compound was isolated as a white liquid after flash chromatography (petroleum ether/ethyl acetate = 18:1) with 70% yield (88.19 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.67 – 7.60 (m, 3H), 7.58 – 7.52 (m, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 6.98 (d, *J* = 4.1 Hz, 1H),

3.28 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.72, 139.88, 135.67, 134.72, 133.66, 132.70, 128.84, 128.75, 126.72, 36.39; HRMS *m*/*z* (ESI): calcd for C₁₂H₁₀ClNO₃NaS₂ [M + Na]⁺ 337.9688, found 337.9692.

N-((2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)sulfonyl)-N-methylbenzamide (5g)

New compound. The title compound was isolated as a white liquid after flash chromatography (petroleum ether/ethyl acetate = 18:1) with 77% yield (102.58 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.58 – 7.54 (m, 2H), 7.53 – 7.49 (m, 1H), 7.45 (d, *J* = 2.3 Hz, 1H), 7.44 –

7.39 (m, 3H), 6.96 (d, J = 8.5 Hz, 1H), 4.35 – 4.32 (m, 2H), 4.31 – 4.28 (m, 2H), 3.26 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.63, 148.55, 143.57, 134.78, 132.06, 130.48, 128.65, 128.39, 122.39, 118.19, 117.80, 64.76, 64.25, 35.65; HRMS *m*/*z* (ESI): calcd for C₁₆H₁₅NO₅NaS [M + Na]⁺ 356.0568, found 356.0574.

Methoxy-N-methyl-N-(phenylsulfonyl)benzamide (5h)

New compound. The title compound was isolated as a white liquid after flash chromatography (petroleum ether/ethyl acetate = 15:1) with 81% yield (305.07 mg); ¹H NMR (600 MHz, CDCl₃) δ 8.00 - 7.91 (m, 2H), 7.68 - 7.58 (m, 3H), 7.54 (t, *J* = 7.8 Hz, 2H),

6.94 – 6.87 (m, 2H), 3.86 (s, 3H), 3.25 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.40, 163.19, 138.18, 133.82, 131.56, 129.13, 128.51, 126.43, 113.77, 55.62, 36.04; HRMS *m*/*z* (ESI): calcd for C₁₅H₁₅NO₄NaS [M + Na]⁺ 328.0619, found 328.0621.

2-Fluoro-N-methyl-N-(phenylsulfonyl)benzamide (5i)

New compound. The title compound was isolated as a white liquid after flash chromatography (petroleum ether/ethyl acetate = 15:1) with 71% yield (83.23 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.94 – 7.85 (m, 2H), 7.68 – 7.62 (m, 1H), 7.57 – 7.51 (m, 2H), 7.45 (dddd, *J*

= 8.4, 7.3, 5.3, 1.8 Hz, 1H), 7.36 (ddd, J = 7.6, 6.7, 1.8 Hz, 1H), 7.19 (td, J = 7.6, 1.0 Hz, 1H), 7.07 (ddd, J = 9.6, 8.4, 1.0 Hz, 1H), 3.34 (d, J = 1.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.71, 159.67, 158.00, 138.39, 134.10, 132.99, 132.93, 129.58, 129.57, 129.18, 128.33, 124.48, 124.46, 123.81, 123.70, 116.08, 115.94, 34.10, 34.09; HRMS m/z (ESI): calcd for C₁₄H₉FNO₃NaS [M + Na]⁺ 316.0419, found 316.0423.

4-Chloro-N-methyl-N-(phenylsulfonyl)benzamide (5j)

New compound. The title compound was isolated as a white liquid after flash chromatography (petroleum ether/ethyl acetate = 15:1) with 75% yield (92.71 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.90 (dd, J = 8.5, 1.3 Hz, 2H), 7.69 – 7.62 (m, 1H), 7.58 – 7.48 (m, 4H), 7.42

- 7.36 (m, 2H), 3.26 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 170.74, 138.63, 138.05, 134.10, 133.04, 130.25, 129.28, 128.76, 128.39, 35.55; HRMS *m*/*z* (ESI): calcd for C₁₄H₁₂ClNO₃NaS [M + Na]⁺ 332.0124, found 332.0126.

N-Methyl-N-(phenylsulfonyl)thiophene-2-carboxamide (5k)

New compound. The title compound was isolated as a white liquid after flash chromatography (petroleum ether/ethyl acetate = 15:1) with 68% yield (88.42 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.94 – 7.88 (m, 3H), 7.87 – 7.83 (m, 1H), 7.63 – 7.58 (m, 2H), 7.51 – 7.47 (m, 3H), 7.47 –

7.40 (m, 3H), 3.31 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 170.81, 138.80, 134.04, 133.47, 132.71, 131.06, 129.58, 129.11, 128.72, 128.51, 127.74, 126.82, 125.63, 124.83, 124.35, 34.91; HRMS *m*/*z* (ESI): calcd for C₁₈H₁₅NO₃NaS [M + Na]⁺ 348.0670, found 348.0675.

