Supplementary Information

Asymmetric total synthesis of humulane sesquiterpenoids alashanoids B, C, E, F and 2,9-humuladien-6-ol-8-one

Rasmita Barik and Samik Nanda*
Department of Chemistry, Indian Institute Technology Kharagpur, Kharagpur, 721302, India snanda@chem.iitkgp.ac.in

Table of contents

1. General information

2. Experimental procedure
3. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of products
4. NMR, IR, X-ray, ECD, UV, HPLC of the final compounds

Page no: 2
Page no: 3-38
Page no: 39-98
Page no: 99-133

1. General Information:

All moisture or oxygen-sensitive reactions were carried out under an argon atmosphere in oven flasks. The solvents were purified by distillation over the drying agents indicated and were transferred under argon: toluene, THF and $\mathrm{Et}_{2} \mathrm{O}$ from Na ; MeOH from Mg and $\mathrm{I}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$ and DMF from CaH_{2}. All reactions were monitored by thin-layer chromatography (TLC) on silica gel GF254 plates using UV light as visualizing agent (if applicable), and a solution of Anisal in EtOH followed by heating as developing agents. The products were purified by flash column chromatography. Bruker AM 400 MHz instrument or $600 \mathrm{MHz}, 500 \mathrm{MHz}$ NMR instrument. Chemical shifts were denoted in ppm (δ), and calibrated by using residual undeuterated solvent $\left(\mathrm{CDCl}_{3}(7.26 \mathrm{ppm}),{ }^{1} \mathrm{H}\right.$ NMR and the deuterated solvent $\left(\mathrm{CDCl}_{3}(77.00\right.$ $\mathrm{ppm})$, as internal standard for ${ }^{13} \mathbf{C}$ NMR. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=\mathrm{broad}, \mathrm{dd}=$ double doublet, $\mathrm{td}=$ triple doublet, $\mathrm{dt}=$ double triplet, $\mathrm{m}=$ multiplet. The high-resolution mass spectral analysis (HRMS) data were measured on Thermo Fisher Orbitrap Elite Mass Spectrometer or a LCT Premier XE (Waters) mass spectrometer (Waters, Milford, MA, U.S.) by means of the ESI technique. Electron ionization mass spectra (EI-MS) were measured on a Shimadzu GCMSQP2010SE spectrometer by direct inlet at 70 eV and the corresponding signals were given in m / z with relative intensity (\%) in brackets. The IR spectra were recorded on Nicolet Nexus 670 FT-IR spectrometer. UV and ECD data were detected on a Shimadzu UV-2450 spectrophotometer and a JASCO J-815 spectrometer and polarimeter respectively. The X-ray single-crystal determination was performed on an Agilent Super Nova single crystal X-ray diffractometer. Optical rotations were detected on RUDOLPH A21202-J APTV/GW.

2. Experimental procedures:

2.1 General procedure for Swern oxidation (GP I):

To a flame-dried two-neck round bottom flask, oxalyl chloride (1.5 eq) was dissolved in dry DCM (2M), and the mixture was cooled to $-78^{\circ} \mathrm{C}$. DMSO (3.0 eq) was then added slowly to the reaction mixture and stirred for 15 min . afterward, alcohol (1eq) was added to the reaction mixture in $\mathrm{DCM}(0.5 \mathrm{M})$, and the reaction was stirred at the same temperature for another 40 min . Finally, triethylamine (6.0 eq) was added to the reaction solution, and the reaction mixture was allowed to warm at room temperature. Afterward, the reaction solution was stirred at room temperature for 30 min , then it was quenched with water and extracted with DCM. The organic layer was washed with sodium bicarbonate and brine. The organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude aldehyde was then used for the next reaction without further purification or sometimes the aldehyde can be purified by flash column chromatography.

2.2 General procedure for one carbon Wittig olefination (GP II):

To a stirred solution of methyltriphenylphosphonium iodide (1.5 eq) in THF (2 M) at $0{ }^{\circ} \mathrm{C}$ was slowly added LHMDS ($1.2 \mathrm{eq}, 1 \mathrm{M}$ in THF). After stirring for 30 min , the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of the aldehyde (1.0 eq) in THF (2 M) was added dropwise and the mixture was allowed to warm to room temperature and was stirred for 30 min . The reaction was quenched with addition of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude residue was purified by flash silica gel column chromatography to provide the required olefin.

2.3 General procedure for Johnson orthoester Claisen rearrangement (GP III):

The alylic alcohol (1.0 eq) was heated with $\mathrm{MeC}(\mathrm{OEt})_{3}(7.0 \mathrm{eq})$ with a few drops of propionic acid for 5 h , in a sealed tube. After cooling to room temperature, $\mathrm{MeC}(\mathrm{OEt})_{3}$ was roughly distilled off under ambient pressure (bath temp: $170^{\circ} \mathrm{C}$) and the residue was purified by silica-gel column chromatography to afford the corresponding ester.

2.4 General procedure for LAH reduction (GP IV):

$\mathrm{LiAlH}_{4}(2.0 \mathrm{eq})$ was suspended in anhydrous ether (2 M), and the suspension was cooled to $0^{\circ} \mathrm{C}$. A solution of ester in dry ether $(2 \mathrm{M})$ was added dropwise. The reaction mixture was allowed to attain rt for 2 h , and after cooling to $0{ }^{\circ} \mathrm{C}$, it was quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution carefully. It was then filtered on a celite pad, and the solid cake was washed twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure, and purified by column chromatography to furnish the corresponding alcohol.

2.5 General procedure for asymmetric aldol reaction (GP V):

(A) Non-Evans anti-aldol: ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(1.15 \mathrm{eq})$ was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of oxazolidone(1.0 eq) and $\left({ }^{n} \mathrm{Bu}\right)_{2} \mathrm{BOTf}(2.0 \mathrm{eq}, 1 \mathrm{M}$ in DCM$)$ in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{M})$. After stirring for 45 min at $0^{\circ} \mathrm{C}$, the yellow suspension was cooled to $-78{ }^{\circ} \mathrm{C}$ before a precooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of freshly prepared aldehyde $(1.3$ eq) in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{M})$ was slowly introduced. After an additional 30 min , the reaction mixture was quenched by addition of solid tartaric acid and the mixture stirred at ambient temperature for 2 h . The reaction was partitioned between ether and $\mathrm{H}_{2} \mathrm{O}$, and the combined organic layers were washed with saturated aqueous NaHCO_{3}. A mixture of $\mathrm{MeOH}: 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (3:1) was added under vigorous stirring at $0^{\circ} \mathrm{C}$ and the resulting
mixture stirred for 1 h at room temperature before it was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was purified by flash chromatography to afford the desired compound.
(B) Evans syn-aldol: ${ }^{n} \mathrm{Bu}_{2} \mathrm{BOTf}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.2 \mathrm{eq}\right)$ was slowly added to a solution of oxazolidone (1.0 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$. $\mathrm{Et}_{3} \mathrm{~N}(1.3 \mathrm{eq})$ was then added at such a rate as to keep the internal temperature $0{ }^{\circ} \mathrm{C}$. Once the addition was complete, the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ before freshly prepared aldehyde (1.12 eq) was introduced. The mixture was then stirred for 30 min at $-78^{\circ} \mathrm{C}$. Stirring was continued for 1 h and the reaction quenched with aqueous phosphate buffer (pH 7.0) and $\mathrm{MeOH}(\mathrm{T}<$ $-6{ }^{\circ} \mathrm{C}$). Next, a $1: 2$ mixtures of MeOH and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ was carefully added such that the internal temperature was never reached above $10{ }^{\circ} \mathrm{C}$. The mixture was stirred for 1 h once the addition was complete. After concentration on a rotary evaporator (bath-temperature ca. $30^{\circ} \mathrm{C}$), $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to the slurry and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with aq. sat. NaHCO_{3} and brine before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and the title compound was purified by flash chromatography.

2.6 General procedure for reductive cleavage of auxiliary (GP VI):

Method (A): $\mathrm{LiBH}_{4}(2.4 \mathrm{eq})$ was added portion wise to a cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of a known aldol product (1.0 eq) and ethanol (2.4 eq) in anhydrous diethyl ether (8 M) under N_{2} atmosphere. The reaction mixture was stirred for 4 h at $-20^{\circ} \mathrm{C}$ before being quenched with a saturated NaHCO_{3} solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The product was purified by flash chromatography to provide the desired alcohol.

Method (B): $\mathrm{NaBH}_{4}(10.0 \mathrm{eq})$ was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of aldol product (1.0 eq) in THF: $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The reaction mixture was then stirred for 1 h at $0^{\circ} \mathrm{C}$ before being quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The product was purified by flash chromatography to yield corresponding alcohol.

2.7 General procedure for TBS-group protection (GP VII):

To a solution of alcohol (1.0 eq) in dry DMF (2 M), imidazole (3.0 eq) was added at $0^{\circ} \mathrm{C}$ and stirred for 10 min . TBS-Cl (2.0 eq) was then added to the reaction mixture at the same temperature, and the reaction solution was allowed to warm at room temperature and stirred for a further 1 h . After completion of the reaction, the mixture was quenched with water and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was then concentrated under reduced pressure, and the residue was purified through flash column chromatography to furnish TBS-protected compound.

2.8 General procedure for PMB-group deprotection (GP VIII):

To a solution of compound (1.0 eq) in DCM:phosphate buffer (19:1), DDQ (1.5 eq) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was then stirred for 1 h at the same temperature. After completion of the reaction, the mixture was filtered through celite pad and washed with DCM. The filtrate was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The product was purified by flash column chromatography to provide compound alcohol.

2.9 General procedure for TBS-group deprotection (GP IX):

Compound (1.0 eq) was dissolved in dry DCM:MeOH ($1: 1,10 \mathrm{M}$) and stirred at $-40^{\circ} \mathrm{C}$. CSA (0.5 eq) was then added to the reaction mixture, and the mixture was stirred at $-40^{\circ} \mathrm{C}$ for another 24 h . The reaction solution was then quenched with water, and then extracted with DCM. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was then purified by flash column chromatography to afford the alcohol.

2.10 General procedure for DMP oxidation (GP X):

To the solution of compound (1.0 eq) in $\mathrm{DCM}(5 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaHCO}_{3}(5.0 \mathrm{eq})$, Dess-Martin periodinane (1.2 eq) and the reaction mixture was stirred at room temperature for 1 h , then saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was added and the resultant mixture was stirred at room temperature for 5 min . The mixture was extracted with DCM and the combined organic extracts were dried over anhydrous MgSO_{4} and concentrated. The crude aldehyde and ketone was then purified by column chromatography.

2.11 General procedure for Takai olefination (GP XI):

A solution of $\mathrm{CHI}_{3}(3.2 \mathrm{eq})$ and required aldehyde (1.0 eq) in THF (9 M) was added dropwise to a $0{ }^{\circ} \mathrm{C}$ suspension of CrCl_{2} (5.0 eq) in THF (9 M). The resulting mixture was stirred at room temperature for 2 h before the reaction was quenched with water. The aqueous layer was extracted with ether, the combined organic phases were dried over MgSO_{4} and evaporated, and the residue purified by flash chromatography to give (E)-vinylic iodide compound.

2.12 General procedure for intramolecular NHK reaction (GP XII):

The NHK reaction was carried out under argon atmosphere. To a stirred solution of $\mathrm{NiCl}_{2}(0.1 \mathrm{eq})$ and CrCl_{2} (7.5 eq) in degassed DMSO was added a solution of aldehyde (1.0 eq) in degassed DMSO. After being stirred at rt for 3 h , the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The combined extracts were washed with saturated brine, dried and concentrated under reduced pressure. The residue was purified by column chromatography to afford the ring closed product.

2.13 General procedure for esterification of aldol product (GP XIII):

In a typical experiment to THF (4 M) was added a solution of $\mathrm{SmI}_{2}(0.1 \mathrm{~N})$ in THF (0.05 eq) and EtOH (10.0 eq) followed by a solution of aldol product (1.0 eq) in THF (2 M). The reaction mixture was turned from blue to light yellow within a few minutes. The reaction was then monitored by TLC, which indicated total conversion of the starting product after 2 h . The reaction solution was then hydrolyzed with $\mathrm{H}_{2} \mathrm{O}$, extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried over MgSO_{4}. The crude product was purified by column chromatography on silica gel to afford the desired ester.

2.14 General procedure for methylation of -OH group (GP XIV):

Method with NaH: The alcohol (1.0 eq) was dissolved in DMF, added to reaction mixture at $-40^{\circ} \mathrm{C}$, with $\mathrm{NaH}(5.0 \mathrm{eq})$ in DMF and stirred for 30 min . Subsequently, MeI (5.0 eq) was then added dropwise and the reaction mixture was stirred for 4 h . Then water was added and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, the solvent was removed under vacuum and the crude product was purified by column chromatography to obtain the methyl ether as a colorless oil.

Method with $\mathrm{Ag}_{2} \mathrm{O}$: The alcohol (1.0 eq) was dissolved in $\mathrm{Et}_{2} \mathrm{O}$, added to reaction mixture at room temperature, with $\mathrm{Ag}_{2} \mathrm{O}(5.0 \mathrm{eq})$ in ether and stirred for 30 min . Subsequently, MeI (5.0 eq) was then added dropwise and the reaction mixture was stirred for 4 h . Then water was added and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, the solvent was removed under vacuum and the crude product was purified by column chromatography to obtain the methyl ether as a colorless oil.

