Supporting Information for

Stereodivergent Synthesis of 2-Oxo-oligopyrrolidines by Iterative Coupling Strategy

Yasuki Soda,^a Kumpei Tatsumi,^a Matteo Forner,^{a,b} Shunsei Sato,^a Kana Shibuya,^a Tomoe Matagawa,^a Siro Simizu,^a Noritaka Chida,^a Toshitaka Okamura,^{*a} Takaaki Sato^{*a} a. Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan b. Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padova PD, Italy t-okamura@applc.keio.ac.jp takaakis@applc.keio.ac.jp

Table of Contents

1.	Optimization of Reaction Conditions	
2.	Experimental Procedure	
3.	Biological Experiments	829
4.	References	\$30
5.	NMR Spectra	831-886

1. Optimization of Reaction Conditions

1-1. Optimization of trans-selective reductive nucleophilic addition

OTIPS							
$\begin{array}{c} & \underset{PO}{}{} \\ & \underset{OMe}{}{} \\ & \underset{OMe}{} \\ & \underset{OMe}{\overset{OMe}{} \\ & \underset{OMe}{} \\ & \underset{OMe}{\overset{OMe}{} \\ & \underset{OMe}{\overset{OMe}{O$							
19 (P = TBDF	°S)	L	L	27 :∆ ^{3,4} , 2	28 : ∆ ^{4,5} 29 : ∆ ^{3,4} , 30 : ∆ ^{4,5}		
entry	acid	solvent-1	solvent-2	combined yield (%) ^a	<i>trans</i> -(27+28): <i>cis</i> -(29+30) ^b		
1	MsOH	toluene	toluene	20	1.0:1.8		
2	BF ₃ ·OEt ₂	toluene	toluene	67	1.0:1.6		
3	SnCl ₄	toluene	toluene	43	1.0:1.9		
4	TMSOTf	toluene	toluene	93	1.3:1.0		
5	Sc(OTf) ₃	toluene	toluene	88	1.6:1.0		
6	Sc(OTf) ₃	toluene	Et ₂ O	94	1.0:1.0		
7	Sc(OTf) ₃	toluene	CH_2Cl_2	100	2.8:1.0		
8	Sc(OTf) ₃	toluene	CHCl ₃	100	3.0:1.0		
9	Sc(OTf) ₃	CHCl ₃	CHCl ₃	100	4.0 :1.0		

^a Yields were determined by ¹H NMR using pyridine as an internal standard. ^b The ratio was determined by ¹H NMR.

1-2. Optimization of *cis*-selective reductive nucleophilic addition

OTIPS							
$ \begin{array}{c} & \underset{PO}{} H \underset{OMe}{} H \underset{OMe}{$							
19 (P = TBDI	PS)	L	27 : ∆ ^{3,4} , 28 : ∠	∆ ^{4,5} 29 :∆ ^{3,4} , 30 : ∆ ^{4,5}			
entry	temp. (°C)	combined yield (%) ^a	<i>cis</i> -(27+28)/ <i>trans</i> -(29+30) ^b				
1	-78	99	1:1.7				
2	-40	89	1:1.7				
3	-20	68	1:1.2				
4	0	50	1.4:1				
5	rt	31	3.1:1				
6°	rt	62	5.5 :1				

^a Yields were determined by ¹H NMR using pyridine as an internal standard. ^b The ratio was determined by ¹H NMR. ^c MeCN was added in the nucleophilic

addition.

1-3. Rh/Al₂O₃-catalyzed hydrogenation of *trans*-enamide 28

PO $H \stackrel{i}{\rightarrow} H \stackrel{i}{\rightarrow} H$							
entry	solvent	yield of 34+35 (%) ^a	erythro-(34):threo-(35)	yield of 44 (%) ^a	recovery of 28 (%)		
1	EtOH	87	2.1:1	12	0		
2	MeOH	55	1.6:1	14	0		
3	EtOAc	89	3.0:1	0	5		
4°	EtOAc	100	3.1:1	0	0		
5 ^d	EtOAc	34 : 58, 35 : 18	3.2:1	0	0		

^a Yields were determined by ¹H NMR using pyridine as an internal standard. ^b The ratio was determined by ¹H NMR. ^c Reaction time was extended to 10 h. ^d Isolated yield after reversed-phase HPLC.

1-4. Hydride reduction of *trans*-enamide 28

1-4-1. Screening of additives

$\begin{array}{c} & & & \\ & & & \\ PO \end{array} \xrightarrow{H} \\ & & & \\ OMe \end{array} \xrightarrow{N} \\ OMe \end{array} \xrightarrow{O} \\ OMe \end{array} \xrightarrow{N} \\ OMe \end{array} \xrightarrow{N} \\ OMe \end{array} \xrightarrow{O} \\ \begin{array}{c} & & \\ PO \end{array} \xrightarrow{H} \\ OMe \end{array} \xrightarrow{H} \\ OMe \end{array} \xrightarrow{N} \\ OMe \end{array} \xrightarrow{H} \\ \begin{array}{c} & & \\ PO \end{array} \xrightarrow{H} \\ OMe \end{array} \xrightarrow{H} \\ \begin{array}{c} & & \\ PO \end{array} \xrightarrow{H} \\ OMe \end{array} \xrightarrow{H} \\ \begin{array}{c} & & \\ PO \end{array} \xrightarrow{H} \\ OMe \end{array} \xrightarrow{H} \\ \begin{array}{c} & & \\ PO \end{array} \xrightarrow{H} \\ \begin{array}{c} & \\ PO \end{array} \xrightarrow{H} \\ \begin{array}{c} & & \\ PO \end{array} \xrightarrow{H} \\$							
-	28	<u>ل</u> 45	34 (trans-ery	thro) 35 (trans	s-threo)		
$P = TBDPS \qquad H^{+} (H^{+})$							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
L	48	46	47		14 (cis)		
entry	additive	yield of 34+35 (%) ^a	$erythro-(34)$: $threo-(35)^{b}$	yield of $44 (\%)^a$	_		
1	None	50	2.3:1	13			
2	DMPU	30	2.3:1	23			
3	HMPA	26	1.8:1	14			
4	15-crown-5	60	1.4:1	trace			

^a Yields were determined by ¹H NMR using pyridine as an internal standard. ^b The ratio was determined by ¹H NMR.

1-4-2. Screening of solvents

PO H H H H H H H H H H H H H H H H H H H							
	28 P = TBDPS	34 (trans-erythr	ro) 35 (trans-threo)	44 (cis)			
entry	solvent	yield of 34+35 (%) ^a	erythro-(34):threo-(35) ^b	yield of 44 (%) ^a			
1	CH_2Cl_2	50	2.3:1	0			
2	Toluene	30	2.3:1	0			
3	Et ₂ O	26	1.8:1	0			
4	CHCl ₃	60	1: 1.8	0			
5	CHCl ₃ (no additive)	59	2.0:1	14			
6°	$CHCl_3(TFA \rightarrow HCl)$	34 : 28, 35 : 50	1: 1.8	0			

^a Yields were determined by ¹H NMR using pyridine as an internal standard. ^b The ratio was determined by ¹H NMR. ^c Isolated yield after reversed-phase HPLC.

2. Experimental Procedure

General Details

Reactions were performed in oven-dried glassware fitted with rubber septa under an argon atmosphere. Toluene was distilled from CaH₂. MeOH was distilled from CaSO₄. EtOAc was single distilled. EtOH, MeCN, and CH₂Cl₂ were single distilled and dried over activated 3A molecular sieves. THF (dehydrated, stabilizer free) and Et₂O (dehydrated, stabilizer free) were purchased from KANTO CHEMICAL CO., INC. All deoxidized solvents, toluene and CHCl₃ were purchased from FUJIFILM Wako Pure Chemical Corp. Other commercial reagents were used without further purification. Thin-layer chromatography was performed on Merck TLC silica gel 60 F₂₅₄, which were visualized by exposure to UV (254 nm) or stained by submersion in ethanolic ninhydrin or ethanolic phosphomolybdic acid solution followed by heating on a hot plate. Flash column chromatography was performed on silica gel (Silica Gel 60 N; 63-210 or 40-50 mesh, KANTO CHEMICAL CO., INC.). Preparative layer chromatography was performed on Merck PLC silica gel 60 F₂₅₄. ¹H NMR spectra were recorded at 500 MHz with JEOL ECA-500 spectrometer, 400 MHz with JEOL ECS-400 spectrometer or 400 MHz with JEOL ECZ-400 spectrometer. ¹³C NMR spectra at 125 MHz with JEOL ECA-500 spectrometer, 100 MHz with JEOL ECS-400 spectrometer or 100 MHz with JEOL ECS-400 spectrometer. Chemical shifts are reported in ppm with reference to solvent signals [¹H NMR: CDCl₃ (7.26), C₆D₆ (7.16); ¹³C NMR: CDCl₃ (77.16), C₆D₆ (128.06).]. Signal patterns are indicated as brs, broad peak; s, singlet; d, doublet; t, triplet; q, quartet; sep, septet; m, multiplet. HPLC and GPC were performed on SSC-3462, 5410 (Senshu Scientific Co., Ltd.) with the recycle unit (SSC-1322). Infrared spectra were recorded using a BRUKER ALPHA FT-IR spectrometer. Mass spectra were measured with Waters, LCT Premier XE (ESI-TOF) and Burker, timsTOF Pro 2 (ESI-TOF).

2-1. Synthesis of 2-oxo-pyrrolidine 19 and siloxypyrrole 22

2-Oxo-pyrrolidine 19

Potassium *tert*-butoxide (1.60 g, 14.3 mmol, 1.5 equiv) was added to a solution of *N*-hydroxylactam **49**¹ (3.51 g, 9.50 mmol, 1.0 equiv) and THF (150 mL) at 0 °C. The resulting mixture was stirred for 15 min at 0 °C. Iodomethane (5.9 mL, 94.8 mmol, 10 equiv) was added dropwise to the mixture at 0 °C. The resulting suspension was allowed to warm to room temperature. After stirring for 1 h at room temperature, H₂O (50 mL) was added to the resulting suspension. After stirring for 10 min, the solution was quenched with aqueous saturated Na₂S₂O₃ (50 mL), aqueous saturated NH₄Cl (50 mL), and extracted with CHCl₃ (4x 100 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc/hexane 1:3 to 1:1) to give 2.75 mg of 2-oxo-pyrrolidine **19** (76%): a colorless oil; [*a*]²⁴_D –3.5 (*c* 1.0, CHCl₃); IR (film) 2932, 2858, 1716, 1472, 1428, 1113, 1054, 773, 742, 704, 505 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.68–7.62 (m, 4H), 7.45–7.35 (m, 6H), 3.90 (dd, *J* = 10.9, 3.4 Hz), 3.80–3.75 (m, 1H), 3.77 (s, 3H), 3.61 (dd, *J* = 10.9, 2.6 Hz, 1H), 2.45 (ddd, *J* = 17.2, 10.0, 6.6 Hz, 1H), 2.29 (ddd, *J* = 17.2, 10.0, 5.2 Hz, 1H), 2.14–1.97 (m, 2H), 1.05 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 171.6 (C), 135.8 (CH), 135.7 (CH), 133.2 (C), 132.7 (C), 130.0 (CH), 127.91 (CH), 127.88 (CH), 62.8 (CH₂), 62.7 (CH₃), 57.8 (CH), 27.4 (CH₂), 26.9 (CH₃), 19.3 (C), 18.9 (CH₂) ; HRMS (ESI), Calcd for C₂₂H₃₀NO₃Si (M+H)⁺ 384.1995, found 384.2001.

