Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Photochromism of phenazine-2,3-diol derivatives through excited state intermolecular proton transfer based on keto–enol tautomerization

Kazuki Ohira, Kumpei Kozuka, Naoki Kaneda, Masahiro Yamamoto, Keiichi Imato and Yousuke Ooyama*

Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan. E-mail: yooyama@hiroshima-u.ac.jp

1. Methods

All solvents and reagents were used as received. ¹H NMR and ¹³C NMR spectra were recorded using Varian-400 (400 MHz) and Varian-500 (500 MHz) FT NMR spectrometer. FT-IR spectra were recorded using a Shimadzu IRTracer-100. High-resolution mass spectral data were acquired using a Thermo Fisher Scientific LTQ Orbitrap XL. Photoabsorption spectra were recorded using a Hitachi F-4500 and HORIBA spectrophotometers. Fluorescence spectra were measured using a Hitachi F-4500 and HORIBA FluoroMax-4 spectrophotometer. The fluorescence quantum yields (Φ_{FL}) were determined with a Hamamatsu C9920-01 instrument equipped with CCD by use of a calibrated integrating sphere system. Fluorescence decay measurements were performed using a HORIBA DeltaFlex modular fluorescence lifetime system, using a Nano LED pulsed diode excitation source (366 nm and 451 nm). Phosphorescence decay measurements were performed using HORIBA FluoroMax-4 spectrophotometer. Thermogravimetry and differential thermal analysis (TG-DTA) were conducted under nitrogen atmosphere at a heating rate of 10 °C min⁻¹ using a Rigaku Thermo plus EV02 TG-DTA8122. Differential scanning calorimetric (DSC) measurements were performed under nitrogen atmosphere using a Hitachi DSC7000X. Powder X-ray diffraction measurements were performed on a Rigaku MiniFlex600-C/CM diffractometer with Cu K α radiator.

2. Synthesis

Phenazine-2,3-diol derivatives **PD1**, **PD2**, and **PD3** were synthesized by a facile synthetic protocol as shown in Scheme S1. **PD1** was prepared by the cyclodehydration of the *o*-phenylenediamine with 2,5-dihydroxy-1,4-benzoquinone. The reactions of **PD1** with chloromethyl methyl ether gave the derivatives **PD2** and **PD3**. These dyes were successfully characterized by ¹H NMR, ¹³C NMR, FTIR, and high-resolution mass spectrometric analysis.

Scheme. S1 Synthetic routes of PD1–3.

PD1 was synthesized according to procedures described in ref. S1.

PD2 A solution of sodium hydride abt. 60 % oil suspension (41 mg) and **PD1** (218 mg, 1.03 mmol) in DMF (50 mL) was stirred at 0 °C for 30 min. Then, chloromethyl methyl ether (75 µL, 1.00 mmol) was added to the solution, and the mixture was stirred at 0 °C overnight. After concentrating under reduced pressure, the residue was chromatographed on silica gel (ethyl acetate/hexane = 1/4 as eluent). The resulting residue was dissolved in THF and subjected to reprecipitation by hexane to afford **PD2** as a white yellow solid (219 mg, 50% yield); m.p. 184 °C; IR (ATR): $\tilde{\nu}$ = 2785, 1636, 1601, 1570, 1537, 1516 cm⁻¹; ¹H NMR (500 MHz, acetone-*d*₆): δ = 9.32 (s, br, 1H, OH) 8.07–8.15 (m, 2H, aromatic), 7.74–7.85 (m, 2H, aromatic), 7.63 (s, 1H, aromatic), 7.43 (s, 1H, aromatic), 5.57 (s, 2H, CH₂), 3.57 (s, 3H, CH₃) ppm; ¹³C NMR (125 MHz, CDCl₃): 152.00, 143.09, 143.07, 142.68, 142.25, 130.00, 129.92, 129.74, 129.48, 109.45, 109.09, 96.06, 56.96 ppm; HRMS (ESI): *m/z* found 257.09195 [M+H]⁺, calculated for C₁₄H₁₃N₂O₃ [M+H]⁺: 257.09207.

PD3 A solution of sodium hydride abt. 60 % oil suspension (83 mg) and **PD1** (216 mg, 1.02 mmol) in DMF (50 mL) was stirred at 0 °C for 30 min. Then, chloromethyl methyl ether (150 µL, 2.00 mmol) was added to the solution, and the mixture was stirred at 0 °C overnight. After concentrating under reduced pressure, the residue was chromatographed on silica gel (ethyl acetate/hexane = 1/4 as eluent). The resulting residue was dissolved in THF and subjected to reprecipitation by hexane to afford **PD3** as a white solid (158 mg, 53% yield); m.p. 137 °C; IR (ATR): $\tilde{\nu} = 2785$, 1636, 1601, 1570, 1537, 1516 cm⁻¹; ¹H NMR (500 MHz, acetone-*d*₆): $\delta = 8.11-8.16$ (m, 2H, aromatic), 7.80–7.84 (m, 2H, aromatic), 7.65 (s, 2H, aromatic), 5.55 (s, 4H, CH₂), 3.57 (s, 6H, CH₃) ppm; ¹³C NMR (125 MHz, acetone-*d*₆): $\delta = 153.08$, 143.13, 142.53, 130.00, 129.98, 110.17, 95.97, 56.81, 56.80 ppm; HRMS (APCI): *m/z* found 301.11872 [M+H]⁺, calculated for C₁₆H₁₇N₂O₄ [M+H]⁺: 301.11828.

3. X-Ray crystallographic analysis

The reflection data of **PZ1** and **PZ2** have been reported in Ref. S1, with the S3 Cambridge Crystallographic Data Centre (CCDC 2194829 for **PZ1** and CCDC 2194831 for **PZ2**).

The reflection data of **PD1** (keto form) and **PD2** were collected at 100 K and 300 K on a RIGAKU XtaLAB Synergy R/DW diffractometer using Mo K α radiation ($\lambda = 0.71073$ Å). The structures were resolved using direct methods with SHELXT 2018/2 and refined using full-matrix least-squares techniques against F^2 (SHELXL 2018/3). Hydrogen atoms were fixed geometrically and not refined. Crystallographic data have been deposited in the S3 Cambridge Crystallographic Data Centre (CCDC 2328436 (100K) and 2328438 (300 K) for **PD1** and CCDC 2328440 (100 K) and 2328442 (300K) for **PD2**).