2.15 General procedure for DIBAL-H reduction (GP XV):

A 50 mL round bottom flask was charged with ester (1.0 eq), DCM and cooled to $-20^{\circ} \mathrm{C}$. DIBAL-H (2.0 eq) was added to the flask. The solution was stirred for 4 h and then quenched with a saturated Na / K tartrate solution. Stirring was continued until the layers became clear, followed by filtration with celite pad with DCM. The combined organic extracts filtered through a sodium sulfate plug, which was subsequently concentrated. Flash chromatography afforded the pure alcohol.

2.16 General procedure for TBDPS-group deprotection (GP XVI):

A buffered solution was prepared by addition of glacial acetic acid ($12 \mu 1,1.0$ eq) to a solution of TBAF $(0.4 \mathrm{~mL}, 2.0 \mathrm{eq})$. Then a stirred solution of starting ($100 \mathrm{mg}, 0.198 \mathrm{mmol}$) in THF (30 mL) was treated with the previously prepared buffer solution at $0^{\circ} \mathrm{C}$ and stirred at $20^{\circ} \mathrm{C}$ for 6 h . Then water was added and the aqueous phase was extracted with EtOAc. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, Solvent was removed in vacuum and the crude product was directly applied to silica gel column chromatography and it was purified to give $(+)$-alashanoid E and F.

3. Synthesis of cross metathesis (CM) precursors 9 and 5:

Scheme S1: Synthesis of CM precursors.

3.1: Synthesis of compound 9:

To a suspension of $\mathrm{NaH}(60 \%, 1.8 \mathrm{~g}, 43.2 \mathrm{mmol})$ in dry THF (70 mL), neo-pentyl glycol ($48 \mathrm{mmol}, 5 \mathrm{~g}$) in dry THF (30 mL) was added dropwise at $0^{\circ} \mathrm{C}$. The solution was stirred at this temperature for 30 min . Freshly prepared PMB-Br $(9.7 \mathrm{~g}, 48 \mathrm{mmol})$ in dry THF $(20 \mathrm{~mL})$ was then added to the reaction mixture. The reaction mixture was allowed to increase to the room temperature for 5 h , and the reaction solution was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20 \mathrm{~mL})$. The organic layer was separated, and the aqueous phase was washed with ethyl acetate $(100 \times 2 \mathrm{~mL})$. The combined organic layer was washed with brine $(20 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was then evaporated under reduced pressure, and the crude residue was purified by flash column chromatography to furnish compound 9 ($40.12 \mathrm{mmol}, 9.0$ $\mathrm{g}, 85 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~s}$, $2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2$, $130.2,129.1,113.8,79.2,73.2,71.8,55.3,36.2,21.9$. HRMS (ESI) $\mathbf{m} / \mathbf{z}:$ for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, calculated: 247.1310; found: 247.1301.

3.2: Synthesis of compound 11:

(a) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}$ $\xrightarrow{\mathrm{DCM},-78^{\circ} \mathrm{C}, 2 \mathrm{~h}, 90 \%}$
(b) $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{2} \mathrm{OMeCl}^{-}$,

LHMDS, $0^{\circ} \mathrm{C}$, THF
(c) HCl , acetone, $\mathrm{rt}, 90 \%$

Aldehyde $\mathbf{1 0}\left(36.4 \mathrm{mmol}, 8.1 \mathrm{~g}, 90 \%\right.$ yield) was synthesized by GPI : ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.47$ $(\mathrm{s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 2 \mathrm{H}), 1.00(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 205.4, 159.2, 130.1, 129.1, 113.8, 74.7, 73.0, 55.3, 47.1, 19.1.

A round-bottom flask was charged with methoxymethyltriphenylphosphonium chloride (18 g, 57.4 mmol), and 70 ml THF was added to the flask. The solution of methoxymethyltriphenylphosphonium chloride in THF was cooled to $0^{\circ} \mathrm{C}$ and the solution of potassium tert-butoxide ($6.4 \mathrm{~g}, 57.4 \mathrm{mmol}$)in THF was added dropwise over 10 min . The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , at which point a solution of crude aldehyde $\mathbf{1 0}(36.4 \mathrm{mmol}, 8.1 \mathrm{~g})$ in THF $(20 \mathrm{~mL})$ was added dropwise. The reaction was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 15 min , the reaction was quenched with a solution of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The resulting mixture was poured water (100 mL) and diluted with EtOAc (100 mL). The layers were separated and the aqueous layer was extracted with EtOAc (2 x 100 mL). The organic layers were combined, dried over MgSO_{4}, and evaporated under reduced pressure. The resulting residue was hydrolyzed by 0.1 N HCl then purified via flash chromatography to afford $11(32.8 \mathrm{mmol}, 7.8 \mathrm{~g}, 90 \%$ yield over two steps). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 2 \mathrm{H}), 2.32(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 6 \mathrm{H}) \cdot{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.2,159.1,130.5,129.1,113.8,78.6,72.9,55.3,53.1,35.2,25.2$.

3.3: Synthesis of compound 12 :

Compound 12 ($31.16 \mathrm{mmol}, 7.3 \mathrm{~g}, 95 \%$ yield) was synthesized from 11 ($32.8 \mathrm{mmol}, 7.8 \mathrm{~g}$) by employing the general method as described earlier (GPII). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.82-5.73(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=7.6 . \mathrm{Hz}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~s}$, 2H), $2.04(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathbf{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.0,135.5,131.1$, $128.9,116.9,113.7,78.7,72.9,55.3,43.7,34.9,14.5$. HRMS (ESI) m/z: for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 235.1698; found: 235.1692 .

3.4: Synthesis of compound 15:

15
The title compound $\mathbf{1 5}(11.2 \mathrm{mmol}, 3.8 \mathrm{~g}, 81 \%$ yield over 3 steps$)$ was synthesized from β-methallyl alcohol 13 ($13.86 \mathrm{mmol}, 1 \mathrm{~g}$) by employing the general method as described earlier (GPIII, GPIV) followed by TBDPS-group protection of the free hydroxyl functionality. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 6 \mathrm{H}), 4.67(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-$ 2.07 (m, 2H), 1.73 - 1.66 (overlap, 6H), 1.05 (s, 9H). ${ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 145.7, 135.6, 134.1, 129.5, 127.6, 109.8, 63.6, 34.0, 30.7, 26.9, 22.5, 19.2. HRMS (ESI) m/z: for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 339.2144; found: 339.2140 .

4. Synthesis of aldol product 21:

$\xrightarrow[\mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 70 \%]{\left({ }^{n} \mathrm{Bu}\right)_{2} \mathrm{BOTf}, \text { DIPEA }}$

Scheme S2: Synthesis of Compound 21.

4.1: Synthesis of compound 16:

Magnesium turnings ($2.0 \mathrm{eq}, 1.9 \mathrm{~g}$) was placed in a flask equipped with reflux condenser under nitrogen and small amount I_{2} was added. Upon adding dibromoethane ($50 \mu \mathrm{~L}$) and THF ($75 \mathrm{~mL}, 2.0 \mathrm{M}$), isopropenyl bromide ($1.5 \mathrm{eq}, 5.1 \mathrm{~mL}$) was added dropwise while keeping the reaction mixture close to refluxing, then further stirred at $70^{\circ} \mathrm{C}$ for 1 h . After cooling down to rt , the resulting Grignard reagent (2.0 M in $\mathrm{THF}, 1.5 \mathrm{eq}$) was added to the solution of $\mathbf{1 1}(7.8 \mathrm{~g}, 32.8 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ then the mixture was stirred at room temperature for 3 h . The resulting reaction mixture was diluted by ethyl ether and carefully filtered through a pad silica gel. The solution was neutralized by adding $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution. The organic layer was then washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The compound was purified by column chromatography on silica gel to provide the desired product 16 ($29.5 \mathrm{mmol}, 8.2 \mathrm{~g}, 90 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), 6.88 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.13$ (d, $J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,148.6,129.7,129.4,113.9,109.6,79.0,73.2,72.1,55.2$, 47.6, 34.3, 27.9, 23.8, 18.2. IR:3415,2952,2927, 2855,1611,1514,1247,1088, $1036,897,820 \mathrm{~cm}^{-1}$. HRMS (ESI) \mathbf{m} / \mathbf{z} : for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 279.1960; found: 279.1936.

4.2: Synthesis of compound 17 :

The obtained compound 17 ($28 \mathrm{mmol}, 9.8 \mathrm{~g}, 95 \%$ yield) was synthesized from $16(29.5 \mathrm{mmol}, 8.2 \mathrm{~g}$) by employing the general method as described earlier (GPIII). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.14-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~d}$, $J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.07(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.23(\mathrm{~m}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 173.4, 158.9, $134.9,131.2,128.9,121.8,113.7,78.6,72.9,60.2,55.2,37.0,35.7,35.0,33.4,24.5,16.1,14.2$. IR: 2956 , 2929, 2853, 1736, 1614, 1513, 1464, 1374, 1299, 1244, 1172, 1094, 1037, $822 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 349.2379; found: 349.2359.

4.3: Synthesis of compound 18 :

Compound 18 ($26.63 \mathrm{mmol}, 8.2 \mathrm{~g}, 95 \%$ yield) was synthesized from 17 ($28 \mathrm{mmol}, 9.8 \mathrm{~g}$) by employing the general method as described earlier (GPIV). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$
$(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{~s}$, $2 \mathrm{H}), 2.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 1 \mathrm{H}), 0.87$ $(\mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9,136.2,131.2,128.9,121.4,113.7,78.6,72.9,62.8$, $55.3,37.2,36.3,35.7,30.9,24.6,16.0$. IR: 3372, 2926, 2850, 1514, 1247, 1172, 1092, 1037, $821 \mathrm{~cm}^{-1}$.
HRMS (ESI) \mathbf{m} / \mathbf{z} : for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 307.2273; found: 307.2253.

4.4: Synthesis of compound 21:

Synthesis of aldehyde $19(23.97 \mathrm{mmol}, 7.3 \mathrm{~g}, 90 \%$ yield) from $18(26.63 \mathrm{mmol}, 8.2 \mathrm{~g})$ was done by employing the general method as described earlier (GP1). Synthesis of compound 21 ($16.73 \mathrm{mmol}, 9 \mathrm{~g}$, 70% yield) was achieved by using aldehyde 19 ($23.97 \mathrm{mmol}, 7.3 \mathrm{~g}$) and auxiliary $20(18.4 \mathrm{mmol}, 4.3 \mathrm{~g})$ followed by non-Evans anti aldol method (GPVA). $[\alpha]_{D}^{25}=+12.7(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.20(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 5 \mathrm{H}), 6.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.59-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 4.09-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.23-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 2 \mathrm{H}), 2.66-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.97(\mathrm{~m}, 1 \mathrm{H})$, $1.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.76(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.8,158.9,153.5,136.1,135.3,131.2,129.4,128.9$, $128.9,127.3,121.6,113.7,78.8,74.4,72.9,66.0,55.5,55.3,43.2,37.9,37.2,35.9,35.7,33.4,24.6,16.2$, 14.6. IR: $3528,2954,2924,2854,1780,1697,1613,1513,1455,1382,1247,1210,1097,1033,822$, $763,750,703,507 \mathrm{~cm}^{-1}$. HRMS (ESI) \mathbf{m} / \mathbf{z} : for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 538.3169 ; found: 538.3168.

5. Synthesis of RCM precursor 28:

Scheme S3: Synthesis of Compound 28.

5.1: Synthesis of compound 22:

Compound 22 ($15.9 \mathrm{mmol}, 5.8 \mathrm{~g}, 95 \%$ yield) was synthesized from $21(16.73 \mathrm{mmol}, 9 \mathrm{~g})$ by employing the general method as described earlier (GPVIA). $[\alpha]_{D}^{25}=-29.7(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}$, $4 \mathrm{H}), 3.67(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 2 \mathrm{H}), 2.24-2.20((\mathrm{broad}$ peak for 2 OH and marked H), 3H), $2.17-$ $2.11(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.46$ $(\mathrm{m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.0,136.4,131.2$, 128.9, 121.6, 113.7, 78.7, 74.4, 72.9, 67.2, 55.3, 39.2, 37.2, 36.8, 35.7, 32.2, 24.6, 24.6, 16.1, 10.2. IR: 3673, 3415, 2924, 2756, 2658, 1624, 1530, 1467, 1340, 1188, 1010, 890, 735, $620,507 \mathrm{~cm}^{-1}$. HRMS (ESI) \mathbf{m} / \mathbf{z} : for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 365.2692; found: 365.2693.

5.2: Synthesis of compound 23:

Compound 23 ($11.8 \mathrm{mmol}, 7 \mathrm{~g}, 74 \%$ yield) was furnished from 22 ($15.9 \mathrm{mmol}, 5.8 \mathrm{~g}$) by employing the general method as described earlier (GPVII). $[\alpha]_{D}^{25}=-11.0(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H} \mathbf{~ N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.21(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.67-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 2 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 3 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.86-0.81(\mathrm{~m}, 27 \mathrm{H}),-0.00(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR\{ $\{\mathbf{H}\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9,137.2,131.3,128.8,120.6,113.7,78.9,73.2,72.9,65.2,55.2$, $40.8, \quad 37.1, \quad 35.7, \quad 31.7, \quad 25.9, \quad 24.5, \quad 18.3, \quad 18.1, \quad 16.2, \quad 12.4, \quad-4.3, \quad-4.5, \quad-5.3, \quad-5.4$. IR:2954,2928,2856,1614,1514,1472,1360,1248,1088,1040,834,774,666 cm^{-1}. HRMS (ESI) m/z: for $\mathrm{C}_{34} \mathrm{H}_{65} \mathrm{O}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 593.4421; found: 593.4428.