Siloxypyrrole 22²

A solution of methoxyamine hydrochloride (3.78 g, 45.3 mmol, 1.1 equiv) and H_2O (23 mL) was added dropwise over 2 h to a solution of 2,5-dihydro-2,5-dimethoxyfuran **50** (5.0 mL, 41 mmol, 1.0 equiv) and aqueous 1.0 M HCl (8.2 mL, 8.2 mmol, 0.2 equiv) at room temperature. Then, solid NaHCO₃ was added to the mixture until the mixture was neutralized. The resulting mixture was extracted with CHCl₃ (5x 150 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue wa filtrated through a pad of silica gel (EtOAc/hexane 1:1 to 2:1) to give a crude mixture, which was used in the next reaction without further purification.

Sodium bis(trimethylsilyl)amide (1.0 M in THF, 19.3 mL, 19.3 mmol, 1.1 equiv) was added to a solution of a crude mixture (1.98 g, 17.5 mmol, 1.0 equiv) and THF (70 mL) at -78 °C. After maintaining for 10 min at -78 °C, triisopropylsilyl chloride (3.5 mL, 16.5 mmol, 0.9 equiv) was added to the solution at -78 °C. The solution was allowed to warm to room temperature, stirred for 12 h, and diluted with hexane (500 mL). The resulting mixture was filtered through a pad of Celite[®] and concentrated. The residue was filtered through a pad

of activated aluminum oxide and washed with hexane. The filtrate was concentrated to give 3.28 g of siloxypyrrole **22** (36% over 2 steps): a pale yellow oil; IR (film) 2945, 2869, 1569, 1477, 1439, 1156, 1058, 902, 843, 659 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.34 (dd, J = 3.7, 2.3 Hz, 1H), 5.74 (dd, J = 4.0, 3.7 Hz, 1H), 5.12 (dd, J = 4.0, 2.3 Hz, 1H), 1.29 (sep, J = 7.0 Hz, 3H), 1.11 (d, J = 7.0 Hz, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 138.2 (C), 107.1 (CH), 100.4 (CH), 85.5 (CH), 66.3 (CH₃), 17.8 (CH₃), 12.4 (CH); HRMS (ESI), Calcd for C₁₄H₂₈NO₂Si (M+H)⁺ 270.1884, found 270.1886.

2-2. Synthesis of trans-enamide 28 and cis-enamide 30

2-Oxo-bispyrrolidines 27-30

In a glove box, 1,1,3,3-tetramethyldisiloxane (160 µL, 910 µmol, 1.2 equiv) was added to a mixture of 2-oxopyrrolidine 19 (291 mg, 759 µmol, 1.0 equiv), IrCl(CO)(PPh₃)₂ (5.9 mg, 7.6 µmol, 1 mol %) and toluene (51 mL) at room temperature. After maintaining for 1 h at room temperature, toluene (51 mL) and siloxypyrrole 22 (613 mg, 2.27 mmol, 3.0 equiv) were added to the solution. After the flask was removed from the glove box, scandium trifluoromethanesulfonate (112 mg, 24.4 µmol, 32.1 mol %) was added to the solution at -40 °C. After stirring for 12 h at -40 °C, the solution was quenched with aqueous saturated NaHCO₃ (100 mL) and extracted with CHCl₃ (3x 100mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was filtrated through a pad of basified silica gel (EtOAc/hexane 1:5 to 1:3) to give a mixture of bicyclic compounds (27–30, 356 mg, 98% combined yield, 27α:27β:28:29α:29β:30 = 1.8:1.2:2.0:1.3:1.2:1, The ration was determined by ¹H NMR). For analytical samples, a mixture of bicyclic compounds (27-30) were separated by HPLC with recycle unit (PEGASIL Silica 120-5, 250×10 mm, EtOAc/hexane 1:1, 10 mL/min, **27** α : 12 cycles, T_R = 181.3 min, **27** β : 8 cycles, T_R = 116.5 min, **28**: 3 cycles, T_R = 35.9 min, **29** α : 7 cycles, T_R = 98.5 min, **29** β : 4 cycles, T_R = 53.4 min, **30**: 2 cycles, T_R = 21.9 min). *Trans-threo-a*, β 27 α : a colorless oil; $[\alpha]^{23}$ -112.8 (*c* 1.0, CHCl₃); IR (film) 2934, 2858, 1723, 1462, 1428, 1190, 1112, 1049, 824, 742, 704, 505 cm⁻¹ ¹; ¹H NMR (500 MHz, CDCl₃) δ 7.73–7.65 (m, 4H), 7.46–7.37 (m, 6H), 7.02 (d, J = 6.3 Hz, 1H), 6.17 (d, { 6.3 Hz, 1H), 4.65 (d, J = 4.9 Hz, 1H), 3.85 (s, 3H), 3.78 (dd, J = 10.3, 5.2 Hz, 1H), 3.74–3.66 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.74–3.66 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.74–3.66 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.74–3.66 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.74–3.66 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.74–3.66 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.74–3.66 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.74–3.66 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.74–3.66 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.74–3.66 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.74–3.66 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.74–3.66 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.85 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.85 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.85 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.85 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.74–3.66 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.85 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.85 (m, 1H), 3.85 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.85 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.85 (m, 1H), 3.69 (dd, J = 10.3, 5.2 Hz, 1H), 3.85 (m, 1H) J = 10.3, 4.9 Hz, 1H), 3.51 (s, 3H), 3.52–3.46 (m, 1H), 1.88–1.78 (m, 1H), 1.78–1.68 (m, 2H), 1.40–1.29 (1H), 1.05 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) & 169.5 (C), 145.0 (CH), 135.80 (CH), 135.78 (CH), 133.5 (C), 129.9 (CH), 129.8 (CH), 127.8 (CH), 127.2 (CH), 65.9 (CH), 65.2 (CH), 64.2 (CH₃), 63.7 (CH), 63.6 (CH₂), 60.8 (CH₃), 26.9 (CH₃), 24.3 (CH₂), 22.4 (CH₂), 19.3 (C); HRMS (ESI), Calcd for C₂₇H₃₇N₂O₄Si (M+H)⁺ 481.2523, found 481.2520. *Trans-erythro-a*, β 27 β : a colorless oil; $\lceil \alpha \rceil^{22}$ +35.6 (*c* 1.0, CHCl₃); IR (film) 2934, 2857, 1725, 1472, 1428, 1193, 1112, 1052, 823, 742, 704, 505 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.71–7.64 (m, 4H), 7.45-7.35 (m, 6H), 7.45-7.35 (m, 6H), 7.04 (d, J = 6.0, 1H), 6.12 (dd, J = 6.0, 1.2 Hz, 1H), 4.46 (brd, *J* = 5.7 Hz, 1H), 3.88 (s, 3H), 3.74 (dd, *J* = 10.3, 5.2 Hz, 1H), 3.63 (dd, *J* = 10.3, 5.2 Hz, 1H), 3.55–3.49 (m, 1H), 3.47 (s, 3H), 3.33 (brs, 1H), 2.04–1.86 (m, 2H), 1.80–1.66 (m, 2H), 1.04 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 171.0 (C), 145.8 (CH), 135.8 (CH), 133.6 (C), 133.5 (C), 129.85 (CH), 129.82 (CH), 127.82 (CH), 127.80 (CH), 125.9 (CH), 66.7 (CH), 65.9 (CH), 64.7 (CH), 63.8 (CH₃), 63.5 (CH₂), 60.2 (CH), 26.9 (CH₃),

