Supporting Information for

Stereodivergent Synthesis of 2-Oxo-oligopyrrolidines by Iterative Coupling Strategy

Yasuki Soda, ${ }^{\text {a }}$ Kumpei Tatsumi, ${ }^{\text {a }}$ Matteo Forner, ${ }^{\text {a,b }}$ Shunsei Sato, ${ }^{a}$ Kana Shibuya, ${ }^{\text {a }}$ Tomoe Matagawa, ${ }^{\text {a }}$ Siro Simizu, ${ }^{\text {a }}$ Noritaka Chida, ${ }^{\text {a }}$ Toshitaka Okamura, ${ }^{* a}$ Takaaki Sato*a
a. Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
b. Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131
Padova PD, Italy
t-okamura@applc.keio.ac.jp
takaakis@applc.keio.ac.jp

Table of Contents

\qquad
2. Experimental Procedure S5-S28
3. Biological Experiments S29
4. References S30
5. NMR Spectra S31-S86

1. Optimization of Reaction Conditions

1-1. Optimization of trans-selective reductive nucleophilic addition

${ }^{a}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR using pyridine as an internal standard. ${ }^{\mathrm{b}}$ The ratio was determined by ${ }^{1} \mathrm{H}$ NMR.

1-2. Optimization of cis-selective reductive nucleophilic addition

[^0]
1-3. $\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}$-catalyzed hydrogenation of trans-enamide 28

entry	solvent	yield of $\mathbf{3 4 + 3 5}(\%)^{\mathrm{a}}$	erythro-(34):threo-(35)	yield of $\mathbf{4 4}(\%)^{\mathrm{a}}$	recovery of $\mathbf{2 8 (\%)}$
1	EtOH	87	$2.1: 1$	12	0
2	MeOH	55	$1.6: 1$	14	0
3	EtOAc	89	$3.0: 1$	0	5
4^{c}	EtOAc	100	$3.1: 1$	0	0
$5^{\text {d }}$	EtOAc	$\mathbf{3 4}: 58, \mathbf{3 5}: 18$	$3.2: 1$	0	0

${ }^{a}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR using pyridine as an internal standard. ${ }^{\mathrm{b}}$ The ratio was determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\mathrm{c}}$ Reaction time was extended to 10
h. ${ }^{\text {d }}$ Isolated yield after reversed-phase HPLC.

1-4. Hydride reduction of trans-enamide 28

1-4-1. Screening of additives

entry	additive	yield of $\mathbf{3 4 + 3 5}(\%)^{\mathrm{a}}$	erythro-(34):threo-(35) $^{\mathrm{b}}$	yield of $\mathbf{4 4}(\%)^{\mathrm{a}}$
1	None	50	$2.3: 1$	13
2	DMPU	30	$2.3: 1$	23
3	HMPA	26	$1.8: 1$	14
4	15-crown-5	60	$1.4: 1$	trace

[^1]$\mathbf{1 - 4 - 2}$. Screening of solvents

entry	solvent	yield of $\mathbf{3 4 + 3 5}(\%)^{\text {a }}$	erythro-(34):threo-(35) ${ }^{\text {b }}$	yield of 44 (\%) ${ }^{\text {a }}$
1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	50	2.3:1	0
2	Toluene	30	2.3:1	0
3	$\mathrm{Et}_{2} \mathrm{O}$	26	1.8:1	0
4	CHCl_{3}	60	1:1.8	0
5	CHCl_{3} (no additive)	59	2.0:1	14
$6^{\text {c }}$	$\mathrm{CHCl}_{3}(\mathrm{TFA} \rightarrow \mathrm{HCl})$	34: 28,35 : 50	1:1.8	0

${ }^{\text {a }}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR using pyridine as an internal standard. ${ }^{\mathrm{b}}$ The ratio was determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\mathrm{c}}$ Isolated yield after reversed-phase HPLC.

2. Experimental Procedure

General Details

Reactions were performed in oven-dried glassware fitted with rubber septa under an argon atmosphere. Toluene was distilled from CaH_{2}. MeOH was distilled from CaSO_{4}. EtOAc was single distilled. $\mathrm{EtOH}, \mathrm{MeCN}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were single distilled and dried over activated 3 A molecular sieves. THF (dehydrated, stabilizer free) and $\mathrm{Et}_{2} \mathrm{O}$ (dehydrated, stabilizer free) were purchased from KANTO CHEMICAL CO., INC. All deoxidized solvents, toluene and CHCl_{3} were purchased from FUJIFILM Wako Pure Chemical Corp. Other commercial reagents were used without further purification. Thin-layer chromatography was performed on Merck TLC silica gel $60 \mathrm{~F}_{254}$, which were visualized by exposure to UV (254 nm) or stained by submersion in ethanolic ninhydrin or ethanolic phosphomolybdic acid solution followed by heating on a hot plate. Flash column chromatography was performed on silica gel (Silica Gel $60 \mathrm{~N} ; 63-210$ or 40-50 mesh, KANTO CHEMICAL CO., INC.). Preparative layer chromatography was performed on Merck PLC silica gel $60 \mathrm{~F}_{254} .{ }^{1} \mathrm{H}$ NMR spectra were recorded at 500 MHz with JEOL ECA- 500 spectrometer, 400 MHz with JEOL ECS-400 spectrometer or 400 MHz with JEOL ECZ-400 spectrometer. ${ }^{13} \mathrm{C}$ NMR spectra at 125 MHz with JEOL ECA- 500 spectrometer, 100 MHz with JEOL ECS-400 spectrometer or 100 MHz with JEOL ECS- 400 spectrometer. Chemical shifts are reported in ppm with reference to solvent signals [${ }^{1} \mathrm{H}$ NMR: $\mathrm{CDCl}_{3}(7.26), \mathrm{C}_{6} \mathrm{D}_{6}(7.16) ;{ }^{13} \mathrm{C}$ NMR: CDCl_{3} (77.16), $\mathrm{C}_{6} \mathrm{D}_{6}$ (128.06).]. Signal patterns are indicated as brs, broad peak; s, singlet; d, doublet; t , triplet; q , quartet; sep, septet; m, multiplet. HPLC and GPC were performed on SSC-3462, 5410 (Senshu Scientific Co., Ltd.) with the recycle unit (SSC-1322). Infrared spectra were recorded using a BRUKER ALPHA FT-IR spectrometer. Mass spectra were measured with Waters, LCT Premier XE (ESI-TOF) and Burker, timsTOF Pro 2 (ESI-TOF).

2-1. Synthesis of 2-oxo-pyrrolidine 19 and siloxypyrrole 22

2-Oxo-pyrrolidine 19

Potassium tert-butoxide ($1.60 \mathrm{~g}, 14.3 \mathrm{mmol}, 1.5$ equiv) was added to a solution of N-hydroxylactam 49^{1} (3.51 $\mathrm{g}, 9.50 \mathrm{mmol}, 1.0$ equiv) and THF $(150 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$. Iodomethane ($5.9 \mathrm{~mL}, 94.8 \mathrm{mmol}, 10$ equiv) was added dropwise to the mixture at $0{ }^{\circ} \mathrm{C}$. The resulting suspension was allowed to warm to room temperature. After stirring for 1 h at room temperature, $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added to the resulting suspension. After stirring for 10 min , the solution was quenched with aqueous saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$, aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, and extracted with $\mathrm{CHCl}_{3}(4 \mathrm{x} 100 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc/hexane $1: 3$ to $1: 1$) to give 2.75 mg of 2-oxo-pyrrolidine $\mathbf{1 9}$ (76%): a colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}}-3.5$ (c 1.0, CHCl_{3}); IR (film) 2932, 2858, 1716, 1472, 1428, 1113, 1054, 773, 742, 704, $505 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 3.90(\mathrm{dd}, J=10.9,3.4 \mathrm{~Hz})$, $3.80-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{dd}, J=10.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{ddd}, J=17.2,10.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ $(\mathrm{ddd}, J=17.2,10.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6(\mathrm{C})$, $135.8(\mathrm{CH}), 135.7(\mathrm{CH}), 133.2(\mathrm{C}), 132.7(\mathrm{C}), 130.0(\mathrm{CH}), 127.91(\mathrm{CH}), 127.88(\mathrm{CH}), 62.8\left(\mathrm{CH}_{2}\right), 62.7\left(\mathrm{CH}_{3}\right)$, $57.8(\mathrm{CH}), 27.4\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 19.3(\mathrm{C}), 18.9\left(\mathrm{CH}_{2}\right)$; HRMS (ESI), Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$ 384.1995 , found 384.2001 .

Siloxypyrrole $\mathbf{2 2}^{2}$

A solution of methoxyamine hydrochloride ($3.78 \mathrm{~g}, 45.3 \mathrm{mmol}$, 1.1 equiv) and $\mathrm{H}_{2} \mathrm{O}(23 \mathrm{~mL})$ was added dropwise over 2 h to a solution of 2,5-dihydro-2,5-dimethoxyfuran $\mathbf{5 0}(5.0 \mathrm{~mL}, 41 \mathrm{mmol}, 1.0$ equiv $)$ and aqueous 1.0 M HCl ($8.2 \mathrm{~mL}, 8.2 \mathrm{mmol}, 0.2$ equiv) at room temperature. Then, solid NaHCO_{3} was added to the mixture until the mixture was neutralized. The resulting mixture was extracted with CHCl_{3} (5 x 150 mL). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue wa filtrated through a pad of silica gel (EtOAc/hexane $1: 1$ to $2: 1$) to give a crude mixture, which was used in the next reaction without further purification.

Sodium bis(trimethylsilyl)amide (1.0 M in THF, $19.3 \mathrm{~mL}, 19.3 \mathrm{mmol}, 1.1$ equiv) was added to a solution of a crude mixture ($1.98 \mathrm{~g}, 17.5 \mathrm{mmol}, 1.0$ equiv) and THF $(70 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After maintaining for 10 min at $78{ }^{\circ} \mathrm{C}$, triisopropylsilyl chloride ($3.5 \mathrm{~mL}, 16.5 \mathrm{mmol}, 0.9$ equiv) was added to the solution at $-78{ }^{\circ} \mathrm{C}$. The solution was allowed to warm to room temperature, stirred for 12 h , and diluted with hexane (500 mL). The resulting mixture was filtered through a pad of $\mathrm{Celite}^{\circledR}$ and concentrated. The residue was filtered through a pad
of activated aluminum oxide and washed with hexane. The filtrate was concentrated to give 3.28 g of siloxypyrrole 22 (36% over 2 steps): a pale yellow oil; IR (film) 2945, 2869, 1569, 1477, 1439, 1156, 1058, 902, $843,659 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.34(\mathrm{dd}, J=3.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dd}, J=4.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ (dd, $J=4.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{sep}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $138.2(\mathrm{C}), 107.1(\mathrm{CH}), 100.4(\mathrm{CH}), 85.5(\mathrm{CH}), 66.3\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right), 12.4(\mathrm{CH})$; HRMS (ESI), Calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 270.1884$, found 270.1886 .

