Electronic Supplementary Information

Circularly polarised luminescence from intramolecular excimer emission of bis-1,8-naphthalimide derivatives

Shiori Eguchi¹, Mami Naoe¹, Asako Kageyama¹, Yoshitane Imai², Norimitsu Tohnai³, Shoko Yamazaki⁴, Eiji Nakata⁵, Hiroshi Takashima,^{1,*}

- ¹Department of Chemistry, Biology and Environmental Science, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
- ² Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, Osaka 577-8502, Japan
- ³ Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
- ⁴ Department of Chemistry, Nara University of Education, Nara 630-8528, Japan
- ⁵ Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan

*Correspondence

H. Takashima

Department of Chemistry, Biology and Environmental Science, Faculty of Science,

Nara Women's University, Nara 630-8506, Japan

E-mail: hiroshi@cc.nara-wu.ac.jp

Table of contents

- 1. Experimental materials
- 2. Instrumentation
- 3. Crystallographic data collection and structure determination
- 4. Computational methods
- 5. Synthetic methods and characterization
- 6. UV-vis spectra
- 7. Fluorescence spectra
- 8. Fluorescence lifetimes

9. DFT calculations

- 10. CD spectra
- 11. CPL spectra
- 12. Cartesian coordinates and energies of the optimized geometries
- 13. References

1. Experimental materials

1,8-Naphthalic anhydride, *D*-lysine monohydrochloride, *D*-lysine methyl ester dihydrochloride, *L*norleucine, *D*-norleucine and diisopropylethylamine (DIEA) were from Tokyo Kasei Kogyo Co. *L*-lysine monohydrochloride, *L*-lysine methyl ester dihydrochloride, dehydrated *N*,*N*-dimethylformamide (DMF), ethyl acetate (AcOEt), dichloromethane (DCM), methanol (MeOH), ethanol (EtOH), tetrahydrofuran (THF), hexane, chloroform, 1,4-dioxane, acetonitrile (MeCN), and Wako Gel C-200 from Fuji Film Wako Pure Chemical Co. were used. KBr was used for IR absorption measurement by Fujifilm Wako Pure Chemicals Co. DMSO-*d*₆ for ¹H NMR spectra and ¹³C NMR were used by Fujifilm Wako Pure Chemicals Co. For ESI-MS measurements, methanol for LC/MS from Fujifilm Wako Pure Chemicals Co. was used. Organic membrane filter PTFE (0.5μ m, 25 mm) was used from ADVANTEC.

2. Instrumentation

¹H NMR spectra (400 MHz) and ¹³C NMR (100 MHz) in solution were recorded on a JEOL JNM-AL400 FT-NMR. ¹H NMR chemical shift values are reported in ppm as reference to the internal standard TMS. ESI-Mass spectra were measured with JEOL JMS-T100LC and JMS-T100LP AccuTOF. Fourier transform IR spectra (FTIR) were measured by the KBr tablet method using the JASCO FTIR-6100V spectrophotometer. X-ray crystallographic data were obtained by Rigaku R-Axis-Rapid Imaging Plate diffractometer. Elemental analysis was performed on a J-Science Lab MICRO CORDER JM10 and a Yanaco CHN corder MT-5. UV-vis electronic absorption spectra were measured using a Shimadzu UV-The path length was 1 cm. Fluorescence spectrum measurements were 2550 spectrophotometer. performed using a Shimadzu RF-5300PC fluorometer using a 2 mm or a 1 cm quartz cell. The absolute quantum yields were measured by JASCO FP-6600 fluorescence spectrophotometer with an integrating Time-resolved emission spectra were measured by a single-photon counting method using a sphere. Horiba-Jobin Yvon Tempro equipped with a 430 nm cut filter. The instrumental response of the system to the excitation pulsed solid-state LED light source of 330 nm had a time width of about 100 ps and repetition rate about 1 MHz. The lifetimes were evaluated with the software attached to this equipment. All solutions were slowly and carefully purged with N_2 gas through a needle using a 1 cm quartz cell with a septum cap. CD spectra were measured with Jasco J-720 spectrometers using a 1 cm quartz cell. CPL spectra were recorded on a JASCO CPL-300 spectrometer using a 1 cm quartz cell with two or four scan times.

3. Crystallographic data collection and structure determination

A crystal was mounted in a loop. All measurements were made on a diffractometer using multi-layer mirror monochromated Cu-K α or Mo-K α radiation. The data were collected at a temperature of 293 K using the ω -2 θ scan technique to a maximum 2 θ value of 148.9°. Data were collected and processed using CrysAlisPro (Rigaku Oxford Diffraction) [S1]. The structures were solved by direct methods and refined on F^2 by full-matrix least-squares methods, using SHELXL-97 [S2]. The non-hydrogen atoms were refined anisotropically by the full-matrix least-squares method. All hydrogen atoms were isotropically refined using olex2 [S3]. The structure was solved with the olex2solve structure solution program using Charge Flipping and refined with the olex2refine refinement package using Gauss-Newton minimization [S4].

4. Computational Methods

The molecular structure calculations were performed with density functional theory (DFT) using the Gaussian16 program package [S5]. The B3LYP functional [S6-S7] was used with the 6-31+G* basis set and the polarisable continuum model solvent effect (solvent = CH3CN, Chloroform, and methanol) [S8-S10].

5. Synthetic methods and characterization

Compounds D-LybNI, L-LybNI, D-LyMebNI, L-LyMebNI, D-NorNI, and L-NorNI were synthesized as the following Schemes S1 and S2.

Scheme S1. Syntheses of D-LybNI, L-LybNI, D-LyMebNI, and L-LyMebNI used in this study.

Scheme S2. Syntheses of *D*-NorNI and *L*-NorNI used in this study.

5-1. Synthesis of *L*-LybNI

L-lysine monohydrochloride $0.174 \text{ g} (9.5 \times 10^{-4} \text{ mol}, 1 \text{ eq})$ was dissolved in 5.0 mL of dehydrated DMF and stirred in a 200 mL flask. DIEA 0.170 mL (9.4 × 10⁻⁴ mol, 1 eq) was then dissolved in 5.0 mL of dehydrated DMF and slowly added dropwise. After stirring at 120 °C for 2 h, 0.421 g (2.1×10^{-3} mol, 2.2 eq) of 1,8-Naphthalic anhydride was added and the mixture was stirred for 24 h at 120 °C. DMF was then distilled off, and 200 mL of AcOEt was added and stirred at room temperature for 12 h. The filtrate was collected by suction filtration through an organic membrane filter. The solvent was removed under reduced pressure using an evaporator and the resulting solid was washed with DCM. The remaining solid was collected by suction filtration through an organic membrane filter, and the resulting light orange solid was recrystallized from EtOH to give white crystals. Yield 55.2 mg (11%).