Crystal of PD1: A suitable crystal of **PD1 (keto form)**, appearing as a dark red block and plate, was obtained through the sublimation of **PD1** black powder at a pressure of 6.7×10^{-2} Pa and a temperature of 235 °C.

Crystallographic data (keto form, measured at 100 K): CCDC 2328436, C₁₂H₈N₂O₂, M = 212.21, monoclinic, a = 3.7249(2), b = 9.6327(4), c = 12.9466(5) Å, $\beta = 92.843(3)^{\circ}$, V = 463.96(4) Å³, $D_{calcd} = 1.519$ g cm⁻³, space group $P2_1$ (no.4), Z = 2, 4946 reflections measured, 2365 unique ($R_{int} = 0.0186$), which were used in all calculations. The final R_1 (reflections) = 0.0349 (2153) [$I > 2\sigma(I)$], w R_2 (reflections) = 0.0999 (2365). GOF = 1.110 (Table S1).

Crystallographic data (keto form, measured at 300 K): CCDC 2328438, C₁₂H₈N₂O₂, M = 212.21, monoclinic, a = 3.7817(2), b = 9.7180(6), c = 12.9407(6) Å, $\beta = 92.150(5)^{\circ}$, V = 475.24(4) Å³, $D_{calcd} = 1.483$ g cm⁻³, space group $P2_1$ (no.4), Z = 2, 2171 reflections measured, 2332 unique ($R_{int} = 0.0264$), which were used in all calculations. The final R_1 (reflections) = 0.0466 (1698) [$I > 2\sigma(I)$], w R_2 (reflections) = 0.1192 (2332). GOF = 1.043 (Table S1).

Crystal of PD2: A suitable crystal of **PD2 (enol form)**, appearing as a clear yellow needle, was recrystallized from an ethanol solvent as an air-stable, clear yellow needle crystal.

Crystallographic data (enol form, measured at 100 K): CCDC 2328440, C₁₄H₁₂N₂O₃, M = 256.26, monoclinic, a = 23.2329(10), b = 4.8344(2), c = 23.5477(11) Å, $\beta = 116.157(6)^{\circ}$, V = 2374.0(2) Å³, $D_{calcd} = 1.434$ g cm⁻³, space group $P2_1/n$ (no.14), Z = 8, 12554 reflections measured, 5665 unique ($R_{int} = 0.0326$), which were used in all calculations. The final R_1 (reflections) = 0.0425 (4321) [$I > 2\sigma(I)$], w R_2 (reflections) = 0.1078 (5665). GOF = 1.061 (Table S1).

Crystallographic data (enol form, measured at 300 K): CCDC 2328442, C₁₄H₁₂N₂O₃, M = 256.26, monoclinic, a = 23.4299(13), b = 4.9040(2), c = 23.6545(14) Å, $\beta = 115.944(7)^{\circ}$, V = 2444.0(3) Å³, $D_{calcd} = 1.393$ g cm⁻³, space group $P2_1/n$ (no.14), Z = 8, 5544 reflections measured, 6994 unique ($R_{int} = 0.0412$), which were used in all calculations. The final R_1 (reflections) = 0.0490 (3855) [$I > 2\sigma(I)$], w R_2 (reflections) = 0.1313 (6994). GOF = 1.003 (Table S1).

Compound	PD1 (measured at 100 K)	PD1 (measured at 300 K)	PD2 (measured at 100 K)	PD2 (measured at 300 K)
Molecular formula	$C_{12}H_8N_2O_2$	$C_{12}H_8N_2O_2$	$C_{14}H_{12}N_2O_3$	$C_{14}H_{12}N_2O_3$
Formula weight	212.20	212.20	256.26	256.26
Number of reflections used for unit cell determination $(2\theta \text{ range}^{\circ})$	4946(5.26-63.55)	2171(5.25-63.73)	12554(5.21-59.81)	5544(3.85-57.77)
Temperature/K	100.00(10)	299.50(18)	100.00(10)	299.68(16)
Crystal System	monoclinic	monoclinic	monoclinic	monoclinic
Space group	<i>P</i> 2 ₁	<i>P</i> 2 ₁	$P2_{1}/n$	$P2_{1}/n$
a/Á	3.7249(2)	3.7817(2)	23.2329(10)	23.4299(13)
b/Á	9.6327(4)	9.7180(6)	4.8344(2)	4.9040(2)
c/Á	12.9466(5)	12.9407(6)	23.5477(11)	23.6545(14)
α/°	90	90	90	90
β/°	92.843(3)	92.150(5)	116.157(6)	115.944(7)
γ/°	90	90	90	90
$V/Å^3$	463.96(4)	475.24(4)	2374.0(2)	2444.0(3)
Ζ	2	2	8	8
D _c /g cm ⁻³	1.519	1.483	1.434	1.393
F(000)	220	220	1072	1072
Radiation	Mo-Ka ($\lambda = 0.71073$ Å)	Mo-Ka ($\lambda = 0.71073$ Å)	Mo-Kα (λ = 0.71073 Å)	Mo-Kα (λ = 0.71073 Å)
Crystal size/mm ³	0.217×0.109×0.071	0.298×0.068×0.024	0.15×0.07×0.07	0.144×0.041×0.013
Range of induces h; k; l	-5, 5; -11, 13; -19, 19	-5, 4; -10, 14; -18, 19	-31, 29; -5, 6; -24, 30	-31, 33; -7, 5; -31, 34
Reflections collected (unique)	2365	2332	5665	6994
Reflection observed with $I_0 > 2\sigma I_0$	2153	1698	4321	3855
Number of parameters	146	146	347	347
Final R indexes [I ₀ >2σI ₀]	$R_1 = 0.0349, WR_2 = 0.0981$	$R_1 = 0.0466, WR_2 = 0.1192$	$\begin{array}{l} R_1 \ = \ 0.0425, \ wR_2 \ = \\ 0.1011 \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Final R indexes [all data]	$R_1 = 0.0384, WR_2 = 0.0999$	$R_1 = 0.0688, WR_2 = 0.1294$	$R_1 = 0.0610, WR_2 = 0.1078$	$R_1 = 0.1106, WR_2 = 0.1313$
Goodness-of-fit on F ²	1.110	1.043	1.061	1.003
Max. Shift/Error in final cycle	0.000	0.000	0.001	0.001
Max. peak in final diff. map/e Å-3	0.339	0.268	0.282	0.230
Min. peak in final diff. map/e Å-3	-0.233	-0.235	-0.197	-0.157

 Table S1 Crystal data and structure refinement parameters for PD1 [CCDC 2328436 (100 K) and

 2328438 (300 K)] and PD2 [CCDC 2328440 (100 K) and 2328442 (300 K)].