2-2. Synthesis of trans-enamide 28 and cis-enamide 30

2-Oxo-bispyrrolidines 27-30

In a glove box, 1,1,3,3-tetramethyldisiloxane ($160 \mu \mathrm{~L}, 910 \mu \mathrm{~mol}, 1.2$ equiv) was added to a mixture of 2 -oxopyrrolidine 19 ($291 \mathrm{mg}, 759 \mu \mathrm{~mol}, 1.0$ equiv), $\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(5.9 \mathrm{mg}, 7.6 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%$) and toluene (51 mL) at room temperature. After maintaining for 1 h at room temperature, toluene (51 mL) and siloxypyrrole 22 ($613 \mathrm{mg}, 2.27 \mathrm{mmol}, 3.0$ equiv) were added to the solution. After the flask was removed from the glove box, scandium trifluoromethanesulfonate ($112 \mathrm{mg}, 24.4 \mu \mathrm{~mol}, 32.1 \mathrm{~mol} \%$) was added to the solution at $-40^{\circ} \mathrm{C}$ After stirring for 12 h at $-40^{\circ} \mathrm{C}$, the solution was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 x 100 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated The residue was filtrated through a pad of basified silica gel (EtOAc/hexane 1:5 to 1:3) to give a mixture of bicyclic compounds ($\mathbf{2 7 - 3 0}, 356 \mathrm{mg}, 98 \%$ combined yield, $\mathbf{2 7} \alpha: \mathbf{2 7 \beta}: \mathbf{2 8 : 2 9 \alpha} \mathbf{2 9} \beta: \mathbf{3 0}=1.8: 1.2: 2.0: 1.3: 1.2: 1$, The ration was determined by ${ }^{1} \mathrm{H}$ NMR). For analytical samples, a mixture of bicyclic compounds (27-30) were separated by HPLC with recycle unit (PEGASIL Silica $120-5,250 \times 10 \mathrm{~mm}$, EtOAc/hexane $1: 1,10 \mathrm{~mL} / \mathrm{min}$, $\mathbf{2 7} \alpha$: 12 cycles, $T_{R}=181.3 \mathrm{~min}, \mathbf{2 7 \beta}: 8$ cycles, $\mathrm{T}_{\mathrm{R}}=116.5 \mathrm{~min}, \mathbf{2 8}: 3$ cycles, $\mathrm{T}_{\mathrm{R}}=35.9 \mathrm{~min}, \mathbf{2 9} \alpha: 7$ cycles, T_{R} $=98.5 \mathrm{~min}, \mathbf{2 9 \beta}: 4$ cycles, $\mathrm{T}_{\mathrm{R}}=53.4 \mathrm{~min}, \mathbf{3 0}: 2$ cycles, $\mathrm{T}_{\mathrm{R}}=21.9 \mathrm{~min}$). Trans-threo- $\alpha, \boldsymbol{\beta} \mathbf{2 7 \alpha}$: a colorless oil; $[\alpha]^{23}{ }_{\mathrm{D}}-112.8$ (c 1.0, CHCl_{3}); IR (film) 2934, 2858, 1723, 1462, 1428, 1190, 1112, 1049, 824, 742, 704, 505 cm ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.78$ (dd, $J=10.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.66$ (m, 1H), 3.69 (dd, $J=10.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.46(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.29(\mathrm{~m}$, $1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5(\mathrm{C}), 145.0(\mathrm{CH}), 135.80(\mathrm{CH}), 135.78(\mathrm{CH}), 133.5(\mathrm{C})$, $129.9(\mathrm{CH}), 129.8(\mathrm{CH}), 127.8(\mathrm{CH}), 127.2(\mathrm{CH}), 65.9(\mathrm{CH}), 65.2(\mathrm{CH}), 64.2\left(\mathrm{CH}_{3}\right), 63.7(\mathrm{CH}), 63.6\left(\mathrm{CH}_{2}\right)$, $60.8\left(\mathrm{CH}_{3}\right)$, $26.9\left(\mathrm{CH}_{3}\right)$, $24.3\left(\mathrm{CH}_{2}\right)$, $22.4\left(\mathrm{CH}_{2}\right)$, $19.3(\mathrm{C})$; HRMS (ESI), Calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$ 481.2523, found 481.2520. Trans-erythro- $\alpha, \boldsymbol{\beta} 27 \beta$: a colorless oil; $[\alpha]^{22}{ }_{\mathrm{D}}+35.6$ (c $1.0, \mathrm{CHCl}_{3}$); IR (film) 2934, $2857,1725,1472,1428,1193,1112,1052,823,742,704,505 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.64$ (m, 4H), 7.45-7.35 (m, 6H), 7.45-7.35 (m, 6H), $7.04(\mathrm{~d}, J=6.0,1 \mathrm{H}), 6.12(\mathrm{dd}, J=6.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ (brd $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ (s, 3H), 3.74 (dd, $J=10.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.63 (dd, $J=10.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.49$ (m, 1 H), 3.47 ($\mathrm{s}, 3 \mathrm{H}$), 3.33 (brs, 1H), 2.04-1.86 (m, 2H), 1.80-1.66 (m, 2H), 1.04 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.0(\mathrm{C}), 145.8(\mathrm{CH}), 135.8(\mathrm{CH}), 133.6(\mathrm{C}), 133.5(\mathrm{C}), 129.85(\mathrm{CH}), 129.82(\mathrm{CH}), 127.82(\mathrm{CH})$, $127.80(\mathrm{CH}), 125.9(\mathrm{CH}), 66.7(\mathrm{CH}), 65.9(\mathrm{CH}), 64.7(\mathrm{CH}), 63.8\left(\mathrm{CH}_{3}\right), 63.5\left(\mathrm{CH}_{2}\right), 60.2(\mathrm{CH}), 26.9\left(\mathrm{CH}_{3}\right)$,
$24.6\left(\mathrm{CH}_{2}\right)$, $24.5\left(\mathrm{CH}_{2}\right), 19.3(\mathrm{C})$; HRMS (ESI), Calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 481.2523$, found 481.2520 .
Trans-enamide 28: a colorless oil; $[\alpha]^{22}{ }_{\mathrm{D}}-3.9$ ($c 1.0, \mathrm{CHCl}_{3}$); IR (film) 2936, 2858, 1726, 1472, 1428, 1220, 1112, 1035, 824, 772, 743, 704, 613, $505 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.36(\mathrm{~m}$, $6 \mathrm{H}), 5.10-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{dd}, J=10.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}$, $J=10.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=2.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.16-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.6(\mathrm{C}), 144.4(\mathrm{C}), 135.7(\mathrm{CH}), 133.62(\mathrm{C}), 133.56(\mathrm{C}), 129.85(\mathrm{CH}), 129.82(\mathrm{CH}), 127.83$ $(\mathrm{CH}), 127.79(\mathrm{CH}), 98.2(\mathrm{CH}), 67.0(\mathrm{CH}), 64.7\left(\mathrm{CH}_{2}\right), 64.1(\mathrm{CH}), 61.9\left(\mathrm{CH}_{3}\right), 60.9\left(\mathrm{CH}_{3}\right), 34.8\left(\mathrm{CH}_{2}\right), 26.9$ $\left(\mathrm{CH}_{3}\right)$, $26.4\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 19.3(\mathrm{C})$; HRMS (ESI), Calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 481.2523$, found 481.2521. Cis-erythro- α, β 29 α : a colorless oil; $[\alpha]^{25}{ }_{\mathrm{D}}-39.4$ (c 1.0, CHCl_{3}); IR (film) 2933, 2858, 1725, 1472, $1428,1193,1112,1053,821,740,704,505 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.35$ $(\mathrm{m}, 6 \mathrm{H}), 6.85(\mathrm{dd}, J=6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=6.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{ddd}, J=3.2,1.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ $(\mathrm{s}, 3 \mathrm{H}), 3.84(\mathrm{dd}, J=10.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=10.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{ddd}, J=8.6,8.6,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.11-3.04(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3(\mathrm{C}), 145.4(\mathrm{CH}), 135.74(\mathrm{CH}), 135.72(\mathrm{CH}), 133.7(\mathrm{C}), 133.6(\mathrm{C}), 129.8(\mathrm{CH}), 127.8$ $(\mathrm{CH}), 126.5(\mathrm{CH}), 69.4(\mathrm{CH}), 67.8(\mathrm{CH}), 65.3\left(\mathrm{CH}_{2}\right), 65.2(\mathrm{CH}), 64.3\left(\mathrm{CH}_{3}\right), 62.5\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{3}\right), 23.2\left(\mathrm{CH}_{2}\right)$, $20.5\left(\mathrm{CH}_{2}\right), 19.4$ (C); HRMS (ESI), Calcd for $\mathrm{C}_{2} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 481.2523$, found 481.2515. Cis-threo- $\alpha, \boldsymbol{\beta}$ 29ß: $[\alpha]^{25}{ }_{\mathrm{D}}+132.6$ (c 1.0, CHCl_{3}) ; IR (film) 2934, 2859, 1725, 1471, 1428, 1188, 1112, 1049, 824, 741, 704, $506 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.10(\mathrm{dd}, J=6.6,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.18(\mathrm{dd}, J=6.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{ddd}, J=4.6,1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{dd}, J=10.3,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.66(\mathrm{dd}, J=10.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (ddd, $J=8.6,8.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.12(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.85$ $(\mathrm{m}, 1 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7(\mathrm{C}), 144.4(\mathrm{CH}), 135.8(\mathrm{CH}), 135.7(\mathrm{CH}), 133.73(\mathrm{C}), 133.69(\mathrm{C}), 129.8(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7(\mathrm{CH})$, $69.5(\mathrm{CH}), 66.9(\mathrm{CH}), 65.5\left(\mathrm{CH}_{2}\right), 64.2\left(\mathrm{CH}_{3}\right), 64.0(\mathrm{CH}), 63.3\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{3}\right), 24.0\left(\mathrm{CH}_{2}\right), 20.5\left(\mathrm{CH}_{2}\right), 19.4$ (C); HRMS (ESI), Calcd for $\mathrm{C}_{2} 7 \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 481.2523$, found 481.2519. Cis-enamide 30: a colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}}+46.1$ (c 1.0, CHCl_{3}); IR (film) 2934, 2859, 1723, 1472, 1428, 1190, 1113, 1058, 824, 743, 705, $506 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 6 \mathrm{H}), 5.18$ (ddd, $\left.J=2.6,2.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.95(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{dd}, J=10.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{ddd}, J=8.6,8.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=10.3,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=2.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 1 \mathrm{H})$, $1.87-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8(\mathrm{C}), 145.9(\mathrm{C}), 135.8$ $(\mathrm{CH}), 135.7(\mathrm{CH}), 133.78(\mathrm{C}), 133.76(\mathrm{C}), 129.8(\mathrm{CH}), 127.8(\mathrm{CH}), 97.6(\mathrm{CH}), 69.4(\mathrm{CH}), 65.9\left(\mathrm{CH}_{2}\right), 65.9$ $(\mathrm{CH}), 64.6\left(\mathrm{CH}_{3}\right), 62.9\left(\mathrm{CH}_{3}\right), 34.7\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 19.4(\mathrm{C})$; HRMS (ESI), Calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 481.2523$, found 481.2526 .

Determination of cis- and trans-configuration of dimeric compounds 27-30

27α

29α

27β

28

30

NOESY experiments for bicyclic compounds (27-30) ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Trans-selective nucleophilic addition to afford 28

Preparation of a stock solution of $\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ in $\mathrm{CHCl}_{3}(0.14 \mathrm{mM})$: In a glove box, $\mathrm{CHCl}_{3}(27 \mathrm{~mL})$ was added to $\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(3.0 \mathrm{mg}, 3.9 \mu \mathrm{~mol})$ at room temperature.