24.6 (CH₂), 24.5 (CH₂), 19.3 (C); HRMS (ESI), Calcd for C₂₇H₃₇N₂O₄Si (M+H)⁺ 481.2523, found 481.2520. *Trans*-enamide 28: a colorless oil; [α]²²_D -3.9 (*c* 1.0, CHCl₃); IR (film) 2936, 2858, 1726, 1472, 1428, 1220, 1112, 1035, 824, 772, 743, 704, 613, 505 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.71–7.67 (m, 4H), 7.45–7.36 (m, 6H), 5.10–5.07 (m, 1H), 4.13 (dd, J = 7.7, 7.7 Hz, 1H), 3.99 (s, 3H), 3.81 (dd, J = 10.6, 5.2 Hz, 1H), 3.78 (dd, J = 10.6, 5.2 Hz, 1 J = 10.6, 5.7 Hz, 1H), 3.48 (s, 3H), 3.52–3.45 (m, 1H), 3.00 (dd, J = 2.0, 2.0 Hz, 1H), 2.99 (dd, J = 2.0, 2.0 Hz, 1H) 1H), 2.16–2.06 (m, 1H), 2.02–1.94 (m, 1H), 1.94–1.85 (m, 1H), 1.80–1.71 (m, 1H), 1.06 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 173.6 (C), 144.4 (C), 135.7 (CH), 133.62 (C), 133.56 (C), 129.85 (CH), 129.82 (CH), 127.83 (CH), 127.79 (CH), 98.2 (CH), 67.0 (CH), 64.7 (CH₂), 64.1 (CH), 61.9 (CH₃), 60.9 (CH₃), 34.8 (CH₂), 26.9 (CH₃), 26.4 (CH₂), 24.8 (CH₂), 19.3 (C); HRMS (ESI), Calcd for C₂₇H₃₇N₂O₄Si (M+H)⁺ 481.2523, found 481.2521. *Cis-erythro-a*, β 29a: a colorless oil; $[\alpha]^{25}_{D}$ -39.4 (c 1.0, CHCl₃); IR (film) 2933, 2858, 1725, 1472, 1428, 1193, 1112, 1053, 821, 740, 704, 505 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.70–7.64 (m, 4H), 7.46–7.35 (m, 6H), 6.85 (dd, J = 6.6, 1.2 Hz, 1H), 6.11 (dd, J = 6.6, 1.4 Hz, 1H), 4.48 (ddd, J = 3.2, 1.4, 1.2 Hz, 1H), 3.93(s, 3H), 3.84 (dd, J = 10.3, 4.3 Hz, 1H), 3.70 (dd, J = 10.3, 6.0 Hz, 1H), 3.57 (s, 3H), 3.22 (ddd, J = 8.6, 8.6, 3.2 Hz, 1H), 3.11–3.04 (m, 1H), 1.97–1.87 (m, 1H), 1.73–1.60 (m, 2H), 1.55–1.45 (m, 1H), 1.05 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) & 172.3 (C), 145.4 (CH), 135.74 (CH), 135.72 (CH), 133.7 (C), 133.6 (C), 129.8 (CH), 127.8 (CH), 126.5 (CH), 69.4 (CH), 67.8 (CH), 65.3 (CH₂), 65.2 (CH), 64.3 (CH₃), 62.5 (CH₃), 27.0 (CH₃), 23.2 (CH₂), 20.5 (CH₂), 19.4 (C); HRMS (ESI), Calcd for C₂₇H₃₇N₂O₄Si (M+H)⁺ 481.2523, found 481.2515. *Cis-threo-a*,*β* **29β**: [α]²⁵_D +132.6 (*c* 1.0, CHCl₃); IR (film) 2934, 2859, 1725, 1471, 1428, 1188, 1112, 1049, 824, 741, 704, 506 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.71–7.65 (m, 4H), 7.46–7.37 (m, 6H), 7.10 (dd, J = 6.6, 1.7 Hz, 1H), 6.18 (dd, J = 6.6, 1.7 Hz, 1H), 4.57 (ddd, J = 4.6, 1.7, 1.7 Hz, 1H), 3.86 (s, 3H), 3.83 (dd, J = 10.3, 4.3 Hz, 1H), 3.86 (s, 3H), 3.83 (dd, J = 10.3, 4.3 Hz, 1H), 3.85 (s, 3H), 3.83 (dd, J = 10.3, 4.3 Hz, 1H), 3.85 (s, 3H), 3.85 (s, 3H),3.66 (dd, J = 10.3, 6.0 Hz, 1H), 3.61 (ddd, J = 8.6, 8.6, 4.6 Hz, 1H), 3.52 (s, 3H), 3.20–3.12 (m, 1H), 1.94–1.85 (m, 1H), 1.76–1.67 (m, 1H), 1.55–1.40 (m, 1H), 1.24–1.15 (m, 1H), 1.06 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 169.7 (C), 144.4 (CH), 135.8 (CH), 135.7 (CH), 133.73 (C), 133.69 (C), 129.8 (CH), 127.8 (CH), 127.7 (CH), 69.5 (CH), 66.9 (CH), 65.5 (CH₂), 64.2 (CH₃), 64.0 (CH), 63.3 (CH₃), 27.0 (CH₃), 24.0 (CH₂), 20.5 (CH₂), 19.4 (C); HRMS (ESI), Calcd for $C_{27}H_{37}N_2O_4Si (M+H)^+ 481.2523$, found 481.2519. *Cis*-enamide 30: a colorless oil; $[\alpha]^{24}$ _D +46.1 (*c* 1.0, CHCl₃); IR (film) 2934, 2859, 1723, 1472, 1428, 1190, 1113, 1058, 824, 743, 705, 506 cm⁻ ¹; ¹H NMR (500 MHz, CDCl₃) δ 7.71–7.65 (m, 4H), 7.46–7.37 (m, 6H), 5.18 (ddd, J = 2.6, 2.6, 0.6 Hz, 1H), 3.95 (s, 3H), 3.88 (dd, J = 10.3, 4.6 Hz, 1H), 3.78 (ddd, J = 8.6, 8.6, 0.6 Hz, 1H), 3.67 (dd, J = 10.3, 6.6 Hz, 1H), 3.47 (s, 3H), 3.23–3.16 (m, 1H), 2.96 (dd, J = 2.6, 1.2 Hz, 2H), 2.15–2.05 (m, 1H), 2.05–1.96 (m, 1H), 1.87–1.78 (m, 1H), 1.76–1.68 (m, 1H), 1.06 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 173.8 (C), 145.9 (C), 135.8 (CH), 135.7 (CH), 133.78 (C), 133.76 (C), 129.8 (CH), 127.8 (CH), 97.6 (CH), 69.4 (CH), 65.9 (CH₂), 65.9 (CH), 64.6 (CH₃), 62.9 (CH₃), 34.7 (CH₂), 27.0 (CH₃), 26.9 (CH₂), 24.8 (CH₂), 19.4 (C); HRMS (ESI), Calcd for C₂₇H₃₇N₂O₄Si (M+H)⁺ 481.2523, found 481.2526.

Determination of cis- and trans-configuration of dimeric compounds 27-30

NOESY experiments for bicyclic compounds (27-30) (500 MHz, CDCl₃)

Trans-selective nucleophilic addition to afford 28

Preparation of a stock solution of IrCl(CO)(PPh₃)₂ in CHCl₃ (0.14 mM): In a glove box, CHCl₃ (27 mL) was added to IrCl(CO)(PPh₃)₂ (3.0 mg, 3.9 µmol) at room temperature.

In a glove box, 1,1,3,3-tetramethyldisiloxane (66 μ L, 380 μ mol, 1.4 equiv) was added to a mixture of *N*-methoxylactam **19** (103 mg, 269 μ mol, 1.0 equiv) and IrCl(CO)(PPh₃)₂ (0.14 mM in CHCl₃, 18 mL, 2.5 μ mol, 1.0 mol %) at room temperature. After maintaining for 1 h at room temperature, CHCl₃ (45 mL) and 1-methoxy-2-((triisopropylsilyl)oxy)-1*H*-pyrrole **22** (217 mg, 805 μ mol, 3.0 equiv) were added to the solution. After the flask was removed from the glove box, scandium trifluoromethanesulfonate (132 mg, 268 μ mol, 1.0 equiv) was added to the solution at –60 °C. After stirring for 12 h at –60 °C, the solution was quenched with aqueous saturated NaHCO₃ (60 mL) and extracted with CHCl₃ (3x 60mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was filtrated through a pad of basified silica gel (EtOAc/hexane 1:5 to 1:3) to give a mixture of a mixture of *trans*-adducts **27**, **28**, and *cis*-adducts **29**, **30**.

Sodium bis(trimethylsilyl)amide (1.0 M in THF, 740 µL, 740 µmol, 2.8 equiv) was added to a solution of a mixture of *trans*-adducts **27**, **28**, and *cis*-adducts **29**, **30** (127 mg, 264 µmol, 1.0 equiv) and THF (4.0 mL) at – 78 °C. After maintaining for 10 min at –78 °C, acetic acid (44 µL, 763 µmol, 2.9 equiv) was added to the solution at –78 °C. After maintaining for 10 min at –78 °C, the solution was quenched with aqueous saturated NaHCO₃ (5 mL) and extracted with CHCl₃ (3x 10 mL). The residue was filtrated through a pad of silica gel (EtOAc) and concentrated. The mixture of *trans*-enamide **28** and *cis*-enamide **30** was purified by HPLC with recycle unit (PEGASIL Silica 120-5, 250×10 mm, EtOAc/hexane 1:1, 10 mL/min, 4 cycles, **28**: $T_R = 49.2 \text{ min}$, **30**: $T_R = 45.8 \text{ min}$) to afford of 91.5 mg of *trans*-enamide (**28**, 57%) and 2.7 mg *cis*-enamide (**30**, 16%).

Cis-selective nucleophilic addition to afford 30

Preparation of a stock solution of IrCl(CO)(PPh₃)₂ in toluene (0.14 mM): In a glove box, toluene (18 mL) was added to IrCl(CO)(PPh₃)₂ (2.0 mg, 2.6 µmol) at room temperature.

In a glove box, 1,1,3,3-tetramethyldisiloxane (23 µL, 130 µmol, 1.4 equiv) was added to a mixture of *N*-methoxylactam **19** (34.8 mg, 90.7 µmol, 1.0 equiv) and IrCl(CO)(PPh₃)₂ (0.14 mM in toluene, 5.9 mL, 0.83 µmol, 1.0 mol %) at room temperature. After maintaining for 1 h at room temperature, MeCN (30 mL) was added to the solution. Then, 1-methoxy-2-((triisopropylsilyl)oxy)-1*H*-pyrrole **22** (73.3 mg, 272 µmol, 3.0 equiv) and Sc(OTf)₃ (3.4 mg, 6.9 µmol, 7.6 mol %) were added to the solution at room temperature. The flask was removed from the glove box. After maintaining for 5 h at room temperature, the solution was filtrated through a pad of activated aluminum oxide (10 cc), washed with EtOAc/Et₃N (1:0.01), and concentrated. The residue was filtrated through a pad of basified silica gel (EtOAc/hexane 1:5 to 1:3) to give a mixture of *cis*-adducts **29**, **30** and *trans*-adducts **27**, **28** (26.9 mg, 62% combined yield, *cis*-adducts **29**, **30**:*trans*-adducts **27**, **28** = 5.5:1, The ration was determined by ¹H NMR).

Sodium bis(trimethylsilyl)amide (1.0 M in THF, 100 µL, 100 µmol, 1.8 equiv) was added to a solution of a mixture of *cis*-adducts **29**, **30** and *trans*-adducts **27**, **28** (26.9 mg, *cis*-(**29**, **30**):*trans*-(**27**, **28**) = 5.5:1, 56.0 µmol, 1.0 equiv) and THF (1.5 mL) at -78 °C. After maintaining for 10 min at -78 °C, acetic acid (6.4 µL, 110 µmol, 2.0 equiv) was added to the solution at -78 °C. After maintaining for 10 min at -78 °C, the solution was quenched with aqueous saturated NaHCO₃ (5 mL) and extracted with CHCl₃ (3x 10 mL). The residue was filtrated through a pad of silica gel (EtOAc) and concentrated. The mixture of *cis*-enamide **30** and *trans*-enamide **28** was purified by HPLC with recycle unit (PEGASIL Silica 120-5, 250×10 mm, EtOAc/hexane 1:1, 10 mL/min, 2 cycles, **30**: T_R = 26.4 min, **28**: T_R = 31.2 min) to afford 18.9 mg of *cis*-enamide (**30**, 43%) and 3.3 mg of *trans*-enamide (**28**, 8%).

2-3. Elucidation of the retro-vinylogous Mannich reaction

N-Benzyloxysiloxypyrrole (31)

A solution of benzyloxyamine hydrochloride (200 mg, 1.25 mmol, 1.1 equiv) and H₂O (6.0 mL) was added dropwise over 3 h to a solution of 2,5-dihydro-2,5-dimethoxyfuran **50** (140 μ L, 1.1 mmol, 1.0 equiv), aqueous 1.0 M HCl (230 μ L, 230 μ mol, 0.2 equiv) and H₂O (1.2 mL) at room temperature. Then, solid NaHCO₃ was added to the mixture until the mixture was neutralized. The resulting mixture was extracted with CHCl₃ (4x 5 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was filtrated through a pad of silica gel (EtOAc/hexane 1:4 to 2:3) to give crude mixture, which was used in the next reaction without further purification.