¹H NMR (400 MHz, DMSO-*d*₆, 298 K) : *δ* ppm = 8.47 (dd, 2H, *J* = 0.80 Hz, 8.2 Hz, naphthalene-*H*), 8.40 (dd, 2H, *J* = 0.84 Hz, 8.2 Hz, naphthalene-*H*), 8.36 (d, 2H, *J* = 7.3 Hz, naphthalene-*H*), 8.24 (dd, 2H, *J* = 0.96 Hz, 7.3 Hz, naphthalene-*H*), 7.83 (t, 2H, *J* = 7.8 Hz, naphthalene-*H*), 7.76 (t, 2H, *J* = 7.8 Hz, naphthalene-*H*), 5.49 (dd, 1H, *J* = 4.9 Hz, 9.6 Hz, -CH₂-C*H*(NI)-COOH), 3.98 (m, 2H, NI-CH₂-CH₂-), 2.19 (m, 2H, -CH₂-CH(NI)-COOH), 1.66 (m, 2H, NI-CH₂-CH₂-), 1.29 (m, 2H, -CH₂-CH₂-CH(NI)-). ¹³C NMR (100 MHz, DMSO-*d*₆, 298 K) : *δ* ppm = 171.25 (-COOH), 163.53 (NI-CO), 163.39 (NI-CO), 134.90 (naphthalene-*C*H), 134.38 (naphthalene-*C*H), 131.34-131.43 (naphthalene-*C*H), 130.70 (naphthalene-*C*H), 127.28 (naphthalene-*C*), 122.08 (naphthalene-*C*), 121.65 (naphthalene-*C*), 52.85 (-CH(NI)-COOH), 39.52 (NI-CH₂-, overlapped with solvent), 28.05 (NI-CH₂-CH₂-), 27.38 (-CH₂-CH(NI)-). ESI-MS (CH₃OH, negative, *m*/*z*) 505.05 ([M-H]⁻ requires 505.15). FTIR (KBr, cm⁻¹) : 3458 (Br, m, *v*C=O), 3212 (Br, m, *v*O-H), 2961 (w, *v*C-H), 2920 (w, *v*C-H), 2862 (w, *v*C-H), 1745 (s, *v*C=O), 1692 (s, *v*C=O), 1654 (s, *v*C=O), 780 (s, *δ*C-H). Anal. Calcd. for C₃₀H₂₂N₂O₆ : C, 71.14; H, 4.38; N, 5.53%. Found : C, 70.92; H, 4.35; N, 5.49%.

Figure S1. ¹H NMR (400 MHz) spectrum of *L*-LybNI (3.0×10^{-3} M) in DMSO-*d*₆ at 298 K.

¹³C NMR (100 MHz, DMSO-*d*₆, 298 K)

Figure S2. ¹³C NMR (100 MHz) spectrum of *L*-LybNI (1.7×10^{-2} M) in DMSO-*d*₆ at 298 K.

Figure S3. ESI-MS spectrum of L-LybNI in MeOH.

Figure S4. FTIR (KBr disk) spectrum of *L*-LybNI.

5-2. Synthesis of D-LybNI

D-lysine monohydrochloride 0.170 g (9.3×10^{-4} mol, 1 eq) was dissolved in 5.0 mL of dehydrated DMF and stirred in a 200 mL flask. DIEA 0.170 mL (9.4×10^{-4} mol, 1 eq) was then dissolved in 5.0 mL of dehydrated DMF and slowly added dropwise. After stirring at 120 °C for 2 h, 0.419 g (2.1×10^{-3} mol, 2.2 eq) of 1,8-Naphthalic anhydride was added and the mixture was stirred for 24 h at 120 °C. DMF was then distilled off, and 200 mL of AcOEt was added and stirred at room temperature for 12 h. The filtrate was collected by suction filtration through an organic membrane filter. The solvent was removed under reduced pressure using an evaporator and the resulting solid was washed with DCM. The remaining solid was collected by suction filtration through an organic membrane filter, and the resulting light orange solid was recrystallized from EtOH to give white crystals. Yield 82.9 mg (18%).

¹H NMR (400 MHz, DMSO-*d*₆, 298 K) : *δ* ppm = 8.47 (dd, 2H, *J* = 0.80 Hz, 8.3 Hz, naphthalene-*H*), 8.40 (d, 2H, *J* = 8.3 Hz, naphthalene-*H*), 8.36 (d, 2H, *J* = 7.2 Hz, naphthalene-*H*), 8.23 (d, 2H, *J* = 7.2 Hz, naphthalene-*H*), 7.82 (t, 2H, *J* = 7.4 Hz, naphthalene-*H*), 7.77 (t, 2H, *J* = 7.4 Hz, naphthalene-*H*), 5.49 (dd, 1H, *J* = 4.8 Hz, 9.6 Hz, -CH₂-C*H*(NI)-COOH), 3.98 (m, 2H, NI-CH₂-CH₂-), 2.16 (m, 2H, -CH₂-CH₂-CH(NI)-COOH), 1.65 (m, 2H, NI-CH₂-CH₂-CH₂-), 1.29 (m, 2H, -CH₂-CH₂-CH₂-CH(NI)-). ¹³C NMR (100 MHz, DMSO-*d*₆, 298 K) : *δ* ppm = 171.27 (-COOH), 163.54 (NI-CO), 163.41 (NI-CO), 134.92 (naphthalene-CH), 134.40 (naphthalene-CH), 131.36-131.45 (naphthalene-CH), 130.70 (naphthalene-CH), 127.51-127.54 (naphthalene-C), 127.30 (naphthalene-C), 122.09 (naphthalene-C), 121.66 (naphthalene-C), 52.85 (-CH(NI)-COOH), 39.52 (NI-CH₂-, overlapped with solvent), 28.05 (NI-CH₂-CH₂-), 27.38 (-CH₂-CH(NI)-), 23.60 (-CH₂-CH₂-CH(NI)-). ESI-MS (CH₃OH, negative, *m/z*) 505.05 ([M-H]⁻ requires 505.15). FTIR (KBr, cm⁻¹) : 3466 (Br, m, *ν* C=O), 3200 (Br, m, *ν* O-H), 2961 (w, *ν* C-H), 2920 (w, *ν* C-H), 2862 (w, *ν* C-H), 1745 (s, *ν* C=O), 1692 (s, *ν* C=O), 1655 (s, *ν* C=O), 780 (s, *δ* C-H). Anal. Calcd. for C₃₀H₂₂N₂O₆ : C, 71.14; H, 4.38; N, 5.53%. Found : C, 70.94; H, 4.32; N, 5.48%.

Figure S5. ¹H NMR (400 MHz) spectrum of *D*-LybNI (3.1×10^{-3} M) in DMSO-*d*₆ at 298 K.

Figure S6. ¹³C NMR (100 MHz) spectrum of *D*-LybNI (1.7×10^{-2} M) in DMSO-*d*₆ at 298 K.

Figure S7. ESI-MS spectrum of *D*-LybNI in MeOH.

Figure S8. FTIR (KBr disk) spectrum of D-LybNI.

5-3. Synthesis of L-LyMebNI

0.115 g (4.9×10^{-4} mol) of *L*-lysine methyl ester dihydrochloride was dissolved in 10 mL of EtOH and stirred in a 200 mL flask. DIEA 0.18 mL (1.0×10^{-3} mol, 2 eq) dissolved in 5.0 mL of EtOH was then added dropwise. After stirring at 85 °C for 2 h, 0.213 g (1.1×10^{-3} mol, 2.2 eq) of 1,8-Naphthalic anhydride was added and the mixture was stirred for 24 h at 85 °C. The solvent was removed under reduced pressure using an evaporator and dried in vacuum. The product was purified on a column (φ 3 cm × 17 cm) using Wako Gel C-200. The eluents were separated using DCM and DCM:MeOH = 200:1 mixture. The solvent was removed under reduced pressure to give white crystals. Yield : 0.200 g (78%).