Fig. S1 X-ray crystal structures of (a) **PD1** and (b) **PD2**, measured at 300 K. Ellipsoids are shown at the 50 % probability level.

Fig. S2 Crystal packing structures of (a) **PD1** and (b) **PD2**, measured at 300 K. Ellipsoids are shown at the 50 % probability level.

Fig. S3 X-ray crystal structures of **PD2**, measured at (a) 100 K and (b) 300 K. Ellipsoids are shown at the 50 % probability level.

4. NMR measurements

Fig. S4 ¹H NMR spectrum of PD2 in Acetone- d_6 .

Fig. S5 13 C NMR spectrum of PD2 in Acetone- d_6 .

Fig. S6¹³C NMR spectrum of PD2 in DMSO-*d*₆.

Fig. S7 ¹H NMR spectrum of PD3 in Acetone-*d*₆.

Fig. S8 ¹³C NMR spectrum of PD3 in Acetone-*d*₆.

Fig. S9 ¹H NMR spectra of **PD1** in THF-*d*₈ containing H₂O (0–75 vol%). The intensity of H_A peaks doesn't change with increasing H₂O concentration (1 \rightarrow 0.97 \rightarrow 1.04 \rightarrow 0.97).

Fig. S10 ¹H NMR spectra of PD1 in THF-*d*₈ containing D₂O (0–75 vol%). The intensity of H_A peaks decrease as increasing D₂O concentration (1 \rightarrow 0.84 \rightarrow 0.82 \rightarrow 0.78). NMR measurements were performed immediately after sample preparation.

Fig. S11 ¹H NMR spectra of **PD2** in THF-*d*₈ containing H₂O (0–75 vol%). The intensities of H_A and H_F peaks don't change with increasing H₂O concentration (H_A: 1 \rightarrow 0.98 \rightarrow 0.92 \rightarrow 0.88, H_F: 1 \rightarrow 1.01 \rightarrow 1 \rightarrow 0.96). NMR measurements were performed immediately after sample preparation. The baseline distortion of 75 vol% spectrum is because of water.

Fig. S12 ¹H NMR spectra of PD2 in THF- d_8 containing D₂O (0–75 vol%). The intensity of H_A peaks decrease as increasing D₂O concentration (1 \rightarrow 0.91 \rightarrow 0.85 \rightarrow 0.82) whereas that of H_F signals have no change (1 \rightarrow 1.04 \rightarrow 1.05 \rightarrow 0.98). NMR measurements were performed immediately after sample preparation.

Fig. S13 ¹H NMR spectra of PD3 in THF- d_8 containing H₂O (0–75 vol%). The intensity of H_A peaks doesn't change with increasing H₂O concentration (1 \rightarrow 1.01 \rightarrow 1.02 \rightarrow 1.04). NMR measurements were performed immediately after sample preparation. The baseline distortion of 75 vol% spectrum is because of water.

Fig. S14 ¹H NMR spectra of PD3 in THF- d_8 containing D₂O (0–75 vol%). The intensity of H_A peaks doesn't change with increasing D₂O concentration (1 \rightarrow 1.01 \rightarrow 1.04 \rightarrow 1.03). NMR measurements were performed immediately after sample preparation.

5. Theoretical calculations

The Gaussian 16 program^{S2} was used for density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. For the convenience of calculations, the methoxymethyl groups of **PD2-E**, **PD2-K**, and **PD3** were replaced with the methoxy groups. The S₀ geometries of *anti*-**PD1-E**, *syn*-**PD1-E**, *anti*-**PD1-K**, *syn*-**PD1-K**, *anti*-**PD2-E**, *syn*-**PD2-E**, **PD2-K**, and **PD3** were optimized with frequency calculations at the B3LYP/6-311G(d,p) level. There are no imaginary frequencies for all optimized structures. The TD-DFT calculations for *anti*-**PD1-E**, *syn*-**PD1-E**, *anti*-**PD1-K**, *syn*-**PD2-E**, **PD2-K**, and **PD3** were performed using the optimized S₀ geometry at the B3LYP/6-311G(d,p) level.

Tag	Symbol	Х	Y	Z
1	С	-2.869691	-0.722496	0.000000
2	С	-1.688539	-1.408956	0.000000
3	С	-0.439022	-0.723078	0.000000
4	С	-0.439022	0.723078	0.000000
5	С	-1.688539	1.408956	0.000000
6	С	-2.869691	0.722496	0.000000
7	С	1.845435	0.720318	0.000000
8	С	1.845435	-0.720318	0.000000
9	С	3.091720	-1.410729	0.000000
10	Н	3.063222	-2.493756	0.000000
11	С	4.268012	-0.712019	0.000000
12	С	4.268012	0.712019	0.000000
13	С	3.091720	1.410729	0.000000
14	Н	-1.666905	-2.493455	0.000000
15	Н	-1.666905	2.493455	0.000000
16	Н	5.213998	-1.241560	0.000000
17	Н	5.213998	1.241560	0.000000
18	Н	3.063222	2.493756	0.000000
19	Ν	0.698276	1.420527	0.000000
20	Ν	0.698276	-1.420527	0.000000
21	0	-4.094720	1.301959	0.000000
22	Н	-3.987983	2.259638	0.000000
23	0	-4.094720	-1.301959	0.000000
24	Н	-3.987983	-2.259638	0.000000

Tag	Symbol	Х	Y	Ζ
1	С	2.850320	0.700126	0.000000
2	С	1.685421	1.405464	0.000000
3	С	0.435679	0.715991	0.000000
4	С	0.435956	-0.732199	0.000000
5	С	1.678578	-1.429944	0.000000
6	С	2.857057	-0.741554	0.000000
7	С	-1.850815	-0.719214	0.000000
8	С	-1.848053	0.721383	0.000000
9	С	-3.092117	1.415915	0.000000
10	Н	-3.060835	2.498871	0.000000
11	С	-4.269987	0.720289	0.000000
12	С	-4.273484	-0.704233	0.000000
13	С	-3.099661	-1.406422	0.000000
14	Н	1.667929	2.489780	0.000000
15	Н	1.671990	-2.511793	0.000000
16	Н	-5.214725	1.252017	0.000000
17	Н	-5.221007	-1.231022	0.000000
18	Н	-3.073885	-2.489438	0.000000
19	Ν	-0.707365	-1.422986	0.000000
20	Ν	-0.698665	1.417281	0.000000
21	0	4.047365	-1.386859	0.000000
22	Н	4.749937	-0.723309	0.000000
23	0	4.104915	1.246081	0.000000
24	Н	4.051205	2.207441	0.000000