5.3: Synthesis of compound 24:

Title compound 24 ($8.5 \mathrm{mmol}, 4 \mathrm{~g}, 72 \%$ yield) was synthesized from $23(11.8 \mathrm{mmol}, 7 \mathrm{~g})$ by employing the general method as described earlier (GPVIII). $[\alpha]_{D}^{25}=-25.2(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~s}$, $2 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H})$, $1.49-1.44(\mathrm{~m}, 2 \mathrm{H}), 0.86-0.80(\mathrm{~m}, 27 \mathrm{H}),-0.00(\mathrm{~s}, 12 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{~ N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.6$, $120.2,73.1,71.9,65.2,40.8,36.8,36.2,35.7,31.5,25.9,23.8,18.2,18.1,16.2,12.2,-4.3,-4.5,-5.3,-5.4$.

IR: 3442, 2944, 2924,2 856, 1756, 1492, 1322, 1226, 1022, 816, $630 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: for $\mathrm{C}_{26} \mathrm{H}_{57} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 473.3846; found: 473.3840.

5.4: Synthesis of compound 26:

$\mathrm{Pg}=\mathrm{TBS}$
(a) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}$, DCM,-78 ${ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 90 \%$
(b) $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{3} \mathrm{I}^{-}$, LHMDS, $0^{\circ} \mathrm{C}, \mathrm{THF}, 1 \mathrm{~h}, 95 \%$

26

Compound 26 ($7.2 \mathrm{mmol}, 3.4 \mathrm{~g}, 85 \%$ yield over 2 steps) was synthesized from $24(8.5 \mathrm{mmol}, 4 \mathrm{~g})$ by employing the general method as described earlier (GPI and GPII). $[\alpha]_{D}^{25}=-32.3(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.77(\mathrm{dd}, J=17.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.85(\mathrm{~m}$, $2 \mathrm{H}), 3.66(\mathrm{dd}, J=10.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=9.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=9.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-$ $2.01(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.93$ (overlap, 3 H), $1.81-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~s}$, $6 \mathrm{H}), 0.86(\mathrm{~s}, 18 \mathrm{H}), 0.81(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}),-0.00(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 148.6, $137.0,120.8,110.0,73.1,65.2,40.8,40.5,37.4,35.6,31.6,26.5,26.5,25.9,18.3,18.2,16.3,12.4,-4.3,-$ 4.5, -5.4, -5.5. IR: 2904, 2874, 2846, 1706, 1462, 1320, 1212, 1011, 810, $610 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: for $\mathrm{C}_{27} \mathrm{H}_{57} \mathrm{O}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 469.3897; found: 469.3891 .

5.5: Synthesis of compound 27:

Compound 27 ($6.1 \mathrm{mmol}, 2.1 \mathrm{~g}, 85 \%$ yield) was synthesized from $26(7.2 \mathrm{mmol}, 3.4 \mathrm{~g})$ by employing the general method as described earlier (GPIX). $[\alpha]_{D}^{25}=-68.3(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.74-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=14.4,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.72-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.62-$ $3.58(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{dd}, J=14.0,8.0 \mathrm{~Hz}$, 1 H), $1.50(\mathrm{~s}, 3 \mathrm{H}), 0.92-0.88$ (overlap, 9 H), $0.81(\mathrm{~s}, 9 \mathrm{H}), 0.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}),-0.00(\mathrm{~s}$, 6H). ${ }^{13} \mathbf{C N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 148.4, 136.1, $121.4,110.1,75.4,65.3,40.5,37.4,35.2,33.3,26.5$, 26.5,25.8,17.9,16.2,14.7,11.7,-4.3,-4.7. IR: 3342, 2900, 2854, 2816, 1736, 1472,1300,1216,1022,720,620 cm^{-1}. HRMS (ESI) m/z: for $\mathrm{C}_{21} \mathrm{H}_{43} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 355.3032; found: 355.3029.

5.6: Synthesis of compound 28:

Compound 28 ($3.7 \mathrm{mmol}, 1.4 \mathrm{~g}, 65 \%$ yield over 3 steps) was synthesized from $27(6.1 \mathrm{mmol}, 2.1 \mathrm{~g}$) by DMP oxidation (GPX), vinyl Grignard reaction then DMP oxidation (GPX). $[\alpha]_{D}^{25}=-43.4$ (c $=0.1$,
$\mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.46-6.37(\mathrm{~m}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=17.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.66$ $(\mathrm{m}, 2 \mathrm{H}), 5.09(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.83(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.08-$ 1.91 (overlap, 4H), $1.52-1.49$ (overlap, 5 H), $0.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 6 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}),-0.00(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.33,148.48,136.56,135.72,127.71,121.19,110.07,73.32$, $48.24,40.53,37.36,35.40,34.03,32.38,26.47,25.86,18.05,16.25,12.33,11.76,-4.42,-4.83$. IR:2900,2844,2832,1766,1642, 1572,1420,1316,1032,850,740 cm^{-1}. HRMS (ESI) m/z: for $\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{O}_{2} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 379.3032; found: 379.3031.

6. Synthesis of intramolecular aldol precursor 32:

Scheme S4: Synthesis of Compound 26.

6.1: Synthesis of compound 29:

A solution of the foregoing aldol adduct $21(16.7 \mathrm{mmol}, 9 \mathrm{~g})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ was cooled to $-50{ }^{\circ} \mathrm{C}$. Then, DIPEA ($1.7 \mathrm{~mL}, 9.4 \mathrm{mmol}$) followed by TBSOTf $(1.45 \mathrm{~mL}, 6.3 \mathrm{mmol})$ were added. The reaction mixture was stirred for 1 h . The mixture was treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with DCM. The combined organic extracts were washed saturated NaHCO_{3} and saturated NaCl solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Flash chromatography afforded TBS-protected compound 29 ($15 \mathrm{mmol}, 9.8 \mathrm{~g}$, 90% yield $) .[\alpha]_{D}^{25}=+27.0(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.21(\mathrm{~m}, 7 \mathrm{H}), 6.87(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{td}, J=7.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.27-4.05(\mathrm{~m}, 2 \mathrm{H})$, $4.02(\mathrm{dd}, J=10.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{dd}, J=13.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}$, $2 \mathrm{H}), 2.78(\mathrm{dd}, J=13.2,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.82-1.46(\mathrm{~m}, 6 \mathrm{H}), 1.23(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.90,0.88$ (overlap, 16 H), $0.03(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.3,158.9$, $153.1,136.6,135.4,131.2,129.5,128.9,128.8,127.3,120.8,113.6,78.8,72.9,72.8,66.0,55.8,55.2$, $42.7,37.6,37.1,35.7,35.4,34.4,25.8,24.5,18.1,16.2,11.7,-4.1,-4.8$. IR: 2954, 2927, 2855, 1785,

1702, 1513, 1462, 1380, 1361, 1350, 1248, 1209, 1195, 1101, 1040, 1017, 836, 775, $702 \mathrm{~cm}^{-1} . \mathbf{H R M S}$ (ESI) \mathbf{m} / \mathbf{z} : for $\mathrm{C}_{38} \mathrm{H}_{58} \mathrm{NO}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 652.4033; found: 652.4031.
6.2: Synthesis of compound 30 :

Compound 30 ($14.2 \mathrm{mmol}, 6.8 \mathrm{~g}, 95 \%$ yield) was synthesized from 29 ($15 \mathrm{mmol}, 9.8 \mathrm{~g}$) by employing the general method as described earlier (GPVIB). $[\alpha]_{D}^{25}=-17.8(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~s}$, $3 \mathrm{H}), 3.69-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=14.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 2 \mathrm{H}), 2.00-1.80$ $(\mathrm{m}, 5 \mathrm{H}), 1.70-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 0.92-0.73(\mathrm{~m}, 18 \mathrm{H}),-0.00(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ $\mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9,136.3,131.2,128.8,121.2,113.7,78.8,75.4,72.9,65.3,55.2$, $39.5,37.6,37.1,35.7,35.3,33.4,25.9,24.6,24.5,18.0,16.1,14.7,11.8,-4.2,-4.7$. IR: 3344, 2934, 2918, $2816,1624,1564,1478,1310,1278,1018,1000,804,724,636 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: for $\mathrm{C}_{28} \mathrm{H}_{51} \mathrm{O}_{4} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 479.3557; found: 479.3551 .

6.3: Synthesis of compound 31 :

Compound 31 ($9.8 \mathrm{mmol}, 4.8 \mathrm{~g}, 68 \%$ yield over 3 steps) was prepared from $30(14.2 \mathrm{mmol}, 6.8 \mathrm{~g})$ by employing the general method as described earlier (GPI). $[\alpha]_{D}^{25}=-12.0(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H} \mathbf{N M R}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.08(\mathrm{dd}, J=18.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}$, $2 \mathrm{H}), 3.83(\mathrm{dd}, J=8.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~s}, 2 \mathrm{H}), 2.66-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.82-0.79$ (overlap, 15H), $0.00(\mathrm{~s}, 6 \mathrm{H})$. IR: 2954, 2927, 2854, 1716, 1670, 1613, 1513, 1463, 1361, 1248, 1172, 1094, 1056, 1038, 836, $775 \mathrm{~cm}^{-1}$. HRMS (ESI) \mathbf{m} / \mathbf{z} : for $\mathrm{C}_{29} \mathrm{H}_{51} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 491.3557; found: 491.3553

6.4: Synthesis of compound 32:

(a) $\mathrm{DDQ}, \mathrm{DCM}$:water, $\xrightarrow[\text { (b) Swern Oxidation, } 85 \%]{0^{\circ} \mathrm{C}, 85 \%}$

Compound 32 ($7 \mathrm{mmol}, 2.6 \mathrm{~g}, 72 \%$ yield over 2 steps) was synthesized from $31(9.8 \mathrm{mmol}, 4.8 \mathrm{~g})$ by employing the general method as described earlier (GPVIII and GPI. $[\alpha]_{D}^{25}=-47.9(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=10.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-$ $2.65(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.09(\mathrm{~m}, 5 \mathrm{H}), 2.02-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.37(\mathrm{~m}$, $1 \mathrm{H}), 0.98(\mathrm{~s}, 6 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}),-0.00(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 211.8, 206.2, 138.3,
118.7, 73.4, 51.5, $46.5,35.4,34.2,33.2,32.3,30.5,25.8,21.1,18.0,16.2,12.3,11.5,-4.4,-4.9$. IR: 2950, $2927,2851,1616,1600,1573,1513,1463,1369,1221,1112,1014,1006,938,836,775 \mathrm{~cm}^{-1}$.
7. Synthesis of (-)-2,9-humuladien-6-ol-8-one and (-)-alashanoid C (4b):

Scheme S5: Synthesis of (-)-2,9-humuladien-6-ol-8-one and (-)-alashanoid C(4b).

7.1: Synthesis of compound 33:

Compound 33 ($5.9 \mathrm{mmol}, 3.5 \mathrm{~g}, 77 \%$ yield) was synthesized from $25(7.6 \mathrm{mmol}, 3.5 \mathrm{~g})$ by employing the general method as described earlier (GPXI). $[\alpha]_{D}^{25}=-28.2(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.47(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.56-$ $3.53(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~s}$, $3 \mathrm{H}), 1.47-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 18 \mathrm{H}), 0.81(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}),-0.00(\mathrm{~s}$, 12H). ${ }^{13} \mathbf{C N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.7,138.1,119.7,73.1,72.2,65.2,41.6,40.8,40.2,35.6,26.0$, 26.0,25.9,18.2,18.1,16.2,12.3,-4.2,-4.5,-5.3,-5.4. IR: 2930, 2907, 2770, 1756, 1424, 1312, 1126, 1022, 916, $830 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: for $\mathrm{C}_{27} \mathrm{H}_{56} \mathrm{IO}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 595.2864; found: 595.2850.

7.2. Synthesis of compound 34:

Compound 34 ($5 \mathrm{mmol}, 2.4 \mathrm{~g}, 85 \%$ yield) was achieved from 33 ($5.9 \mathrm{mmol}, 3.5 \mathrm{~g}$) by employing the general method as described earlier (GPIX): $[\alpha]_{D}^{25}=-62.7(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.40(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.62-$ $3.58(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.44(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}$, $3 \mathrm{H}), 0.91-0.89(\mathrm{~m}, 9 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}),-0.00(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.6,137.2$, 120.3, 76.9, 72.3, 65.4, 41.6, 40.2, 37.9, 35.1, 33.4, 26.1, 26.0, 25.8, 18.0, 16.2, 14.5, -4.1, 4.6. IR: 3372, 2934,2900, 2820, 2750, 1646, 1434, 1382, 1166, 1022, 986, $810 \mathrm{~cm}^{-1}$. HRMS(ESI) \mathbf{m} / \mathbf{z} for $\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{IO}_{2} \mathrm{Si}$ [$\mathrm{M}+\mathrm{H}]^{+}$, calculated: 481.1999; found: 481.1994.