¹H NMR (400 MHz, DMSO- d_6 , 298 K) : δ 'ppm = 8.49 (d, 2H, J = 8.2 Hz, naphthalene-H), 8.40 (d, 2H, J = 8.2 Hz, naphthalene-H), 8.37 (d, 2H, J = 7.1 Hz, naphthalene-H), 8.21 (d, 2H, J = 7.2 Hz, naphthalene-H), 7.82 (t, 2H, J = 7.9 Hz, naphthalene-H), 7.76 (t, 2H, J = 7.9 Hz, naphthalene-H), 5.60 (dd, 1H, J = 4.8 Hz, 9.6 Hz, -CH₂-CH(NI)-COO CH₃), 3.98 (m, 2H, NI-CH₂-CH₂-), 3.58 (s, 3H, -COOC H_3), 2.20 (m, 2H, -CH₂-CH₂-CH(NI)-COOCH₃), 1.65 (m, 2H, NI-CH₂-CH₂-CH₂-), 1.29 (m, 2H, -CH₂-CH₂-CH₂-CH(NI)-). ¹³C NMR (100 MHz, DMSO- d_6 , 298 K) : δ 'ppm = 170.30 (-COOCH₃), 163.57 (NI-CO), 163.39 (NI-CO), 135.11 (naphthalene-CH), 134.43 (naphthalene-CH), 131.41-131.55 (naphthalene-CH), 130.73 (naphthalene-CH), 127.41-127.56 (naphthalene-C), 127.32 (naphthalene-C), 122.09 (naphthalene-C), 121.50 (naphthalene-C), 52.66 (-CH(NI)-COOCH₃), 52.36 (-COOCH₃), 39.52 (NI-CH₂-, overlapped with solvent), 28.01 (NI-CH₂-CH₂-), 27.35 (-CH₂-CH(NI)-), 23.34 (-CH₂-CH₂-CH(NI)-). ESI-MS (CH₃OH, positive, m/z) 543.20 ([M+Na]⁺ requires 543.16). FTIR (KBr, cm⁻¹) : 3448 (Br, m, ν C=O), 2955 (w, ν C-H), 1740 (s, ν C=O), 1696 (s, ν C=O), 1657 (s, ν C=O), 780 (s, δ C-H). Anal. Calcd. for C₃₁H₂₄N₂O₆ : C, 71.53; H, 4.55; N, 5.38%. Found : C, 71.45; H, 4.68; N, 5.30%.

Figure S9. ¹H NMR (400 MHz) spectrum of *L*-LyMebNI (3.2×10^{-3} M) in DMSO-*d*₆ at 298 K.

¹³C NMR (100 MHz, DMSO-*d*₆, 298 K)

Figure S10. ¹³C NMR (100 MHz) spectrum of *L*-LyMebNI (1.1×10^{-2} M) in DMSO-*d*₆ at 298 K.

Figure S11. ESI-MS spectrum of *L*-LyMebNI in MeOH.

Figure S12. FTIR (KBr disk) spectrum of L-LyMebNI.

Figure S13. X-ray structure of *L*-LyMebNI.

Formula	C ₃₁ H ₂₄ N ₂ O ₆
Formula Weight	520.52
Crystal System	monoclinic
Space group	P21
<i>a</i> (Å)	7.4391
<i>b</i> (Å)	15.3129
<i>c</i> (Å)	10.5379
Ζ	2
λ (CuK α)	1.54184
$2\theta_{\rm max}$	148.932
μ (cm ⁻¹)	0.834
Dc (Mgm ⁻³)	1.449
<i>T</i> (K)	293
$V(Å^3)$	1193.17
R_1	0.0521
$R_{ m w}$	0.1308
GoF	1.011

Table S1. Crystallographic data of *L*-LyMebNI.

5-4. Synthesis of D-LyMebNI

0.113 g (4.9×10^{-4} mol) of *D*-lysine methyl ester dihydrochloride was dissolved in 10 mL of EtOH and stirred in a 200 mL flask. DIEA 0.18 mL (1.0×10^{-3} mol, 2 eq) dissolved in 5.0 mL of EtOH was then added dropwise. After stirring at 85 °C for 2 h, 0.214 g (1.1×10^{-3} mol, 2.2 eq) of 1,8-Naphthalic anhydride was added and the mixture was stirred for 24 h at 85 °C. The solvent was removed under reduced pressure using an evaporator and dried in vacuum. The product was purified on a column (φ 3 cm × 17 cm) using Wako Gel C-200. The eluents were separated using DCM and DCM:MeOH = 200:1 mixture. The solvent was removed under reduced pressure to give white crystals. Yield : 0.200 g (78%).

¹H NMR (400 MHz, DMSO-*d*₆, 298 K) : δ 'ppm = 8.49 (d, 2H, *J* = 8.3 Hz, naphthalene-*H*), 8.40 (d, 2H, *J* = 8.3 Hz, naphthalene-*H*), 8.37 (d, 2H, *J* = 7.2 Hz, naphthalene-*H*), 8.21 (d, 2H, *J* = 7.3 Hz, naphthalene-*H*), 1.31 (m, 2H,-CH₂-CH₂-CH(NI)-), 7.83 (t, 2H, *J* = 7.6 Hz, naphthalene-*H*), 7.76 (t, 2H, *J* = 7.4 Hz, naphthalene-*H*), 5.61 (dd, 1H, *J* = 4.8 Hz, 9.7 Hz, -CH₂-C*H*(NI)-COO CH₃), 3.98 (m, 2H, NI-CH₂-CH₂-CH₂-), 3.58 (s, 3H, -COOC*H*₃), 2.20 (m, 2H, -CH₂-C*H*₂-CH(NI)-COOCH₃), 1.65 (m, 2H, NI-CH₂-C*H*₂-CH₂-). ¹³C NMR (100 MHz, DMSO-*d*₆, 298 K) : δ 'ppm = 170.30 (-COOCH₃), 163.57 (NI-CO), 163.38 (NI-CO), 135.09 (naphthalene-*C*H), 134.40 (naphthalene-*C*H), 131.41-131.53 (naphthalene-*C*H), 130.71 (naphthalene-*C*H), 127.41-127.55 (naphthalene-*C*), 127.31 (naphthalene-*C*), 122.09 (naphthalene-*C*), 121.49 (naphthalene-*C*), 52.66 (-CH(NI)-COOCH₃), 52.35 (-COOCH₃), 39.52 (NI-CH₂-, overlapped with solvent), 28.01 (NI-CH₂-CH₂-), 27.35 (-CH₂-CH(NI)-), 23.33 (-CH₂-CH₂-CH(NI)-). ESI-MS (CH₃OH, positive, *m/z*) 543.23 ([M+Na]⁺ requires 543.16). FTIR (KBr, cm⁻¹) : 3446 (Br, m, ν C=O), 2955 (w, ν C-H), 1740 (s, ν C=O), 1696 (s, ν C=O), 1658 (s, ν C=O), 780 (s, δ C-H). Anal. Calcd. for C₃₁H₂₄N₂O₆ : C, 71.53; H, 4.55; N, 5.38%. Found : C, 71.26; H, 4.59; N, 5.37%.

¹³C NMR (100 MHz, DMSO-*d*₆, 298 K)

Figure S15. ¹³C NMR (100 MHz) spectrum of *D*-LyMebNI (1.3×10^{-2} M) in DMSO-*d*₆ at 298 K.

Figure S16. ESI-MS spectrum of *D*-LyMebNI in MeOH.

Figure S17. FTIR (KBr disk) spectrum of D-LyMebNI.