In a glove box, $1,1,3,3$-tetramethyldisiloxane ($66 \mu \mathrm{~L}, 380 \mu \mathrm{~mol}, 1.4$ equiv) was added to a mixture of N methoxylactam 19 ($103 \mathrm{mg}, 269 \mu \mathrm{~mol}, 1.0$ equiv) and $\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(0.14 \mathrm{mM}\right.$ in $\mathrm{CHCl}_{3}, 18 \mathrm{~mL}, 2.5 \mu \mathrm{~mol}$, $1.0 \mathrm{~mol} \%$) at room temperature. After maintaining for 1 h at room temperature, $\mathrm{CHCl}_{3}(45 \mathrm{~mL})$ and 1-methoxy-2-((triisopropylsilyl)oxy)-1 H -pyrrole 22 ($217 \mathrm{mg}, 805 \mu \mathrm{~mol}, 3.0$ equiv) were added to the solution. After the flask was removed from the glove box, scandium trifluoromethanesulfonate ($132 \mathrm{mg}, 268 \mu \mathrm{~mol}, 1.0$ equiv) was added to the solution at $-60^{\circ} \mathrm{C}$. After stirring for 12 h at $-60^{\circ} \mathrm{C}$, the solution was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x} 60 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was filtrated through a pad of basified silica gel (EtOAc/hexane 1:5 to 1:3) to give a mixture of a mixture of trans-adducts 27, 28, and cis-adducts 29, $\mathbf{3 0}$.

Sodium bis(trimethylsilyl)amide (1.0 M in THF, $740 \mu \mathrm{~L}, 740 \mu \mathrm{~mol}, 2.8$ equiv) was added to a solution of a mixture of trans-adducts 27, 28, and cis-adducts 29, $\mathbf{3 0}(127 \mathrm{mg}, 264 \mu \mathrm{~mol}, 1.0$ equiv) and THF (4.0 mL) at $78^{\circ} \mathrm{C}$. After maintaining for 10 min at $-78^{\circ} \mathrm{C}$, acetic acid ($44 \mu \mathrm{~L}, 763 \mu \mathrm{~mol}, 2.9$ equiv) was added to the solution at $-78^{\circ} \mathrm{C}$. After maintaining for 10 min at $-78^{\circ} \mathrm{C}$, the solution was quenched with aqueous saturated NaHCO_{3} $(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x} 10 \mathrm{~mL})$. The residue was filtrated through a pad of silica gel (EtOAc) and concentrated. The mixture of trans-enamide $\mathbf{2 8}$ and cis-enamide $\mathbf{3 0}$ was purified by HPLC with recycle unit (PEGASIL Silica 120-5, $250 \times 10 \mathrm{~mm}$, EtOAc/hexane 1:1, $10 \mathrm{~mL} / \mathrm{min}, 4$ cycles, 28: $\mathrm{T}_{\mathrm{R}}=49.2 \mathrm{~min}, \mathbf{3 0}: \mathrm{T}_{\mathrm{R}}=$ $45.8 \mathrm{~min})$ to afford of 91.5 mg of trans-enamide ($\mathbf{2 8}, 57 \%$) and 2.7 mg cis-enamide ($\mathbf{3 0}, \mathbf{1 6 \%}$).

Cis-selective nucleophilic addition to afford 30

Preparation of a stock solution of $\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ in toluene $(0.14 \mathrm{mM})$: In a glove box, toluene $(18 \mathrm{~mL})$ was added to $\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(2.0 \mathrm{mg}, 2.6 \mu \mathrm{~mol})$ at room temperature.

In a glove box, $1,1,3,3$-tetramethyldisiloxane $(23 \mu \mathrm{~L}, 130 \mu \mathrm{~mol}, 1.4$ equiv $)$ was added to a mixture of N methoxylactam $19\left(34.8 \mathrm{mg}, 90.7 \mu \mathrm{~mol}, 1.0\right.$ equiv) and $\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(0.14 \mathrm{mM}$ in toluene, $5.9 \mathrm{~mL}, 0.83$ $\mu \mathrm{mol}, 1.0 \mathrm{~mol} \%)$ at room temperature. After maintaining for 1 h at room temperature, $\mathrm{MeCN}(30 \mathrm{~mL})$ was added to the solution. Then, 1-methoxy-2-((triisopropylsilyl)oxy)-1H-pyrrole 22 ($73.3 \mathrm{mg}, 272 \mu \mathrm{~mol}, 3.0$ equiv) and $\mathrm{Sc}(\mathrm{OTf})_{3}(3.4 \mathrm{mg}, 6.9 \mu \mathrm{~mol}, 7.6 \mathrm{~mol} \%)$ were added to the solution at room temperature. The flask was removed from the glove box. After maintaining for 5 h at room temperature, the solution was filtrated through a pad of activated aluminum oxide (10 cc), washed with $\mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}(1: 0.01)$, and concentrated. The residue was filtrated through a pad of basified silica gel (EtOAc/hexane 1:5 to 1:3) to give a mixture of cis-adducts 29, 30 and trans-adducts 27, 28 ($26.9 \mathrm{mg}, 62 \%$ combined yield, cis-adducts 29, 30:trans-adducts 27, $28=5.5: 1$, The ration was determined by ${ }^{1} \mathrm{H}$ NMR).

Sodium bis(trimethylsilyl)amide (1.0 M in THF, $100 \mu \mathrm{~L}, 100 \mu \mathrm{~mol}, 1.8$ equiv) was added to a solution of a mixture of cis-adducts 29, 30 and trans-adducts 27, $28(26.9 \mathrm{mg}$, cis-(29, 30):trans-(27, 28) $=5.5: 1,56.0 \mu \mathrm{~mol}$, 1.0 equiv) and THF $(1.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After maintaining for 10 min at $-78^{\circ} \mathrm{C}$, acetic acid $(6.4 \mu \mathrm{~L}, 110 \mu \mathrm{~mol}$, 2.0 equiv) was added to the solution at $-78^{\circ} \mathrm{C}$. After maintaining for 10 min at $-78{ }^{\circ} \mathrm{C}$, the solution was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x} 10 \mathrm{~mL})$. The residue was filtrated through a pad of silica gel (EtOAc) and concentrated. The mixture of cis-enamide $\mathbf{3 0}$ and trans-enamide 28 was purified by HPLC with recycle unit (PEGASIL Silica $120-5,250 \times 10 \mathrm{~mm}$, EtOAc/hexane $1: 1,10 \mathrm{~mL} / \mathrm{min}$, 2 cycles, 30: $\mathrm{T}_{\mathrm{R}}=26.4 \mathrm{~min}, \mathbf{2 8}: \mathrm{T}_{\mathrm{R}}=31.2 \mathrm{~min}$) to afford 18.9 mg of cis-enamide $\mathbf{(3 0 , 4 3 \%}$) and 3.3 mg of transenamide (28, 8\%).

2-3. Elucidation of the retro-vinylogous Mannich reaction

N-Benzyloxysiloxypyrrole (31)

A solution of benzyloxyamine hydrochloride ($200 \mathrm{mg}, 1.25 \mathrm{mmol}, 1.1$ equiv) and $\mathrm{H}_{2} \mathrm{O}(6.0 \mathrm{~mL})$ was added dropwise over 3 h to a solution of 2,5-dihydro-2,5-dimethoxyfuran $\mathbf{5 0}$ ($140 \mu \mathrm{~L}, 1.1 \mathrm{mmol}, 1.0$ equiv), aqueous $1.0 \mathrm{M} \mathrm{HCl}\left(230 \mu \mathrm{~L}, 230 \mu \mathrm{~mol}, 0.2\right.$ equiv) and $\mathrm{H}_{2} \mathrm{O}(1.2 \mathrm{~mL})$ at room temperature. Then, solid NaHCO_{3} was added to the mixture until the mixture was neutralized. The resulting mixture was extracted with CHCl_{3} (4x 5 $\mathrm{mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was filtrated through a pad of silica gel (EtOAc/hexane 1:4 to 2:3) to give crude mixture, which was used in the next reaction without further purification.

Sodium bis(trimethylsilyl)amide (1.0 M in THF, $620 \mu \mathrm{~L}, 620 \mu \mathrm{~mol}, 1.1$ equiv) was added to a solution of crude mixture ($107 \mathrm{mg}, 566 \mu \mathrm{~mol}, 1.0$ equiv) and THF (2.0 mL) at $-78^{\circ} \mathrm{C}$. After maintaining for 10 min at $78^{\circ} \mathrm{C}$, triisopropylsilyl chloride ($120 \mu \mathrm{~L}, 570 \mathrm{mmol}, 1.0$ equiv) was added to the solution at $-78^{\circ} \mathrm{C}$. The solution was allowed to warm to room temperature, stirred for 12 h , and diluted with hexane (20 mL). The resulting mixture was filtered through a pad of activated aluminum oxide and washed with hexane. The filtrate was concentrated to give 155 mg of N-benzyloxy-2-siloxypyrrole 31 (47% over 2 steps): a pale yellow oil; IR (film) 2945, 2868, 1567, 1476, 1432, 1157, 1056, 903, 842, $660 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.33(\mathrm{~m}$, $5 \mathrm{H}), 6.17(\mathrm{dd}, J=3.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dd}, J=4.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=4.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H})$, 1.32 (sep, $J=7.3,3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.5(\mathrm{C}), 134.9(\mathrm{C}), 129.6$ $(\mathrm{CH}), 129.0(\mathrm{CH}), 128.6(\mathrm{CH}), 108.5(\mathrm{CH}), 100.0(\mathrm{CH}), 85.4(\mathrm{CH}), 80.7\left(\mathrm{CH}_{2}\right), 17.9\left(\mathrm{CH}_{3}\right), 12.4(\mathrm{CH})$; HRMS (ESI), Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 346.2197$, found 346.2190 .

N-OMe- N '-OBn-Enamide (33)

Preparation of a stock solution of $\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ in toluene $(0.14 \mathrm{mM})$: In a glove box, toluene $(18 \mathrm{~mL})$ was added to $\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(2.0 \mathrm{mg}, 2.6 \mu \mathrm{~mol})$ at room temperature.

In a glove box, $1,1,3,3$-tetramethyldisiloxane ($28 \mu \mathrm{~L}, 160 \mu \mathrm{~mol}, 1.5$ equiv) was added to a mixture of N methoxylactam $19(40.0 \mathrm{mg}, 104 \mu \mathrm{~mol}, 1.0$ equiv $)$ and $\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(0.14 \mathrm{mM}$ in toluene, $7.0 \mathrm{~mL}, 0.98$ $\mu \mathrm{mol}, 1.0 \mathrm{~mol} \%)$ at room temperature. After maintaining for 1 h at room temperature, $\mathrm{MeCN}(14 \mathrm{~mL})$ and $1-$ benzyloxy-2-((triisopropylsilyl)oxy)-1H-pyrrole 35 ($108 \mathrm{mg}, 313 \mu \mathrm{~mol}, 3.0$ equiv) were added to the solution.