Sodium bis(trimethylsilyl)amide (1.0 M in THF, 620 µL, 620 µmol, 1.1 equiv) was added to a solution of crude mixture (107 mg, 566 µmol, 1.0 equiv) and THF (2.0 mL) at -78 °C. After maintaining for 10 min at -78 °C, triisopropylsilyl chloride (120 µL, 570 mmol, 1.0 equiv) was added to the solution at -78 °C. The solution was allowed to warm to room temperature, stirred for 12 h, and diluted with hexane (20 mL). The resulting mixture was filtered through a pad of activated aluminum oxide and washed with hexane. The filtrate was concentrated to give 155 mg of *N*-benzyloxy-2-siloxypyrrole **31** (47% over 2 steps): a pale yellow oil; IR (film) 2945, 2868, 1567, 1476, 1432, 1157, 1056, 903, 842, 660 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.33 (m, 5H), 6.17 (dd, *J* = 3.7, 2.3 Hz, 1H), 5.69 (dd, *J* = 4.1, 3.7 Hz, 1H), 5.15 (dd, *J* = 4.1, 2.3 Hz, 1H), 5.10 (s, 2H), 1.32 (sep, *J* = 7.3, 3H), 1.13 (d, *J* = 7.3 Hz, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 138.5 (C), 134.9 (C), 129.6 (CH), 128.6 (CH), 108.5 (CH), 100.0 (CH), 85.4 (CH), 80.7 (CH₂), 17.9 (CH₃), 12.4 (CH) ; HRMS (ESI), Calcd for C₂₀H₃₂NO₂Si (M+H)⁺ 346.2197, found 346.2190.

N-OMe-N'-OBn-Enamide (33)

Preparation of a stock solution of IrCl(CO)(PPh₃)₂ in toluene (0.14 mM): In a glove box, toluene (18 mL) was added to IrCl(CO)(PPh₃)₂ (2.0 mg, 2.6 µmol) at room temperature.

In a glove box, 1,1,3,3-tetramethyldisiloxane (28 μ L, 160 μ mol, 1.5 equiv) was added to a mixture of *N*-methoxylactam **19** (40.0 mg, 104 μ mol, 1.0 equiv) and IrCl(CO)(PPh₃)₂ (0.14 mM in toluene, 7.0 mL, 0.98 μ mol, 1.0 mol %) at room temperature. After maintaining for 1 h at room temperature, MeCN (14 mL) and 1-benzyloxy-2-((triisopropylsilyl)oxy)-1*H*-pyrrole **35** (108 mg, 313 μ mol, 3.0 equiv) were added to the solution.

After the flask was removed from the glove box, scandium trifluoromethanesulfonate (15.4 mg, 31.1 μ mol, 0.3 equiv) was added to the solution at -25 °C. After maintaining for 16 h at -25 °C, the solution was filtrated through a pad of activated aluminum oxide (10 cc), washed with EtOAc/Et₃N (1:0.01), and concentrated. The residue was filtrated through a pad of basified silica gel (EtOAc/hexane 1:5 to 1:3) to give a mixture of bicyclic compounds.

Sodium bis(trimethylsilyl)amide (1.0 M in THF, 310 µL, 310 µmol, 3.0 equiv) was added to a solution of a mixture of bicyclic compounds (57.7 mg, 104 µmol, 1.0 equiv) and THF (3.0 mL) at -78 °C. After maintaining for 10 min at -78 °C, acetic acid (18 µL, 310 µmol, 3.0 equiv) was added to the solution at -78 °C. After maintaining for 10 min at -78 °C, the solution was quenched with aqueous saturated NaHCO₃ (5 mL) and extracted with CHCl₃ (3x 10 mL). The residue was filtrated through a pad of silica gel (EtOAc) to give a mixture of bicyclic *cis*-enamide 33 α and *trans*-enamide 37 β (56.5mg, 97 % over 2 steps, 33 α :33 β = 2.1:1, The ration was determined by ¹H NMR). For analytical samples, a mixture of *cis*-enamide 33α and *trans*-enamide 33β was purified by HPLC with recycle unit (PEGASIL Silica 120-5, 250×10 mm, EtOAc/hexane 1:1, 10 mL/min, 2 cycles, **33** α : T_R = 30.6 min, **33** β : T_R = 36.6 min). *Cis*-enamide 33 α : a colorless oil; $[\alpha]^{24}_{D}$ +30.5 (*c* 1.0, CHCl₃); IR (film) 2932, 2858, 1722, 1470, 1428, 1113, 998, 824, 743, 700, 505 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.72–7.66 (m, 4H), 7.47–7.33 (m, 6H), 5.20 (d, *J* = 9.6 Hz, 1H), 5.21–5.17 (m, 1H), 5.13 (d, *J* = 9.6 Hz, 1H), 3.90 (dd, J = 10.1, 5.0 Hz, 1H), 3.70 (dd, J = 7.8, 7.8 Hz, 1H), 3.65 (dd, J = 10.1, 6.9 Hz, 1H), 3.45 (s, 3H),3.23–3.14 (m, 1H), 3.00 (dd, J = 1.6, 0.9 Hz, 2H), 2.06–1.89 (m, 2H), 1.79–1.69 (m, 1H), 1.66–1.57 (m, 1H), 1.06 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 174.1 (C), 146.5 (C), 135.7 (CH), 135.7 (CH), 134.7 (C), 133.8 (C), 129.8 (CH), 129.6 (CH), 127.8 (CH), 97.2 (CH), 78.6 (CH), 69.5 (CH), 66.2 (CH₂), 64.4 (CH), 62.9 (CH₃), 34.8 (CH₂), 27.1 (CH₂), 27.0 (CH₃), 24.9 (CH₂), 19.4 (C); HRMS (ESI), Calcd for C₃₃H₄₁N₂O₄Si (M+H)⁺ 557.2836, found 557.2827. *Trans*-enamide 33 β : a colorless oil; $[\alpha]^{24}$ _D = 0.146 (*c* 1.0, CHCl₃); IR (film) 2934, 2858, 1781, 1457, 1428, 1113, 999, 824, 742, 703, 506 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.71–7.65 (m, 4H), 7.46–7.35 (m, 8H), 7.35–7.27 (m, 3H), 5.23 (d, *J* = 9.6 Hz, 1H), 5.17 (d, *J* = 9.6 Hz, 1H), 5.06 (ddd, *J* = 2.7, 2.7, 0.7 Hz, 1H), 3.87 (dd, J = 7.3, 7.3 Hz, 1H), 3.86 (dd, J = 10.1, 5.5 Hz, 1H), 3.67 (dd, J = 10.1, 6.4 Hz), 3.51–3.42 (m, 1H), 3.42 (s, 3H), 3.02 (d, J = 2.7 Hz, 1H), 3.01 (d, J = 2.7 Hz, 1H), 2.03–1.87 (m, 2H), 1.87– 1.75 (m, 1H), 1.73–1.60 (m, 1H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 173.6 (C), 144.7 (C), 135.79 (CH), 135.77 (CH), 134.8 (C), 133.7 (C), 129.8 (CH), 129.7 (CH), 129.0 (CH), 128.6 (CH), 127.8 (CH), 127.8 (CH), 98.1 (CH), 78.6 (CH), 67.1 (CH), 64.2 (CH₂), 61.8 (CH), 61.1 (CH₃), 34.8 (CH₂), 27.0 (CH₃), 26.4 (CH₂), 25.2 (CH₂), 19.4 (C); HRMS (ESI), Calcd for C₃₃H₄₁N₂O₄Si (M+H)⁺ 557.2836, found 557.2831.

NOESY experiments for 33a (500 MHz, CDCl₃) and 33β (400 MHz, CDCl₃)

Confirmation of the retro-Mannich reaction

Scandium trifluoromethanesulfonate (2.3 mg, 4.7 μ mol, 5 mol %) was added to the solution of bicyclic compounds (44.5 mg, *trans*-[27+28]:*cis*-[29+30] = 1:5.8, 92.6 μ mol, 1.0 equiv), 1-benzyloxy-2-((triisopropylsilyl)oxy)-1*H*-pyrrole **31** (96.0 mg, 278 μ mol, 3.0 equiv), toluene (6.2 mL) and MeCN (31 mL) at room temperature. After maintaining for 16 h at room temperature, the solution was filtrated through a pad of activated aluminum oxide (10 cc), washed with EtOAc/Et₃N (1:0.01), and concentrated. The residue was filtrated through a pad of basified silica gel (EtOAc/hexane 1:5 to 1:3) to give a mixture of bicyclic compounds.

Sodium bis(trimethylsilyl)amide (1.0 M in THF, 238 µL, 238 µmol, 2.6 equiv) was added to a solution of a mixture of bicyclic compounds (44.1 mg) and THF (3.0 mL) at -78 °C. After maintaining for 10 min at -78 °C, acetic acid (14 µL, 250 µmol, 2.6 equiv) was added to the solution at -78 °C. After maintaining for 10 min at -78 °C, the solution was quenched with aqueous saturated NaHCO₃ (5 mL) and extracted with CHCl₃ (3x 10 mL). The residue was filtrated through a pad of silica gel (EtOAc) to give 42.3 mg of a mixture of *N*-OMe-*N*'-OMe-enamides (**28**, **30**) and *N*-OMe-*N*'-OBn-enamide (**33**) [*N*-OMe-*N*'-OMe-enamide (**28**, **30**): 44% combined yield, **28** (*trans*):**30** (*cis*) = 1:7.0, *N*-OMe-*N*'-OBn-enamide (**33**): 44% combined yield, *trans:cis* = 1:2.0, The ratios were determined by ¹H NMR].

2-4. Synthesis of 2-oxo-bispyrrolidine

Erythro-selective hydrogenation to afford 34

Rhodium on alumina (10.4 mg, 20 wt%) was added to a solution of *trans*-enamide 28 (51.8 mg, 10.8 µmol, 1.0 equiv) and EtOAc (10 mL). The flask was purged with hydrogen. The mixture was stirred under hydrogen atmosphere (1 atm) at room temperature for 10 h. Ethyl acetate was removed under reduced pressure. The residue was filtrated through basified silica gel (1 cc), washed with EtOAc. The mixture of trans-erythro lactam 34 and trans-threo lactam 35 was purified by reversed-phase HPLC with recycle unit (PEGASIL ODS SP100, 250×10 mm, MeCN/H₂O/TFA 94.9:5:0.1, 5 mL/min, **34**: 5 cycles, T_R = 178.7 min, **35**: 4 cycles, T_R = 134.2 min) to afford 30.1 mg of trans-erythro-lactam (34, 58%) and 9.4 mg of trans-threo-lactam (35, 18%). Trans*erythro*-lactam 34: a colorless oil; $[\alpha]^{25}_{D}$ –6.4 (*c* 1.0, CHCl₃); IR (film) 2933, 2858, 1720, 1463, 1428, 1192, 1112, 1053, 825, 742, 704, 504 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.71–7.64 (m, 4H), 7.46–7.33 (m, 6H), 3.90–3.83 (m, 1H), 3.78 (s, 3H), 3.70 (d, J = 5.3 Hz, 2H), 3.47–3.38 (m, 1H), 3.41 (s, 3H), 3.28 (brs, 1H), 2.38 (ddd, *J* = 17.2, 9.2, 6.9 Hz, 1H), 2.25 (ddd, *J* = 17.2, 8.9, 6.2 Hz, 1H), 2.17–1.99 (m, 3H), 1.99–1.87 (m, 1H), 1.76–1.53 (m, 1H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.6 (C), 135.77 (CH), 135.75 (CH), 133.69 (C), 133.67 (C), 129.82 (CH), 129.81 (CH), 127.8 (CH), 68.3 (CH), 67.4 (CH), 63.8 (CH₂), 62.2 (CH₃), 60.2 (CH₃), 58.5 (CH), 27.1 (CH₂), 27.0 (CH₃), 26.3 (CH₂), 25.7 (CH₂), 19.4 (CH₂), 19.3 (C); HRMS (ESI), Calcd for $C_{27}H_{38}N_2NaO_4Si (M+Na)^+$ 505.2493, found 505.2490. *Trans-threo*-lactam 35: a colorless oil; $[\alpha]^{25}D^-$ -27.0 (c 1.0, CHCl₃); IR (film) 2934, 2858, 1720, 1471, 1428, 1186, 1112, 1054, 824, 742, 704, 505 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.72–7.65 (m, 4H), 7.45–7.35 (m, 6H), 4.13 (ddd, *J* = 6.9, 6.4, 6.4 Hz, 1H), 3.79 (s, 3H), 3.74 (dd, *J* = 10.5, 5.5 Hz, 1H), 3.67 (dd, *J* = 10.5, 5.0 Hz, 1H), 3.55–3.45 (m, 2H), 3.45 (s, 3H), 2.40–2.22 (m, 2H), 2.12–2.00 (m, 1H), 1.96–1.82 (m, 2H), 1.85–1.65 (m, 2H), 1.62–1.51 (m, 1H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9 (C), 135.8 (CH), 133.6 (C), 129.82 (CH), 129.79 (CH), 127.80 (CH), 127.79 (CH), 67.02 (CH), 67.01 (CH), 64.0 (CH₂), 62.7 (CH₃), 60.3 (CH₃), 57.1 (CH), 27.4 (CH₂), 27.0 (CH₃), 24.5 (CH₂), 23.2 (CH₂), 19.3 (C), 18.6 (CH₂); HRMS (ESI), Calcd for C₂₇H₃₈N₂NaO₄Si (M+Na)⁺ 505.2493, found 505.2489.