7.3. Synthesis of compound 36:

Compound 34 ($5 \mathrm{mmol}, 2.4 \mathrm{~g}$) was reacted under condition according to GPX and GPXII to afford 36 ($2.8 \mathrm{mmol}, 1 \mathrm{~g}, 57 \%$ yield over 2 steps). $[\alpha]_{D}^{25}=-70.0(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H} \mathbf{~ N M R ~}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.16(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.99-4.96(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{t}, J=9.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.14(\mathrm{t}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{t}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.59$ $-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.80$ $(\mathrm{s}, 9 \mathrm{H}),-0.00(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.2,137.1,127.2,122.1,77.5,72.0,47.2$, $41.5, \quad 38.2, \quad 36.5, \quad 30.0, \quad 29.8, \quad 25.8, \quad 23.9, \quad 17.9, \quad 17.0, \quad 9.6, \quad 3.9, \quad 4.0$. IR:3456,2995,2890,2860,2723,1596,1447,1405,1246,1139,1142,1081,911,790 cm^{-1}. HRMS (ESI) m/z: for $\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 353.2876; found: 353.2874.

7.4. Synthesis of compound 37:

Compound 37 ($0.22 \mathrm{mmol}, 78 \mathrm{mg}, 80 \%$ yield) was synthesized from $36(0.28 \mathrm{mmol}, 100 \mathrm{mg})$ according to GPX. $[\alpha]_{D}^{25}=-106.0(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.00(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}$,
$J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=11.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.04(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{t}, J=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}$, $3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~s}, 9 \mathrm{H}),-0.00(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathbf{C N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 201.1, $151.4,138.4,128.2,121.5,73.1,55.2,41.4,39.9,37.5,30.3,28.9,25.7,22.8,17.9,16.4,6.0,-4.1,-4.3$. IR: 2955, 2928, 2855, 1699, 1629, 1463, 1253, 1083, 1073, 910, 836, 773, 674 cm^{-1}. HRMS (ESI) m/z: for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 351.2719; found: 351.2723.

7.5: Synthesis of (-)-2,9-humuladien-6-ol-8-one (3a):

$0.1 \mathrm{~N} \mathrm{HCl}, \mathrm{THF}$, $\xrightarrow{24 \mathrm{~h}, \mathrm{rt}, 90 \%}$

(-)-2,9-Humuladien-6-ol-8-one (3a)
To the solution of compound $\mathbf{3 7}(78 \mathrm{mg}, 0.22 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $0.1 \mathrm{~N} \mathrm{HCl}(2.5$ mL) and the reaction mixture was stirred at room temperature for 24 h , then water was added and the mixture was extracted with EtOAc and the combined organic extracts were dried over anhydrous MgSO_{4} and concentrated. The crude product was purified by flash column chromatography to afford (-)-2,9-Humuladien-6-ol-8-one (3a) ($0.2 \mathrm{mmol}, 47 \mathrm{mg}, 90 \%$ yield). $[\alpha]_{D}^{25}=-97.8(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.15(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ $(\mathrm{m}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{dd}, J=12.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{t}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.86(\mathrm{dd}, J=13.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$, $1.03(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.0,152.0,137.8,128.1,122.2,73.0,54.3$, 41.3, 40.0, 37.7, 30.7, 28.9, 23.0, 16.4, 6.1. IR: 3480, 2965, 2936, 2872, 2856, 1669, 1619, 1453, 1387, 1302, 1083, 1049, 1007, 999, $988 \mathrm{~cm}^{-1}$. HRMS (ESI) \mathbf{m} / \mathbf{z} :for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 237.1855;found: 237.1853.

NMR comparison data of natural and synthetic (-)-2,9-Humuladien-6-ol-8-one (3a)

(-)-2,9-Humuladien-6-ol-8-one (3a)

Position	Reported ${ }^{1} \mathrm{H} \delta$ $(\mathrm{ppm}) ; J(\mathrm{~Hz})$	Observed ${ }^{1} \mathrm{H} \delta$ $(\mathrm{ppm}) ; J(\mathrm{~Hz})$	$\Delta \delta(\mathrm{ppm})$	Reported ${ }^{13} \mathrm{C} \delta(\mathrm{ppm})$	Observed ${ }^{13} \mathrm{C} \delta(\mathrm{ppm})$	$\Delta \delta(\mathrm{ppm})$
1 a	$1.86, \mathrm{dd}(3.5,13.0)$	$1.86, \mathrm{dd}(3.5,13.0)$	0.00	41.3	41.3	0.0
1 b	$2.21, \mathrm{t}(12.0)$	$2.21, \mathrm{t}(12.0)$	0.00			
2	$5.08, \mathrm{~d}(3.5)$	$5.08, \mathrm{dd}(3.5,11.0)$	0.00	122.1	122.2	0.1
3				137.8	137.8	0.0
4 a	$1.95, \mathrm{brt}(12.0)$	$1.95, \mathrm{t}(12.0)$	0.00	37.7	37.7	0.0
4 b	$2.07, \mathrm{dd}(3.5,12.5)$	$2.07, \mathrm{dd}(3.5,12.5)$	0.00			
5 a	$1.11, \mathrm{~m}$	$1.11, \mathrm{~m}$	0.00	30.6	30.7	0.1
5 b	$1.30, \mathrm{~m}$	$1.30, \mathrm{~m}$	0.00			
6	$4.22, \mathrm{~m}$	$4.22, \mathrm{~m}$	0.00	73.0	73.0	0.0
7	$2.91, \mathrm{~m}$	$2.90, \mathrm{~m}$	0.01	54.3	54.3	0.0
8				201.5	201.0	0.5
9	$6.10, \mathrm{~d}(16.0)$	$6.10, \mathrm{~d}(16.0)$	0.00	128.1	128.1	0.0
10	$6.15, \mathrm{~d}(16.0)$	$6.15, \mathrm{~d}(16.0)$	0.00	152.0	152.0	0.0
11				40.0	40.0	0.0
12	$1.37, \mathrm{~s}$	$1.37, \mathrm{~s}$	0.00	16.4	16.4	0.0
13	$1.03, \mathrm{~s}$	$1.03, \mathrm{~d}(6.5)$	0.00	6.1	6.1	0.0
14	$1.12, \mathrm{~s}$	$1.12, \mathrm{~s}$	0.00	23.0	23.0	0.0
15	$1.16, \mathrm{~s}$	$1.16, \mathrm{~s}$	0.00	28.9	28.9	0.0

Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of (-)-2,9-Humuladien-6-ol-8-one (3a)

Comparison of ${ }^{13} \mathrm{C}$ NMR spectra of (-)-2,9-Humuladien-6-ol-8-one (3a):

Synthetic sample $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

7.6: Synthesis of compound 38:

(-)-2,9-Humuladien-6-ol-8-one (3a)

To a solution of $\mathbf{3 a}(47 \mathrm{mg}, 0.2 \mathrm{mmol})$ in 2 mL of anhydrous diethyl ether were introduced molecular sieves $4 \AA, \mathrm{Ag}_{2} \mathrm{O}(220 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{MeI}(0.16 \mathrm{~mL}, 2.6 \mathrm{mmol})$. The resulting reaction mixture was stirred for 24 h at room temperature and filtered. The solvent was evaporated and the crude product was purified by column chromatography to afford $\mathbf{3 8}$ as a colorless liquid ($0.17 \mathrm{mmol}, 43 \mathrm{mg}, 85 \%$ yield). $[\alpha]_{D}^{25}=-56.5(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.18(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=16.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=11.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.09-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{t}, J$ $=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H})$, $1.14(\mathrm{~s}, 3 \mathrm{H}), 1.06-1.00(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.2$, 151.6, 138.2, 128.0, 121.9, 82.3, 56.9, 49.3, 41.3, 40.0, 38.5, 28.9, 28.2, 22.9, 16.2, 6.12. IR: 2957, 2933, $2873,1694,1627,1454,1385,1367,1302,1265,1232,1173,1155,1120,1091,1057,1045,1000 \mathrm{~cm}^{-1}$.
HRMS (ESI) \mathbf{m} / \mathbf{z} : for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 251.2011; found: 251.2008 .

7.7: Synthesis of (-)-alashanoid C (4b):

(-)Alashanoid C (4b)
To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of $\mathbf{3 8}(43 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added m-CPBA $(77 \%, 36 \mathrm{mg}, 0.21 \mathrm{mmol})$. After being stirred at $0^{\circ} \mathrm{C}$ for 1 h , the mixture was quenched with 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, dried and concentrated under reduced pressure. The residue was purified by column chromatography to furnish the title compound ($0.15 \mathrm{mmol}, 40 \mathrm{mg}, 90 \%$ yield). $[\alpha]_{D}^{25}=-140.2$ (c $=0.1$, $\mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.29(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{dd}, J=8.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~m}$, $1 \mathrm{H}), 2.71(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dd}, J=14.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H})$, $1.38(\mathrm{dd}, J=14.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, 3H), 0.96 (overlap, 1 H). ${ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.3,150.8,128.0,83.6,61.9,60.8,57.2$, $48.2,40.5,37.4,36.4,29.7,25.8,23.5,16.8,6.0$. IR: 2963, 2940, 2878, 1693, 1631, 1455, 1388, 1372, 1303, 1269, 1232, 1094, 1060, 1037, 1024, 1001, 983, 967, 913, 894, $677 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 267.1960; found: 267.1962.

NMR comparison data of natural and synthetic (-)-alashanoid C (4b):

(-)Alashanoid C (4b)

Position	Reported ${ }^{1} \mathrm{H} \quad \delta$ $(\mathrm{ppm}) ; J(\mathrm{~Hz})$	Observed ${ }^{\text { }} \mathrm{H} \quad \delta$ $(\mathrm{ppm}) ; J(\mathrm{~Hz})$	$\Delta \delta$ (ppm)	Reported ${ }^{13} \mathrm{C}$ $(\mathrm{ppm})$$\quad \delta$		$\Delta \delta(\mathrm{ppm})$
1a	$1.92, \mathrm{~d}(14.0)$	1.92,d(14.0)	0.00	40.5	40.5	0.0
1b	$1.38, \mathrm{dd}(14.0,11.5)$	$1.38, \mathrm{dd}(14.0,11.5)$	0.00			
2	2.71,d(11.0)	2.71,d(11.0)	0.00	60.7	60.8	0.1
3				61.9	61.9	0.0
4a	1.06,m	1.06,m	0.00	37.4	37.4	0.0
4b	2.14,dd(14.0,8.5)	$2.14, \mathrm{dd}(14.0,8.5)$	0.00			
5a	0.96 ,overlap	0.96 ,overlap	0.00	25.8	25.8	0.0
5b	1.46,m	$1.46, \mathrm{~m}$	0.00			
6	$3.59, \mathrm{dd}(8.5,3.5)$	$3.59, \mathrm{dd}(8.5,3.5)$	0.00	83.6	83.6	0.0
7	3.10 , m	3.10 , m	0.00	48.1	48.2	0.1
8				202.3	202.3	0.0
9	6.29,s	6.29,s	0.00	128.0	128.0	0.0
10	$6.29, \mathrm{~s}$	$6.29, \mathrm{~s}$	0.00	150.8	150.8	0.0
11				36.4	36.4	0.0
12	1.10,s	1.10,s	0.00	16.8	16.8	0.0
13	0.97,d(6.5)	0.97,d(6.5)	0.00	6.0	6.0	0.0
14	$1.28, \mathrm{~s}$	1.28,s	0.00	23.5	23.5	0.0
15	1.16,s	1.16,s	0.00	29.7	29.7	0.0
16	3.38,s	3.38,s	0.00	57.2	57.2	0.0

Comparison of ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectra of (-)-alashanoid C (4b)

Comparison of ${ }^{13} \mathrm{C}$ NMR spectra of (-)-alashanoid C (4b)

Natural sample $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Synthetic sample $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

8: Synthesis of (+)-alashanoid E:

Scheme S6: Synthesis of (+)-alashanoid E(6a).

8.1. Synthesis of Auxiliary 39:

To a solution of 3-((tert-butyldiphenylsilyl)oxy)propanoic acid ($2.5 \mathrm{~g}, 7.6 \mathrm{mmol}$) dissolved in anhydrous THF (45 mL) under N_{2} atmosphere at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(6.1 \mathrm{~mL}, 43.38 \mathrm{mmol})$. The reaction was cooled to $0{ }^{\circ} \mathrm{C}$, and pivaloyl chloride ($1.4 \mathrm{~mL}, 11.42 \mathrm{mmol}$) was added dropwise. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . Then, $\mathrm{LiCl}(1.7 \mathrm{~g}, 38.82 \mathrm{mmol})$ and (R)-4-benzyl-2-oxazolidinone ($2.1 \mathrm{~g}, 11.46 \mathrm{mmol}$) were added, and the reaction was stirred at the same temperature for 4 h . The reaction was then, quenched with saturated aqueous NaHCO_{3}, and further diluted with $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$. The reaction was then extracted with EtOAc $(4 \times 10 \mathrm{~mL})$. The organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude compound was purified by column chromatography on silica gel to give compound $\mathbf{3 9}$ as 81% yield $(3 \mathrm{~g}, 6.2 \mathrm{mmol}) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.36$ $-7.22(\mathrm{~m}, 7 \mathrm{H}), 4.72-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.33-3.22(\mathrm{~m}, 3 \mathrm{H})$, 2.82-2.78 (m, 1H), $1.07(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,153.4,135.6,135.5,135.3$,
133.5, 129.6, 129.4, 128.9, 127.7, 127.3, 66.1, 59.5, 55.0, 38.5, 37.9, 26.8, 19.2. IR: 2956, 2919, 2851, 1457, 1247, $1018 \mathrm{~cm}^{-1}$. HRMS (ESI) \mathbf{m} / \mathbf{z} : for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 488.2257; found: 488.2253.