Tag	Symbol	X	Y	Ζ
1	С	2.943336	-0.710779	-0.000330
2	С	1.766209	-1.384980	-0.000345
3	С	0.506841	-0.695078	-0.000156
4	С	0.542708	0.778086	-0.000260
5	С	1.721941	1.464119	0.000041
6	С	3.003494	0.793179	0.000329
7	С	-1.880781	0.697945	-0.000375
8	С	-1.809634	-0.717034	0.000220
9	С	-3.009946	-1.450847	0.000714
10	Н	-2.932663	-2.531141	0.001137
11	С	-4.232899	-0.805904	0.000554
12	С	-4.285115	0.596919	-0.000010
13	С	-3.121491	1.348535	-0.000503
14	Н	1.721928	-2.469282	-0.000461
15	Н	1.747619	2.548287	0.000197
16	Н	-5.151235	-1.380243	0.000910
17	Н	-5.244185	1.101493	-0.000130
18	Н	-3.162563	2.433000	-0.000924
19	Ν	-0.605816	-1.381669	0.000110
20	Ν	-0.688664	1.387506	-0.000704
21	Н	-0.716180	2.397828	-0.001089
22	0	4.081697	1.372422	0.001458
23	0	4.153839	-1.294045	-0.000678
24	Н	4.046389	-2.252767	-0.000997

Tag	Symbol	Х	Y	Ζ
1	С	-2.918020	-0.740562	0.000054
2	С	-1.749219	-1.428135	0.000166
3	С	-0.503009	-0.721253	0.000188
4	С	-0.543718	0.756422	0.000310
5	С	-1.725408	1.453019	0.000053
6	С	-2.971912	0.755829	-0.000084
7	С	1.877655	0.697139	0.000105
8	С	1.817219	-0.718421	0.000023
9	С	3.027447	-1.440372	-0.000186
10	Н	2.961374	-2.521302	-0.000251
11	С	4.241269	-0.781828	-0.000132
12	С	4.280676	0.623220	-0.000092
13	С	3.110866	1.362790	-0.000005
14	Н	-1.719393	-2.509522	0.000203
15	Н	-1.748388	2.537024	-0.000199
16	Н	5.165938	-1.345994	-0.000172
17	Н	5.235207	1.136124	-0.000162
18	Н	3.140151	2.447661	-0.000029
19	Ν	0.624058	-1.391740	0.000036
20	Ν	0.677699	1.372426	0.000158
21	Н	0.696055	2.383573	-0.000081
22	0	-4.099452	1.268796	-0.000269
23	0	-4.121202	-1.312552	-0.000074
24	Н	-4.741090	-0.549405	-0.000319

Tag	Symbol	Х	Y	Ζ
1	С	2.462186	1.194666	0.000000
2	С	1.214428	1.748016	0.000000
3	С	0.047193	0.929357	0.000000
4	С	0.208955	-0.506769	0.000000
5	С	1.525967	-1.057716	0.000000
6	С	2.627086	-0.245353	0.000000
7	С	-2.062245	-0.757796	0.000000
8	С	-2.222425	0.673149	0.000000
9	С	-3.537333	1.220586	0.000000
10	Н	-3.629748	2.300059	0.000000
11	С	-4.628972	0.395238	0.000000
12	С	-4.470616	-1.019520	0.000000
13	С	-3.223376	-1.582727	0.000000
14	Н	1.074961	2.823843	0.000000
15	Н	1.603673	-2.135370	0.000000
16	Н	-5.627920	0.816481	0.000000
17	Н	-5.351631	-1.651285	0.000000
18	Н	-3.074511	-2.655880	0.000000
19	Ν	-0.843440	-1.325913	0.000000
20	Ν	-1.159535	1.496871	0.000000
21	0	3.913224	-0.653901	0.000000
22	0	3.613220	1.910633	0.000000
23	Н	3.394758	2.849228	0.000000
24	С	4.168959	-2.054216	0.000000
25	Н	5.252177	-2.155771	0.000000
26	Н	3.754338	-2.531674	0.893845
27	Н	3.754338	-2.531674	-0.893846

Tag	Symbol	Х	Y	Ζ
1	С	-2.446503	-1.204204	0.000000
2	С	-1.202443	-1.762602	0.000000
3	С	-0.041697	-0.935033	0.000000
4	С	-0.200063	0.503802	0.000000
5	С	-1.516652	1.060233	0.000000
6	С	-2.601411	0.233751	0.000000
7	С	2.070104	0.758138	0.000000
8	С	2.229908	-0.672855	0.000000
9	С	3.545948	-1.219542	0.000000
10	Н	3.638761	-2.298916	0.000000
11	С	4.636576	-0.393356	0.000000
12	С	4.477741	1.021836	0.000000
13	С	3.230413	1.584419	0.000000
14	Н	-1.080381	-2.837594	0.000000
15	Н	-1.598936	2.138005	0.000000
16	Н	5.635868	-0.813866	0.000000
17	Н	5.358638	1.653788	0.000000
18	Н	3.081074	2.657530	0.000000
19	Ν	0.850668	1.324296	0.000000
20	Ν	1.169326	-1.497549	0.000000
21	0	-3.910168	0.613686	0.000000
22	0	-3.560629	-1.972237	0.000000
23	Н	-4.324259	-1.378783	0.000000
24	С	-4.210761	2.008107	0.000000
25	Н	-5.296336	2.080648	0.000000
26	Н	-3.807481	2.492104	0.894406
27	Н	-3.807481	2.492104	-0.894406