Threo-selective hydride reduction to afford 35

Hydrochloric acid (1.0 M, 2.3 mL, 2.3 mmol, 20 equiv) was added to a mixture of *trans*-enamide **28** (55.3 mg, 115 μ mol, 1.0 equiv), NaBH₃CN (217 mg, 3.45 mmol, 30 equiv), 15-crown-5 (670 μ L, 3.44 mmol, 30 equiv) and CH₂Cl₂ (18 mL) at -20 °C. After stirring for 3 h, the mixture was quenched with aqueous saturated NaHCO₃

(20 mL) and brine (10 mL) and extracted with EtOAc/hexane = 1:1 (5x 30 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was filtrated through silica gel (1 cc), washed with EtOAc. The mixture of *trans-erythro*-lactam **34** and *trans-threo*-lactam **35** was purified by reversed-phase HPLC with recycle unit (PEGASIL ODS SP100, 250×10 mm, MeCN/H₂O/TFA 94.9:5:0.1, 10 mL/min, 5 cycles, **34**: T_R = 83.6 min, **35**: T_R = 77.6 min) to afford 15.6 mg of *trans-erythro*-lactam (**34**, 28%) and 27.6 mg of *trans-threo*-lactam (**35**, 50%).

Threo-selective hydrogenation to afford 36

Rhodium on alumina (9.7 mg, 30 wt%) was added to a solution of *cis*-enamide **30** (32.3 mg, 67.2 µmol, 1.0 equiv) and EtOH (4.0 mL). The flask was purged with hydrogen. The mixture was stirred under hydrogen atmosphere (1 atm) at room temperature for 2.5 h. Ethanol was removed under reduced pressure. The residue was filtrated through a pad of silica gel (EtOAc) and concentrated. The mixture of cis-threo-lactam 36 and ciserythro-lactam 37 was purified by HPLC with recycle unit (PEGASIL Silica 120-5, 250×10 mm, EtOAc/hexane 2:1, 10 mL/min, 7 cycles, 36: $T_R = 157.7 \text{ min}$, 37: $T_R = 168.6 \text{ min}$) to afford 16.8 mg of *cis-threo*-lactam (36, 52%) and 5.8 mg of *cis-erythro*-lactam (37, 18%). *Cis-threo*-lactam 36: a colorless oil; $[\alpha]^{25}_{D}$ +25.0 (c 1.0, CHCl₃); IR (film) 2933, 2858, 1719, 1472, 1428, 1113, 1056, 940, 860, 824, 704, 506 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.72–7.64 (m, 4H), 7.46–7.35 (m, 6H), 4.14 (ddd, *J* = 8.0, 5.3, 4.1 Hz, 1H), 3.82 (dd, *J* = 10.3, 4.4 Hz, J = 8.2, 8.2 Hz, 2H), 2.13–1.99 (m, 2H), 1.99–1.89 (m, 1H), 1.80–1.69 (m, 1H), 1.66–1.55 (m, 1H), 1.46–1.35 (m, 1H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0 (C), 135.8 (CH), 135.7 (CH), 133.79 (C), 133.76 (C), 129.8 (CH), 127.79 (CH), 127.77 (CH), 69.2 (CH), 67.2 (CH), 65.7 (CH₂), 63.1 (CH₃), 62.4 (CH₃), 56.4 (CH), 27.3 (CH₂), 27.0 (CH₃), 23.9 (CH₂), 20.6 (CH₂), 19.4 (C), 16.4 (CH₂); HRMS (ESI), Calcd for $C_{27}H_{38}KN_2O_4Si (M+K)^+$ 521.2232, found 521.2208. *Cis-erythro*-lactam 37: a colorless oil; $[\alpha]^{25}D_{-7.4}$ (c 1.0, CHCl₃); IR (film) 2932, 2858, 1718, 1472, 1428, 1188, 1112, 1055, 824, 742, 704, 505 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.71–7.64 (m, 4H), 7.46–7.35 (m, 6H), 3.83 (s, 3H), 3.86–3.81 (m, 1H), 3.80 (dd, J = 10.3, 4.6 Hz, 1H), 3.65 (dd, *J* = 10.3, 6.2 Hz, 1H), 3.45 (s, 3H), 3.33 (ddd, *J* = 8.7, 8.7, 3.0 Hz, 1H), 3.24–3.15 (m, 1H), 2.47-2.36 (m, 1H), 2.31-2.21 (m, 1H), 2.07-1.98 (m, 2H), 1.98-1.84 (m, 2H), 1.72-1.60 (m, 1H), 1.55-1.42 (m, 1H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) & 172.3 (C), 135.75 (CH), 135.72 (CH), 133.71 (C), 133.65 (C), 129.8 (CH), 127.8 (CH), 70.2 (CH), 68.0 (CH), 65.6 (CH₂), 62.3 (CH₃), 62.2 (CH₃), 58.9 (CH), 27.2 (CH₂), 27.0 (CH₃), 24.1 (CH₂), 23.4 (CH₂), 19.4 (C), 17.7 (CH₂); HRMS (ESI), Calcd for C₂₇H₃₉N₂O₄Si (M+H)⁺ 483.2674, found 483.2673.

Erythro-selective hydride reduction to afford 36

Trifluoroacetic acid (77 µL, 100 mmol, 15 equiv) was added to a mixture of *cis*-enamide **30** (32.1 mg, 66.8 µmol, 1.0 equiv), NaBH₃CN (126 mg, 2.01 mmol, 30 equiv) and CH₂Cl₂ (5.0 mL) at room temperature. After stirring for 15 h, the mixture was quenched with aqueous saturated NaHCO₃ (5.0 mL) and extracted with CHCl₃ (4x 10mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1:4 to 1:1) to give a mixture of *cis-threo*-lactam **36** and *cis-erythro*-lactam **37** (21.1 mg, 66% combined yield, **36:37** = 1:2.0, The ratio was determined by ¹H NMR).

Determination of threo- and erythro-configuration of dimeric compounds 51, 53, 55, and 57

Trans-erythro-bispyrrolidine 38

In a glove box, 1,1,3,3-tetramethyldisiloxane (66 µL, 370 µmol, 6.0 equiv) was added to a mixture of *trans-erythro*-lactam **34** (29.8 mg, 61.7 µmol, 1.0 equiv), IrCl(CO)(PPh₃)₂ (2.4 mg, 3.1 µmol, 5 mol %) and toluene (4.1 mL) at room temperature. After maintaining for 1 h at room temperature, Sc(OTf)₃ (15.3 mg, 31.1 µmol, 0.5 equiv) was added to the solution at room temperature. The flask was removed from the glove box. After maintaining for 12 h at room temperature, the solution was quenched with aqueous saturated NaHCO₃ (5 mL) and extracted with CHCl₃ (3x 5mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was purified by preparative layer chromatography (EtOAc/hexane 1:7) to give 24.6 mg of *trans-erythro*-bispyrrolidine (**38**: 85%): a colorless oil; $[\alpha]^{23}_{D}$ +11.3 (*c* 1.0, CHCl₃); IR (film) 2935, 2806, 1465, 1428, 1113, 1051, 1008, 938, 824, 740, 703, 505 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.68 (m, 4H), 7.46–7.35 (m, 6H), 3.73–3.63 (m, 1H), 3.60 (dd, *J* = 10.5, 5.5 Hz, 1H), 3.48 (s, 3H), 3.51–3.40 (m, 1H), 3.44 (s, 3H), 3.15 (brs, 2H), 2.92 (ddd, *J* = 11.4, 7.3, 7.3 Hz, 1H), 2.90 (brs, 1H), 2.14–2.05 (m, 1H), 2.05–1.95 (m, 2H), 1.92–

1.70 (m, 4H), 1.59–1.48 (m, 1H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 135.84 (CH), 135.79 (CH), 133.95 (C), 133.86 (C), 129.7 (CH), 127.7 (CH), 70.4 (CH), 69.9 (CH), 69.2 (CH), 65.1 (CH₂), 60.0 (CH₃), 59.9 (CH₃), 56.1 (CH₂), 28.0 (CH₂), 27.8 (CH₂), 26.9 (CH₃), 26.2 (CH₂), 22.3 (CH₂), 19.3 (C); HRMS (ESI), Calcd for C₂₇H₄₁N₂O₃Si (M+H)⁺ 469.2881, found 469.2877.

Trans-erythro-urea (51)

A mixture of *trans-erythro*-bispyrrolidine **38** (20.4 mg, 43.5 µmol, 1.0 equiv), activated zinc (powder, 1.71 g, 26.2 mmol, 600 equiv), NH₄Cl (1.40 g, 26.2 mmol, 600 equiv) and EtOH (5.0 mL) was warmed to 80 °C, stirred at 80 °C for 12 h, and cooled to room temperature. The mixture was quenched with aqueous saturated NaHCO₃ (5 mL), and extracted with CHCl₃ (10x 5mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was filtrated through a pad of silica gel (1 cc), washed with MeOH, to give mixture of reductants, which was immediately used in the next reaction without further purification.