5-5. Synthesis of L-NorNI

 $0.068 \text{ g} (5.2 \times 10^{-4} \text{ mol}) \text{ of } L$ -norleucine was dissolved in 5.0 mL of EtOH and stirred in a 200 mL flask. DIEA 0.10 mL ($5.2 \times 10^{-4} \text{ mol}$, 1 eq) dissolved in 5.0 mL of EtOH was then added dropwise. After stirring at 85 °C for 2 h, 0.118 g ($5.9 \times 10^{-4} \text{ mol}$, 1.1 eq) of 1,8-Naphthalic anhydride was added and the mixture was stirred for 24 h at 85 °C. The solvent was removed under reduced pressure using an evaporator and dried in vacuum. The product was purified on a column (φ 3 cm × 17 cm) using Wako Gel C-200. The eluents were separated using DCM and DCM:MeOH = 100:1 – 10:3 mixtures. The solvent was removed under reduced pressure and the desired product was reprecipitated from DCM and hexane at 4 °C to give white powders. Yield : 0.143 g (89%).

¹H NMR (400 MHz, DMSO-*d*₆, 298 K) : δ 'ppm = 12.75 (br s, 1H, -COO*H*), 8.52 (d, 2H, *J* = 8.0 Hz, naphthalene-*H*), 7.90 (t, 2H, *J* = 7.8 Hz, naphthalene-*H*), 5.50 (dd, *J* = 4.4 Hz, 9.4 Hz, 1H, -CH₂-C*H*(NI)-COOH), 2.13 (m, 2H, -CH-C*H*₂-C₃H₇), 1.27 (m, 2H, -CH₂-C*H*₂-C₂H₅), 1.17 (m, 2H, -CH₂-C*H*₂-CH₃), 0.79 (t, 3H, *J* = 7.1 Hz, -CH₂-C*H*₃). ¹³C NMR (100 MHz, DMSO-*d*₆, 298 K) : δ 'ppm = 171.42 (-COOH), 163.47 (NI-CO), 135.00 (naphthalene-CH), 131.55 (naphthalene-CH), 127.64 (naphthalene-C), 121.78 (naphthalene-C), 53.23 (-CH(NI)-COOH), 28.46 (-CH₂-CH₂-CH₂-CH₃), 28.31 (-CH₂-CH₂-CH₃), 22.14 (-CH₂-CH₃), 14.04 (-CH₃). ESI-MS (CH₃OH, positive, *m*/*z*) 334.14 ([M+Na]⁺ requires 334.10). FTIR (KBr, cm⁻¹) : 3446 (Br, m, *v* C=O), 3068 (Br, m, *v* O-H), 2960 (m, *v* C-H), 2929 (m, *v* C-H), 2872 (m, *v* C-H), 1702 (s, *v* C=O), 1665 (s, *v* C=O), 1589 (s, *v* C=O), 779 (s, δ C-H). Anal. Calcd. for C₁₈H₁₇NO₄ : C, 69.44; H, 5.50; N, 4.50%. Found : C, 69.23; H, 5.50; N, 4.42%.

Figure S18. ¹H NMR (400 MHz) spectrum of *L*-NorNI (6.1×10^{-3} M) in DMSO-*d*₆ at 298 K.

¹³C NMR (100 MHz, DMSO-*d*₆, 298 K)

Figure S19. ¹³C NMR (100 MHz) spectrum of *L*-NorNI (1.1×10^{-2} M) in DMSO-*d*₆ at 298 K.

Figure S20. ESI-MS spectrum of *L*-NorNI in MeOH.

FTIR (KBr disk)

Figure S21. FTIR (KBr disk) spectrum of L-NorNI.

5-6. Synthesis of D-NorNI

 $0.065 \text{ g} (4.9 \times 10^{-4} \text{ mol})$ of *D*-norleucine was dissolved in 10 mL of EtOH and stirred in a 200 mL flask. DIEA 0.10 mL (5.2×10^{-4} mol, 1.1 eq) dissolved in 5.0 mL of EtOH was then added dropwise. After stirring at 85 °C for 2 h, 0.112 g (5.6×10^{-4} mol, 1.1 eq) of 1,8-Naphthalic anhydride was added and the mixture was stirred for 24 h at 85 °C. The solvent was removed under reduced pressure using an evaporator and dried in vacuum. The product was purified on a column (φ 3 cm × 17 cm) using Wako Gel C-200. The eluents were separated using DCM and DCM:MeOH = 100:1 – 10:3 mixtures. The solvent was removed under reduced pressure and the desired product was reprecipitated from DCM and hexane at 4 °C to give white powders. Yield : 0.113 g (73%).

¹H NMR (400 MHz, DMSO-*d*₆, 298 K) : δ' ppm = 12.75 (br s, 1H, -COO*H*), 8.52 (d, 2H, *J* = 8.0 Hz, naphthalene-*H*), 8.51 (d, 2H, *J* = 8.0 Hz, naphthalene-*H*), 7.90 (t, 2H, *J* = 7.8 Hz, naphthalene-*H*), 5.50 (dd, *J* = 4.4 Hz, 9.4 Hz, 1H, -CH₂-C*H*(NI)-COOH), 2.13 (m, 2H, -CH-*CH*₂-C₃H₇), 1.27 (m, 2H, -CH₂-C*H*₂-C₂H₅), 1.17 (m, 2H, -CH₂-C*H*₂-CH₃), 0.79 (t, 3H, *J* = 7.1 Hz, -CH₂-C*H*₃). ¹³C NMR (100 MHz, DMSO-*d*₆, 298 K) : δ' ppm = 171.43 (-COOH), 163.46 (NI-CO), 134.99 (naphthalene-*CH*), 131.52 (naphthalene-*CH*), 127.63 (naphthalene-*C*), 121.77 (naphthalene-*C*), 53.22 (-CH(NI)-COOH), 28.45 (-CH₂-CH₂-CH₂-CH₃), 28.31 (-CH₂-CH₂-CH₃), 22.13 (-CH₂-CH₃), 14.02 (-CH₃). ESI-MS (CH₃OH, negative, *m/z*) 310.06 ([M-H]⁻ requires 310.12). FTIR (KBr, cm⁻¹) : 3446 (Br, m, *v*C=O), 3068 (Br, m, *v*O-H), 2960 (m, *v*C-H), 2929 (m, *v*C-H), 2872 (m, *v*C-H), 1702 (s, *v*C=O), 1665 (s, *v*C=O), 1589 (s, *v*C=O), 779 (s, δ C-H). Anal. Calcd. for C₁₈H₁₇NO₄ • 0.5 H₂O : C, 67.48; H, 5.66; N, 4.37%. Found : C, 68.24; H, 5.66; N, 4.37%.

¹H NMR (400 MHz, DMSO-*d*₆, 298 K)

¹³C NMR (100 MHz, DMSO-*d*₆, 298 K)

Figure S23. ¹³C NMR (100 MHz) spectrum of *D*-NorNI (1.3×10^{-2} M) in DMSO-*d*₆ at 298 K.

Figure S24. ESI-MS spectrum of *D*-NorNI in MeOH.

Figure S25. FTIR (KBr disk) spectrum of D-NorNI.

6. UV-vis spectra

Figure S26. UV-vis spectra of *L*-LybNI in 1,4-dioxane, THF, CHCl₃, DCM, DMF, MeCN, EtOH, and MeOH (2.5×10^{-5} M) at room temperature.

Figure S27. UV-vis spectra of *L*-LyMebNI in 1,4-dioxane, THF, CHCl₃, DCM, DMF, MeCN, EtOH, and MeOH (2.5×10^{-5} M) at room temperature.