Tag	Symbol	Х	Y	Ζ
1	С	-2.696023	-0.221255	-0.000099
2	С	-1.598523	-1.023369	-0.000143
3	С	-0.271032	-0.472451	-0.000085
4	С	-0.139416	0.994482	-0.000011
5	С	-1.234178	1.807598	-0.000016
6	С	-2.582536	1.283621	-0.000040
7	С	2.259807	0.642895	0.000036
8	С	2.029347	-0.754871	-0.000024
9	С	3.139209	-1.619088	-0.000049
10	Н	2.940587	-2.683812	-0.000111
11	С	4.427447	-1.116312	-0.000003
12	С	4.637626	0.271372	0.000083
13	С	3.565826	1.149366	0.000093
14	Н	-1.656801	-2.102841	-0.000239
15	Н	-1.139459	2.887990	-0.000023
16	Н	5.275017	-1.790781	-0.000024
17	Н	5.647460	0.664694	0.000121
18	Н	3.728835	2.222332	0.000139
19	Ν	1.152652	1.462251	0.000037
20	Ν	0.757842	-1.279594	-0.000088
21	0	-3.585555	1.984617	0.000004
22	0	-3.967739	-0.635448	-0.000075
23	С	-4.223432	-2.036845	0.000255
24	Н	-5.306439	-2.138869	0.000682
25	Н	-3.807516	-2.512417	-0.893915
26	Н	-3.806826	-2.512149	0.894240
27	Н	1.293302	2.463048	0.000066

Tag	Symbol	Х	Y	Z
1	С	2.331217	-0.727254	0.000000
2	С	1.148928	-1.413916	0.000000
3	С	-0.099957	-0.722035	0.000000
4	С	-0.099957	0.722035	0.000000
5	С	1.148928	1.413916	0.000000
6	С	2.331217	0.727254	0.000000
7	С	-2.384708	0.719632	0.000000
8	С	-2.384708	-0.719632	0.000000
9	С	-3.630098	-1.410089	0.000000
10	Н	-3.601690	-2.493159	0.000000
11	С	-4.807276	-0.711599	0.000000
12	С	-4.807276	0.711599	0.000000
13	С	-3.630098	1.410089	0.000000
14	Н	1.108244	-2.493577	0.000000
15	Н	1.108244	2.493577	0.000000
16	Н	-5.753013	-1.241626	0.000000
17	Н	-5.753013	1.241626	0.000000
18	Н	-3.601690	2.493159	0.000000
19	Ν	-1.235962	1.419826	0.000000
20	Ν	-1.235962	-1.419826	0.000000
21	0	3.562547	1.279919	0.000000
22	0	3.562547	-1.279919	0.000000
23	С	3.657388	2.699946	0.000000
24	Н	4.722114	2.923992	0.000000
25	Н	3.191368	3.127760	-0.893674
26	Н	3.191369	3.127760	0.893674
27	С	3.657388	-2.699946	0.000000
28	Н	3.191369	-3.127760	-0.893674
29	Н	4.722114	-2.923992	0.000000
30	Н	3.191368	-3.127760	0.893674

Tag	Symbol	Х	Y	Z
1	С	-3.01329	-0.85481	0.008706
2	С	-1.84401	-1.53534	0.071829
3	С	-0.57355	-0.86255	0.057195
4	С	-0.56729	0.608948	0.011604
5	С	-1.74836	1.296425	-0.07371
6	С	-3.04102	0.64152	-0.08469
7	С	1.846161	0.468344	0.013246
8	С	1.729849	-0.94733	0.032746
9	С	2.893695	-1.73684	-0.00441
10	Н	2.757881	-2.81103	0.020344
11	С	4.145401	-1.15814	-0.07638
12	С	4.252973	0.237572	-0.1212
13	С	3.125781	1.043896	-0.07993
14	Н	-1.80716	-2.61885	0.121194
15	Н	-1.79361	2.372707	-0.15256
16	Н	5.034878	-1.77544	-0.10749
17	Н	5.228797	0.703061	-0.19785
18	Н	3.249121	2.115371	-0.14571
19	Ν	0.675988	1.217426	0.082158
20	Ν	0.514998	-1.58226	0.082579
21	0	-4.10397	1.243801	-0.16789
22	С	0.72866	2.67241	0.201816
23	Н	1.664235	2.971053	0.66527
24	Н	0.63195	3.159445	-0.77349
25	Н	-0.08659	3.003575	0.843655
26	0	-4.23222	-1.42255	0.012843
27	Н	-4.13687	-2.38075	0.072895

Tag	Symbol	Х	Y	Ζ
1	С	2.986276	-0.88869	-0.01034
2	С	1.823981	-1.57973	-0.07106
3	С	0.567697	-0.88619	-0.05648
4	С	0.568106	0.590367	-0.01071
5	С	1.754184	1.284223	0.07027
6	С	3.010939	0.599749	0.074651
7	С	-1.84467	0.471773	-0.01132
8	С	-1.7399	-0.94464	-0.03404
9	С	-2.91369	-1.72364	-0.00128
10	Н	-2.78777	-2.79885	-0.02869
11	С	-4.15762	-1.1323	0.070187
12	С	-4.2525	0.265835	0.118809
13	С	-3.11884	1.061015	0.080932
14	Н	1.797706	-2.66028	-0.1158
15	Н	1.802204	2.359958	0.149494
16	Н	-5.05365	-1.74022	0.098219
17	Н	-5.22417	0.739709	0.195579
18	Н	-3.23291	2.133249	0.1497
19	Ν	-0.53565	-1.5893	-0.08303
20	Ν	-0.66535	1.207597	-0.07435
21	0	4.125527	1.136339	0.14734
22	0	4.196988	-1.44775	-0.00974
23	Н	4.80714	-0.68073	0.055667
24	С	-0.70752	2.665508	-0.18847
25	Н	-0.59881	3.14539	0.788573
26	Н	0.103315	2.99308	-0.83704
27	Н	-1.64483	2.972137	-0.64188

Tag	Symbol	Х	Y	Ζ
1	С	2.800432	-0.30911	0.009061
2	С	1.726784	-1.13691	-0.0528
3	С	0.380505	-0.62831	-0.04508
4	С	0.181064	0.829225	-0.00949
5	С	1.262255	1.664119	0.074815
6	С	2.628768	1.181763	0.093926
7	С	-2.19363	0.376159	-0.01688
8	С	-1.89339	-1.0121	-0.02595
9	С	-2.94439	-1.94616	0.01383
10	Н	-2.66961	-2.99364	-0.00284
11	С	-4.26145	-1.53532	0.078203
12	С	-4.55043	-0.16554	0.11264
13	С	-3.53755	0.780571	0.068778
14	Н	1.812389	-2.21369	-0.09627
15	Н	1.167852	2.737776	0.146768
16	Н	-5.06281	-2.26332	0.111218
17	Н	-5.5789	0.169258	0.18318
18	Н	-3.79951	1.827339	0.126614
19	Ν	-1.13059	1.270781	-0.08815
20	Ν	-0.60547	-1.48343	-0.06829
21	0	3.600497	1.921824	0.177376
22	С	-1.37126	2.705523	-0.218
23	Н	-2.33606	2.877186	-0.68608
24	Н	-1.34211	3.207746	0.754012
25	Н	-0.60346	3.135617	-0.85981
26	0	4.085293	-0.68396	0.01216
27	С	4.381266	-2.0752	-0.06033
28	Н	5.46668	-2.14726	-0.04881
29	Н	3.966345	-2.61087	0.799762
30	Н	3.991392	-2.51271	-0.98528

 Table S13 Excitation energy, oscillator strength, main transition orbital, and their contribution calculated for

 singlet states of PD1–3, PZ1, and PZ2 derived from TD-DFT calculations at B3LYP/6-311G(d,p) level.