After the flask was removed from the glove box, scandium trifluoromethanesulfonate ($15.4 \mathrm{mg}, 31.1 \mu \mathrm{~mol}, 0.3$ equiv) was added to the solution at $-25^{\circ} \mathrm{C}$. After maintaining for 16 h at $-25^{\circ} \mathrm{C}$, the solution was filtrated through a pad of activated aluminum oxide (10 cc), washed with $\mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}(1: 0.01$), and concentrated. The residue was filtrated through a pad of basified silica gel (EtOAc/hexane 1:5 to 1:3) to give a mixture of bicyclic compounds.

Sodium bis(trimethylsilyl)amide (1.0 M in THF, $310 \mu \mathrm{~L}, 310 \mu \mathrm{~mol}, 3.0$ equiv) was added to a solution of a mixture of bicyclic compounds ($57.7 \mathrm{mg}, 104 \mu \mathrm{~mol}, 1.0$ equiv) and THF (3.0 mL) at $-78^{\circ} \mathrm{C}$. After maintaining for 10 min at $-78{ }^{\circ} \mathrm{C}$, acetic acid ($18 \mu \mathrm{~L}, 310 \mu \mathrm{~mol}, 3.0$ equiv) was added to the solution at $-78{ }^{\circ} \mathrm{C}$. After maintaining for 10 min at $-78^{\circ} \mathrm{C}$, the solution was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with CHCl_{3} ($3 \times 10 \mathrm{~mL}$). The residue was filtrated through a pad of silica gel (EtOAc) to give a mixture of bicyclic cis-enamide $\mathbf{3 3} \alpha$ and trans-enamide $\mathbf{3 7} \beta(56.5 \mathrm{mg}$, 97% over 2 steps, $\mathbf{3 3} \alpha: \mathbf{3 3 \beta}=2.1: 1$, The ration was determined by ${ }^{1} \mathrm{H}$ NMR). For analytical samples, a mixture of cis-enamide $\mathbf{3 3} \alpha$ and trans-enamide $\mathbf{3 3} \beta$ was purified by HPLC with recycle unit (PEGASIL Silica 120-5, $250 \times 10 \mathrm{~mm}$, EtOAc/hexane 1:1, $10 \mathrm{~mL} / \mathrm{min}, 2$ cycles, $\left.\mathbf{3 3} \alpha: \mathrm{T}_{\mathrm{R}}=30.6 \mathrm{~min}, \mathbf{3 3 \beta}: \mathrm{T}_{\mathrm{R}}=36.6 \mathrm{~min}\right)$. Cis-enamide $\mathbf{3 3} \alpha$: a colorless oil; $[\alpha]^{24} \mathrm{D}+30.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (film) 2932, 2858, 1722, 1470, 1428, 1113, 998, 824, 743, 700, $505 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.72-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.33(\mathrm{~m}, 6 \mathrm{H}), 5.20(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.17(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90(\mathrm{dd}, J=10.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=10.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H})$, $3.23-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=1.6,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 1 \mathrm{H})$, $1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.1$ (C), 146.5 (C), 135.7 (CH), $135.7(\mathrm{CH}), 134.7$ (C), 133.8 (C), $129.8(\mathrm{CH}), 129.6(\mathrm{CH}), 127.8(\mathrm{CH}), 97.2(\mathrm{CH}), 78.6(\mathrm{CH}), 69.5(\mathrm{CH}), 66.2\left(\mathrm{CH}_{2}\right), 64.4(\mathrm{CH}), 62.9\left(\mathrm{CH}_{3}\right)$, $34.8\left(\mathrm{CH}_{2}\right)$, $27.1\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right)$, $24.9\left(\mathrm{CH}_{2}\right)$, $19.4(\mathrm{C})$; HRMS (ESI), Calcd for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$ 557.2836, found 557.2827. Trans-enamide 33 β : a colorless oil; $[\alpha]^{24} \mathrm{D}-0.146$ ($c 1.0, \mathrm{CHCl}_{3}$); IR (film) 2934, $2858,1781,1457,1428,1113,999,824,742,703,506 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.65(\mathrm{~m}, 4 \mathrm{H})$, $7.46-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 5.23(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{ddd}, J=2.7$, $2.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=10.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=10.1,6.4 \mathrm{~Hz})$, $3.51-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.87-$ $1.75(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.6(\mathrm{C}), 144.7$ (C), 135.79 $(\mathrm{CH}), 135.77(\mathrm{CH}), 134.8(\mathrm{C}), 133.7(\mathrm{C}), 129.8(\mathrm{CH}), 129.7(\mathrm{CH}), 129.0(\mathrm{CH}), 128.6(\mathrm{CH}), 127.8(\mathrm{CH}), 127.8$ $(\mathrm{CH}), 98.1(\mathrm{CH}), 78.6(\mathrm{CH}), 67.1(\mathrm{CH}), 64.2\left(\mathrm{CH}_{2}\right), 61.8(\mathrm{CH}), 61.1\left(\mathrm{CH}_{3}\right), 34.8\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 26.4\left(\mathrm{CH}_{2}\right)$, $25.2\left(\mathrm{CH}_{2}\right), 19.4(\mathrm{C}) ;$ HRMS (ESI), Calcd for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 557.2836$, found 557.2831.

NOESY experiments for $\mathbf{3 3} \alpha\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and $\mathbf{3 3} \boldsymbol{\beta}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Confirmation of the retro-Mannich reaction

Scandium trifluoromethanesulfonate ($2.3 \mathrm{mg}, 4.7 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) was added to the solution of bicyclic compounds (44.5 mg , trans-[27+28]:cis-[29+30] $=1: 5.8,92.6 \mu \mathrm{~mol}, 1.0$ equiv), 1-benzyloxy-2-((triisopropylsilyl)oxy)-1H-pyrrole $31(96.0 \mathrm{mg}, 278 \mu \mathrm{~mol}, 3.0$ equiv), toluene $(6.2 \mathrm{~mL})$ and $\mathrm{MeCN}(31 \mathrm{~mL})$ at room temperature. After maintaining for 16 h at room temperature, the solution was filtrated through a pad of activated aluminum oxide (10 cc), washed with $\mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}(1: 0.01)$, and concentrated. The residue was filtrated through a pad of basified silica gel (EtOAc/hexane 1:5 to 1:3) to give a mixture of bicyclic compounds.

Sodium bis(trimethylsilyl)amide (1.0 M in $\mathrm{THF}, 238 \mu \mathrm{~L}, 238 \mu \mathrm{~mol}$, 2.6 equiv) was added to a solution of a mixture of bicyclic compounds (44.1 mg) and THF $(3.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After maintaining for 10 min at $-78^{\circ} \mathrm{C}$, acetic acid ($14 \mu \mathrm{~L}, 250 \mu \mathrm{~mol}$, 2.6 equiv) was added to the solution at $-78^{\circ} \mathrm{C}$. After maintaining for 10 min at $78{ }^{\circ} \mathrm{C}$, the solution was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x} 10$ mL). The residue was filtrated through a pad of silica gel (EtOAc) to give 42.3 mg of a mixture of $N-\mathrm{OMe}-\mathrm{N}^{\prime}-$ OMe-enamides $(\mathbf{2 8}, \mathbf{3 0})$ and N-OMe- N '-OBn-enamide (33) [N-OMe- N '-OMe-enamide $(\mathbf{2 8}, \mathbf{3 0})$: 44\% combined yield, $\mathbf{2 8}$ (trans):30 (cis) = 1:7.0, N-OMe- N '-OBn-enamide (33): 44\% combined yield, trans:cis $=1: 2.0$, The ratios were determined by ${ }^{1} \mathrm{H}$ NMR].

2-4. Synthesis of 2-oxo-bispyrrolidine

Erythro-selective hydrogenation to afford 34

Rhodium on alumina ($10.4 \mathrm{mg}, 20 \mathrm{wt} \%$) was added to a solution of trans-enamide 28 ($51.8 \mathrm{mg}, 10.8 \mu \mathrm{~mol}, 1.0$ equiv) and EtOAc (10 mL). The flask was purged with hydrogen. The mixture was stirred under hydrogen atmosphere (1 atm) at room temperature for 10 h . Ethyl acetate was removed under reduced pressure. The residue was filtrated through basified silica gel (1 cc), washed with EtOAc. The mixture of trans-erythro lactam 34 and trans-threo lactam 35 was purified by reversed-phase HPLC with recycle unit (PEGASIL ODS SP100, $250 \times 10 \mathrm{~mm}, \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} / \mathrm{TFA} 94.9: 5: 0.1,5 \mathrm{~mL} / \mathrm{min}, 34: 5$ cycles, $\mathrm{T}_{\mathrm{R}}=178.7 \mathrm{~min}, \mathbf{3 5}: 4$ cycles, $\mathrm{T}_{\mathrm{R}}=134.2$ min) to afford 30.1 mg of trans-erythro-lactam (34, 58\%) and 9.4 mg of trans-threo-lactam (35, 18\%). Trans-erythro-lactam 34: a colorless oil; $[\alpha]^{25}{ }^{\mathrm{D}}$-6.4 (c 1.0, CHCl_{3}); IR (film) 2933, 2858, 1720, 1463, 1428, 1192, $1112,1053,825,742,704,504 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.33(\mathrm{~m}, 6 \mathrm{H})$, $3.90-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.47-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{brs}, 1 \mathrm{H}), 2.38$ (ddd, $J=17.2,9.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.25$ (ddd, $J=17.2,8.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.99-1.87(\mathrm{~m}, 1 \mathrm{H})$, $1.76-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6$ (C), 135.77 (CH), 135.75 (CH), 133.69 (C), $133.67(\mathrm{C}), 129.82(\mathrm{CH}), 129.81(\mathrm{CH}), 127.8(\mathrm{CH}), 68.3(\mathrm{CH}), 67.4(\mathrm{CH}), 63.8\left(\mathrm{CH}_{2}\right), 62.2\left(\mathrm{CH}_{3}\right), 60.2$ $\left(\mathrm{CH}_{3}\right)$, $58.5(\mathrm{CH}), 27.1\left(\mathrm{CH}_{2}\right)$, $27.0\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 19.4\left(\mathrm{CH}_{2}\right), 19.3(\mathrm{C})$; HRMS (ESI), Calcd for $\mathrm{C}_{2} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+} 505.2493$, found 505.2490. Trans-threo-lactam 35: a colorless oil; $[\alpha]^{25}{ }_{\mathrm{D}}-27.0$ (c 1.0, CHCl_{3}); IR (film) 2934, 2858, 1720, 1471, 1428, 1186, 1112, 1054, 824, 742, 704, $505 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 4.13(\mathrm{ddd}, J=6.9,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $3.74(\mathrm{dd}, J=10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.22(\mathrm{~m}$, $2 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.9(\mathrm{C}), 135.8(\mathrm{CH}), 133.6(\mathrm{C}), 129.82(\mathrm{CH}), 129.79(\mathrm{CH}), 127.80(\mathrm{CH}), 127.79(\mathrm{CH}), 67.02$ $(\mathrm{CH}), 67.01(\mathrm{CH}), 64.0\left(\mathrm{CH}_{2}\right), 62.7\left(\mathrm{CH}_{3}\right), 60.3\left(\mathrm{CH}_{3}\right), 57.1(\mathrm{CH}), 27.4\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 24.5\left(\mathrm{CH}_{2}\right), 23.2$ $\left(\mathrm{CH}_{2}\right), 19.3(\mathrm{C}), 18.6\left(\mathrm{CH}_{2}\right)$; HRMS (ESI), Calcd for $\mathrm{C}_{2} 7 \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+} 505.2493$, found 505.2489

Threo-selective hydride reduction to afford 35

Hydrochloric acid ($1.0 \mathrm{M}, 2.3 \mathrm{~mL}, 2.3 \mathrm{mmol}, 20$ equiv) was added to a mixture of trans-enamide 28 (55.3 mg , $115 \mu \mathrm{~mol}, 1.0$ equiv), $\mathrm{NaBH}_{3} \mathrm{CN}$ ($217 \mathrm{mg}, 3.45 \mathrm{mmol}, 30$ equiv), 15 -crown- 5 ($670 \mu \mathrm{~L}, 3.44 \mathrm{mmol}, 30$ equiv) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. After stirring for 3 h , the mixture was quenched with aqueous saturated NaHCO_{3}
$(20 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$ and extracted with EtOAc/hexane $=1: 1(5 \times 30 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was filtrated through silica gel (1 cc), washed with EtOAc. The mixture of trans-erythro-lactam 34 and trans-threo-lactam 35 was purified by reversed-phase HPLC with recycle unit (PEGASIL ODS SP100, $250 \times 10 \mathrm{~mm}, \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} / \mathrm{TFA} 94.9: 5: 0.1,10 \mathrm{~mL} / \mathrm{min}, 5$ cycles, 34: $\left.\mathrm{T}_{\mathrm{R}}=83.6 \mathrm{~min}, \mathbf{3 5}: \mathrm{T}_{\mathrm{R}}=77.6 \mathrm{~min}\right)$ to afford 15.6 mg of trans-erythro-lactam $(\mathbf{3 4}, 28 \%)$ and 27.6 mg of trans-threo-lactam (35, 50\%).