8.2. Synthesis of compound 41a:

Compound 41a ($0.5 \mathrm{mmol}, 332 \mathrm{mg}, 70 \%$ over 2 steps) was synthesized from 19 ($0.82 \mathrm{mmol}, 265 \mathrm{mg}$) by employing Evans syn aldol protocol (GPVB) then followed by auxiliary removal according to GPXIII method. $[\alpha]_{D}^{25}=+10.2(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.53(\mathrm{~s}, 4 \mathrm{H}), 7.34-7.27(\mathrm{~m}$, $6 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 4.14-4.03$ $(\mathrm{m}, 2 \mathrm{H}), 3.91-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=10.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=13.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $2.98(\mathrm{~s}, 2 \mathrm{H}), 2.62(\mathrm{dd}, J=11.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 1.51-1.39(\mathrm{~m}, 5 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.77(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}(125 \mathrm{MHz}$, CDCl_{3}) $\delta 173.6,158.9,136.1,135.5,135.5,133.1,133.1,131.2,129.7,128.8,127.7,127.7,121.4,113.6$, $78.8,72.8,69.7,63.0,60.6,55.2,53.2,37.1,36.1,35.7,33.7,26.7,24.5,24.5,19.2,16.0,14.2$. IR: 3073 , 2957, 2932, 2858, 1731, 1612, 1514, 1429, 1247, 1179, 1111, 1038, 823, 741, 704, 615, $504 \mathrm{~cm}^{-1}$. HRMS (ESI) \mathbf{m} / \mathbf{z} : for $\mathrm{C}_{40} \mathrm{H}_{57} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 661.3924; found: 661.3919.

8.3. Synthesis of compound 42a:

Compound 42a ($0.47 \mathrm{mmol}, 330 \mathrm{mg}, 95 \%$ yield) was synthesized from 41a $(0.5 \mathrm{mmol}, 332 \mathrm{mg})$ by method as depicted above (GPXIV). $[\alpha]_{D}^{25}=+4.0(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.55$ (m, 4H), $7.32-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.87-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{dd}, J=10.0,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.37-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 2 \mathrm{H}), 2.77-2.73(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.47(\mathrm{~m}$, $1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.75(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR\{$\left\{{ }^{1} \mathbf{H}\right\}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.8,158.9,136.1,136.0,135.5,133.4,133.3,131.2,129.7,129.6,128.8,127.6$, $121.2,113.6,79.1,78.8,72.8,61.9,60.3,57.8,55.2,52.3,37.1,35.7,35.1,29.9,26.9,26.7,24.5,24.4$, 19.1, 16.0, 14.3. IR: $3071,2955,2928,2856,1732,1612,1513,1464,1428,1247,1178,1091,1037$, 822, 740, 702, 615, $504 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: for $\mathrm{C}_{41} \mathrm{H}_{62} \mathrm{NO}_{6} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, calculated: 692.4346; found: 692.4343.

8.4. Synthesis of compound 43a:

Compound 43a ($0.4 \mathrm{mmol}, 226 \mathrm{mg}, 85 \%$ yield) was synthesized from 42a $(0.47 \mathrm{mmol}, 330 \mathrm{mg})$ by general method as described earlier (GPVIII). $[\alpha]_{D}^{25}=+9.5(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56$ (d, $J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 6 \mathrm{H}), 5.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{t}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=10.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=10.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 5 \mathrm{H}), 2.76$ (dd, $J=12.8$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.75(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.8,136.5,135.5,133.4$, 133.3, 129.7, 129.6, 127.6, 120.9, 79.1, 71.8, 61.8, 60.4, 57.8, 52.2, 36.8, 36.2, 35.1, 29.8, 26.7, 23.8, 19.1, 16.0, 14.2. IR:3750,2916,2851,1456cm ${ }^{-1}$. HRMS (ESI) m/z: for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 555.3506; found: 555.3501.

8.5. Synthesis of compound 45a:

Compound (E)-45a ($0.3 \mathrm{mmol}, 200 \mathrm{mg}, 72 \%$ yield over 2 steps) was synthesized from $43 \mathrm{a}(0.4 \mathrm{mmol}$, 226 mg) by general method as described earlier (GPI and GPXI). $[\alpha]_{D}^{25}=+11.0(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 6 \mathrm{H}), 6.41(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J$ $=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=$ $9.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=8.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.76(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.73(\mathrm{~m}, 4 \mathrm{H})$, $1.57-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7,155.6,137.0,136.0,135.5,133.4,133.4,129.7,129.6$, $127.6,127.5,127.4,120.4,79.1,72.3,61.8,60.3,57.8,52.2,41.6,40.2,35.0,30.0,26.9,26.7,26.1,26.0$, 19.1, 16.0, 14.3. IR: 3071, 2958, 2932, 2859, 1732, 1428, 1181, 1106, 953, 822, 740, 702, 614, $504 \mathrm{~cm}^{-1}$. HRMS(ESI)m/z: for $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{IO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 677.2523; found: 677.2520.

8.6. Synthesis of compound 46a:

Compound 46a ($0.26 \mathrm{mmol}, 160 \mathrm{mg}, 90 \%$ yield) was synthesized from $45 \mathrm{a}(0.3 \mathrm{mmol}, 200 \mathrm{mg})$ by general method as described earlier (GPXIV). $[\alpha]_{D}^{25}=+15.3(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.52(\mathrm{t}, J=56.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 6 \mathrm{H}), 6.42(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=11.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.69(\mathrm{~m}, 3 \mathrm{H}), 3.33(\mathrm{dd}, J=11.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24$ (s, 3H), 1.90 (dd, $J=15.5,7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.83-1.78$ (m, 1H), $1.60-1.49$ (m, 2H), 1.47(s, 3H), 0.99 (s, 9H), $0.89(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.6,137.1,135.6,133.3,129.7,129.7,127.7,120.4$, 81.2, 72.3, 63.8, 62.8, 57.9, 45.5, 41.6, 40.2, 35.4, 29.8, 26.9, 26.1, 26.0, 19.2, 16.1. IR:3073, 2958, 2926,

2855, 1733, 1464, 1428, 1113, 1084, 953, 825, 740, 702, 613, $505 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{IO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 635.2417; found: 677.2402.

8.7. Synthesis of compound 47a:

Compound 47a ($0.033 \mathrm{mmol}, 17 \mathrm{mg}, 50 \%$ yield over 3 steps) was synthesized from $46 \mathrm{a}(0.26 \mathrm{mmol}$, 160 mg) general method as described earlier (GPX and GPXII). $[\alpha]_{D}^{25}=+27.0(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 6 \mathrm{H}), 6.27(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=11.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=10.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-$ $3.61(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{t}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{dd}, J=12.7,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.91(\mathrm{dd}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{t}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 1 \mathrm{H})$, $1.21(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 198.8, 152.6, 138.0, 135.7, $135.6,134.1,133.8,129.4,128.0,127.5,127.5,122.0,81.2,57.6,57.3,57.1,41.3,40.0,38.5,28.7,28.6$, 26.8, 23.1, 19.2, 16.3. IR: 2959, 2918, 2850, 2020, 1733, 1464, $506 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 505.3138; found: 505.3138.

8.8. Synthesis of (+) alashanoid E (6a):

(+)Alashanoid E(6a)
Alashanoid E ($0.03 \mathrm{mmol}, 8 \mathrm{mg}, 90 \%$ yield) was synthesized from compound $47 \mathrm{a}(0.033 \mathrm{mmol}, 17 \mathrm{mg})$ through a general method as described earlier (GPXVI). $[\alpha]_{D}^{25}=+19.0(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.23(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=11.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$ (dd, $J=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=13.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=5.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H})$, $3.26(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{t}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.86$ (overlap, 2H), 1.48 (m, 1H), $1.37(\mathrm{~s}, 3 \mathrm{H}), 1.21$ (overlap, 1 H), $1.18(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.0$, $152.9,138.1,127.8,122.2,82.3,58.1,57.6,56.6,41.3,40.3,39.0,29.0,23.1,16.4$. IR: 3464, 2955, 2929, 2855, 1690, 1658, 1625, 1456, 1386, 1367, 1303, 1215, 1105, 1081, 1033, 1000 cm^{-1}. HRMS (ESI) m/z: for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 267.1960; found: 267.1961.

NMR comparison data of natural and synthetic (+)-alashanoid E (6a):

(+)Alashanoid E(6a)

Position	Reported ${ }^{1} \mathrm{H}$ $(\mathrm{ppm}) ; J(\mathrm{~Hz})$	Observed ${ }^{1} \mathrm{H} \quad \delta$ $(\mathrm{ppm}) ; J(\mathrm{~Hz})$	$\Delta \delta(\mathrm{ppm})$	Reported ${ }^{13} \mathrm{C} \delta(\mathrm{ppm})$	Observed ${ }^{13} \mathrm{C} \delta(\mathrm{ppm})$	$\Delta \delta(\mathrm{ppm})$
1a	$2.22, \mathrm{t}(14.0)$	$2.22, \mathrm{t}(14.0)$	0.00	41.3	41.3	0.0
1b	$1.86($ overlap $)$	$1.86($ overlap $)$	0.00			
2	$5.07, \mathrm{dd}(4.0,11.5)$	$5.08, \mathrm{dd}(4.0,11.5)$	0.01	122.1	122.2	0.1
3				138.1	138.1	0.0
4 a	$2.12, \mathrm{dd}(7.0,14.0)$	$2.12, \mathrm{dd}(7.0,14.0)$	0.00	39.0	39.0	0.0
4 b	$1.86($ overlap $)$	$1.86($ overlap $)$	0.00			
5 a	$1.48, \mathrm{~m}$	$1.48, \mathrm{~m}$	0.00	29.0	29.0	0.0
5 b	1.21 (overlap)	1.21 (overlap)	0.00			
6	$3.72, \mathrm{dd}(4.0,5.5)$	$3.72, \mathrm{dd}(4.0,5.5)$	0.00	82.3	82.3	0.0
7	$3.26, \mathrm{~m}$	$3.26, \mathrm{~m}$	0.00	57.6	57.6	0.0
8				201.1	201.0	0.1
9	$6.04, \mathrm{~d}(16.0)$	$6.05, \mathrm{~d}(16.0)$	0.01	127.8	127.8	0.0
10	$6.23, \mathrm{~d}(16.0)$	$6.23, \mathrm{~d}(16.0)$	0.00	152.9	152.9	0.0
11				40.3	40.3	0.0
12	$1.37, \mathrm{~s}$	$1.37, \mathrm{~s}$	0.00	16.4	16.4	0.0
13 a	$3.77, \mathrm{dd}(4.5,13.5)$	$3.77, \mathrm{dd}(4.5,13.5)$	0.00	58.2	58.1	0.1
13 b	$3.98, \mathrm{dd}(8.0,12.0)$	$3.98, \mathrm{dd}(8.0,12.0)$	0.00			
14	$1.14, \mathrm{~s}$	$1.14, \mathrm{~s}$	0.00	23.1	23.1	0.0
15	$1.18, \mathrm{~s}$	$1.18, \mathrm{~s}$	0.00	29.0	29.0	0.0
16	$3.45, \mathrm{~s}$	$3.45, \mathrm{~s}$	0.00	56.5	56.6	0.1

Comparison of ${ }^{1} \mathbf{H}$ NMR spectra of (+)-alashanoid E (6a):

Comparison of ${ }^{13} \mathrm{C}$ NMR spectra of (+)-alashanoid E (6a):

Natural sample $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

9: Synthesis of (+) alashanoid F (7a):

9.1. Synthesis of compound 41b:

Compound 41b ($1.66 \mathrm{mmol}, 1.1 \mathrm{~g}, 56 \%$ yield over 2 steps) was synthesized from ent-39 (2.02 mmol , 985 mg) and aldehyde 19 ($2.63 \mathrm{mmol}, 800 \mathrm{mg}$) by non-Evans anti-aldol protocol as described earlier (GPVA) and then the auxiliary was removed by the method described in GPXIII. $[\alpha]_{D}^{25}=+4.9$ ($\mathrm{c}=0.1$, $\mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-3.97(\mathrm{~m}$, 2H), 3.95-3.91 (m, 1H), 3.77 (s, 3H), 3.06 (s, 2H), $2.69(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.04-$ $1.98(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 173.1, $158.9,136.1,135.6,135.5,133.0,133.0,131.2,129.8$, 128.8, 127.7, 127.7, 121.5, 113.6, 78.8, 72.8, 70.8, 62.6, 60.6, 55.2, 53.2, 37.1, 36.1, 35.7, 33.3, 26.7, 24.5, 24.5, 19.1, 16.0, 14.2. IR: 3043, 2977, 2912, 2828, 1761, 1642, 1524, 1469, 1207, 1129, 1134,

1012, 803, 764, 710, 623, $514 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: for $\mathrm{C}_{40} \mathrm{H}_{57} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 661.3924; found: 661.3927.