Dye	State	Excitation energy	Oscillator	Main transition orbital	contribution	Transition
		/ eV	strength			
anti-PD1-E	\mathbf{S}_1	3.22	0.025	HOMO→LUMO	0.98	ππ*
	\mathbf{S}_2	3.22	0.0012	HOMO-2→LUMO	0.99	nπ*
	S_3	3.62	0.25	HOMO-1→LUMO	0.84	$\pi\pi^*$
				HOMO→LUMO+1	0.16	ππ*
syn-PD1-E	\mathbf{S}_1	3.20	0.0012	HOMO-2→LUMO	0.99	nπ*
	\mathbf{S}_2	3.20	0.037	HOMO→LUMO	0.97	$\pi\pi^*$
	S_3	3.65	0.23	HOMO-1→LUMO	0.83	ππ*
				HOMO→LUMO+1	0.16	ππ*
anti- PD1-K	\mathbf{S}_1	2.84	0.13	HOMO-1→LUMO	0.23	ππ*
				HOMO→LUMO	0.75	ππ*
	\mathbf{S}_2	2.88	0.00	HOMO-2→LUMO	0.97	nπ*
	S_3	3.41	0.30	HOMO-1→LUMO	0.72	ππ*
				HOMO→LUMO	0.19	ππ*
syn-PD1-K	\mathbf{S}_1	2.90	0.039	HOMO-1→LUMO	0.71	ππ*
				HOMO→LUMO	0.27	ππ*
	\mathbf{S}_2	3.24	0.40	HOMO-1→LUMO	0.26	$\pi\pi^*$
				HOMO→LUMO	0.65	$\pi\pi^*$
	S_3	3.40	0.00	HOMO-2→LUMO	0.97	nπ*
anti- PD2-E	\mathbf{S}_1	3.24	0.021	HOMO→LUMO	0.98	$\pi\pi^*$
	\mathbf{S}_2	3.24	0.0012	HOMO-2→LUMO	0.99	nπ*
	S_3	3.59	0.28	HOMO-1→LUMO	0.85	ππ*
				HOMO→LUMO+1	0.15	ππ*
syn-PD2-E	\mathbf{S}_1	3.22	0.036	HOMO→LUMO	0.97	ππ*
	\mathbf{S}_2	3.22	0.0012	HOMO-2→LUMO	0.99	nπ*
	S_3	3.64	0.25	HOMO-1→LUMO	0.84	$\pi\pi^*$
				HOMO→LUMO+1	0.16	ππ*
PD2-K	\mathbf{S}_1	2.86	0.13	HOMO-1→LUMO	0.23	ππ*
				HOMO→LUMO	0.74	$\pi\pi^*$
	\mathbf{S}_2	2.89	0.00	HOMO-2→LUMO	0.97	nπ*
	S_3	3.38	0.32	HOMO-1→LUMO	0.72	$\pi\pi^*$
				HOMO→LUMO	0.20	ππ*
PD3	\mathbf{S}_1	3.26	0.016	HOMO→LUMO	0.97	ππ*
	\mathbf{S}_2	3.26	0.0012	HOMO-2→LUMO	0.99	nπ*
	S_3	3.58	0.30	HOMO-1→LUMO	0.86	ππ*
				HOMO→LUMO+1	0.14	$\pi\pi^*$
anti-PZ1	\mathbf{S}_1	2.86	0.12	HOMO-1→LUMO	0.21	$\pi\pi^*$
				HOMO→LUMO	0.68	$\pi\pi^*$

Dye	State	Excitation energy	Oscillator	Main transition orbital	contribution	Transition
		/ eV	strength			
	S_2	2.90	0.01	HOMO-2→LUMO	0.88	nπ*
	S_3	3.40	0.29	HOMO-1→LUMO	0.71	$\pi\pi^*$
				HOMO→LUMO	0.20	$\pi\pi^*$
syn-PZ1	\mathbf{S}_1	2.91	0.042	HOMO-1→LUMO	0.71	ππ*
				HOMO→LUMO	0.27	ππ*
	S_2	3.23	0.39	HOMO-1→LUMO	0.25	ππ*
				HOMO→LUMO	0.66	ππ*
	S_3	3.40	0.0019	HOMO-2→LUMO	0.97	nπ*
PZ2	\mathbf{S}_1	2.87	0.12	HOMO-2→LUMO	0.11	nπ*
				HOMO-1→LUMO	0.20	$\pi\pi^*$
				HOMO→LUMO	0.66	$\pi\pi^*$
	S_2	2.91	0.017	HOMO-2→LUMO	0.85	nπ*
	S_3	3.37	0.30	HOMO-1→LUMO	0.72	$\pi\pi^*$
				HOMO→LUMO	0.20	ππ*

Fig. S15 Plots of visualized orbitals based on the optimized geometry of *anti*-**PD1-E** derived from DFT calculations at B3LYP/6-311G(d,p) level.

Fig. S16 Plots of visualized orbitals based on the optimized geometry of *syn*-**PD1-E** derived from DFT calculations at B3LYP/6-311G(d,p) level.

Fig. S17 Plots of visualized orbitals based on the optimized geometry of *anti*-**PD1-K** derived from DFT calculations at B3LYP/6-311G(d,p) level.

Fig. S18 Plots of visualized orbitals based on the optimized geometry of *syn*-**PD1-K** derived from DFT calculations at B3LYP/6-311G(d,p) level.

Fig. S19 Plots of visualized orbitals based on the optimized geometry of *anti*-**PD2-E** derived from DFT calculations at B3LYP/6-311G(d,p) level.