Figure S28. UV-vis spectra of *L*-NorNI in1,4-dioxane, THF, CHCl₃, DCM, DMF, MeCN, EtOH, and MeOH (2.5×10^{-5} M) at room temperature.

		<i>L</i> -Ly	MebNI	L	-LybNI	L	-NorNI
Solvent	Ет(30)	$\lambda_{\rm max}$ / nm	$\varepsilon / M^{-1} cm^{-1}$	$\lambda_{\rm max}$ / nm	$\varepsilon / M^{-1} cm^{-1}$	$\lambda_{\rm max}/{\rm nm}$	$\varepsilon / M^{-1} cm^{-1}$
1,4-dioxane	36.0	331	3.2×10^{4}	331	3.7×10^{4}	332	1.5×10^{4}
THF	37.4	332	3.1×10^{4}	332	2.0×10^4	332	1.5×10^4
CHCl ₃	39.1	335	2.8×10^4	334	3.2×10^{4}	335	1.4×10^{4}
DCM	40.7	334	3.4×10^{4}	334	2.0×10^4	335	1.5×10^4
DMF	43.2	334	2.7×10^4	334	2.5×10^4	334	1.4×10^{4}
ACN	45.6	332	2.7×10^4	332	2.4×10^4	333	1.5×10^4
EtOH	51.9	333	2.5×10^4	332	2.6×10^{4}	333	1.7×10^4
MeOH	55.4	333	2.4×10^{4}	332	2.7×10^4	333	1.3×10^4

Table S2. Absorption properties of *L*-LyMebNI, *L*-LybNI, and *L*-NorNI in 1,4-Dioxane, THF, CHCl₃, DCM, DMF, MeCN, EtOH, and MeOH at room temperature.

7. Fluorescence spectra

Figure S29. Fluorescence spectra of *L*-LybNI in N₂-saturated 1,4-dioxane (pink), THF (green), CHCl₃ (purple), DCM (light orange), DMF (red), MeCN (orange), EtOH (light blue), and MeOH (blue) $(2.5 \times 10^{-5} \text{ M})$ at room temperature. The path length was 1 cm.

Solvent	$\lambda_{em_monomer}$ / nm	$\lambda_{\rm em}_{\rm excimer}$ / nm	$I_{\rm LW}/I_{\rm SW}$	Φ
1,4-dioxane	375	450	0.79	0.032
THF	375	455	1.3	0.036
CHCl ₃	380	447	0.39	0.068
DCM	380	456	0.82	0.075
DMF	382	468	5.7	0.039
MeCN	380	457	3.6	0.122
EtOH	383	464	2.2	0.059
MeOH	386	470	3.9	0.052

Table S3. Fluorescence properties of *L*-LybNI in 1,4-dioxane, THF, CHCl₃, DCM, DMF, MeCN, EtOH, and MeOH at room temperature.

Figure S30. Emission spectra of *L*-NorNI in N₂-saturated 1,4-dioxane, THF, CHCl₃, DCM, DMF, MeCN, EtOH, and MeOH (2.5×10^{-5} M) at room temperature. The path length was 1 cm.

Table S4. Emission properties of *L*-NorNI in 1,4-dioxane, THF, CHCl₃, DCM, DMF, MeCN, EtOH, and MeOH.

Solvent	$\lambda_{ m em}$ / nm	$\phi_{ m f}$
1,4-dioxane	376	0.007
THF	376	0.009
CHCl ₃	380	0.052
DCM	381	0.066
DMF	382	0.004
MeCN	380	0.044
EtOH	383	0.048
MeOH	385	0.056

Figure S31. Fluorescence spectra of *L*-LyMebNI in N₂-saturated MeCN (5.0×10^{-5} , 2.5×10^{-5} , 1.0×10^{-5} , 5.0×10^{-6} , and 2.5×10^{-6} M) at room temperature ($\lambda_{ex} = 332$ nm). The path length was 2 mm.

8. Fluorescence lifetimes

Figure S32. Emission decay of *L*-LybNI in N₂-saturated 1,4-dioxane, THF, CHCl₃, DCM, DMF, MeCN, EtOH, and MeOH (2.5×10^{-5} M) at room temperature ($\lambda_{ex} = 330$ nm, $\lambda_{em} > 430$ nm).

Table S5. Lifetimes and kinetic parameters of *L*-LybNI in N₂-saturated 1,4-dioxane, THF, CHCl₃, DCM, DMF, MeCN, EtOH, and MeOH (2.5×10^{-5} M) at room temperature ($\lambda_{ex} = 330$ nm, $\lambda_{em} > 430$ nm).

Solvent	Lifetime / ns $(A / \%)$			2	$k_{\rm r}$ / 10 ⁶ s ⁻¹	$k_{\rm nr} / 10^7 {\rm s}^{-1}$
Solvent	$ au_1$	$ au_2$	$ au_{ m ave}$	χ		
1,4-dioxane	0.46 (5)	31.2 (95)	29.7	1.00	1.1	3.3
THF	0.80 (3)	30.8 (97)	29.9	1.00	1.2	3.2
CHCl ₃	0.48 (11)	26.4 (89)	23.5	1.00	2.9	4.0
DCM	0.64 (5)	27.3 (95)	26.0	1.00	2.9	3.6
DMF	2.25 (3)	33.4 (97)	32.5	1.00	1.2	3.0
MeCN	3.38 (2)	39.4 (98)	38.6	1.00	3.2	2.3
EtOH	2.92 (6)	35.3 (94)	33.3	1.00	1.8	2.8
MeOH	3.36 (4)	32.0 (96)	30.9	1.00	1.7	3.0

Salvant	Lifetii	Lifetime / ns $(A / \%)$			$k_{\rm r}$ / 10 ⁶ s ⁻¹	$k_{\rm nr}$ / 10 ⁷ s ⁻¹
Solvent	$ au_1$	$ au_2$	$ au_{\mathrm{ave}}$	X		
1,4-dioxane	0.30 (53)	1.43 (47)	0.83	1.00	8.4	120
THF	0.89 (96)	14.6 (4)	1.44	1.00	6.1	69
CHCl ₃	20.8 (4)	0.63 (96)	1.43	1.00	36	66
DCM	0.64 (100)		0.64	1.00	102	146
DMF	0.34 (67)	22.6 (33)	7.68	1.00	0.55	13
MeCN	0.79 (98)	18.5 (2)	1.14	1.00	39	84
EtOH	0.78 (98)	25.6 (2)	1.27	1.00	38	75
MeOH	26.9 (3)	1.00 (97)	1.77	1.00	32	53

Table S6. Lifetimes and kinetic parameters of *L*-NorNI in N₂-saturated 1,4-dioxane, THF, CHCl₃, DCM, DMF, MeCN, EtOH, and MeOH (2.5×10^{-5} M) at room temperature ($\lambda_{ex} = 330$ nm, $\lambda_{em} > 430$ nm).

9. DFT calculations

Figure S33. Calculated structures for the ground and excited states of *L*-LyMebNI (left), obtained by optimising the X-ray structure, and its linear conformational isomer (right) with solvent MeCN.

Table S7. Calculated absorption energies in eV, absorption wavelengths, fluorescence energies, and fluorescence wavelengths of *L*-LyMebNI and its linear conformational isomer with solvents CHCl₃, MeCN, and MeOH.