Threo-selective hydrogenation to afford 36

Rhodium on alumina ($9.7 \mathrm{mg}, 30 \mathrm{wt} \%$) was added to a solution of cis-enamide 30 ($32.3 \mathrm{mg}, 67.2 \mu \mathrm{~mol}, 1.0$ equiv) and $\mathrm{EtOH}(4.0 \mathrm{~mL})$. The flask was purged with hydrogen. The mixture was stirred under hydrogen atmosphere (1 atm) at room temperature for 2.5 h . Ethanol was removed under reduced pressure. The residue was filtrated through a pad of silica gel (EtOAc) and concentrated. The mixture of cis-threo-lactam 36 and cis-erythro-lactam 37 was purified by HPLC with recycle unit (PEGASIL Silica 120-5, 250× 10 mm , EtOAc/hexane 2:1, $10 \mathrm{~mL} / \mathrm{min}, 7$ cycles, $\mathbf{3 6}: \mathrm{T}_{\mathrm{R}}=157.7 \mathrm{~min}, \mathbf{3 7}: \mathrm{T}_{\mathrm{R}}=168.6 \mathrm{~min}$) to afford 16.8 mg of cis-threo-lactam (36, 52%) and 5.8 mg of cis-erythro-lactam (37, 18\%). Cis-threo-lactam 36: a colorless oil; $[\alpha]^{25}{ }_{\mathrm{D}}+25.0(c 1.0$, CHCl_{3}); IR (film) 2933, 2858, 1719, 1472, 1428, 1113, 1056, 940, 860, 824, 704, 506 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.72-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 6 \mathrm{H}), 4.14(\mathrm{ddd}, J=8.0,5.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=10.3,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{dd}, J=10.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{dd}$, $J=8.2,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.13-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.35$ (m, 1H), $1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0(\mathrm{C}), 135.8(\mathrm{CH}), 135.7(\mathrm{CH}), 133.79(\mathrm{C}), 133.76$ (C), $129.8(\mathrm{CH}), 127.79(\mathrm{CH}), 127.77(\mathrm{CH}), 69.2(\mathrm{CH}), 67.2(\mathrm{CH}), 65.7\left(\mathrm{CH}_{2}\right), 63.1\left(\mathrm{CH}_{3}\right), 62.4\left(\mathrm{CH}_{3}\right), 56.4$ $(\mathrm{CH}), 27.3\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{CH}_{2}\right), 20.6\left(\mathrm{CH}_{2}\right), 19.4(\mathrm{C}), 16.4\left(\mathrm{CH}_{2}\right)$; HRMS (ESI), Calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{KN}_{2} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{K})^{+}$521.2232, found 521.2208. Cis-erythro-lactam 37: a colorless oil; $[\alpha]^{25}{ }_{D}-7.4$ (c 1.0, CHCl_{3}); IR (film) 2932, 2858, 1718, 1472, 1428, 1188, 1112, 1055, 824, 742, 704, $505 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.86-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=10.3,4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=10.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{ddd}, J=8.7,8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.15(\mathrm{~m}, 1 \mathrm{H})$, $2.47-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.42$ (m, 1H), $1.05(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3(\mathrm{C}), 135.75(\mathrm{CH}), 135.72(\mathrm{CH}), 133.71(\mathrm{C}), 133.65$ $(\mathrm{C}), 129.8(\mathrm{CH}), 127.8(\mathrm{CH}), 70.2(\mathrm{CH}), 68.0(\mathrm{CH}), 65.6\left(\mathrm{CH}_{2}\right), 62.3\left(\mathrm{CH}_{3}\right), 62.2\left(\mathrm{CH}_{3}\right), 58.9(\mathrm{CH}), 27.2\left(\mathrm{CH}_{2}\right)$, $27.0\left(\mathrm{CH}_{3}\right)$, $24.1\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{2}\right)$, $19.4(\mathrm{C}), 17.7\left(\mathrm{CH}_{2}\right)$; HRMS (ESI), Calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$ 483.2674, found 483.2673.

Erythro-selective hydride reduction to afford 36

Trifluoroacetic acid ($77 \mu \mathrm{~L}, 100 \mathrm{mmol}, 15$ equiv) was added to a mixture of cis-enamide $\mathbf{3 0}$ ($32.1 \mathrm{mg}, 66.8$ $\mu \mathrm{mol}, 1.0$ equiv), $\mathrm{NaBH}_{3} \mathrm{CN}\left(126 \mathrm{mg}, 2.01 \mathrm{mmol}, 30\right.$ equiv) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at room temperature. After stirring for 15 h , the mixture was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5.0 \mathrm{~mL})$ and extracted with CHCl_{3} ($4 \times 10 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1:4 to 1:1) to give a mixture of cis-threo-lactam 36 and cis-erythro-lactam $\mathbf{3 7}$ ($21.1 \mathrm{mg}, 66 \%$ combined yield, $\mathbf{3 6 : 3 7}=1: 2.0$, The ratio was determined by ${ }^{1} \mathrm{H}$ NMR).

Determination of threo- and erythro-configuration of dimeric compounds 51, 53, 55, and 57

Trans-erythro-bispyrrolidine 38

In a glove box, 1,1,3,3-tetramethyldisiloxane ($66 \mu \mathrm{~L}, 370 \mu \mathrm{~mol}, 6.0$ equiv) was added to a mixture of trans-erythro-lactam 34 ($29.8 \mathrm{mg}, 61.7 \mu \mathrm{~mol}, 1.0$ equiv), $\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(2.4 \mathrm{mg}, 3.1 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$ and toluene $(4.1 \mathrm{~mL})$ at room temperature. After maintaining for 1 h at room temperature, $\mathrm{Sc}(\mathrm{OTf})_{3}(15.3 \mathrm{mg}, 31.1 \mu \mathrm{~mol}$, 0.5 equiv) was added to the solution at room temperature. The flask was removed from the glove box. After maintaining for 12 h at room temperature, the solution was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by preparative layer chromatography (EtOAc/hexane 1:7) to give 24.6 mg of trans-erythro-bispyrrolidine (38: 85\%): a colorless oil; $[\alpha]^{23}{ }_{\mathrm{D}}+11.3$ (c 1.0, CHCl_{3}); IR (film) 2935, 2806, 1465, 1428, $1113,1051,1008,938,824,740,703,505 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.35$ $(\mathrm{m}, 6 \mathrm{H}), 3.73-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.15$ (brs, 2H), 2.92 (ddd, $J=11.4,7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{brs}, 1 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.92-$
$1.70(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.84(\mathrm{CH}), 135.79(\mathrm{CH})$, $133.95(\mathrm{C}), 133.86(\mathrm{C}), 129.7(\mathrm{CH}), 127.7(\mathrm{CH}), 70.4(\mathrm{CH}), 69.9(\mathrm{CH}), 69.2(\mathrm{CH}), 65.1\left(\mathrm{CH}_{2}\right), 60.0\left(\mathrm{CH}_{3}\right), 59.9$ $\left(\mathrm{CH}_{3}\right), 56.1\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.2\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right), 19.3(\mathrm{C})$; HRMS (ESI), Calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 469.2881$, found 469.2877 .

Trans-erythro-urea (51)

A mixture of trans-erythro-bispyrrolidine $\mathbf{3 8}(20.4 \mathrm{mg}, 43.5 \mu \mathrm{~mol}, 1.0$ equiv), activated zinc (powder, 1.71 g , 26.2 mmol, 600 equiv), $\mathrm{NH}_{4} \mathrm{Cl}(1.40 \mathrm{~g}, 26.2 \mathrm{mmol}, 600$ equiv $)$ and $\mathrm{EtOH}(5.0 \mathrm{~mL})$ was warmed to $80^{\circ} \mathrm{C}$, stirred at $80^{\circ} \mathrm{C}$ for 12 h , and cooled to room temperature. The mixture was quenched with aqueous saturated NaHCO_{3} (5 mL), and extracted with $\mathrm{CHCl}_{3}(10 \mathrm{x} 5 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was filtrated through a pad of silica gel (1 cc), washed with MeOH , to give mixture of reductants, which was immediately used in the next reaction without further purification.

Bis(trichloromethyl) Carbonate ($194 \mathrm{mg}, 654 \mu \mathrm{~mol}, 15$ equiv) was added to a solution of the above mixture of reductants, triethylamine ($360 \mu \mathrm{~L}, 2.60 \mathrm{mmol}$, 60 equiv) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ at room temperature. After maintaining for 12 h at room temperature, the solution was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and extracted with $\mathrm{CHCl}_{3}(5 \mathrm{x} 5 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by preparative layer chromatography (EtOAc/hexane $1: 2$) to give 4.8 mg of trans-erythro-urea (51: 25% over 2 steps): a colorless oil; $[\alpha]^{23}{ }_{\mathrm{D}}-24.0\left(c 1.0, \mathrm{CHCl}_{3}\right.$); IR (film) 2956, 2858, 1702, 1399, 1326, 1279, 1112, 773, 704, $506 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.87-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.19(\mathrm{~m}$, $6 \mathrm{H}), 4.24-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.69(\mathrm{~m}, 3 \mathrm{H}), 3.53(\mathrm{ddd}, J=9.5,8.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{ddd}, J=15.2,8.0,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.72(\mathrm{ddd}, J=10.9,7.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.20$ $(\mathrm{s}, 9 \mathrm{H}), 1.07(\mathrm{ddd}, J=12.2,10.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.96-0.84(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 165.2$ (C), $136.13(\mathrm{CH}), 136.11(\mathrm{CH}), 134.23(\mathrm{C}), 134.19(\mathrm{C}), 130.0(\mathrm{CH}), 128.1(\mathrm{CH}), 67.1\left(\mathrm{CH}_{2}\right), 61.1(\mathrm{CH}), 59.8(\mathrm{CH})$, $58.6(\mathrm{CH}), 45.0\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 19.6(\mathrm{C})$; HRMS (ESI), Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{KN}_{2} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{K})^{+} 473.2021$, found 473.1998 .