Bis(trichloromethyl) Carbonate (194 mg, 654 µmol, 15 equiv) was added to a solution of the above mixture of reductants, triethylamine (360 µL, 2.60 mmol, 60 equiv) and CH₂Cl₂ (4.0 mL) at room temperature. After maintaining for 12 h at room temperature, the solution was quenched with aqueous saturated NaHCO₃ (5 mL), and extracted with CHCl₃ (5x 5mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was purified by preparative layer chromatography (EtOAc/hexane 1:2) to give 4.8 mg of *transerythro*-urea (**51**: 25% over 2 steps): a colorless oil; $[a]^{23}_{D}$ –24.0 (*c* 1.0, CHCl₃); IR (film) 2956, 2858, 1702, 1399, 1326, 1279, 1112, 773, 704, 506 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 7.87–7.76 (m, 4H), 7.29–7.19 (m, 6H), 4.24–4.17 (m, 1H), 3.79–3.69 (m, 3H), 3.53 (ddd, *J* = 9.5, 8.0, 5.7 Hz, 1H), 3.41 (ddd, *J* = 15.2, 8.0, 8.0 Hz, 1H), 2.72 (ddd, *J* = 10.9, 7.7, 5.4 Hz, 1H), 1.76–1.66 (m, 1H), 1.66–1.54 (m, 1H), 1.36–1.16 (m, 1H), 1.20 (s, 9H), 1.07 (ddd, *J* = 12.2, 10.9, 6.6 Hz, 1H), 0.96–0.84 (m, 2H); ¹³C NMR (125 MHz, C₆D₆) δ 165.2 (C), 136.13 (CH), 136.11 (CH), 134.23 (C), 134.19 (C), 130.0 (CH), 128.1 (CH), 67.1 (CH₂), 61.1 (CH), 59.8 (CH), 58.6 (CH), 45.0 (CH₂), 28.7 (CH₂), 27.2 (CH₃), 26.9 (CH₂), 26.2 (CH₂), 19.6 (C); HRMS (ESI), Calcd for C₂₆H₃₄KN₂O₂Si (M+K)⁺ 473.2021, found 473.1998.

NOESY experiment for trans-erythro-urea 51 (500 MHz, C₆D₆)

Trans-threo-bispyrrolidine (52)

In a glove box, 1,1,3,3-tetramethyldisiloxane (49 µL, 280 µmol, 6.0 equiv) was added to a mixture of *trans-threo*-lactam **35** (22.3 mg, 46.2 µmol, 1.0 equiv), IrCl(CO)(PPh₃)₂ (1.8 mg, 2.3 µmol, 5 mol %) and toluene (3.1 mL) at room temperature. After maintaining for 1 h at room temperature, Sc(OTf)₃ (11.4 mg, 23.2 µmol, 0.5 equiv) was added to the solution at room temperature. The flask was removed from the glove box. After maintaining for 12 h at room temperature, the solution was quenched with aqueous saturated NaHCO₃ (5 mL) and extracted with CHCl₃ (3x 5mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was purified by preparative layer chromatography (EtOAc/hexane 1:7) to give 17.8 mg of *trans-threo*-bipyrrolidine (**52**: 82%): a colorless oil; $[a]^{23}_{D}$ –25.5 (*c* 1.0, CHCl₃); IR (film) 2934, 2858, 1471, 1426, 1113, 1058, 1008, 938, 824, 741, 703, 505 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.67 (m, 4H), 7.46–7.34 (m, 6H), 3.80 (dd, *J* = 10.1, 6.0 Hz, 1H), 3.65 (dd, *J* = 10.1, 6.4 Hz, 1H), 3.55 (s, 3H), 3.51–3.43 (m, 1H), 3.47 (s, 3H), 3.38 (m, 3H), 2.82 (ddd, *J* = 10.5, 8.2, 8.2 Hz, 1H), 2.00–1.73 (m, 4H), 1.73–1.56 (m, 3H), 1.56–1.45 (m, 1H), 1.06 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 135.8 (CH), 133.92 (C), 133.89 (C), 129.7 (CH), 127.7 (CH), 68.3 (CH), 68.03 (CH), 67.95 (CH), 64.5 (CH₂), 60.8 (CH₃), 60.5 (CH₃), 55.8 (CH₂), 27.0 (CH₃), 25.5 (CH₂), 25.1 (CH₂), 24.9 (CH₂), 21.3 (CH₂), 19.3 (C); HRMS (ESI), Calcd for C₂₇H₄₁N₂O₃Si (M+H)⁺ 469.2881, found 469.2877.

PO H
$$\stackrel{-}{H}$$
 $\stackrel{-}{H}$ $\stackrel{-}{H}$

....

Trans-threo-urea (53)

A mixture of *trans-threo*-bipyrrolidine **52** (21.1 mg, 45.0 μ mol, 1.0 equiv), activated zinc (powder, 1.77 g, 27.1 mmol, 600 equiv), NH₄Cl (1.44 g, 26.9 mmol, 600 equiv) and EtOH (5.0 mL) was warmed to 80 °C, stirred at 80 °C for 12 h, and cooled to room temperature. The mixture was quenched with aqueous saturated NaHCO₃ (5 mL) and extracted with CHCl₃ (10x 5mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was filtrated through a pad of silica gel (1 cc), washed with MeOH, to give mixture of reductants, which was immediately used in the next reaction without further purification.

Bis(trichloromethyl) Carbonate (200 mg, 674 μ mol, 15 equiv) was added to a solution of the above mixture of reductants, triethylamine (374 μ L, 2.70 mmol, 60 equiv) and CH₂Cl₂ (4.0 mL) at room temperature. After maintaining for 12 h at room temperature, the solution was quenched with aqueous saturated NaHCO₃ (5 mL) and extracted with CHCl₃ (5x 5mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was purified by preparative layer chromatography (EtOAc/hexane 1:2) to give 4.1 mg of *trans*-

threo-urea (**53**: 21% over 2 steps): a colorless oil; $[\alpha]^{23}_{D}$ –73.3 (*c* 1.0, CHCl₃); IR (film) 2961, 2858, 1705, 1380, 1324, 1262, 1112, 770, 704, 505 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.69–7.59 (m, 4H), 7.47–7.29 (m, 6H), 3.91 (dddd, *J* = 11.9, 11.9, 4.6, 4.6 Hz, 1H), 3.77–3.68 (m, 2H), 3.65 (ddd, *J* = 1.8, 5.3, 0.7 Hz, 1H), 3.56 (ddd, *J* = 14.6, 9.9, 6.0 Hz, 1H), 3.08 (ddd, *J* = 11.5, 9.2, 4.4 Hz, 1H), 2.22–2.10 (m, 1H), 2.10–1.91 (m, 4H), 1.91–1.77 (m, 1H), 1.59–1.47 (m, 1H), 1.47–1.36 (m, 1H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4 (C), 135.7 (CH), 133.8 (C), 133.7 (C), 129.8 (CH), 129.7 (CH), 127.78 (CH), 127.76 (CH), 67.1 (CH₂), 62.4 (CH), 62.1 (CH), 59.1 (CH), 45.6 (CH₂), 31.6 (CH₂), 30.7 (CH₂), 28.9 (CH₂), 27.0 (CH₃), 25.9 (CH₂), 19.5 (C); HRMS (ESI), Calcd for C₂₆H₃₄KN₂O₂Si (M+K)⁺ 473.2021, found 473.2002.

NOESY experimen for *trans-threo*-urea 53 (400 MHz, CDCl₃)

Cis-threo-bispyrrolidine (54)

In a glove box, 1,1,3,3-tetramethyldisiloxane (60 µL, 340 µmol, 6.0 equiv) was added to a mixture of *cisthreo*-lactam **36** (27.3 mg, 56.6 µmol, 1.0 equiv), IrCl(CO)(PPh₃)₂ (2.2 mg, 2.8 µmol, 5 mol %) and toluene (3.8 mL) at room temperature. After maintaining for 1 h at room temperature, Sc(OTf)₃ (14.6 mg, 26.7 µmol, 0.5 equiv) was added to the solution at room temperature. The flask was removed from the glove box. After maintaining for 12 h at room temperature, the solution was quenched with aqueous saturated NaHCO₃ (5 mL) and extracted with CHCl₃ (3x 5mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was purified by preparative layer chromatography (EtOAc/hexane 1:7) to give 23.9 mg of *cis-threo*-bispyrrolidine (**54**: 90%): a colorless oil; $[a]^{23}_{D}$ +21.7 (*c* 1.0, CHCl₃); IR (film) 2934, 2807, 1471, 1428, 1112, 1059, 1007, 938, 824, 741, 703, 506 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.72–7.65 (m, 4H), 7.46–7.35 (m, 6H), 3.86 (dd, *J* = 10.1, 4.4 Hz, 1H), 3.62 (dd, *J* = 10.1, 6.6 Hz, 1H), 3.54 (s, 3H), 3.45 (s, 3H), 3.35–3.18 (m, 3H), 3.16–3.07 (m, 1H), 2.76 (ddd, *J* = 8.0, 8.0, 8.0 Hz, 1H), 2.01–1.90 (m, 1H), 1.90–1.72 (m, 3H), 1.72–1.43 (m, 4H), 3.79 (s, 3H), 1.06 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 135.8 (CH), 135.7 (CH), 134.02 (C), 134.01 (C), 129.7 (CH), 127.74 (CH), 127.72 (CH), 69.3 (CH), 68.4 (CH), 66.1 (CH₂), 62.9 (CH₃), 61.0 (CH₃), 55.8 (CH₂) 55.8 (CH₂), 27.0 (CH₃), 24.4 (CH₂), 22.9 (CH₂), 21.8 (CH₂), 21.1 (CH₂), 19.5 (C); HRMS (ESI), Calcd for C₂₇H₄₁N_{2O3}Si (M+H)⁺ 469.2881, found 469.2875.

Cis-threo-urea (55)

A mixture of *cis-threo*-bipyrrolidine **54** (10.0 mg, 21.3 µmol, 1.0 equiv), activated zinc (powder, 818 mg, 12.5 mmol, 600 equiv), NH₄Cl (685 mg, 12.5 mmol, 600 equiv) and EtOH (3.0 mL) was warmed to 80 °C, stirred at 80 °C for 12 h, and cooled to room temperature. The mixture was quenched with aqueous saturated NaHCO₃ (5 mL) and extracted with CHCl₃ (10x 5 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was filtrated through a pad of silica gel (1 cc), washed with MeOH, to give mixture of reductants, which was immediately used in the next reaction without further purification.