	L-LyMebNI ^a				L-LyN	lebNI (conf	ormational is	somer)
	absorj	ption	fluoresce	ence	absorj	otion	fluores	cence
Solvent	energy/eV	$\lambda_{\rm max}$ / nm	energy/eV	$\lambda_{\rm max}$ / nm	energy/eV	$\lambda_{\rm max}$ / nm	energy/eV	$\lambda_{\rm max}$ / nm
CHCl ₃	3.61	344	2.97	417	3.57	348	3.17	391
MeCN	3.59	345	2.91	425	3.55	349	3.17	391
MeOH	3.59	345	2.91	425	3.56	349	3.17	391

^a The ground state geometries were obtained by optimizing the X-ray structure.

10. CD spectra

Figure S34. Calculated CD spectrum and rotatory strengths of *L*-LyMebNI from DFT calculation with SCRF = (pcm, solvent = CH3CN).

Figure S35. CD spectra of *D*-LyMebNI (orange line) and *L*-LyMebNI (blue line) in MeCN (2.5×10^{-5} M) at room temperature.

Figure S36. CD spectra of *D*-LybNI (solid line) and *L*-LybNI (dotted line) in 1,4-dioxane, THF, CHCl₃, DCM, DMF, MeCN, EtOH, and MeOH (2.5×10^{-5} M) at room temperature.

solvent	λ_1 / nm	$\Delta \varepsilon$ / M ⁻¹ cm ⁻¹	$ g_{ m abs} $	λ_2 / nm	$\Delta \varepsilon$ / M ⁻¹ cm ⁻¹	$ g_{\rm abs} $
1,4-dioxane	350	2.76	$1.0 imes 10^{-4}$	315	-2.43	$0.9 imes 10^{-4}$
THF	351	1.67	1.2×10^{-4}	316	-1.85	$1.3 imes 10^{-4}$
CHCl ₃	354	2.35	$1.0 imes 10^{-4}$	317	-1.77	$0.8 imes 10^{-4}$
DCM	353	2.25	$1.5 imes 10^{-4}$	319	-1.31	$0.9 imes 10^{-4}$
DMF	354	2.47	1.6×10^{-4}	321	-1.29	$0.7 imes 10^{-4}$
MeCN	352	3.60	$2.3 imes 10^{-4}$	316	-2.11	$1.3 imes 10^{-4}$
EtOH	353	5.81	3.7×10^{-4}	317	-3.97	$2.0 imes 10^{-4}$
МеОН	353	4.54	2.7×10^{-4}	316	-3.44	$1.8 imes 10^{-4}$

Table S8. CD properties of *D*-LybNI (solid line) in 1,4-dioxane, THF, CHCl₃, DCM, DMF, MeCN, EtOH, and MeOH (2.5×10^{-5} M) at room temperature.

Table S9. CD properties of *L*-LybNI (dotted line) in 1,4-dioxane, THF, CHCl₃, DCM, DMF, MeCN, EtOH, and MeOH (2.5×10^{-5} M) at room temperature.

solvent	λ_1 / nm	$\Delta \varepsilon$ / M ⁻¹ cm ⁻¹	$ g_{ m abs} $	λ_2 / nm	$\Delta \varepsilon$ / M ⁻¹ cm ⁻¹	$ g_{ m abs} $
1,4-dioxane	350	-3.30	1.2×10^{-4}	316	2.78	$1.0 imes 10^{-4}$
THF	351	-2.12	1.6×10^{-4}	316	1.65	$1.1 imes 10^{-4}$
CHCl ₃	354	-2.51	1.1×10^{-4}	318	2.23	1.2×10^{-4}
DCM	354	-2.55	$1.9 imes 10^{-4}$	317	1.56	1.2×10^{-4}
DMF	354	-1.84	1.2×10^{-4}	321	1.00	$0.5 imes 10^{-4}$
MeCN	352	-4.19	2.3×10^{-4}	317	2.76	$1.6 imes 10^{-4}$
EtOH	352	-5.06	$2.9 imes 10^{-4}$	317	3.72	1.9×10^{-4}
MeOH	354	-4.85	3.2×10^{-4}	317	3.41	1.7×10^{-4}

Figure S37. CD spectra of *D*-NorNI (solid line) and *L*-NorNI (dotted line) in 1,4-dioxane, THF, CHCl₃, DCM, DMF, MeCN, EtOH, and MeOH (2.5×10^{-5} M) at room temperature.

Table S10. CD properties of *D*-NorNI (solid line) and *L*-NorNI (dotted line) in 1,4-dioxane, THF, CHCl₃, DCM, DMF, MeCN, EtOH, and MeOH (2.5×10^{-5} M) at room temperature.

		D-NorNI			L-NorNI	
solvent	λ / nm	$\Delta \varepsilon$ / $M^{-1}cm^{-1}$	$ g_{ m abs} $	λ / nm	$\Delta \varepsilon$ / M ⁻¹ cm ⁻¹	$ g_{ m abs} $
1,4-dioxane	319	-0.62	$0.5 imes 10^{-4}$	320	0.64	$0.5 imes 10^{-4}$
THF	308	-0.72	$1.0 imes 10^{-4}$	321	0.66	$0.6 imes 10^{-4}$
CHCl ₃	320	-0.50	$0.5 imes 10^{-4}$	324	0.23	$0.2 imes 10^{-4}$
DCM	323	-0.35	$0.3 imes 10^{-4}$	326	0.36	$0.3 imes 10^{-4}$
DMF	337	-0.82	$0.6 imes 10^{-4}$	331	0.54	$0.4 imes 10^{-4}$
MeCN	325	-0.47	$0.4 imes 10^{-4}$	324	0.60	$0.5 imes 10^{-4}$
EtOH	322	-1.18	$0.9 imes 10^{-4}$	316	1.12	$0.9 imes 10^{-4}$
MeOH	317	-0.91	$1.0 imes 10^{-4}$	324	0.58	$0.5 imes 10^{-4}$

11. CPL spectra

Figure S38. Calculated CPL rotatory strengths of *L*-LyMebNI from DFT calculations with SCRF = (pcm, solvent = CH3CN).

Figure S39. CPL spectra of *D* (solid line) and *L* (dotted line) forms of NorNI (2.5×10^{-5} M) in MeCN at room temperature ($\lambda_{ex} = 310$ nm). The $|g_{lum}|$ value is 9.0×10^{-4} at 377 nm.

12. Cartesian coordinates and energies of the optimized geometries

-----_____ Atomic Center Atomic Number Number Coordinates (Angstroms) Х Y Type 7. _____ 8 1 2 8 3 8 4 8 5 8 7 6 8 7 8 7 9 6 10 6 6 11 6 6 12 13 6 14 6 6 15 16 0.001809 6 6 -3.621871 -2.265168 17 2.292315 1.547726 2.002597 2.296809 18 1.547726 -0.927681 6 19 0.241607 6 6 -3.244993 2.737022 1.720012 3.693319 20 -1.110432 0.132512 21 0 0 0 0 0 6 22 1.736616 4.294121 -1.155051 -1.294548 23 6 -2.407763 1.616147 6 -1.508361 -3.238109 -0.798152 24 6 6 -4.477876 2.595462 -0.501464 25 2.794117 26 -1.927167 0.552548 0 0 0 27 6 2.303186 2.167709 -2.168880 28 6 4.143304 -2.293682 -0.073741 6 1.717714 29 2.425843 2.653294 6 6 30 -2.281791 0.468037 31 32 6 0.036261 33 6 0.806311 6 34 2.550531 35 6 0.996635 1.131066 4.426882 -6.183585 36 6 0.576832 6 37 1.437553 1.316092 6 6 0.383841 38 -2.724450 0.927848 39 1.95 -0.330447 1.219803 0.009924 7.004769 *223 6.410192 -1.633762 -0.304975 40 1 1.995231 -3.826628 0.006825 -4.660744 41 1 0.272963 1 4.374367 42 3.448912 1 0.009924 -1.694229 43 0.986861 7.004769 -0.772277 -7.544223 -0.261376 -0.828833 -2.995093 -1.470112 -3.786078 44 1 -0.772277 -0.003309 45 1 1.475842 1 1 -1.614056 46 1.281417 47 48 1 2.528194 1.579626 -3.052650 -6.834821 49 1 1.989045 0.723138 1 6.396931 -1.730359 50 -1.393075 1 1 51 -5.122621 3.459140 -0.360075 -2.163144 -4.050374 52 -1.118401 0 0 0 0 1 53 -6.045410 -2.225406 1.135811 -2.913548 3.713387 2.915991 -2.111490 54 -2.913548 -1.450959 1 1.624977 55 1 0 0 56 1.717574 1.937468 3.622211 1.521516 57 1 5.356080 -1.241870 58 59 60 61 62 63