NOESY experiment for trans-erythro-urea $51\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

51 ($P=$ TBDPS $)$

Trans-threo-bispyrrolidine (52)

In a glove box, 1,1,3,3-tetramethyldisiloxane ($49 \mu \mathrm{~L}, 280 \mu \mathrm{~mol}, 6.0$ equiv) was added to a mixture of trans-threo-lactam 35 ($22.3 \mathrm{mg}, 46.2 \mu \mathrm{~mol}, 1.0$ equiv), $\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(1.8 \mathrm{mg}, 2.3 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and toluene (3.1 mL) at room temperature. After maintaining for 1 h at room temperature, $\mathrm{Sc}(\mathrm{OTf})_{3}(11.4 \mathrm{mg}, 23.2 \mu \mathrm{~mol}, 0.5$ equiv) was added to the solution at room temperature. The flask was removed from the glove box. After maintaining for 12 h at room temperature, the solution was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x} 5 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by preparative layer chromatography (EtOAc/hexane 1:7) to give 17.8 mg of trans-threo-bipyrrolidine (52: 82\%): a colorless oil; [$\alpha]^{23}{ }^{\mathrm{D}}-25.5$ (c 1.0, CHCl_{3}); IR (film) 2934, 2858, 1471, 1426, 1113, 1058, 1008, 938, 824, 741, 703, $505 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.34$ (m, 6H), 3.80 (dd, $J=10.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (dd, $J=10.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.55 ($\mathrm{s}, 3 \mathrm{H}$), $3.51-3.43$ (m, 1H), 3.47 ($\mathrm{s}, 3 \mathrm{H}$), $3.38(\mathrm{~m}, 3 \mathrm{H}), 2.82(\mathrm{ddd}, J=10.5,8.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.45$ (m, 1H), $1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.8(\mathrm{CH}), 133.92(\mathrm{C}), 133.89(\mathrm{C}), 129.7(\mathrm{CH}), 127.7$ $(\mathrm{CH}), 68.3(\mathrm{CH}), 68.03(\mathrm{CH}), 67.95(\mathrm{CH}), 64.5\left(\mathrm{CH}_{2}\right), 60.8\left(\mathrm{CH}_{3}\right), 60.5\left(\mathrm{CH}_{3}\right), 55.8\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 25.5$ $\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 21.3\left(\mathrm{CH}_{2}\right), 19.3(\mathrm{C})$; HRMS (ESI), Calcd for $\mathrm{C}_{2} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 469.2881$, found 469.2877 .

Trans-threo-urea (53)

A mixture of trans-threo-bipyrrolidine $\mathbf{5 2}(21.1 \mathrm{mg}, 45.0 \mu \mathrm{~mol}, 1.0$ equiv), activated zinc (powder, $1.77 \mathrm{~g}, 27.1$ mmol, 600 equiv), $\mathrm{NH}_{4} \mathrm{Cl}\left(1.44 \mathrm{~g}, 26.9 \mathrm{mmol}, 600\right.$ equiv) and $\mathrm{EtOH}(5.0 \mathrm{~mL})$ was warmed to $80^{\circ} \mathrm{C}$, stirred at $80^{\circ} \mathrm{C}$ for 12 h , and cooled to room temperature. The mixture was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5$ mL) and extracted with $\mathrm{CHCl}_{3}(10 \mathrm{x} 5 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was filtrated through a pad of silica gel (1 cc), washed with MeOH , to give mixture of reductants, which was immediately used in the next reaction without further purification.

Bis(trichloromethyl) Carbonate ($200 \mathrm{mg}, 674 \mu \mathrm{~mol}, 15$ equiv) was added to a solution of the above mixture of reductants, triethylamine ($374 \mu \mathrm{~L}, 2.70 \mathrm{mmol}, 60$ equiv) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL}$) at room temperature. After maintaining for 12 h at room temperature, the solution was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(5 \mathrm{x} 5 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by preparative layer chromatography (EtOAc/hexane 1:2) to give 4.1 mg of trans-
threo-urea (53: 21\% over 2 steps): a colorless oil; $[\alpha]^{23}$ D -73.3 (c 1.0, CHCl_{3}); IR (film) 2961, 2858, 1705, 1380, 1324, 1262, 1112, 770, 704, $505 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.29(\mathrm{~m}, 6 \mathrm{H})$, 3.91 (dddd, $J=11.9,11.9,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.68$ (m, 2H), 3.65 (ddd, $J=1.8,5.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.56 (ddd, $J=14.6,9.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ (ddd, $J=11.5,9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.91-$ $1.77(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.4(\mathrm{C})$, $135.7(\mathrm{CH}), 133.8(\mathrm{C}), 133.7(\mathrm{C}), 129.8(\mathrm{CH}), 129.7(\mathrm{CH}), 127.78(\mathrm{CH}), 127.76(\mathrm{CH}), 67.1\left(\mathrm{CH}_{2}\right), 62.4(\mathrm{CH})$, $62.1(\mathrm{CH}), 59.1(\mathrm{CH}), 45.6\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{2}\right), 19.5(\mathrm{C})$; HRMS (ESI), Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{KN}_{2} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{K})^{+} 473.2021$, found 473.2002.

NOESY experimen for trans-threo-urea 53 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Cis-threo-bispyrrolidine (54)

In a glove box, $1,1,3,3$-tetramethyldisiloxane ($60 \mu \mathrm{~L}, 340 \mu \mathrm{~mol}, 6.0$ equiv) was added to a mixture of cis-threo-lactam 36 ($27.3 \mathrm{mg}, 56.6 \mu \mathrm{~mol}, 1.0$ equiv), $\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(2.2 \mathrm{mg}, 2.8 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$ and toluene (3.8 $\mathrm{mL})$ at room temperature. After maintaining for 1 h at room temperature, $\mathrm{Sc}(\mathrm{OTf})_{3}(14.6 \mathrm{mg}, 26.7 \mu \mathrm{~mol}, 0.5$ equiv) was added to the solution at room temperature. The flask was removed from the glove box. After maintaining for 12 h at room temperature, the solution was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x} 5 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by preparative layer chromatography (EtOAc/hexane 1:7) to give 23.9 mg of cis-threobispyrrolidine (54: 90\%): a colorless oil; $[\alpha]^{23}{ }_{\mathrm{D}}+21.7$ ($c 1.0, \mathrm{CHCl}_{3}$); IR (film) 2934, 2807, 1471, 1428, 1112, $1059,1007,938,824,741,703,506 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 6 \mathrm{H})$, 3.86 (dd, $J=10.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=10.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.18(\mathrm{~m}, 3 \mathrm{H})$, $3.16-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.76$ (ddd, $J=8.0,8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.43(\mathrm{~m}$, $4 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.8(\mathrm{CH}), 135.7(\mathrm{CH}), 134.02(\mathrm{C}), 134.01(\mathrm{C})$, $129.7(\mathrm{CH}), 127.74(\mathrm{CH}), 127.72(\mathrm{CH}), 69.3(\mathrm{CH}), 68.4(\mathrm{CH}), 68.4(\mathrm{CH}), 66.1\left(\mathrm{CH}_{2}\right), 62.9\left(\mathrm{CH}_{3}\right), 61.0\left(\mathrm{CH}_{3}\right)$, $55.8\left(\mathrm{CH}_{2}\right) 55.8\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right), 21.8\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{2}\right), 19.5(\mathrm{C}) ;$ HRMS (ESI), Calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 469.2881$, found 469.2875 .

Cis-threo-urea (55)

A mixture of cis-threo-bipyrrolidine $54(10.0 \mathrm{mg}, 21.3 \mu \mathrm{~mol}, 1.0$ equiv), activated zinc (powder, $818 \mathrm{mg}, 12.5$ mmol, 600 equiv), $\mathrm{NH}_{4} \mathrm{Cl}\left(685 \mathrm{mg}, 12.5 \mathrm{mmol}, 600\right.$ equiv) and $\mathrm{EtOH}(3.0 \mathrm{~mL})$ was warmed to $80^{\circ} \mathrm{C}$, stirred at $80^{\circ} \mathrm{C}$ for 12 h , and cooled to room temperature. The mixture was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5$ mL) and extracted with $\mathrm{CHCl}_{3}(10 \mathrm{x} 5 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was filtrated through a pad of silica gel (1 cc), washed with MeOH , to give mixture of reductants, which was immediately used in the next reaction without further purification.

Bis(trichloromethyl) Carbonate ($94.9 \mathrm{mg}, 320 \mu \mathrm{~mol}$, 15 equiv) was added to a solution of the above mixture of reductants, triethylamine ($180 \mu \mathrm{~L}, 1.30 \mathrm{mmol}, 60$ equiv) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ at room temperature. After maintaining for 12 h at room temperature, the solution was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(5 \mathrm{x} 5 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated The residue was purified by preparative layer chromatography (EtOAc/hexane 1:2) to give 1.7 mg of cis-threourea (55: 18\% over 2 steps): a colorless oil; $[\alpha]^{23}{ }_{\mathrm{D}}+62.5$ (c 1.0, CHCl_{3}); IR (film) 2958, 2889, 1697, 1395, 1317 , $1267,1112,1052,766,703,505 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 6 \mathrm{H})$ $4.25(\mathrm{dd}, J=10.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=10.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{ddd}, J=10.6,5.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{ddd}$, $J=8.6,6.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dddd}, J=10.9,5.4,2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{ddd}, J=10.9,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.03$ (ddd, $J=10.9,8.6,4.3 \mathrm{~Hz}), 2.15-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.93-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{dddd}, J=11.3$, $11.2,11.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.6(\mathrm{C}), 136.0(\mathrm{CH})$, $135.8(\mathrm{CH}), 134.0(\mathrm{C}), 133.4(\mathrm{C}), 129.72(\mathrm{CH}), 129.68(\mathrm{CH}), 127.74(\mathrm{CH}), 127.73(\mathrm{CH}), 65.7(\mathrm{CH}), 62.2\left(\mathrm{CH}_{2}\right)$, $62.0(\mathrm{CH}), 57.7(\mathrm{CH}), 45.2\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{2}\right), 19.5(\mathrm{C})$; HRMS (ESI), Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+} 457.2282$, found 457.2265.