9.2. Synthesis of compound 42b:

Compound 42b ($0.15 \mathrm{mmol}, 100 \mathrm{mg}, 90 \%$ yield) was synthesized from 41 b ($0.166 \mathrm{mmol}, 110 \mathrm{mg}$) by employing the general method as described earlier (GPXIV). $[\alpha]_{D}^{25}=+2.0(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.27(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 5.20(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.09-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=$ $9.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{dd}, J=7.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27$ (s, 3H), 3.11 (s, 2H), 2.94-2.90 (m, $1 \mathrm{H}), 2.16-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.59(\mathrm{~m}, 5 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$, $0.90(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7,158.9,136.2,135.6,135.5,133.5,133.5,131.2$, $129.6,129.6,128.8,127.6,127.6,121.2,113.6,78.8,78.8,72.8,62.6,60.3,57.3,55.2,52.4,37.1,35.7$, 35.2, 30.5, 26.7, 24.5, 24.5, 19.2, 16.0, 14.2. IR: 3051, 2946, 2913, 2834, 1745, 1632, 1554, 1443, 1404, 1224, 1139, 1071, 1024, 812, $720,702,645,510 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: for $\mathrm{C}_{41} \mathrm{H}_{62} \mathrm{NO}_{6} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, calculated: 692.4346; found: 692.4341.

9.3. Synthesis of compound 43b:

Compound 43b ($0.127 \mathrm{mmol}, 70.6 \mathrm{mg}, 85 \%$ yield) was synthesized from $\mathbf{4 2 b}(0.15 \mathrm{mmol}, 100 \mathrm{mg})$ by employing the general method as described earlier (GPVIII). $[\alpha]_{D}^{25}=+6.4$ ($\left.\mathrm{c}=0.1, \mathrm{MeOH}\right) .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 6 \mathrm{H}), 5.23(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.08-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=9.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H})$, 2.93-2.88 (m, 1H), 2.17-2.13 (m, 1H), 2.06-1.99 (m, 1H), $1.97(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.56(\mathrm{~d}, J=$ $25.1 \mathrm{~Hz}, 5 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.7,166.4,141.1,136.6,136.5,135.5,135.5,133.5,133.5,129.6,129.6,127.6,124.4,121.0,120.9$, $78.7,71.8,62.5,60.4,57.3,52.4,36.8,36.2,35.2,34.5,30.4,26.7,23.8,19.2,16.0,14.2$. IR:3710,2986,2851,2810,1495,1416 cm^{-1}. HRMS (ESI) \mathbf{m} / \mathbf{z} : for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 555.3506; found: 555.3503.

9.4. Synthesis of compound 45b:

Compound (E)-45b ($0.089 \mathrm{mmol}, 60.5 \mathrm{mg}, 70 \%$ yield over 2 steps) was synthesized from $\mathbf{4 3 b}$ (0.127 $\mathrm{mmol}, 70.6 \mathrm{mg}$) by employing the general method as described earlier (GPXI). $[\alpha]_{D}^{25}=+8.2$ ($\mathrm{c}=0.1$, $\mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 6 \mathrm{H}), 6.42(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.82(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.99-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.81$ (dd, $J=9.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=7.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.84-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.01(\mathrm{~m}$, $1 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 5 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7,155.7,137.1,135.6,135.5,133.5,133.5,129.6,129.6,127.6$, $120.4,78.7,72.3,62.6,60.4,57.3,52.4,41.6,40.2,35.1,30.4,26.7,26.1,19.2,16.1,14.3$. IR: 3042, 2908, 2902, 2819, 1752, 1458, 1111, 1100, 993, 828, 743, 710, 614, $502 \mathrm{~cm}^{-1}$. HRMS(ESI)m/z: for $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{IO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 677.2523; found: 677.2525.

9.5. Synthesis of compound 46b:

Compound 46b ($0.078 \mathrm{mmol}, 50 \mathrm{mg}, 88 \%$ yield) was synthesized from $\mathbf{4 5 b}(0.089 \mathrm{mmol}, 60.5 \mathrm{mg})$ by employing the general method as described earlier (GPXV). $[\alpha]_{D}^{25}=+13.1$ ($\left.\mathrm{c}=0.1, \mathrm{MeOH}\right) .{ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 6 \mathrm{H}), 6.42(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.65(\mathrm{~m}, 4 \mathrm{H}), 3.30-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 2 \mathrm{H})$, 1.93-1.88 (m, 3H), $1.53-1.40(\mathrm{~m}, 4 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $155.6,137.1,135.6,135.5,133.2,133.1,129.8,129.8,127.7,127.7,120.4,80.6,72.3,63.4,63.4,57.5$, $44.5,41.6,40.2,35.7,28.8,26.8,26.1,19.1,16.1$. IR:3045, 2978, 2906, 2865, 1710, 1442, 1408, 1153, 1014, $945,835,720,702,619,507 \mathrm{~cm}^{-1}$. HRMS (ESI) \mathbf{m} / \mathbf{z} : for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{IO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 635.2417; found: 677.2405.

9.6. Synthesis of compound 47b:

Compound $\mathbf{4 7 b}$ ($0.033 \mathrm{mmol}, 16 \mathrm{mg}, 42 \%$ yield over 3 steps) was synthesized from $\mathbf{4 6 b}(0.078 \mathrm{mmol}$, 50 mg) by employing the general method as described earlier (GPX and GPXII). $[\alpha]_{D}^{25}=+25.9$ ($\mathrm{c}=0.1$, $\mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 6 \mathrm{H}), 6.15(\mathrm{~d}, J=16.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.05$ (d, $J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ (dd, $J=11.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.84(\mathrm{~m}, 1 \mathrm{H})$, 3.36 (dd, $J=7.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.67-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=20.6,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{t}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}$, 9H). ${ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 202.1, 153.4, 137.4, 135.7, 135.6, 133.4, 133.4, 129.6, 129.6, 127.6, 127.6, 127.0, 122.8, 80.1, 61.6, 61.5, 56.9, 41.1, 39.6, 31.7, 29.1, 26.8, 23.5, 19.2, 16.1. IR: 2979, 2928, 2832, 2065, 1717, 1434, $508 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 505.3138; found: 505.3139.

9.7. Synthesis of (+)-alashanoid F (7a):

Alashanoid F ($0.0175 \mathrm{mmol}, 5 \mathrm{mg}, 85 \%$ yield) was synthesized from compound $\mathbf{4 7 b}$ (0.0225 mmol , 12.5 mg) by employing the general method as described earlier (GPXVI). $[\alpha]_{D}^{25}=+18.4(\mathrm{c}=0.1, \mathrm{MeOH})$.

${ }^{1}$ H NMR

($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.25(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=11.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.02(\mathrm{dd}, J=11.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=12.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{dd}, J=$ $12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 - 2.21 (overlap, 2H), $2.00(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{dd}, J=13.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.72$ $(\mathrm{m}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.2,155.5,137.0$, $126.3,123.7,82.4,60.8,60.4,57.5,41.6,39.8,39.2,32.5,28.9,23.8,16.5$. IR: 3437, 2957, 2932, 2872, 2855, 1686, 1621, 1461, 1386,1366,1216, 1175, 1105, 1083, 1059, 1001, $754 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 267.1960; found: 267.1964.

NMR comparison data of natural and synthetic (+)-alashanoid F (7a):

(+)Alashanoid F(7a)

Position	Reported ${ }^{1} \mathrm{H}$ $(\mathrm{ppm}) ; ~$ $(\mathrm{~Hz})$	Observed ${ }^{\mathrm{l} H} \quad \delta$ $(\mathrm{ppm}) ; J(\mathrm{~Hz})$	$\Delta \delta(\mathrm{ppm})$	Reported ${ }^{13} \mathrm{C} \delta(\mathrm{ppm})$	Observed ${ }^{13} \mathrm{C} \delta(\mathrm{ppm})$	$\Delta \delta(\mathrm{ppm})$
1a	$2.33($ overlap $)$	2.33, overlap	0.00	41.6	41.6	0.0
1 b	$1.92, \mathrm{dd}(4.5,13.5)$	$1.92, \mathrm{dd}(4.5,13.5)$	0.00			
2	$5.17, \mathrm{dd}(4.5,11.5)$	$5.17, \mathrm{dd}(4.5,11.5)$	0.00	123.6	123.7	0.1
3				137.0	137.0	0.0
4 a	$2.23($ overlap $)$	2.23, overlap	0.00	39.8	39.8	0.0
4 b	$2.00, \mathrm{~m}$	$2.00, \mathrm{~m}$	0.00			
5	$1.72-1.75, \mathrm{~m}$	$1.72-1.75, \mathrm{~m}$	0.00	32.5	32.5	0.0
6	$3.54, \mathrm{~m}$	$3.54, \mathrm{~m}$	0.00	82.4	82.4	0.0
7	$2.82, \mathrm{q}(6.0)$	$2.82, \mathrm{dd}(6.0,12.0)$	0.00	60.8	60.8	0.0
8				203.2	203.2	0.0
9	$5.92, \mathrm{~d}(16.5)$	$5.92, \mathrm{~d}(16.5)$	0.00	126.3	126.3	0.0
10	$6.25, \mathrm{~d}(16.5)$	$6.25, \mathrm{~d}(16.5)$	0.00	155.6	155.5	0.1
11				39.2	39.2	0.0
12	$1.56, \mathrm{~s}$	$1.56, \mathrm{~s}$	0.00	16.5	16.5	0.0
13 a	$4.03, \mathrm{dd}(7.0,11.5)$	$4.02, \mathrm{dd}(7.0,11.5)$	0.01	60.5	60.4	0.1
13 b	$3.88, \mathrm{dd}(5.5,12.0)$	$3.88, \mathrm{dd}(5.5,12.0)$	0.00			
14	$1.17, \mathrm{~s}$	$1.17, \mathrm{~s}$	0.00	23.8	23.8	0.0
15	$1.16, \mathrm{~s}$	$1.16, \mathrm{~s}$	0.00	28.9	28.9	0.0
16	$3.30, \mathrm{~s}$	$3.30, \mathrm{~s}$	0.00	57.5	57.5	0.0

Comparison of ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectra of (+)-alashanoid $F(7 a)$:

Comparison of ${ }^{13} \mathrm{C}$ NMR spectra of (+)-alashanoid F (7a):

Natural sample $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

10: Synthesis of alashanoid B:

Scheme S8: Synthesis of alashanoid B

10.1. Synthesis of compound 49:

To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of the alcohol $\mathbf{1 8}(3.23 \mathrm{mmol}, 1 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added triethylamine ($3.7 \mathrm{~mL}, 26.1 \mathrm{mmol}$). After the solution was stirred an additional 5 min at $-78{ }^{\circ} \mathrm{C}$, triflic anhydride ($2.2 \mathrm{~mL}, 13 \mathrm{mmol}$) was added dropwise over a 5 min period, after which the reaction mixture was slowly warmed to $-50^{\circ} \mathrm{C}$ for an additional 30 min period. The reaction solution was then quenched with NaHCO_{3}, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to provide $1.3 \mathrm{~g}(100 \%)$ of crude 48 , which was immediately used further as is. To a stirred solution of NaHMDS (10.5 mL 1 M in THF, $10.5 \mathrm{mmol}, 3.3 \mathrm{eq}$) in THF (20 mL) was added ($4 R$)-4-benzyl-3-propionyl-1,3-oxazolidin-2-one ($\mathbf{2 0}, 2.25 \mathrm{~g}, 9.6 \mathrm{mmol}, 3.0 \mathrm{eq}$) in THF $(30 \mathrm{~mL})$ at $-80^{\circ} \mathrm{C}$. After 1 h , triflate $\mathbf{4 8}(1.3 \mathrm{~g}$ crude, about $3 \mathrm{mmol}, 1 \mathrm{eq})$ in THF $(10 \mathrm{~mL})$ was added and the reaction mixture was allowed to warm to $-50^{\circ} \mathrm{C}$. After stirring the reaction mixture at this temperature for 4 h, the mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(50 \mathrm{~mL})$ and allowed to warm to room temperature. The layers were separated and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography to furnish oxazolidinone 49 ($2.34 \mathrm{mmol}, 1.2 \mathrm{~g}, 72 \%$ over two steps) as a colorless oil. $[\alpha]_{D}^{25}=-68.0(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18-7.04(\mathrm{~m}, 7 \mathrm{H}), 6.71$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 4.04-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}$,
$3 \mathrm{H}), 3.58-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 2 \mathrm{H}), 2.63-2.59(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.58-$ $1.51(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.2,158.9,153.0,136.2,135.3,131.2,129.4,128.9,128.8,127.3,121.2,113.6,78.8$, $72.8,66.0,55.3,55.2,3.9,37.9,37.5,37.1,35.7,33.0,25.5,24.5,24.5,17.3,15.9$. IR: 2954, 2926, 2854, 1778, 1698, 1612, 1512, 1456, 1384, 1350, 1244, 1210, 1094, 1034, 970, 822, 750, 702, 506 cm^{-1}. HRMS (ESI) \mathbf{m} / \mathbf{z} : for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 522.3219; found: 522.3216.

10.2. Synthesis of compound 50 :

The title compound $50(2.2 \mathrm{mmol}, 775 \mathrm{mg}, 95 \%$ yield) was synthesized from $49(2.34 \mathrm{mmol}, 1.2 \mathrm{~g})$ by employing the general method as described earlier (GPVIB). $[\alpha]_{D}^{25}=+17.4(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}$, $2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 1.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.61-$ $1.50(\mathrm{~m}, 5 \mathrm{H}), 1.42-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.04-0.97(\mathrm{~m}, 1 \mathrm{H}), 0.84(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ $\mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9,136.6,131.2,128.8,120.9,113.6,78.8,72.9,68.3,55.2,40.2$, $37.1,35.7,35.6,32.7,25.3,24.5,16.6,15.9$. IR: $3388,2954,2922,2852,1614,1514,1464,1378,1362$, 1302, 1248, 1172, 1094, 1038, 822 cm^{-1}. HRMS(ESI) \mathbf{m} / \mathbf{z} : for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 349.2743; found: 349.2745 .