Bis(trichloromethyl) Carbonate (94.9 mg, 320 µmol, 15 equiv) was added to a solution of the above mixture of reductants, triethylamine (180 µL, 1.30 mmol, 60 equiv) and CH₂Cl₂ (3.0 mL) at room temperature. After maintaining for 12 h at room temperature, the solution was quenched with aqueous saturated NaHCO₃ (5 mL) and extracted with CHCl₃ (5x 5mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was purified by preparative layer chromatography (EtOAc/hexane 1:2) to give 1.7 mg of *cis-threo*-urea (**55**: 18% over 2 steps): a colorless oil; $[a]^{23}_{D}$ +62.5 (*c* 1.0, CHCl₃); IR (film) 2958, 2889, 1697, 1395, 1317, 1267, 1112, 1052, 766, 703, 505 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.74–7.63 (m, 4H), 7.45–7.33 (m, 6H), 4.25 (dd, *J* = 10.3, 5.4 Hz, 1H), 3.93 (dd, *J* = 10.3, 2.6 Hz, 1H), 3.70 (ddd, *J* = 10.6, 5.7, 4.0 Hz, 1H), 3.65 (ddd, *J* = 8.6, 6.3, 4.0 Hz, 1H), 3.59 (dddd, *J* = 10.9, 5.4, 2.6, 2.6 Hz, 1H), 3.49 (ddd, *J* = 10.9, 7.7, 7.7 Hz, 1H), 3.03 (ddd, *J* = 10.9, 8.6, 4.3 Hz), 2.15–2.08 (m, 1H), 2.07–1.93 (m, 3H), 1.93–1.82 (m, 2H), 1.76 (dddd, *J* = 11.3, 11.2, 11.0, 7.7 Hz, 1H), 1.53–1.43 (m, 1H), 1.06 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 162.6 (C), 136.0 (CH), 135.8 (CH), 134.0 (C), 133.4 (C), 129.72 (CH), 129.68 (CH), 127.74 (CH), 127.73 (CH), 65.7 (CH), 62.2 (CH₂), 62.0 (CH), 57.7 (CH), 45.2 (CH₂), 32.1 (CH₂), 32.0 (CH₂), 30.2 (CH₂), 27.0 (CH₃), 26.3 (CH₂), 19.5 (C); HRMS (ESI), Calcd for C₂₆H₃₄N₂NaO₂Si (M+Na)⁺ 457.2282, found 457.2265.

NOESY experiment for cis-threo-urea 55 (500 MHz, CDCl₃)

Cis-erythro-bipyrrolidine (56)

In a glove box, 1,1,3,3-tetramethyldisiloxane (65 µL, 370 µmol, 6.0 equiv) was added to a mixture of *ciserythro*-lactam **37** (29.6 mg, 61.3 µmol, 1.0 equiv), IrCl(CO)(PPh₃)₂ (2.4 mg, 3.1 µmol, 5 mol %) and toluene (4.1 mL) at room temperature. After maintaining for 1 h at room temperature, Sc(OTf)₃ (15.2 mg, 30.9 µmol, 0.5 equiv) was added to the solution at room temperature. The flask was removed from the glove box. After maintaining for 12 h at room temperature, the solution was quenched with aqueous saturated NaHCO₃ (5 mL) and extracted with CHCl₃ (3x 5mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was purified by preparative layer chromatography (EtOAc/hexane 1:7) to give 23.5 mg of *ciserythro*-bispyrrolidine (**56**: 82%). [α]²⁴_D –16.0 (*c* 1.0, CHCl₃); IR (film) 2933, 2805, 1471, 1428, 1112, 1056, 1007, 939, 823, 740, 702, 505 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.75–7.66 (m, 4H), 7.45–7.35 (m, 6H), 3.84 (dd, *J* = 10.1, 4.8 Hz, 1H), 3.62 (dd, *J* = 10.1, 6.9 Hz, 1H), 3.52 (s, 3H), 3.49 (s, 3H), 3.28–3.15 (m, 1H), 3.19 (m, 1H), 3.05 (ddd, *J* = 7.3, 7.3, 7.3 Hz, 1H), 2.96 (ddd, *J* = 7.3, 7.3, 7.3 Hz, 1H), 2.79 (ddd, *J* = 10.3, 8.0. 8.0 Hz, 1H), 2.00–1.83 (m, 3H), 1.83–1.54 (m, 5H), 1.06 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 135.80 (CH), 135.76 (CH), 133.98 (C), 133.95 (C), 129.7 (CH), 127.7 (CH), 70.4 (CH), 70.0 (CH), 70.0 (CH), 66.3 (CH₂), 62.1 (CH₂), 60.4 (CH₃), 56.1 (CH₂), 55.8 (CH₂), 27.0 (CH₃), 25.7 (CH₂), 24.7 (CH₂), 24.5 (CH₂), 21.3 (CH₂), 19.4 (C); HRMS (ESI), Calcd for C₂₇H₄₁N₂O₃Si (M+H)⁺ 469.2881, found 469.2876.

Cis-erythro-urea (57)

A mixture of *cis-erythro*-bipyrrolidine **56** (8.8 mg, 18.8 μ mol, 1.0 equiv), activated zinc (powder, 720 mg, 11.0 mmol, 600 equiv), NH₄Cl (603 mg, 11.3 mmol, 600 equiv) and EtOH (3.0 mL) was warmed to 80 °C, stirred at 80 °C for 12 h, and cooled to room temperature. The mixture was quenched with aqueous saturated NaHCO₃ (5 mL) and extracted with CHCl₃ (10x 5mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was filtrated through a pad of silica gel (1 cc), washed with MeOH, to give mixture of reductants, which was immediately used in the next reaction without further purification.

Bis(trichloromethyl) Carbonate (84.0 mg, 283 μ mol, 15 equiv) was added to a solution of the above mixture of reductants, triethylamine (160 μ L, 1.20 mmol, 60 equiv) and CH₂Cl₂ (3.0 mL) at room temperature. After maintaining for 12 h at room temperature, the solution was quenched with aqueous saturated NaHCO₃ (5 mL) and extracted with CHCl₃ (5x 5mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was purified by preparative layer chromatography (EtOAc/hexane 1:2) to give 1.3 mg of *cis*-

erythro-urea (**57**: 16% over 2 steps): a colorless oil; $[\alpha]^{23}_{D}$ –21.1 (*c* 1.0, CHCl₃); IR (film) 2960, 2892, 1699, 1407, 1317, 1261, 1112, 1069, 788, 704, 506 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.69–7.61 (m, 4H), 7.45–7.33 (m, 6H), 4.16 (dd, *J* = 10.6, 5.2 Hz, 1H), 4.12 (ddd, *J* = 9.2, 7.5, 7.5 Hz, 1H), 3.85 (dd, *J* = 10.6, 2.9 Hz, 1H), 3.70 (ddd, *J* = 11.5, 8.3, 8.3 Hz, 1H), 3.68–3.61 (m, 1H), 3.54 (ddd, *J* = 10.9, 7.5, 5.2 Hz, 1H), 2.98 (ddd, *J* = 11.5, 9.7, 3.2 Hz, 1H), 2.29–2.22 (m, 1H), 2.22–2.13 (m, 1H), 1.89–1.79 (m, 1H), 1.78–1.60 (m, 3H), 1.55–1.46 (m, 1H), 1.38 (dddd, *J* = 11.5, 11.2, 10.9, 8.9 Hz, 1H), 1.05 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 162.1 (C), 135.79 (CH), 135.77 (CH), 133.5 (C), 129.8 (CH), 129.7 (CH), 127.82 (CH), 127.78 (CH), 62.4 (CH₂), 62.3 (CH), 59.8 (CH), 55.4 (CH), 45.5 (CH₂), 32.3 (CH₂), 27.1 (CH₃), 25.5 (CH₂), 24.8 (CH₂), 24.5 (CH₂), 19.4 (C); HRMS (ESI), Calcd for C₂₆H₃₅N₂NaO₂Si (M+H)⁺ 435.2462, found 435.2450.

NOESY experiment for cis-erythro-urea 57 (500 MHz, CDCl₃)

57 (P = TBDPS)

2-5. Synthesis of 2-oxo-trispyrrolidine

Trans-erythro-trans-enamide (39)

Preparation of a stock solution of IrCl(CO)(PPh₃)₂ in CHCl₃ (0.14 mM): In a glove box, CHCl₃ (18 mL) was added to IrCl(CO)(PPh₃)₂ (2.0 mg, 2.6 µmol) at room temperature.

In a glove box, 1,1,3,3-tetramethyldisiloxane (13 μ L, 73.0 μ mol, 1.5 equiv) was added to a mixture of *trans-erythro*-lactam **34** (23.5 mg, 48.7 μ mol, 1.0 equiv) and IrCl(CO)(PPh₃)₂ (0.14 mM in CHCl₃, 5.1 mL, 0.71 μ mol, 1.5 mol %) at room temperature. After maintaining for 1 h at room temperature, CHCl₃ (8.1 mL) and 1-methoxy-2-((triisopropylsilyl)oxy)-1H-pyrrole **22** (39.4 mg, 146 μ mol, 3.0 equiv) were added to the solution. After the flask was removed from the glove box, scandium trifluoromethanesulfonate (24.0 mg, 48.8 μ mol, 1.0 equiv) was added to the solution at –60 °C. After stirring for 12 h at –60 °C, the solution was quenched with aqueous saturated NaHCO₃ (15 mL) and extracted with CHCl₃ (3x 15mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was filtrated through a pad of basified silica gel (EtOAc/hexane 1:5 to 1:3) to give a mixture of tricyclic compounds.

Sodium bis(trimethylsilyl)amide (1.0 M in THF, 99 µL, 99 µmol, 2.3 equiv) was added to a solution of a mixture of tricyclic compounds (24.9 mg, 42.9 µmol, 1.0 equiv) and THF (2.0 mL) at -78 °C. After maintaining for 10 min at -78 °C, acetic acid (6.1 µL, 110 µmol, 2.5 equiv) was added to the solution at -78 °C. After maintaining for 10 min at -78 °C, the solution was quenched with aqueous saturated NaHCO₃ (5 mL) and extracted with CHCl₃ (3x 5mL). The residue was filtrated through a pad of silica gel (EtOAc) and concentrated. The mixture of trans-erythro-trans-enamide **39** and trans-erythro-cis-enamide **40** was purified by HPLC with recycle unit (PEGASIL Silica 120-5, 250×10 mm, EtOAc/hexane 1:1, 10 mL/min, 2 cycles, **39** $T_R = 29.5$ min, **40**: $T_R = 25.4$ min) to afford 3.4 mg of 15.2 mg of *trans-erythro-trans*-enamide (**39**, 54%) and *trans-erythro*cis-enamide (40, 12%). Trans-erythro-trans-enamide 39: a colorless oil; $[\alpha]^{23}_{D}$ -48.9 (c 1.0, CHCl₃) (c 1.0, CHCl₃); IR (film) 2938, 2858, 1726, 1464, 1428, 1189, 1112, 1043, 824, 772, 704, 505 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.68 (m, 4H), 7.45–7.35 (m, 6H), 5.08 (brs, 1H), 4.02 (s, 3H), 4.10–3.95 (m, 1H), 3.67 (d, J = 4.1 Hz, 2H), 3.52–3.06 (m, 3H), 3.47 (s, 3H), 3.44 (s, 3H), 2.98 (dd, J = 5.5, 2.7 Hz, 2H), 2.25–2.06 (m, 2H), 2.06–1.91 (m, 4H), 1.87–1.73 (m, 1H), 1.70–1.53 (m, 1H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 173.6 (C), 143.7 (C), 135.84 (CH), 135.79 (CH), 133.8 (C), 133.7 (C), 129.8 (CH), 127.8 (CH), 99.0 (CH), 69.3 (CH), 69.2 (CH), 69.1 (CH), 65.1 (CH), 64.8 (CH₃), 62.3 (CH₂), 60.02 (CH₃), 60.00 (CH₃), 34.8 (CH₂), 28.7 (CH₂), 27.9 (CH₂), 26.9 (CH₃), 26.1 (CH₂), 25.8 (CH₂), 19.3 (C); HRMS (ESI), Calcd for C₃₂H₄₆N₃O₅Si (M+H)⁺ 580.3201, found 580.3198. Trans-erythro-cis-enamide 40: a colorless oil; $[\alpha]^{22}p - 31.2$ (c 1.0, CHCl₃); IR (film) 2937, 2858, 1727, 1471, 1428, 1188, 1113, 1050, 824, 743, 705, 505 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.727.68 (m, 4H), 7.44–7.35 (m, 6H), 5.18 (m, 1H), 3.95 (s, 3H), 3.84 (dd, J = 7.7, 7.7 Hz, 1H), 3.67 (brs, 2H), 3.52 (s, 3H), 3.48-3.40 (m, 1H), 3.44 (s, 3H), 3.17 (brs, 1H), 3.09 (brs, 1H), 2.96 (brs, 2H), 2.15–2.03 (m, 2H), 2.03–1.95 (m, 2H), 1.95–1.77 (m, 3H), 1.63 (brs, 1H), 1.05 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 173.8 (C), 146.1 (C), 135.82 (CH), 135.77 (CH), 133.9 (C), 133.8 (C), 129.8 (CH), 127.8 (CH), 97.9 (CH), 70.2 (CH), 69.8 (CH), 68.1 (CH), 65.2 (CH), 64.7 (CH₂), 64.6 (CH₃), 62.1 (CH₃), 59.9 (CH₃), 34.7 (CH₂), 27.3 (CH₂), 27.04 (CH₂), 26.95 (CH₃), 26.3 (CH₂), 25.7 (CH₂), 19.4 (C); HRMS (ESI), Calcd for C₃₂H₄₆N₃O₅Si (M+H)⁺ 580.3201, found 580.3195.