NOESY experiment for cis-threo-urea $55\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Cis-erythro-bipyrrolidine (56)

In a glove box, 1,1,3,3-tetramethyldisiloxane ($65 \mu \mathrm{~L}, 370 \mu \mathrm{~mol}, 6.0$ equiv) was added to a mixture of cis-erythro-lactam 37 ($29.6 \mathrm{mg}, 61.3 \mu \mathrm{~mol}, 1.0$ equiv), $\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(2.4 \mathrm{mg}, 3.1 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$ and toluene $(4.1 \mathrm{~mL})$ at room temperature. After maintaining for 1 h at room temperature, $\mathrm{Sc}(\mathrm{OTf})_{3}(15.2 \mathrm{mg}, 30.9 \mu \mathrm{~mol}$, 0.5 equiv) was added to the solution at room temperature. The flask was removed from the glove box. After maintaining for 12 h at room temperature, the solution was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x} 5 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by preparative layer chromatography (EtOAc/hexane $1: 7$) to give 23.5 mg of cis-erythro-bispyrrolidine (56: 82%). $[\alpha]^{24}{ }_{\mathrm{D}}-16.0\left(c 1.0, \mathrm{CHCl}_{3}\right.$); IR (film) 2933, 2805, 1471, 1428, 1112, 1056, $1007,939,823,740,702,505 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 3.84$ $(\mathrm{dd}, J=10.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=10.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.19$ (m, 1H), 3.05 (ddd, $J=7.3,7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{ddd}, J=7.3,7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{ddd}, J=10.3,8.0 .8 .0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.00-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.83-1.54(\mathrm{~m}, 5 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.80(\mathrm{CH})$, $135.76(\mathrm{CH}), 133.98(\mathrm{C}), 133.95(\mathrm{C}), 129.7(\mathrm{CH}), 127.7(\mathrm{CH}), 70.4(\mathrm{CH}), 70.0(\mathrm{CH}), 70.0(\mathrm{CH}), 66.3\left(\mathrm{CH}_{2}\right)$, $62.1\left(\mathrm{CH}_{2}\right), 60.4\left(\mathrm{CH}_{3}\right), 56.1\left(\mathrm{CH}_{2}\right), 55.8\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right), 21.3\left(\mathrm{CH}_{2}\right)$, 19.4 (C); HRMS (ESI), Calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 469.2881$, found 469.2876.

Cis-erythro-urea (57)

A mixture of cis-erythro-bipyrrolidine $\mathbf{5 6}(8.8 \mathrm{mg}, 18.8 \mu \mathrm{~mol}, 1.0$ equiv), activated zinc (powder, $720 \mathrm{mg}, 11.0$ mmol, 600 equiv), $\mathrm{NH}_{4} \mathrm{Cl}\left(603 \mathrm{mg}, 11.3 \mathrm{mmol}, 600\right.$ equiv) and $\mathrm{EtOH}(3.0 \mathrm{~mL})$ was warmed to $80^{\circ} \mathrm{C}$, stirred at $80^{\circ} \mathrm{C}$ for 12 h , and cooled to room temperature. The mixture was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5$ mL) and extracted with $\mathrm{CHCl}_{3}(10 \mathrm{x} 5 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was filtrated through a pad of silica gel (1 cc), washed with MeOH , to give mixture of reductants, which was immediately used in the next reaction without further purification.

Bis(trichloromethyl) Carbonate ($84.0 \mathrm{mg}, 283 \mu \mathrm{~mol}$, 15 equiv) was added to a solution of the above mixture of reductants, triethylamine ($160 \mu \mathrm{~L}, 1.20 \mathrm{mmol}, 60$ equiv) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ at room temperature. After maintaining for 12 h at room temperature, the solution was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(5 \mathrm{x} 5 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by preparative layer chromatography (EtOAc/hexane $1: 2$) to give 1.3 mg of cis-
erythro-urea (57: 16% over 2 steps): a colorless oil; $[\alpha]^{23}{ }_{\mathrm{D}}-21.1$ (c 1.0, CHCl_{3}); IR (film) 2960, 2892, 1699, $1407,1317,1261,1112,1069,788,704,506 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.33$ (m, 6H), $4.16(\mathrm{dd}, J=10.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{ddd}, J=9.2,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=10.6,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{ddd}, J=11.5,8.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{ddd}, J=10.9,7.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{ddd}, J=$ $11.5,9.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.46$ $(\mathrm{m}, 1 \mathrm{H}), 1.38(\mathrm{dddd}, J=11.5,11.2,10.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.1(\mathrm{C})$, $135.79(\mathrm{CH}), 135.77(\mathrm{CH}), 133.5(\mathrm{C}), 129.8(\mathrm{CH}), 129.7(\mathrm{CH}), 127.82(\mathrm{CH}), 127.78(\mathrm{CH}), 62.4\left(\mathrm{CH}_{2}\right), 62.3$ $(\mathrm{CH}), 59.8(\mathrm{CH}), 55.4(\mathrm{CH}), 45.5\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{3}\right), 25.5\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right), 19.4(\mathrm{C})$; HRMS (ESI), Calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 435.2462$, found 435.2450.

NOESY experiment for cis-erythro-urea $57\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$57(P=$ TBDPS $)$

2-5. Synthesis of 2-oxo-trispyrrolidine

Trans-erythro-trans-enamide (39)

Preparation of a stock solution of $\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ in $\mathrm{CHCl}_{3}(0.14 \mathrm{mM})$: In a glove box, $\mathrm{CHCl}_{3}(18 \mathrm{~mL})$ was added to $\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(2.0 \mathrm{mg}, 2.6 \mu \mathrm{~mol})$ at room temperature.

In a glove box, 1,1,3,3-tetramethyldisiloxane ($13 \mu \mathrm{~L}, 73.0 \mu \mathrm{~mol}, 1.5$ equiv) was added to a mixture of trans-erythro-lactam $34(23.5 \mathrm{mg}, 48.7 \mu \mathrm{~mol}, 1.0$ equiv $)$ and $\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(0.14 \mathrm{mM}\right.$ in $\mathrm{CHCl}_{3}, 5.1 \mathrm{~mL}, 0.71 \mu \mathrm{~mol}$, $1.5 \mathrm{~mol} \%$) at room temperature. After maintaining for 1 h at room temperature, $\mathrm{CHCl}_{3}(8.1 \mathrm{~mL})$ and 1-methoxy-2-((triisopropylsilyl)oxy)-1H-pyrrole $22(39.4 \mathrm{mg}, 146 \mu \mathrm{~mol}, 3.0$ equiv) were added to the solution. After the flask was removed from the glove box, scandium trifluoromethanesulfonate ($24.0 \mathrm{mg}, 48.8 \mu \mathrm{~mol}, 1.0$ equiv) was added to the solution at $-60^{\circ} \mathrm{C}$. After stirring for 12 h at $-60^{\circ} \mathrm{C}$, the solution was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x} 15 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was filtrated through a pad of basified silica gel (EtOAc/hexane 1:5 to $1: 3$) to give a mixture of tricyclic compounds.

Sodium bis(trimethylsilyl)amide (1.0 M in THF, $99 \mu \mathrm{~L}, 99 \mu \mathrm{~mol}, 2.3$ equiv) was added to a solution of a mixture of tricyclic compounds ($24.9 \mathrm{mg}, 42.9 \mu \mathrm{~mol}, 1.0$ equiv) and THF (2.0 mL) at $-78^{\circ} \mathrm{C}$. After maintaining for 10 min at $-78^{\circ} \mathrm{C}$, acetic acid $\left(6.1 \mu \mathrm{~L}, 110 \mu \mathrm{~mol}\right.$, 2.5 equiv) was added to the solution at $-78{ }^{\circ} \mathrm{C}$. After maintaining for 10 min at $-78{ }^{\circ} \mathrm{C}$, the solution was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x} 5 \mathrm{~mL})$. The residue was filtrated through a pad of silica gel (EtOAc) and concentrated. The mixture of trans-erythro-trans-enamide 39 and trans-erythro-cis-enamide 40 was purified by HPLC with recycle unit (PEGASIL Silica 120-5, $250 \times 10 \mathrm{~mm}$, EtOAc/hexane $1: 1,10 \mathrm{~mL} / \mathrm{min}, 2$ cycles, $39 \mathrm{~T}_{\mathrm{R}}=29.5 \mathrm{~min}$, 40: $\mathrm{T}_{\mathrm{R}}=25.4 \mathrm{~min}$) to afford 3.4 mg of 15.2 mg of trans-erythro-trans-enamide $(\mathbf{3 9}, 54 \%)$ and trans-erythro-cis-enamide (40, 12\%). Trans-erythro-trans-enamide 39: a colorless oil; $[\alpha]^{23}{ }_{\mathrm{D}}-48.9\left(c 1.0, \mathrm{CHCl}_{3}\right)(c 1.0$, CHCl_{3}); IR (film) 2938, 2858, 1726, 1464, 1428, 1189, 1112, 1043, 824, 772, 704, $505 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 5.08(\mathrm{brs}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 4.10-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~d}$, $J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.52-3.06(\mathrm{~m}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{dd}, J=5.5,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.06(\mathrm{~m}$, 2H), 2.06-1.91 (m, 4H), 1.87-1.73 (m, 1H), 1.70-1.53 (m, 1H), $1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $173.6(\mathrm{C}), 143.7(\mathrm{C}), 135.84(\mathrm{CH}), 135.79(\mathrm{CH}), 133.8(\mathrm{C}), 133.7(\mathrm{C}), 129.8(\mathrm{CH}), 127.8(\mathrm{CH}), 99.0(\mathrm{CH}), 69.3$ $(\mathrm{CH}), 69.2(\mathrm{CH}), 69.1(\mathrm{CH}), 65.1(\mathrm{CH}), 64.8\left(\mathrm{CH}_{3}\right), 62.3\left(\mathrm{CH}_{2}\right), 60.02\left(\mathrm{CH}_{3}\right), 60.00\left(\mathrm{CH}_{3}\right), 34.8\left(\mathrm{CH}_{2}\right), 28.7$ $\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 19.3(\mathrm{C})$; HRMS (ESI), Calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$ 580.3201, found 580.3198. Trans-erythro-cis-enamide 40: a colorless oil; $[\alpha]^{22}{ }_{\mathrm{D}}{ }^{-31.2}$ (c 1.0, CHCl_{3}); IR (film) $2937,2858,1727,1471,1428,1188,1113,1050,824,743,705,505 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72-$
$7.68(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 6 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{dd}, J=7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (brs, 2 H$), 3.52$ $(\mathrm{s}, 3 \mathrm{H}), 3.48-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{brs}, 1 \mathrm{H}), 3.09(\mathrm{brs}, 1 \mathrm{H}), 2.96(\mathrm{brs}, 2 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.03-$ 1.95 (m, 2H), 1.95-1.77 (m, 3H), 1.63 (brs, 1H), 1.05 (s, 9H), ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8$ (C), 146.1 (C), $135.82(\mathrm{CH}), 135.77(\mathrm{CH}), 133.9(\mathrm{C}), 133.8(\mathrm{C}), 129.8(\mathrm{CH}), 127.8(\mathrm{CH}), 97.9(\mathrm{CH}), 70.2(\mathrm{CH}), 69.8(\mathrm{CH})$, $68.1(\mathrm{CH}), 65.2(\mathrm{CH}), 64.7\left(\mathrm{CH}_{2}\right), 64.6\left(\mathrm{CH}_{3}\right), 62.1\left(\mathrm{CH}_{3}\right), 59.9\left(\mathrm{CH}_{3}\right), 34.7\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 27.04\left(\mathrm{CH}_{2}\right)$, $26.95\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 19.4(\mathrm{C})$; HRMS (ESI), Calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 580.3201$, found 580.3195.