N-Methyl-N-(phenylsulfonyl)-1-naphthamide (51)

New compound. The title compound was isolated as a white liquid after flash chromatography (petroleum ether/ethyl acetate = 15:1) with 66% yield (74.18 mg); ¹H NMR (600 MHz, CDCl₃) δ 8.03 – 7.97 (m, 2H), 7.68 (dd, J = 3.8, 1.2 Hz, 1H), 7.66 – 7.61 (m, 2H), 7.57 – 7.53 (m, 2H), 7.11

(dd, J = 5.0, 3.8 Hz, 1H), 3.44 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 164.67, 138.17, 136.81, 133.93, 133.77, 133.33, 129.15, 128.65, 127.65, 36.23; HRMS m/z (ESI): calcd for

$C_{12}H_{11}NO_3NaS_2 [M + Na]^+ 304.0078$, found 304.0083.

Benzoylbenzamide (5m)²

Known compound. The title compound was isolated as a white liquid after flash chromatography (petroleum ether/ethyl acetate = 18:1) with 61% yield (54.92 mg); ¹H NMR (600 MHz, CDCl₃) δ 8.89 (s, 1H), 7.87 (dt, *J* = 7.0, 1.3 Hz, 4H), 7.65 – 7.58 (m, 2H), 7.52 (t, *J* = 7.8 Hz, 4H);

¹³C NMR (151 MHz, CDCl₃) *δ* 166.42, 133.52, 133.28, 129.07, 128.06.

2-acetyl-3,4-dihydroisoquinolin-1(2H)-one $(7a)^3$

Known compound. The title compound was isolated as a white solid after flash chromatography (petroleum ether/ethyl acetate = 12:1) with 61% yield (47.65 mg); ¹H NMR (600 MHz, CDCl₃) δ 8.15 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.51 (td, *J* = 7.5, 1.4 Hz, 1H), 7.39 (td, *J* = 7.7, 1.0 Hz, 1H), 7.26 – 7.24 (m,

1H), 4.14 – 4.09 (m, 2H), 2.99 (t, J = 6.2 Hz, 2H), 2.67 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.92, 165.92, 140.41, 133.55, 129.69, 129.18, 127.53, 127.51, 41.88, 28.29, 27.80.

Tert-butyl 1-oxo-3,4-dihydroisoquinoline-2(1H)-carboxylate (7b)³

Known compound. The title compound was isolated as a white liquid after flash chromatography (petroleum ether/ethyl acetate = 12:1) with 65% yield (64.25 mg); ¹H NMR (600 MHz, CDCl₃) δ 8.15 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.45 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.35 (dd, *J* = 7.8, 1.2 Hz,

1H), 7.20 (d, J = 7.6 Hz, 1H), 4.01 – 3.97 (m, 2H), 3.00 (t, J = 6.2 Hz, 2H), 1.58 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 164.07, 153.27, 139.66, 132.96, 129.74, 129.48, 127.33, 127.27, 83.32, 44.55, 28.45, 28.22.

5. References

(1) L. C. Finney, L. J. Mitchell and C. J. Moody, Green Chem., 2018, 20, 2242-2249.

(2) C. Sivaraj, T. Gandhi, RSC Adv. 2023, 13, 9231-9236.

(3) K. C. C. Aganda, B. Hong, A. Lee, Adv. Synth. Catal. 2019, 361, 1124-1129.