L-LyMebNI (ground state (solvent=CH3CN) in Figure 6) LysMebNIRpcnh.out Standard orientation:

SCF Done: E(RB3LYP) =	-1756.81467161	A.U. after 1 cycles
Zero-point correction=		0.493248 (Hartree/Particle)
Thermal correction to	Energy=	0.524860
Thermal correction to	Enthalpy=	0.525805
Thermal correction to	Gibbs Free Energy=	0.427272
Sum of electronic and	zero-point Energies	-1756.321424
Sum of electronic and	thermal Energies=	-1756.289811
Sum of electronic and	thermal Enthalpies=	-1756.288867
Sum of electronic and	thermal Free Energi	es= -1756.387400

Center Number	Atomic Number	Atomic Type	Co X	ordinates (A Y	ngstroms) Z
1	6	0	-3.800466	-0.541873	-2.182839
2	6	0	-3 626098	-0 486885	0.263024
4	6	0	-2 831018	0.400000	0.156688
5	6	0	-2.518693	1.223951	-1.120930
6	6	0	-3.015878	0.602918	-2.283606
7	6	0	-3.903503	-1.004554	1.550714
8	6	0	-3.441133	-0.346867	2.703560
9	6	0	-2.683720	0.815998	2.597663
10	6	0	-2.367450	1.340376	1.328807
11	6	0	-1.552548	2.566651	1.226799
12	7	0	-1.202157	3.005738	-0.055095
13	6	0	-1.662917	2.420512	-1.243368
14	6	0	-0.257764	4.145283	-0.150433
15	6	0	1.182103	3.750150	0.222706
16	6	0	1.726602	2.552484	-0.569625
17	6	0	3.005552	1.964353	0.043892
18	6	0	3.342631	0.564083	-0.505326
19	6	0	4.64368/	0.005412	0.0/0804
20	8	0	4.769084	-1.31069/	-0.155616
21	8	0	0.000091	0.000523	0.389073
22	6	0	2.223978	-0.390634	-0.303337
2.3	6	0	1.307292	-1 6750229	-1.330739
24	6	0	-0.025305	-2.060128	-1.371033
25	6	0	0.688100	-1 638081	1 077913
20	6	0	1.879365	-0.800072	0.930700
28	6	0	-0.303206	-2.127604	-2.510977
29	6	0	-1.421539	-2.942144	-2.363650
30	6	0	-1.875615	-3.311343	-1.086362
31	6	0	-1.183885	-2.893432	0.078578
32	6	0	-1.595957	-3.252564	1.385679
33	6	0	-0.868327	-2.831401	2.510668
34	6	0	0.263170	-2.034622	2.365015
35	8	0	-1.350101	2.884523	-2.344356
36	8	0	-1.171671	3.185003	2.225620
37	8	0	1.970899	-0.435441	-2.651202
38	8	0	2.580088	-0.442861	1.890495
39	1	0	0.046303	-1.832504	-3.494000
40	1	0	-1.955002	-3.291471	-3.242715
41	1	0	-2.739180	-3.962433	-0.983955
42	1	0	-2.463482	-3.894819	1.508564
43	1	0	-1.194024	-3.13165/	3.502258
44	1	0	0.830987	-1./0812/	3.22931/
45	1	0	-2.323430	1.330441	2.402370
40	1	0	-1 512736	-1 898/80	1 644074
48	1	0	-4 715591	-1 986297	-0 856932
49	1	0	-4.185231	-1.015172	-3.080342
50	1	0	-2.777002	1.031212	-3.250457
51	6	Ő	5.994092	-1.931113	0.294521
52	1	0	-0.617945	4.930289	0.517837
53	1	0	-0.315293	4.503075	-1.177371
54	1	0	1.813266	4.635298	0.067617
55	1	0	1.217295	3.522963	1.294135
56	1	0	1.900429	2.834692	-1.616471
57	1	0	0.957950	1.771997	-0.583746
58	1	0	2.902683	1.902191	1.131440
59	1	0	3.863526	2.614130	-0.158883
60	1	0	3.504284	0.636240	-1.585748
61	1	0	6.095464	-1.819876	1.376614
62	1	0	6.852401	-1.479654	-0.208553
63	1	0	5.899392	-2.982162	0.024151
CF Dono:	E (DD 3T VD)	1756	79965522		1 avaloc
ero-poir	t (RBJLIP)	 	12200023	A.U. AILEY	(Hartree/Dartic
Thermal	correction	to Energy=		0.5215	85
Thermal	correction	to Enthalr	y=	0.5225	29
		· ·	-		

L-LyMebNI (excited state (solvent=CH3CN) in Figure 6) LysMebNI2R.tdoptpcmh.out Standard orientation:

Ther	mal	L correction	n to	Gibbs	Free	Energy=
Sum	of	electronic	and	zero-p	oint	Energies=
Sum	of	electronic	and	therma	l Ene	ergies=
Sum	of	electronic	and	therma	l Ent	chalpies=
Sum	of	electronic	and	therma	l Fre	ee Energies=

y=	0.428350
ies=	-1756.214349
=	-1756.182795
es=	-1756.181851
rgies=	-1756.276030