10.3. Synthesis of compound 51:

Compound 51 ($1.66 \mathrm{mmol}, 770 \mathrm{mg}, 74 \%$ yield) was synthesized from 50 ($2.2 \mathrm{mmol}, 775 \mathrm{mg}$) by employing the general method as described earlier (GPVII). $[\alpha]_{D}^{25}=+7.7(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 2 \mathrm{H}), 1.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.52(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.45-1.27(\mathrm{~m}, 3 \mathrm{H}), 1.08-0.97(\mathrm{~m}, 1 \mathrm{H}), 0.86-0.83(\mathrm{~m}, 18 \mathrm{H}),-0.00(\mathrm{~s}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9,136.8,131.2,128.8,120.8,113.6,78.8,72.9,68.4,55.2,40.3,37.1,35.7$, $35.6,32.9,25.9,25.4,24.5,18.3,16.7,15.9,-5.3$. IR: 2952,2926,2854,1612,1514,1462,1360,1248,1172, 1096,1040, $836,774 \mathrm{~cm}^{-1}$. HRMS (ESI) \mathbf{m} / \mathbf{z} : for $\mathrm{C}_{28} \mathrm{H}_{51} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 463.3607 ; found: 463.3603 .

10.4 Synthesis of compound 52 :

Compound 52 ($1.41 \mathrm{mmol}, 480 \mathrm{mg}, 85 \%$ yield) was synthesized from 51 ($1.66 \mathrm{mmol}, 770 \mathrm{mg}$) by employing the general method as described earlier (GPVIII). $[\alpha]_{D}^{25}=+19.0(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.17(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 2 \mathrm{H}), 1.97-$ $1.91(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.04-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.86-0.83(\mathrm{~m}, 18 \mathrm{H}),-0.00(\mathrm{~s}$,
$6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.3,120.4,72.0,68.4,40.3,36.9,36.3,35.6,32.8,25.9,25.4$, $23.8,18.3,16.7,16.0,-5.3$. IR: $3342,2954,2924,2856,1726,1462,1382,1256,1042,836,776 \mathrm{~cm}^{-1}$. HRMS (ESI) \mathbf{m} / \mathbf{z} : for $\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 343.3032; found: 343.3029 .

10.5. Synthesis of compound 54:

(a) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}$

DCM, $-78^{\circ} \mathrm{C}, 2 \mathrm{~h}, 90 \%$
(b) $\mathrm{CrCl}_{2}, \mathrm{CHI}_{3}, \mathrm{THF}, \mathrm{rt}, 73 \%$

Compound (E)-54 ($0.92 \mathrm{mmol}, 430 \mathrm{mg}, 66 \%$ over 2 steps) was synthesized from $52(1.41 \mathrm{mmol}, 480 \mathrm{mg})$ by employing the general method as described earlier (GP1 and GPXI). $[\alpha]_{D}^{25}=+23.0(\mathrm{c}=0.1, \mathrm{MeOH})$. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.48(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.43-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.31(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.55-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.42-1.27(\mathrm{~m}$, $3 \mathrm{H}), 1.10-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~s}, 6 \mathrm{H}), 0.86-0.83(\mathrm{~m}, 12 \mathrm{H}),-0.00(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 155.8,137.7,119.9,72.2,68.4,41.6,40.3,40.2,35.7,32.8,26.1,26.0,25.9,25.4,18.3,16.7$, 16.0, -5.3. IR: $2958,2920,2850,1462,1034,952 \mathrm{~cm}^{-1}$. HRMS (ESI) $\mathbf{m} / \mathbf{z}:$ for $\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{IKOSi}[\mathrm{M}+\mathrm{K}]^{+}$, calculated: 503.1608; found: 503.1648.

10.6. Synthesis of compound 55:

Compound (E)-55 ($0.78 \mathrm{mmol}, 274 \mathrm{mg}, 85 \%$ yield) was synthesized from $54(0.92 \mathrm{mmol}, 430 \mathrm{mg})$ by employing the general method as described earlier (GPIX). $[\alpha]_{D}^{25}=+39.4(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.41(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-$ $3.40(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.31(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{t}, J=10.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.32$ $(\mathrm{m}, 2 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.04-0.94(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 6 \mathrm{H}), 0.83(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{\mathbf{1 3}}{ }^{\mathbf{3}} \mathbf{C} \mathbf{N M R}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.7,137.5,120.1,72.2,68.3,41.6,40.2,40.1,35.7,32.6,26.1,25.3,16.6$, 16.0.IR: 3352, 2956, 2920, 2850, 1462, 1384, 1032, $952 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: for $\mathrm{C}_{15} \mathrm{H}_{31}$ INO [M + $\left.\mathrm{NH}_{4}\right]^{+}$, calculated: 368.1436 ; found: 368.1450 .

10.7. Synthesis of alashanoid B (2):

Compound 56 ($0.5 \mathrm{mmol}, 115 \mathrm{mg}, 66 \%$ yield over 2 steps) was synthesized from compound $\mathbf{5 5}$ (0.7 $\mathrm{mmol}, 270 \mathrm{mg}$) by employing the general method as described earlier (GPX and GPXII). Next DMP oxidation by previously described method (GPX) on $\mathbf{5 6}$ provided the enone as reduction precursor. To a stirred solution of the enone ($60 \mathrm{mg}, 0.272 \mathrm{mmol}$) in THF (2.0 mL) were added (R)-CBS catalyst (1 M solution in toluene, $1.36 \mathrm{~mL}, 1.36 \mathrm{mmol})$ and $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}(2.0 \mathrm{M}$ solution in THF, $0.68 \mathrm{~mL}, 1.36 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ and stirring was continued for 1 h . The reaction was quenched by addition of $\mathrm{MeOH}(0.5 \mathrm{~mL})$, and the resultant mixture was poured into brine $(10 \mathrm{~mL})$. The whole was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$.

The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel produce alashanoid B(2) as a white solid ($0.244 \mathrm{mmol}, 54 \mathrm{mg}$, 90% yield). $[\alpha]_{D}^{25}=+51.3(\mathrm{c}=0.1, \mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.35(\mathrm{dd}, J=16.0,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.17$ (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ (dd, $J=8.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.99$ (dd, $J=12.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dd}, J=3.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.81$ (overlap, 1 H) , $1.62(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H})$, $1.42(\mathrm{~m}, 1 \mathrm{H}), 1.24,1.20$ (overlap, 2H), $1.10(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 3H). ${ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.4,134.3,131.3,124.9,76.6,42.4,40.9,40.7,37.6,29.1$, 26.5,25.1,23.7,17.7,16.2. IR: 3422, 2929. 2858, 1687, 1516, 1451, 1385, 1364, 1270, 1254, 1215, 1180, $1165,1103,1079,1058,997,971,751,719,697,668 \mathrm{~cm}^{-1}$.

NMR comparison data of natural and synthetic alashanoid B (2)

Alashanoid B (2)

Position	Reported ${ }^{1} \mathrm{H}$ $(\mathrm{ppm}) ; J(\mathrm{~Hz})$	Observed ${ }^{1} \mathrm{H}$ $(\mathrm{ppm}) ; J(\mathrm{~Hz})$	$\Delta \delta(\mathrm{ppm})$	Reported ${ }^{13} \mathrm{C} \delta(\mathrm{ppm})$	Observed ${ }^{13} \mathrm{C} \delta(\mathrm{ppm})$	$\Delta \delta(\mathrm{ppm})$
1a	$1.99, \mathrm{dd}(10.5,12.5)$	$1.99, \mathrm{dd}(10.5,12.5)$	0.00	40.8	40.7	0.1
1b	1.81, overlap	1.81, overlap	0.00			
2	$5.05, \mathrm{dd}(7.0,8.5)$	$5.05, \mathrm{dd}(7.0,8.5)$	0.00	124.9	124.9	0.0
3				134.3	134.3	0.0
4 a	$2.10, \mathrm{~m}$	$2.10, \mathrm{~m}$	0.00	40.9	40.9	0.0
4 b	$1.86, \mathrm{dd}(3.0,12.0)$	$1.86, \mathrm{dd}(3.0,12.0)$	0.00			
5 a	1.20, overlap	1.20, overlap	0.00	23.7	23.7	0.0
5 b	$1.62, \mathrm{~m}$	$1.62, \mathrm{~m}$	0.00			
6 a	$1.04, \mathrm{~m}$	$1.04, \mathrm{~m}$	0.00	26.5	26.5	0.0
6 b	$1.42, \mathrm{~m}$	$1.42, \mathrm{~m}$	0.00			
7	$1.24, \mathrm{overlap}$	1.24, overlap	0.00	42.4	42.4	0.0
8	$4.13, \mathrm{~d}(5.0)$	$4.13, \mathrm{~d}(5.0)$	0.00	76.6	76.6	0.0
9	$5.35, \mathrm{dd}(6.0,16.0)$	$5.35, \mathrm{dd}(6.0,16.0)$	0.00	131.3	131.3	0.0
10	$5.17, \mathrm{~d}(16.5)$	$5.17, \mathrm{~d}(16.5)$	0.00	137.4	137.4	0.0
11				37.6	37.6	0.0
12	$1.50, \mathrm{~s}$	$1.50, \mathrm{~s}$	0.00	16.2	16.2	0.0
13	$0.99, \mathrm{~d}(7.0)$	$0.99, \mathrm{~d}(7.0)$	0.00	17.7	17.7	0.0
14	$1.10, \mathrm{~s}$	$1.10, \mathrm{~s}$	0.00	25.1	25.1	0.0
15	$1.08, \mathrm{~s}$	$1.08, \mathrm{~s}$	0.00	29.2	29.1	0.1

Comparison of ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectra of alashanoid B (2):

Natural sample $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Comparison of ${ }^{13} \mathrm{C}$ NMR spectra of alashanoid B (2):

11. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the synthesized compounds:
${ }^{1} \mathrm{H}$ NMR of compound $9\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $9\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound $9\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $10\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound 11 ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR of compound $11\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound $11\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $12\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
sn / rb / x-493-1h

${ }^{13} \mathrm{C}$ NMR of compound $12\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\mathrm{sn} / \mathrm{rb} / \mathrm{r} \cdot 493 \cdot 13 \mathrm{c}$

DEPT－135 of compound $12\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\mathrm{sn} / \mathrm{rb} / \mathrm{r}-493$－dept135－500mhz

${ }^{1} \mathrm{H}$ NMR of compound $15\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
\qquad ヘベNべベヘベヘ先
 N～～～iniririn

${ }^{13} \mathrm{C}$ NMR of compound $15\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound 15 ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of compound $16\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $16\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound $16\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $17\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $17\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound 17 ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of compound $18\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound $18\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $21\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{13} \mathrm{C}$ NMR of compound $21\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
|

${ }^{1} \mathrm{H}$ NMR of compound $22\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

-	-

$\stackrel{\infty}{\sim} 0_{0}^{\circ}$	-	
mim	\cdots	
\V	1	+ +

${ }^{13} \mathrm{C}$ NMR of compound $22\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{\circ}{\circ}$

	1		1		1		1			1	1	1	1			1	1
180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10

DEPT-135 of compound 22 ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \underset{\sim}{0} \\ & \text { הָ } \end{aligned}$	$\stackrel{\stackrel{\circ}{\mathrm{m}}}{\stackrel{1}{7}}$	$\underset{\sim}{N} \underset{\sim}{\mathcal{N}} \underset{\sim}{\dot{N}}$	-	N	Аㄲำ 		+
\|	1	\|	$1<1$	\|	I	1 1 \|	Y	I

${ }^{1} \mathrm{H}$ NMR of compound $23\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $23\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound 23 ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of compound $24\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $24\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

|

$\mathrm{Pg}=\mathrm{TBS}$

DEPT-135 of compound 24 ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of compound $26\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $26\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\mathrm{Pg}=\mathrm{TBS}
$$

DEPT-135 of compound 26 ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{gathered} \infty \\ \stackrel{\infty}{\infty} \\ \stackrel{\circ}{\mid} \end{gathered}$	$\begin{gathered} \text { Ǹ } \\ \stackrel{\text { d }}{1} \end{gathered}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	

${ }^{1} \mathrm{H}$ NMR of compound $27\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $27\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $28\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $28\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $29\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $29\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound 29 ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

¢ ¢ ¢ ¢ ¢	\bigcirc
Now ${ }_{\sim}^{\infty}$	긱
+	1

$$
\stackrel{\infty}{\infty}
$$

${ }^{1} \mathrm{H}$ NMR of compound $30\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $30\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $31\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $32\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $32\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
 $\stackrel{ल}{\infty}$ $\underbrace{\infty}_{1} \underbrace{\text { Mn }}_{1}$

${ }^{1} \mathrm{H}$ NMR of compound $33\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $33\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound $33\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

$P g=T B S$

${ }^{1} \mathrm{H}$ NMR of compound $34\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $34\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound $34\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $36\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $36\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

DEPT-135 of compound $36\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

160	150	140	130	120	110	100	90		70	60	50	40	30	20	10
								f1 (ppm)					30		10

${ }^{1} \mathrm{H}$ NMR of compound $37\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $37\left(\mathbf{1 2 5} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound $37\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $38\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $38\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\infty}{\square}$	哭	商	馬	\％	$\stackrel{\text { \％}}{\circ}$		耪ずす ¢	
1	1			1				ばく