Fig. S20 Plots of visualized orbitals based on the optimized geometry of *syn*-**PD2-E** derived from DFT calculations at B3LYP/6-311G(d,p) level.

Fig. S21 Plots of visualized orbitals based on the optimized geometry of **PD2-K** derived from DFT calculations at B3LYP/6-311G(d,p) level.

Fig. S22 Plots of visualized orbitals based on the optimized geometry of **PD3** derived from DFT calculations at B3LYP/6-311G(d,p) level.

Fig. S23 Plots of visualized orbitals based on the optimized geometry of *anti*-**PZ1** derived from DFT calculations at B3LYP/6-311G(d,p) level.

Fig. S24 Plots of visualized orbitals based on the optimized geometry of *syn*-**PZ1** derived from DFT calculations at B3LYP/6-311G(d,p) level.

Fig. S25 Plots of visualized orbitals based on the optimized geometry of **PZ2** derived from DFT calculations at B3LYP/6-311G(d,p) level.

Fig. S26 Calculated photoabsorption spectra of (a) *anti*-PD1-E, (b) *syn*-PD1-E, (c) *anti*-PD1-K, (d) *syn*-PD1-K, (e) *anti*-PD2-E, (f) *syn*-PD2-E, (g) PD2-K, (h) PD3, (i) *anti*-PZ1, (j) *syn*-PZ1, and (k) PZ2 at B3LYP/6-311G(d,p) level.

Fig. S27 (a) Photoabsorption and (b and c) normalized fluorescence (b: $\lambda_{ex} = 385-390$ nm, c: $\lambda_{ex} = 480$ nm) spectra of **PD1–3** (1.0×10^{-4} M) in THF.

Fig. S28 (a) Photoabsorption spectra of **PD1** (5.0×10^{-5} M) in THF containing water (0–75 vol%). Normalized fluorescence (b: $\lambda_{ex} = 390-394$ nm, c: $\lambda_{ex} = 480$ nm) spectra of **PD1** (5.0×10^{-5} M) in THF containing water (0–75 vol%). (d) Photoabsorption spectra of **PD1** (5.0×10^{-5} M) in DMSO before (under pH 7) and after (pH 4 and pH 10, respectively) addition of HCl aq. and NaOH aq.

Fig. S29 (a) Photoabsorption and (b and c) normalized fluorescence (b: $\lambda_{ex} = 386-387$ nm, c: $\lambda_{ex} = 463-497$ nm) spectra of PD2 (5.0×10^{-5} M) in THF containing water (0–75 vol%). (d) Photoabsorption spectra of PD2 (5.0×10^{-5} M) in DMSO before (under pH 7) and after (pH 4 and pH 10, respectively) addition of HCl aq. and NaOH aq.

Fig. S30 (a) Photoabsorption and (b) normalized fluorescence ($\lambda_{ex} = 385-389$ nm) spectra of PD3 (5.0×10^{-5} M) in various solvents in THF containing water (0–75 vol%). (c) Photoabsorption spectra of PD3 (5.0×10^{-5} M) in DMSO before (under pH 7) and after (pH 4 and pH 10, respectively) addition of HCl aq. and NaOH aq.

Fig. S31 (a) Photoabsorption and (b and c) normalized fluorescence (b: $\lambda_{ex} = 378-390$ nm, c: $\lambda_{ex} = 480$ nm) spectra of PD2 (1.0×10^{-4} M) in various solvents.

Fig. S32 Temperature-dependent (a) Photoabsorption and (b and c) fluorescence (b: $\lambda_{ex} = 392$ nm, c: $\lambda_{ex} = 481$ nm) spectra of **PD1** (1.0×10^{-4} M) from 173 K to 343 K.

Fig. S33 Temperature-dependent (a) Photoabsorption and (b) fluorescence ($\lambda_{ex} = 388 \text{ nm}$) spectra of PD2 (1.0 $\times 10^{-4} \text{ M}$) from 173 K to 343 K.

Fig. S34 Temperature-dependent (a) Photoabsorption and (b) fluorescence ($\lambda_{ex} = 387 \text{ nm}$) spectra of PD3 (1.0 $\times 10^{-4} \text{ M}$) from 173 K to 343 K.

Fig. S35 Instrument profiles (red dots) and fluorescence decay profiles (blue dots) of (a, b and c) PD1 (a: λ_{ex} = 366 nm, b: λ_{ex} = 366 nm, c: λ_{ex} = 451 nm), (d) PD2 (λ_{ex} = 366 nm), and (e) PD3 (λ_{ex} = 366 nm).

7. Photo-induced proton tautomerism

The photoabsorption and fluorescence spectral measurements of **PD1–3**, **PZ1**, and **PZ2** were performed in 2methyltetrahydrofuran (2-MeTHF) at room temperature (298 K) and a glassy matrix of 2-MeTHF at 77 K.^{S3} A 1.0 cm quartz cuvette was used in measurements at 298 K and a 0.4 cm quartz tube at 77 K. The solutions were irradiated with light-emitting diode (LED) light with a peak wavelength of 385 nm for 4 minutes (22.3 mW cm⁻², LDR2-100VL2-385-W, CCS). The photoabsorption and fluorescence spectra of these solutions were measured immediately after photoirradiation.

Fig. S36 Normalized fluorescence ($\lambda_{ex} = 485-500$ nm) spectra of PD1 in 2-MeTHF at 298 (dashed line) and 77 K (solid lines) after irradiation with monochromic light at 385 nm.

Fig. S37 Normalized fluorescence ($\lambda_{ex} = 504 \text{ nm}$) spectra of PD2 in 2-MeTHF at 77 K after irradiation with monochromic light at 385 nm.

Fig. S38 Normalized fluorescence ($\lambda_{ex} = 476-487$ nm) spectra of **PZ1** in 2-MeTHF at 298 (dashed line) and 77 K (solid lines) before and after irradiation with monochromic light at 385 nm.

Fig. S39 Normalized fluorescence ($\lambda_{ex} = 485-495$ nm) spectra of **PZ2** in 2-MeTHF at 298 (dashed line) and 77 K (solid lines) before and after irradiation with monochromic light at 385 nm.

(a) _{0.4} (b) _{0.4} 0.3 0.3 298 K ·· 298 K Absorbance Absorbance 0.2 77 K 77 K 0.2 77 K irradiation 77 K irradiation 0.1 0.1 0 0 -0.1 500 600 700 800 700 300 400 300 400 500 600 800 Wavelength / nm Wavelength / nm

Fig. S40 Photoabsorption spectra of (a) PD1 and (b) PD2 in 2-MeTHF (10 μ M) at 298 K (dashed line) and 77 K (solid line) before and after irradiation with monochromic light at 385 nm.