6. Copies of ¹H NMR and ¹³C NMR spectra

Figure S6. ¹³C NMR (151 MHz) spectrum of compound 3a in CDCl₃

Figure S7.¹H NMR (600 MHz) spectrum of compound 3b in CDCl₃

Figure S8.¹³C NMR (151 MHz) spectrum of compound 3b in CDCl₃

Figure S9. ¹H NMR (600 MHz) spectrum of compound 3c in CDCl₃

Figure S10. ¹³C NMR (151 MHz) spectrum of compound 3c in CDCl₃

Figure S11. ¹H NMR (400 MHz) spectrum of compound 3d in CDCl₃

Figure S13. ¹H NMR (600 MHz) spectrum of compound 3e in CDCl₃

Figure S19. ¹H NMR (600 MHz) spectrum of compound 3h in CDCl₃

90

Figure S22. ¹³C NMR (151 MHz) spectrum of compound 3i in CDCl₃

Figure S23. ¹H NMR (600 MHz) spectrum of compound 3j in CDCl₃

Figure S25. ¹H NMR (600 MHz) spectrum of compound 3k in CDCl₃

Figure S27. ¹H NMR (600 MHz) spectrum of compound 3l in CDCl₃

Figure S28. ¹³C NMR (151 MHz) spectrum of compound 3l in CDCl₃

Figure S29. ¹H NMR (600 MHz) spectrum of compound 3m in CDCl₃

Figure S30. ¹³C NMR (151 MHz) spectrum of compound 3m in CDCl₃

Figure S31. ¹H NMR (600 MHz) spectrum of compound 3n in CDCl₃

Figure S32. ^{13}C NMR (151 MHz) spectrum of compound 3n in CDCl_3

Figure S34. ¹³C NMR (151 MHz) spectrum of compound 30 in CDCl₃

Figure S33. ¹H NMR (600 MHz) spectrum of compound 30 in CDCl₃

Figure S35. ¹H NMR (600 MHz) spectrum of compound 3p in CDCl₃

Figure S36. ¹³C NMR (151 MHz) spectrum of compound **3p** in CDCl₃

Figure S37. ¹H NMR (600 MHz) spectrum of compound 3q in CDCl₃

Figure S38. ¹³C NMR (151 MHz) spectrum of compound 3q in CDCl₃

Figure S39. ¹H NMR (600 MHz) spectrum of compound 3r in CDCl₃

Figure S41. ¹H NMR (600 MHz) spectrum of compound 3s in CDCl₃

Figure S43. ¹H NMR (600 MHz) spectrum of compound 3t in CDCl₃

Figure S44. ¹³C NMR (151 MHz) spectrum of compound 3t in CDCl₃

Figure S45. ¹H NMR (600 MHz) spectrum of compound 3u in CDCl₃

Figure S46. ¹³C NMR (151 MHz) spectrum of compound 3u in CDCl₃

Figure S47. ¹H NMR (600 MHz) spectrum of compound 3v in CDCl₃

Figure S50. ¹³C NMR (151 MHz) spectrum of compound 3w in CDCl₃

Figure S49. ¹H NMR (600 MHz) spectrum of compound 3w in CDCl₃

Figure S51. ¹H NMR (600 MHz) spectrum of compound 3x in CDCl₃

Figure S52. ¹³C NMR (151 MHz) spectrum of compound 3x in CDCl₃

Figure S53. ¹H NMR (600 MHz) spectrum of compound 5a in CDCl₃

Figure S54. ¹³C NMR (151 MHz) spectrum of compound 5a in CDCl₃

Figure S55. ¹H NMR (600 MHz) spectrum of compound 5b in CDCl₃

Figure S56. ¹³C NMR (151 MHz) spectrum of compound 5b in CDCl₃

Figure S57. ¹H NMR (600 MHz) spectrum of compound 5c in CDCl₃

Figure S58. ¹³C NMR (151 MHz) spectrum of compound 5c in CDCl₃

Figure S59. ¹H NMR (600 MHz) spectrum of compound 5d in CDCl₃

Figure S60. ¹³C NMR (151 MHz) spectrum of compound 5d in CDCl₃

Figure S61. ¹H NMR (600 MHz) spectrum of compound 5e in CDCl₃

Figure S62. ¹³C NMR (151 MHz) spectrum of compound 5e in CDCl₃

Figure S63. ¹H NMR (600 MHz) spectrum of compound 5f in CDCl₃

Figure S64. ¹³C NMR (151 MHz) spectrum of compound 5f in CDCl₃

Figure S65. ¹H NMR (600 MHz) spectrum of compound 5g in CDCl₃

Figure S66. ¹³C NMR (151 MHz) spectrum of compound 5g in CDCl₃

Figure S67. ¹H NMR (600 MHz) spectrum of compound 5h in CDCl₃

Figure S68. ¹³C NMR (151 MHz) spectrum of compound 5h in CDCl₃

Figure S69. ¹H NMR (600 MHz) spectrum of compound 5i in CDCl₃

Figure S70. ¹³C NMR (151 MHz) spectrum of compound 5i in CDCl₃

Figure S71. ¹H NMR (600 MHz) spectrum of compound 5j in CDCl₃

Figure S72. ¹³C NMR (151 MHz) spectrum of compound 5j in CDCl₃

Figure S73. ¹H NMR (600 MHz) spectrum of compound 5k in CDCl₃

Figure S74. ¹³C NMR (151 MHz) spectrum of compound 5k in CDCl₃

Figure S75. ¹H NMR (600 MHz) spectrum of compound 5l in CDCl₃

Figure S76. ¹³C NMR (151 MHz) spectrum of compound 5l in CDCl₃

Figure S77. ¹H NMR (600 MHz) spectrum of compound 3m in CDCl₃

Figure S79. ¹H NMR (600 MHz) spectrum of compound 7a in CDCl₃

Figure S80. ¹³C NMR (151 MHz) spectrum of compound 7a in CDCl₃

Figure S81. ¹H NMR (600 MHz) spectrum of compound 7b in CDCl₃

Figure S82. ¹³C NMR (151 MHz) spectrum of compound 7b in CDCl₃