DEPT－135 of compound $38\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\text { M }}{\substack{\infty \\ \mid}}$
$\stackrel{\infty}{\infty}$

${ }^{1} \mathrm{H}$ NMR of compound $39\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\underbrace{\dot{\circ} \dot{\sigma} \dot{\sigma}}$ $\underbrace{\dot{\gamma} \dot{\gamma} \dot{\sim}}$

${ }^{13} \mathrm{C}$ NMR of compound 39 ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)
I

DEPT-135 of compound 39 ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

mimion oin సi	ت̃1	N゙	낭	¢ ¢ ¢
$\overline{\mathrm{Y}}$				

${ }^{1} \mathrm{H}$ NMR of compound $41 \mathrm{a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

	OO ơ		$\begin{aligned} & \text { d } \\ & \text { d } \\ & \text { N } \end{aligned}$		$\begin{aligned} & \text { b } \\ & \hline \end{aligned}$					$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 1 \\ & \underset{\sim}{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { fob } \\ & \underset{7}{7} \underset{i}{0} \end{aligned}$	$\begin{aligned} & \text { d } \\ & \text { ò } \end{aligned}$		
8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5
		7.0	6.5	6.0	5.5	5.0			3.5	3.0	2.5	2.0	1.5	1.0	0.5

${ }^{13} \mathrm{C}$ NMR of compound $41 \mathrm{a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound 41a ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

$$
\underbrace{\infty \rightarrow \sim}_{\mid=1}
$$

${ }^{1} \mathrm{H}$ NMR of compound $42 \mathrm{a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{13} \mathrm{C}$ NMR of compound $42 \mathrm{a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	T	1	1		1	1	1		1	1	1	1	1	,	1	1	1	1	
190	180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0

DEPT-135 of compound $42 \mathrm{a}\left(\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{1} \mathrm{H}$ NMR of compound $43 \mathrm{a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{13} \mathrm{C}$ NMR of compound $43 \mathrm{a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100
 $f 1(\mathrm{ppm})$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

DEPT-135 of compound 43a ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of compound $45 \mathrm{a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{13} \mathrm{C}$ NMR of compound $45 \mathrm{a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
○

DEPT-135 of compound 45 ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of compound $46 \mathrm{a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{13} \mathrm{C}$ NMR of compound $46 \mathrm{a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

DEPT-135 of compound 46 ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of compound $47 \mathrm{a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{13} \mathrm{C}$ NMR of compound $47 \mathrm{a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound $47 \mathrm{a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $41 \mathrm{~b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{13} \mathrm{C}$ NMR of compound $41 \mathrm{~b}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

∞	$\stackrel{\infty}{\infty}$		
¢	$\stackrel{\infty}{\square}$		
I	I	$\xrightarrow{-m+1}$	

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

DEPT-135 of compound 41b ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

ఱ్ల్లో

ハill

${ }^{1} \mathrm{H}$ NMR of compound $42 \mathrm{~b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 2 b}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\infty}{\infty} \infty$		サォ
¢		
$\vdash 1$	111/1	\11 1 ! !

DEPT-135 of compound 42b ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

$\stackrel{\otimes}{0} \stackrel{\leftrightarrow}{0} \stackrel{\sim}{\omega}$		$\stackrel{\circ}{\circ}$	8 ヘiか숫N	 	
Y	$1 \sim 1$	\|	\downarrow ।	11111	$11 \ll$

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 1 |
| :--- |
| $f 1(\mathrm{ppm})$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 | | |

${ }^{1} \mathrm{H}$ NMR of compound 43b ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR of compound $43 \mathrm{~b}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N	\pm	
E	-	F゙o్jo్లm
$\stackrel{ }{\square}$	I	-15

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,
190	180	170	160	150	140	130	120	110			80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR of compound $45 \mathrm{~b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{13} \mathrm{C}$ NMR of compound $45 \mathrm{~b}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound 45b ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of compound $46 \mathrm{~b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

 NiNi iirio

 1 U \qquad

${ }^{13} \mathrm{C}$ NMR of compound $46 \mathrm{~b}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound 46 b ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

il

170	160	150	140	130	120	110	100	$\stackrel{90}{\mathrm{fl}_{1}(\mathrm{ppm})}$	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 7 b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{\mathbf{3}}\right.$)

${ }^{13} \mathrm{C}$ NMR of compound $47 \mathrm{~b}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

İ
:

DEPT-135 of compound $47 \mathrm{~b}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{f1}(\mathrm{ppm})$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

${ }^{1} \mathrm{H}$ NMR of compound $49\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $49\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound $49\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

-

${ }^{1} \mathrm{H}$ NMR of compound $50\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $50\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\propto	ก	$\stackrel{\circ}{\circ}$	\%	$\stackrel{\otimes}{\circ}$	
$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\text { ¢ }}$	$\stackrel{\sim}{\sim}$	게	$\stackrel{\text { m }}{ }$	
\|	\|	\|			

| 1 | | | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90
 $f 1(\mathrm{ppm})$ | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |

DEPT-135 of compound 50 ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of compound $51\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $51\left(\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound $51\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $52\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $52\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound 52 ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
䘾
※ٌ

		ㄴ.
¢유ㅆㅔㅔ	ヘั่ กั่	$\stackrel{\circ}{-1}$
, 11	4!	I/

${ }^{1} \mathrm{H}$ NMR of compound $54\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $54\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-135 of compound $54\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

190	180	170	160	150	140	130	120	110	${ }_{f 1}^{100}(\mathrm{ppm})$	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR of compound $55\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $55\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

尔	$\stackrel{\stackrel{\sim}{\sim}}{\stackrel{\sim}{\sim}}$
I	1

70	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10

DEPT-135 of compound 55 ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

12. NMR, IR, X-ray, ECD, UV, HPLC of final compounds.
12.1. ${ }^{1} \mathrm{H}$ NMR of compound (-)-2,9-Humuladien-6-ol-8-one (3a) (500MHz, CDCl_{3})

muladien-6-ol-8-one (3a)

12.1. ${ }^{13} \mathrm{C}$ NMR of compound (-)-2,9-Humuladien-6-ol-8-one (3a) (125MHz, CDCl_{3})
ì

(-)-2,9-Humuladien-6-ol-8-one (3a)

- $\stackrel{\rightharpoonup}{1}$

$\underbrace{\text { す。 }}$

12.1. DEPT-135 NMR of compound (-)-2,9-Humuladien-6-ol-8-one (3a) ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

						1			1 1 1		1			1	,		1
170	160	150	140	130	120	110	100	90	${ }^{80}{ }_{\mathrm{f} 1(\mathrm{ppm})^{70}}$	60	50	40	30	20	10		-10

IR SPECTRUM of (3a)

UV SPECTRUM of (3a)

HPLC of (-)-2,9-Humuladien-6-ol-8-one (3a)

Column: CHIRALPAK OJ; Flow rate: $1.0 \mathrm{ml} / \mathrm{min}$
Mobile phase: 10:1; hexane:IPA; Injection volume: $10 \mu 1$.

PDA Ch1 254 nm 4 nm

Peak\#	Ret time	Conc	area	Height	Area (\%)
1	8.690	98.78736	1746317	181698	98.78736
2	15.278	1.21264	21437	948	1.21264

Crystal data and structure refinement for compound (3a)

X-ray crystal data of compound 3a (the following crystal has been deposited at the Cambridge Crystallographic Data Centre and has the deposition number (CCDC No: 2301568).

(-)-2,9-humuladien-6-ol-8-one(3a)
(CCDC No: 2301568)
(Drawn at 50\% probability)

Bond precision: $\quad \mathrm{C}-\mathrm{C}=$	0.0029 A	Wavelength=0.71073	
Cell:	$\mathrm{a}=6.0794(2)$	$\mathrm{b}=13.0587(4)$	$\mathrm{c}=17.7262(6)$
	$\mathrm{alpha}=90$	beta $=90$	gamma $=90$

Temperature: 296 K

12.2: ${ }^{1} \mathrm{H}$ NMR of (-)-alashanoid $\mathrm{C}(4 \mathrm{~b})\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

12.2: ${ }^{13} \mathrm{C}$ NMR of (-)-alashanoid C (4b) (125MHz, CDCl_{3})

⿵ㅡㄺ

(-)Alashanoid C (4b)

12.2: DEPT-135 NMR of (-)-alashanoid C (4b) (125MHz, CDCl_{3}):

HPLC of (-)-alashanoid C (4b)

Column: CHIRALPAK OJ; Flow rate: $1.0 \mathrm{ml} / \mathrm{min}$
Mobile phase: 10:1; hexane:IPA; Injection volume: $10 \mu \mathrm{~L}$

PDA Ch1 254nm 4nm

Peak\#	Ret time	Conc	area	Height	Area (\%)
1	3.315	2.96958	262214	2839	2.96958
2	5.115	3.57188	221354	4772	3.57188
3	13.703	93.45854	2439802	110651	93.45854

Crystal data and structure refinement for compound (4b)

X-ray crystal data of compound $\mathbf{4 b}$ (the following crystal has been deposited at the Cambridge Crystallographic Data Centre and has the deposition number (CCDC No: 2305842).

(-)Alashanoid C (4b) (CCDC No: 2305842) (Drawn at 30\% probability)

Bond precision: C-C $=0.0143 \mathrm{~A}$ Wavelength=0.71073
Cell: $\quad a=9.7763(12) \quad b=14.2275(14) \quad c=12.0706(16)$ alpha=90 beta=107.436(14) gamma=90
Temperature: 298 K

12.3: ${ }^{1} \mathrm{H}$ NMR of (+)-alashanoid $\mathrm{E}(\mathbf{6 a})\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

12.3: ${ }^{13} \mathrm{C}$ NMR of (+)-alashanoid \mathbf{E} (6a) (125MHz, CDCl_{3})

12.3: DEPT-135 NMR of (+)-alashanoid E (6a) (125MHz, CDCl_{3})

UV SPECTRUM of (6a)

ECD SPECTRUM of (6a)

HPLC of (+)-alashanoid E(6a)

Column: CHIRALCEL IC; Flow rate: $0.8 \mathrm{ml} / \mathrm{min}$
Mobile phase: 10:1; hexane:IPA; Injection volume: $10 \mu \mathrm{~L}$

PDA Ch1 254nm 4nm

Peak\#	Ret time	Conc	area	Height	Area (\%)
1	22.826	100.00	20672561	543504	100

12．4：${ }^{1} \mathrm{H}$ NMR of（＋）－alashanoid $\mathrm{F}(7 \mathrm{a})\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

12．4：${ }^{13} \mathrm{C}$ NMR of（＋）－alashanoid F （7a）（ $\mathbf{1 2 5 M H z}, \mathrm{CDCl}_{3}$ ）
－203．2
菑 風
茞

（＋）Alashanoid F（7a）

12.4: DEPT-135 NMR of (+)-alashanoid F (7a) ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

IR SPECTRUM of (7a)

UV SPECTRUM of (7a)

HPLC of Alashanoid F (7a)

Column: CHIRALPAK IC; Flow rate: $0.8 \mathrm{ml} / \mathrm{min}$
Mobile phase: 10:1; hexane:IPA; Injection volume: $10 \mu \mathrm{~L}$

PDA Ch1 254 nm 4 nm

Peak\#	Ret time	Conc	area	Height	Area (\%)
1	24.716	100.00	1693663	98877	100

12.5: ${ }^{1} \mathrm{H}$ NMR of Alashanoid $\mathrm{B}(2)\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\stackrel{9}{y y y}
$$

Alashanoid B (2)

12.5: ${ }^{13} \mathrm{C}$ NMR of Alashanoid B (2) ($\mathbf{1 2 5 M H z}, \mathrm{CDCl}_{3}$)

Alashanoid B (2)

12.5: ${ }^{13} \mathrm{C}$ NMR of Alashanoid $\mathrm{B}(2)\left(\mathbf{1 2 5 M H z}, \mathrm{CDCl}_{3}\right)$

HSQC SPECTRUM of (2)

HMBC SPECTRUM of (2)

> COSY SPECTRUM of (2)

UV SPECTRUM of (2)

ECD SPECTRUM of (2)

HPLC of Alashanoid B (2)

Column: CHIRALPAK IC; Flow rate: $1.0 \mathrm{ml} / \mathrm{min}$
Mobile phase: 50:1; hexane:IPA; Injection volume: $10 \mu \mathrm{~L}$

PDA Ch1 254nm 4nm

Peak\#	Ret time	Conc	area	Height	Area (\%)
1	4.568	100.00000	440960	25425	100

12.6: R-Moser ester of Alashanoid B (2) (500MHz, Pyridine d5):

COSY spectrum of R-MTPA ester of 2 in Pyridine- $d_{5}(500 \mathrm{MHz})$

NOESY spectrum of \boldsymbol{R}-MTPA ester of $\mathbf{2}$ in Pyridine-d $\mathbf{5}(\mathbf{5 0 0} \mathbf{~ M H z})$

UV SPECTRUM of \boldsymbol{R}-MTPA ester of 2

ECD SPECTRUM of \boldsymbol{R}-MTPA ester of 2

HPLC OF R-MTPA ester of 2

Column: CHIRALPAK IA; Flow rate: $1.0 \mathrm{ml} / \mathrm{min}$
Mobile phase: 100:1; hexane:IPA; Injection volume: $10 \mu \mathrm{~L}$

PDA Ch1 254 nm 4 nm

Peak\#	Ret time	Conc	area	Height	Area (\%)
1	10.034	100.00000	589356	32155	100