Fig. S41 Photographs of PZ1 in 2-MeTHF (a: 298 K, b: 77 K, and c: 77 K after photoirradiation at 385 nm).

Fig. S42 Photographs of PZ2 in 2-MeTHF (a: 298 K, b: 77 K, and c: 77 K after photoirradiation at 385 nm).

8. Phosphorescence measurements

In order to assign the emission bands of **PD3** that appeared in the range of 600-800 nm in 2-MeTHF at 77K (Fig. 6f), phosphorescence measurements were performed for **PD1–3**, **PZ1**, and **PZ2**, with an initial delay of 100 µs.

Fig. S43 Phosphorescence spectra of (a) PD1 ($\lambda_{ex} = 400 \text{ nm}$), (b) PD2 ($\lambda_{ex} = 395 \text{ nm}$), (c) PD3 ($\lambda_{ex} = 385 \text{ nm}$), (d) PZ1 ($\lambda_{ex} = 397 \text{ nm}$), and (e) PZ2 ($\lambda_{ex} = 370 \text{ nm}$) in 2-MeTHF at 77 K before and after irradiation with monochromic light at 385 nm.

Fig. S44 Phosphorescence lifetime decay curves of **PD1** at 623 nm, **PD2** at 621 nm, and **PD3** at 612 nm in 2-MeTHF at 77K. The phosphorescence lifetimes were determined to be 28.6 ms for **PD1**, 32.0 ms for **PD2**, and 37.3 ms for **PD3**.

Fig. S45 Phosphorescence spectra of (a) PD1 ($\lambda_{ex} = 500 \text{ nm}$), (b) PD2 ($\lambda_{ex} = 504 \text{ nm}$), (c) PZ1 ($\lambda_{ex} = 487 \text{ nm}$), and (d) PZ2 ($\lambda_{ex} = 495 \text{ nm}$) in 2-MeTHF at 77 K after irradiation with monochromic light at 385 nm.

Fig. S46 (a) Photoabsorption spectrum of PD2 (1.0×10^{-4} M) in 2-MeTHF containing water at 298 K, (b) photograph of PD2, (c) photoluminescence spectrum of PD2 ($\lambda_{ex} = 504$ nm), and (d) Phosphorescence spectra of PD2 in 2-MeTHF containing water at 77 K after irradiation with monochromic light at 385 nm.

Fig. S47 ATR-FT-IR spectrum of PD1 crystal obtained by sublimation.

Fig. S48 ATR-FT-IR spectrum of PD2 crystal obtained by recrystallization from an ethanol solvent.

Fig. S49 ATR-FT-IR spectrum of PD2 after heating at 133 °C under a pressure of 6.7×10^{-2} Pa.

Fig. S50 ATR-FT-IR spectrum of PD2 after heating at 205 °C under nitrogen atmosphere.

Fig. S51 ATR-FT-IR spectrum of PD2 after heating at 270 °C under nitrogen atmosphere.

Fig. S52 ATR-FT-IR spectrum of PD3 powder obtained by reprecipitation from a mixed solvent of THF/hexane.

Fig. S53 ATR-FT-IR spectrum of PZ1 crystal obtained by recrystallization from a mixed solvent of CH₂Cl₂/hexane.^{S1}

Fig. S54 ATR-FT-IR spectrum of PZ2 crystal obtained by recrystallization from a mixed solvent of CH₂Cl₂/hexane.^{S1}

Fig. S55 DSC curves (a: cooling process from 25 °C to -80 °C with a scan rate of 10 °C min⁻¹ and b: heating process from 25 °C to 250 °C with a scan rate of 1 °C min⁻¹) of **PD1–3**, **PZ1**, and **PZ2**.

Fig. S56 DTA-TG curves (heating process from 25 °C to 500 °C with a scan rate of 10 °C min⁻¹) of (a) PD1, (b) PD2, (c) PD3, (d) PZ1, and (e) PZ2. Temperatures at 5% weight loss ($T_{5\%}$) are 285 °C for PD1, 203 °C for PD2, 209 °C for PD3, 272 °C for PZ1, and 194 °C for PZ2.

Fig. S57 ¹H NMR spectra of **PD2**, **PD2** after heating at 133 °C under vacuum, **PD2** after heating at 205 °C, **PD2** after heating at 270 °C under nitrogen atmosphere, and **PD1** in DMSO-*d*₆.

Fig. S58 DSC curves (a: cooling process from 25 °C to -80 °C with a scan rate of 10 °C min⁻¹ and b: heating process from 25 °C to 250 °C with a scan rate of 1 °C min⁻¹) of solid of sublimate obtained by heating the crystals of **PD2** at 133 °C under vacuum (red) and crystals of **PD2** obtained by the recrystallization from the ethanol solution (green).

Fig. S59 Powder X-ray diffraction patterns of crystals of **PD2** obtained by the recrystallization from the ethanol solution (green) and solid of sublimate obtained by heating the crystals of **PD2** at 133 °C under vacuum (red).

Fig. S61 HRMS spectrum (APCI, positive) of PD3.

Fig. S62 HRMS spectrum (ESI, negative) of PD2 after heating at 133 °C under vacuum.

Fig. S63 HRMS spectrum (ESI, positive) of PD2 after heating at 133 °C under vacuum.

Fig. S64 HRMS spectrum (ESI, negative) of PD2 after heating at 205 °C under nitrogen atmosphere.

Fig. S65 HRMS spectrum (ESI, positive) of PD2 after heating at 205 °C under nitrogen atmosphere.

Fig. S66 HRMS spectrum (ESI, negative) of PD2 heating at 270 °C under nitrogen atmosphere.

Fig. S67 HRMS spectrum (ESI, positive) of PD2 heating at 270 °C under nitrogen atmosphere.

Fig. S69 HRMS spectrum (ESI, positive) of PD1.

10. Supporting References

- S1. K. Ohira, M. Yamamoto, K. Imato and Y. Ooyama, New J. Chem., 2023, 47, 2711–2718.
- S2. Gaussian 16, Revision B.01 and C.01, Gaussian, Inc., Wallingford CT, 2016.
- S3. K. Ogawa, M. Miura, T. Nakayama and J. Harada, Chem. Lett., 2003, 32, 840-841.