NOESY experiment for trans-erythro-trans-enamide 39 (500 MHz, CDCl₃)

NOESY experiment for trans-erythro-cis-enamide 40 (400 MHz, CDCl₃)

Erythro-selective hydrogenation to afford 41

Rhodium on alumina (12.0 mg, 24 wt%) was added to a solution of *trans*-enamide **39** (51.0 mg, 88.0 µmol, 1.0 equiv) and EtOAc (2.5 mL). The flask was purged with hydrogen. The mixture was stirred under hydrogen atmosphere (1 atm) at room temperature for 3 h. Ethanol was removed under reduced pressure. The residue was filtrated through a pad of silica gel (EtOAc) and concentrated. The mixture of *erythro* lactam (**41**) and *threo* lactam (**42**) was purified by HPLC with recycle unit (PEGASIL Silica 120-5, 250×10 mm, EtOAc noly, 10 mL/min, 3 cycles, **41**: $T_R = 31.5$ min, **42**: $T_R = 30.0$ min) to afford 33.1 mg of *trans-erythro-trans-erythro*-lactam (**41**, 64%) and 5.5 mg of *trans-erythro-trans-threo*-lactam (**42**, 11%). *Trans-erythro-trans-erythro*-lactam **41**; a colorless oil; $[\alpha]^{23}_D = 5.8$ (*c* 0.6, CHCl₃); IR (film) 2935, 2892, 2859, 1720, 1463, 1428, 1112, 1047, 824, 704, 565, 488 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.73–7.67 (m, 4H), 7.44–7.32 (m, 6H), 3.90–3.76 (m, 1H), 3.78 (s, 3H), 3.64 (brd, J = 3.4 Hz, 2H), 3.50–3.37 (m, 2H), 3.43 (s, 3H), 3.39 (s, 3H), 3.12 (brs, 1H), 3.02 (brs, 1H), 2.37 (ddd, J = 16.9, 9.7, 6.9 Hz, 1H), 2.23 (ddd, J = 16.9, 10.0, 5.2, 1H), 2.19–2.05 (m, 3H), 2.05–1.90 (m, 4H),

1.80–1.69 (m, 1H), 1.66 (brs, 1H), 1.64–1.51 (m, 1H), 1.04 (s, 9H) ; ¹³C NMR (125 MHz, CDCl₃) δ 171.5 (C), 135.8 (CH), 135.7 (CH), 133.8 (C), 133.7 (C), 129.72 (CH), 129.69 (CH), 127.7 (CH), 70.3 (CH), 70.0 (CH), 69.2 (CH), 68.8 (CH), 65.2 (CH₂), 62.1 (CH₃), 59.8 (CH₃), 59.7 (CH₃), 58.4 (CH), 29.1 (CH₂), 28.6 (CH₂), 27.8 (CH₂), 27.2 (CH₂), 26.9 (CH₃), 25.8 (CH₂), 19.7 (CH₂), 19.3 (C) ; HRMS (ESI), calcd for C₃₂H₄₈N₃O₅Si (M+H)⁺ 582.3358, found 582.3357. *Trans-erythro-trans-threo*-lactam 42: a colorless oil; $[\alpha]^{24}_{\rm D}$ +3.8 (*c* 0.6, CHCl₃); IR (film) 2934, 2892, 2807, 1721, 1463, 1428, 1112, 1052, 800, 704, 505 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.72–7.68 (m, 4H), 7.45–7.35 (m, 6H), 4.03 (brd, *J* = 4.6 Hz, 1H), 3.82 (s, 3H), 3.65 (brd, *J* = 4.6 Hz, 2H), 3.56–3.30 (m, 2H), 3.46 (s, 3H), 3.44 (s, 3H), 3.13 (brs, 1H), 2.86 (brs, 1H), 2.35 (ddd, *J* = 17.2, 9.7, 4.0 Hz, 1H), 2.25 (ddd, *J* = 17.2, 9.7, 8.0 Hz, 1H), 2.20–1.93 (m, 5H), 1.89–1.76 (m, 2H), 1.76–1.54 (m, 3H), 1.04 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 172.8 (C), 135.8 (CH), 135.7 (CH), 133.9 (C), 133.7 (C), 129.77 (CH), 129.74 (CH), 127.8 (CH), 70.8 (CH), 69.9 (CH), 69.6 (CH), 69.3 (CH), 65.4 (CH₂), 63.2 (CH₃), 59.9 (CH₃), 59.3 (CH₃), 57.8 (CH), 29.1 (CH₂), 27.5 (CH₂), 27.4 (CH₂), 27.0 (CH₃), 25.9 (CH₂), 25.5 (CH₂), 20.5 (CH₂), 19.4 (C) ; HRMS (ESI), calcd for C₃₂H₄₈N₃O₅Si (M+H)⁺ 582.3358, found 582.3374.

*Stereochemistry of the C5 carbon center in 2-oxo-trispyrrolidines **41** and **42** was empirically determined by comparison of ¹H-NMR. The chemical shift of the C5 proton of *erythro*-isomers (c.a. 3.8 ppm) tends to be located at higher field than that of the C5 proton of *threo*-isomers (c.a. 4.1 ppm).

Trans-erythro-trans-erythro-trispyrrolidine (43)

In a glove box, 1,1,3,3-tetramethyldisiloxane (41 μ L, 232 μ mol, 6.0 equiv) was added to a mixture of *trans-erythro*-lactam **41** (22.4 mg, 38.5 μ mol, 1.0 equiv), IrCl(CO)(PPh₃)₂ (1.5 mg, 1.9 μ mol, 5 mol %) and toluene (2.6 mL) at room temperature. After maintaining for 1 h at room temperature, Sc(OTf)₃ (9.5 mg, 19.3 μ mol, 0.5

equiv) was added to the solution at room temperature. The flask was removed from the glove box. After maintaining for 12 h at room temperature, the solution was quenched with aqueous saturated NaHCO₃ (5 mL) and extracted with CHCl₃ (3x 5mL). The combined organic extracts were dried over Na₂SO₄ and concentrated. The residue was purified by preparative layer chromatography (EtOAc/hexane 1:3) to give 20.1 mg of *trans-erythro-trans-erythro* trispyrrolidine (**43**: 92%): a colorless oil; $[\alpha]^{23}_{D}$ –19.7 (*c* 0.6, CHCl₃); IR (film) 2935, 2891, 2858, 1464, 1428, 1112, 1050, 775, 740, 673, 504, 489 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.75–7.69 (m, 4H), 7.47–7.35 (m, 6H), 3.79–3.57 (m, 1H), 3.62 (brd, *J* = 4.6 Hz, 1H), 3.50 (s, 3H), 3.47 (brs, 1H), 3.44 (s, 3H), 3.41 (s, 3H), 3.38–2.59 (m, 3H), 3.18 (brs, 1H), 2.92 (ddd, *J* = 11.7, 7.6, 7.6 Hz, 1H), 2.26–2.06 (m, 2H), 2.06–1.87 (m, 5H), 1.87–1.70 (m, 4H), 1.54 (brs, 1H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 135.85 (CH), 135.78 (CH), 133.9 (C), 133.8 (C), 129.7 (CH),127.7 (CH), 70.9 (CH), 70.5 (CH), 70.2 (CH), 69.9 (CH), 69.6 (CH), 65.3 (CH₂), 26.0 (CH₃), 59.9 (CH₃), 59.4 (CH₃), 56.1 (CH₂), 28.8 (CH₂), 28.6 (CH₂), 25.8 (CH₂), 28.0 (CH₂), 26.9 (CH₃), 26.0 (CH₂), 22.2 (CH₂), 19.3 (C); HRMS (ESI), calcd for C₃₂H₅₀N₃O₄Si (M+H)⁺ 568.3565, found 568.3569.

3. Biological Experiment

Cell culture

Human cervical cancer HeLa cells and human colon carcinoma HCT116 cells were cultured in Dulbecco's modified Eagle's medium (Nissui Pharmaceutical Co., Ltd.) that was supplemented with 10% (v/v) fetal bovine serum, 100 units/mL penicillin G, 100 mg/L kanamycin, 600 mg/L L-glutamine and 2.5 g/L NaHCO₃ at 37°C in 5% CO₂.

Human T cell leukemia Jurkat cells were cultured in Roswell Park Memorial Institute 1640 medium (Nissui Pharmaceutical Co., Ltd.) that was supplemented with 10% (v/v) fetal bovine serum, 100 units/mL penicillin G, 100 mg/L kanamycin, 150 mg/L L-glutamine and 2.5 g/L NaHCO₃ at 37 °C in 5% CO₂.

MTT assay

HeLa, HCT116 and Jurkat cells were treated with various concentrations of compounds for 72 h. Cells were treated with 0.5 mg/mL thiazolyl blue tetrazolium bromide (MTT; Merck KGaA) and were incubated for 4 h at 37°C. After incubation, the medium was removed, and the MTT formazan product was dissolved by 200 μ L of DMSO. The amount of the product was determined by measuring absorbance at 570 nm using a microplate reader (Infinite M200 PRO).

4. References

- 1. S. Hiraoka, T. Matsumoto, K. Matsuzaka, T. Sato, N. Chida, Angew. Chem. Int. Ed., 2019, 58, 4381–4385.
- 2. J. C. F. Alves, J. Braz. Chem. Soc., 2007, 18, 855–859.

S31

S71