NOESY experiment for trans-erythro-trans-enamide $\mathbf{3 9}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

NOESY experiment for trans-erythro-cis-enamide $\mathbf{4 0}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Erythro-selective hydrogenation to afford 41

Rhodium on alumina ($12.0 \mathrm{mg}, 24 \mathrm{wt} \%$) was added to a solution of trans-enamide 39 ($51.0 \mathrm{mg}, 88.0 \mu \mathrm{~mol}, 1.0$ equiv) and EtOAc (2.5 mL). The flask was purged with hydrogen. The mixture was stirred under hydrogen atmosphere (1 atm) at room temperature for 3 h . Ethanol was removed under reduced pressure. The residue was filtrated through a pad of silica gel (EtOAc) and concentrated. The mixture of erythro lactam (41) and threo lactam (42) was purified by HPLC with recycle unit (PEGASIL Silica $120-5,250 \times 10 \mathrm{~mm}$, EtOAc noly, 10 $\mathrm{mL} / \mathrm{min}, 3$ cycles, 41: $\mathrm{T}_{\mathrm{R}}=31.5 \mathrm{~min}, \mathbf{4 2}: \mathrm{T}_{\mathrm{R}}=30.0 \mathrm{~min}$) to afford 33.1 mg of trans-erythro-trans-erythro-lactam (41, 64\%) and 5.5 mg of trans-erythro-trans-threo-lactam (42, 11\%). Trans-erythro-trans-erythro-lactam 41; a colorless oil; $[\alpha]^{23}$ D $-5.8\left(c \quad 0.6, \mathrm{CHCl}_{3}\right)$; IR (film) 2935, 2892, 2859, 1720, 1463, 1428, 1112, 1047, 824, 704, $565,488 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 6 \mathrm{H}), 3.90-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.78$ ($\mathrm{s}, 3 \mathrm{H}$), 3.64 (brd, $J=3.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.50-3.37$ (m, 2H), 3.43 (s, 3H), 3.39 (s, 3H), 3.12 (brs, 1H), 3.02 (brs, 1H), 2.37 (ddd, $J=16.9,9.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{ddd}, J=16.9,10.0,5.2,1 \mathrm{H}), 2.19-2.05(\mathrm{~m}, 3 \mathrm{H}), 2.05-1.90(\mathrm{~m}, 4 \mathrm{H})$,
$1.80-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{brs}, 1 \mathrm{H}), 1.64-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.5(\mathrm{C})$, $135.8(\mathrm{CH}), 135.7(\mathrm{CH}), 133.8(\mathrm{C}), 133.7(\mathrm{C}), 129.72(\mathrm{CH}), 129.69(\mathrm{CH}), 127.7(\mathrm{CH}), 70.3(\mathrm{CH}), 70.0(\mathrm{CH})$, $69.2(\mathrm{CH}), 68.8(\mathrm{CH}), 65.2\left(\mathrm{CH}_{2}\right), 62.1\left(\mathrm{CH}_{3}\right), 59.8\left(\mathrm{CH}_{3}\right), 59.7\left(\mathrm{CH}_{3}\right), 58.4(\mathrm{CH}), 29.1\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 27.8$ $\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{2}\right), 19.7\left(\mathrm{CH}_{2}\right), 19.3(\mathrm{C})$; HRMS (ESI), calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$ 582.3358, found 582.3357. Trans-erythro-trans-threo-lactam 42: a colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}}+3.8\left(c 0.6, \mathrm{CHCl}_{3}\right)$; IR (film) 2934, 2892, 2807, 1721, 1463, 1428, 1112, 1052, 800, 704, $505 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.72-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 4.03(\mathrm{brd}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{brd}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.56-$ $3.30(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{brs}, 1 \mathrm{H}), 2.86(\mathrm{brs}, 1 \mathrm{H}), 2.35(\mathrm{ddd}, J=17.2,9.7,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.25(\mathrm{ddd}, J=17.2,9.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-1.93(\mathrm{~m}, 5 \mathrm{H}), 1.89-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8(\mathrm{C}), 135.8(\mathrm{CH}), 135.7(\mathrm{CH}), 133.9(\mathrm{C}), 133.7(\mathrm{C}), 129.77(\mathrm{CH}), 129.74$ $(\mathrm{CH}), 127.8(\mathrm{CH}), 70.8(\mathrm{CH}), 69.9(\mathrm{CH}), 69.6(\mathrm{CH}), 69.3(\mathrm{CH}), 65.4\left(\mathrm{CH}_{2}\right), 63.2\left(\mathrm{CH}_{3}\right), 59.9\left(\mathrm{CH}_{3}\right), 59.3\left(\mathrm{CH}_{3}\right)$, $57.8(\mathrm{CH}), 29.1\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 20.5\left(\mathrm{CH}_{2}\right), 19.4(\mathrm{C})$; HRMS (ESI), calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 582.3358$, found 582.3374.
*Stereochemistry of the C5 carbon center in 2-oxo-trispyrrolidines 41 and $\mathbf{4 2}$ was empirically determined by comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The chemical shift of the C 5 proton of erythro-isomers (c.a. 3.8 ppm) tends to be located at higher field than that of the C 5 proton of threo-isomers (c.a. 4.1 ppm).

41 (trans-erythro-trans-erythro)

42 (trans-erythro-trans-threo)

34 (trans-erythro)

35 (trans-threo)

37 (cis-erythro)

36 (cis-threo)

Trans-erythro-trans-erythro-trispyrrolidine (43)

In a glove box, $1,1,3,3$-tetramethyldisiloxane $(41 \mu \mathrm{~L}, 232 \mu \mathrm{~mol}, 6.0$ equiv $)$ was added to a mixture of trans-erythro-lactam $41\left(22.4 \mathrm{mg}, 38.5 \mu \mathrm{~mol}, 1.0\right.$ equiv), $\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(1.5 \mathrm{mg}, 1.9 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$ and toluene $(2.6 \mathrm{~mL})$ at room temperature. After maintaining for 1 h at room temperature, $\mathrm{Sc}(\mathrm{OTf})_{3}(9.5 \mathrm{mg}, 19.3 \mu \mathrm{~mol}, 0.5$
equiv) was added to the solution at room temperature. The flask was removed from the glove box. After maintaining for 12 h at room temperature, the solution was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x} 5 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by preparative layer chromatography (EtOAc/hexane 1:3) to give 20.1 mg of trans-erythro-trans-erythro trispyrrolidine (43: 92\%): a colorless oil; $[\alpha]^{23}{ }_{\mathrm{D}}-19.7$ (c 0.6, CHCl_{3}); IR (film) 2935, 2891, $2858,1464,1428,1112,1050,775,740,673,504,489 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.69(\mathrm{~m}, 4 \mathrm{H})$, $7.47-7.35(\mathrm{~m}, 6 \mathrm{H}), 3.79-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{brd}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.47$ (brs, 1 H$), 3.44(\mathrm{~s}, 3 \mathrm{H})$, $3.41(\mathrm{~s}, 3 \mathrm{H}), 3.38-2.59(\mathrm{~m}, 3 \mathrm{H}), 3.18(\mathrm{brs}, 1 \mathrm{H}), 2.92$ (ddd, $J=11.7,7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.06-$ $1.87(\mathrm{~m}, 5 \mathrm{H}), 1.87-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.54(\mathrm{brs}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.85(\mathrm{CH})$, $135.78(\mathrm{CH}), 133.9(\mathrm{C}), 133.8(\mathrm{C}), 129.7(\mathrm{CH}), 127.7(\mathrm{CH}), 70.9(\mathrm{CH}), 70.5(\mathrm{CH}), 70.2(\mathrm{CH}), 69.9(\mathrm{CH}), 69.6$ $(\mathrm{CH}), 65.3\left(\mathrm{CH}_{2}\right), 60.0\left(\mathrm{CH}_{3}\right), 59.9\left(\mathrm{CH}_{3}\right), 59.4\left(\mathrm{CH}_{3}\right), 56.1\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 28.0$ $\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right), 19.3(\mathrm{C})$; HRMS (ESI), calcd for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 568.3565$, found 568.3569 .

3. Biological Experiment

Cell culture

Human cervical cancer HeLa cells and human colon carcinoma HCT116 cells were cultured in Dulbecco's modified Eagle's medium (Nissui Pharmaceutical Co., Ltd.) that was supplemented with $10 \%(\mathrm{v} / \mathrm{v})$ fetal bovine serum, 100 units $/ \mathrm{mL}$ penicillin G, $100 \mathrm{mg} / \mathrm{L}$ kanamycin, $600 \mathrm{mg} / \mathrm{L}$ L-glutamine and $2.5 \mathrm{~g} / \mathrm{L} \mathrm{NaHCO}_{3}$ at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$.

Human T cell leukemia Jurkat cells were cultured in Roswell Park Memorial Institute 1640 medium (Nissui Pharmaceutical Co., Ltd.) that was supplemented with $10 \%(\mathrm{v} / \mathrm{v})$ fetal bovine serum, $100 \mathrm{units} / \mathrm{mL}$ penicillin G , $100 \mathrm{mg} / \mathrm{L}$ kanamycin, $150 \mathrm{mg} / \mathrm{L}$ L-glutamine and $2.5 \mathrm{~g} / \mathrm{L} \mathrm{NaHCO}_{3}$ at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$.

MTT assay

HeLa, HCT116 and Jurkat cells were treated with various concentrations of compounds for 72 h . Cells were treated with $0.5 \mathrm{mg} / \mathrm{mL}$ thiazolyl blue tetrazolium bromide (MTT; Merck KGaA) and were incubated for 4 h at $37^{\circ} \mathrm{C}$. After incubation, the medium was removed, and the MTT formazan product was dissolved by $200 \mu \mathrm{~L}$ of DMSO. The amount of the product was determined by measuring absorbance at 570 nm using a microplate reader (Infinite M200 PRO).

4. References

1. S. Hiraoka, T. Matsumoto, K. Matsuzaka, T. Sato, N. Chida, Angew. Chem. Int. Ed., 2019, 58, 4381-4385.
2. J. C. F. Alves, J. Braz. Chem. Soc., 2007, 18, 855-859.

$\stackrel{\infty}{+}$ \bigcirc \bigcirc \because $\stackrel{+}{-}$ $\stackrel{n}{2}$ $\stackrel{Y}{-}$ $=$ \bigcirc 3. ∞ \hat{O} \bigcirc \because $\stackrel{\square}{0}$ ${ }^{3}$ $\underset{O}{\mathrm{O}}$ \square 忽		®.				$\underbrace{\sim}$	
						1.0	0

	 29β (cis-threo)			1				
			5.0					$.0$ 0

N $\stackrel{\rightharpoonup}{i}$ $\stackrel{i}{i}$ 9 ∞ $\xlongequal{5}$ \bigcirc n $\stackrel{+}{-}$ $\stackrel{n}{-}$ $\underset{-}{-}$ \exists 0 3 ∞ $\hat{0}$ \bigcirc \because \pm o		$\left\{\begin{array}{l} \hat{\theta} \\ \hline- \\ \hline- \\ \hline \end{array}\right.$					18.13	
	X : parts per Million : Proton			4.0	3.0	2.0	1.0 	0

ع.0

41 (trans-erythro-trans-erythro)

0 O!
0 ot
$0 \cdot t$
$0 \cdot \varepsilon$
! ε
0
z
I
X : parts per Million : Carbon 13
(sчıpuesnoчı)

[^0]: ${ }^{\text {a }}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR using pyridine as an internal standard. ${ }^{\mathrm{b}}$ The ratio was determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\mathrm{c}} \mathrm{MeCN}$ was added in the nucleophilic addition.

[^1]: ${ }^{a}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR using pyridine as an internal standard. ${ }^{\mathrm{b}}$ The ratio was determined by ${ }^{1} \mathrm{H}$ NMR.