Center Number	Atomic Number	Atomic Type	Co X	ordinates (A Y	ngstroms) Z
1	6	0	4.621604	3.265709	1.103949
2	6	0	5.752114	2.527021	1.399156
3	6	0	5.949992	1.242118	0.825846
4	6	0	4.956167	0.726763	-0.062376
5	6	0	3.803183	1.500781	-0.352047
6	6	0	3.644069	2.752335	0.225243
/ Q	6	0	7 252018	-0 79443	1.098/95
9	6	0	6.267935	-1.298158	-0.360372
10	6	0	5.133964	-0.552721	-0.648451
11	6	0	4.109333	-1.091891	-1.569709
12	7	0	2.969832	-0.307684	-1.802175
13	6	0	2.768046	0.977266	-1.272015
14	6	0	1.949778	-0.858074	-2.724947
15	6	0	1.025430	-1.898229	-2.075750
16	6	0	0.121557	-1.351846	-0.960987
1 / 1 0	6	0	-0.///600	-2.459444	-0.395908
19	6	0	-1 046079	-1 832460	2 094528
20	8	0	-1.931049	-1.470251	3.036731
21	8	0	0.131292	-2.046814	2.315686
22	7	0	-2.738709	-1.075261	0.413524
23	6	0	-3.976456	-1.535920	-0.076218
24	6	0	-4.980290	-0.515016	-0.440902
25	6	0	-4.682622	0.863171	-0.284369
26	6	0	-3.425298	1.280964	0.222381
27	6	0	-2.407429	0.277241	0.593804
28	6	0	-6.215104	-0.908/20	-0.93/249
29	6	0	-6 913890	1 /01931	-1.289612
31	6	0	-5 660537	1 842102	-0 640992
32	6	0	-5.341182	3.216853	-0.476720
33	6	0	-4.109317	3.602704	0.018255
34	6	0	-3.147381	2.632565	0.369652
35	8	0	1.765398	1.626074	-1.570323
36	8	0	4.227902	-2.185597	-2.123691
37	8	0	-4.185770	-2.743248	-0.189867
38	1	0	-1.306345	0.5/962/	1.050142
39 40	1	0	-0.420932	-1.966749	-1.051282
41	1	0	-7 660831	2 143371	-1 416570
42	1	Ő	-6.082425	3.964486	-0.747132
43	1	0	-3.875193	4.656017	0.138835
44	1	0	-2.180195	2.934967	0.757571
45	1	0	6.388800	-2.275231	-0.816689
46	1	0	8.132742	-1.391976	0.732020
47	1	0	7.855778	0.838088	1.774189
48	1	0	6.505494	2.922610	2.0/5531
49	1	0	4.4/9423	4.240000	-0 005847
51	-	0	-1 406849	-1 241303	4 363052
52	1	õ	2.487688	-1.310867	-3.559967
53	1	0	1.375092	-0.008856	-3.094045
54	1	0	0.402966	-2.310574	-2.882803
55	1	0	1.630411	-2.730123	-1.694802
56	1	0	-0.490194	-0.535444	-1.363211
57	1	0	0.729991	-0.924597	-0.157723
58	1	0	-0.153873	-3.287943	-0.037917
59	1	U	-1.398495	-2.868412	-1.2U33U5
0U 61	⊥ 1	0	-0 660100	-3.000434	0.940402 4 339084
62	± 1	0	-0.958424	-2.157223	4.755101
63	1	õ	-2.266062	-0.946844	4.964634
SCF Done:	E(RB3LYP)	= -1756.8	81307325	A.U. after	5 cycles
2ero-poin	t correctio	on=		0.493325	(Hartree/Particl
Thermal	correction	to Energy=	:	0.5249	18
Thermal	correction	to Enthalp	y=	0.5258	62

L-LyMebNI (conformational isomer, ground state (solvent=CH3CN) in Table S7) LysMebNIA2pcmh.log Standard orientation:

Ther	mal	L correction	n to	Gibbs	Free	Energy=
Sum	of	electronic	and	zero-p	oint	Energies=
Sum	of	electronic	and	therma	l Ene	ergies=
Sum	of	electronic	and	therma	l Ent	chalpies=
Sum	of	electronic	and	therma	l Fre	ee Energies=

0.427307
-1756.319748
-1756.288155
-1756.287211
-1756.385766

L-LyMebNI (conformational isomer, excited state (solvent=CH3CN) in Table S7) LysMebNIA2Rtdoptpcmh.log

enter Number	Atomic Number	Atomic Type	Coordinates (Angstroms)				
		туре					
1	6	0	4.611639	3.275059	1.069589		
2	6	0	5.738130	2.535788	1.3/8445		
3	6	0	5.9346/5	1.244185	0.819952		
4 5	6	0	4.943511 3 79/62/	1 /97366	-0.007679		
5	6	0	3 636785	2 755557	0.191470		
7	6	0	7.078232	0.451186	1,107103		
8	6	0	7.231578	-0.799769	0.539038		
9	6	0	6.250209	-1.309573	-0.337569		
10	6	0	5.120059	-0.563629	-0.639029		
11	6	0	4.098384	-1.109424	-1.559583		
12	7	0	2.962580	-0.324170	-1.806013		
13	6	0	2.762518	0.967335	-1.291269		
14	6	0	1.944886	-0.881805	-2.727039		
15	6	0	1.016836	-1.914169	-2.070676		
16	6	0	0.114098	-1.359103	-0.959279		
17	6	0	-0.781141	-2.463235	-0.381353		
18	6	0	-1.737069	-2.100906	0.770229		
19	6	0	-1.0456/5	-1.815936	2.103/54		
20	8	0	-1.929936	-1.449/94	3.043000		
22	0 7	0	-2 735486	-2.032010	2.320322		
22	6	0	-3 970297	-1 523316	-0 070110		
24	6	0	-4 960539	-0 512939	-0 436506		
2.5	6	0	-4.665068	0.863774	-0.285626		
26	6	0	-3.408888	1.275478	0.220755		
27	6	0	-2.403762	0.280555	0.591683		
28	6	0	-6.234589	-0.928329	-0.948990		
29	6	0	-7.172884	0.023926	-1.294806		
30	6	0	-6.891871	1.407193	-1.149144		
31	6	0	-5.644782	1.847640	-0.646735		
32	6	0	-5.320335	3.215264	-0.483783		
33	6	0	-4.056650	3.611484	0.025946		
34	6	0	-3.109772	2.669569	0.376318		
35	8	0	1.763593	1.616216	-1.601/57		
30	8	0	4.21626/	-2.209318	-2.101379		
30	0	0	-1 204242	-2.742100	1 053724		
39	1	0	-6 433349	-1 988113	-1 054862		
40	1	Õ	-8.139625	-0.280359	-1.684305		
41	1	0	-7.642868	2.141435	-1.426947		
42	1	0	-6.052440	3.971336	-0.753867		
43	1	0	-3.840414	4.669502	0.138155		
44	1	0	-2.139997	2.954247	0.766657		
45	1	0	6.370152	-2.291596	-0.783339		
46	1	0	8.109273	-1.397781	0.765109		
47	1	0	7.834241	0.844108	1.782222		
48	1	0	6.489351	2.935939	2.054542		
49	1	0	4.470579	4.261028	1.502035		
50	1	0	2.752472	3.335784	-0.050637		
51	6	0	-1.404331	-1.217226	4.370421		
52	1	0	2.485067	-1.344134	-3.555398		
53	1	U	1.3/3/82	-0.034951	-3.106918		
54 55	1	U	U.393319	-2.330833	-2.0/4920 -1 600700		
55 56	⊥ 1	0	1.0193/4 -0 5018/3	-2./44900 -0 5/8/37	-1.366880		
57	⊥ 1	0	0.301043	-0 922204	-0 161774		
58	⊥ 1	0	-0 155334	-3 286987	-0 016144		
59	⊥ 1	0	-1.403211	-2.880982	-1.183352		
60	± 1	n	-2.340270	-2.995016	0.959118		
61	1	0	-0.660179	-0.417615	4.343884		
62	1	õ	-0.954699	-2.131788	4.764436		
63	- 1	0	-2.262889	-0.921925	4.972611		
ro-poin	t correctio	on=		0.489448	(Hartree/Parti		

Ther	mal	L correctior	n to	Gibbs	Free	Energy=
Sum	of	electronic	and	zero-p	oint	Energies=
Sum	of	electronic	and	therma	l Ene	ergies=
Sum	of	electronic	and	therma	l Ent	thalpies=
Sum	of	electronic	and	therma	l Fre	ee Energies=

0.422587
-1756.203306
-1756.171186
-1756.170242
-1756.270167

Center Number	Atomic Number	Atomic Type	Co X	ordinates (A Y	ngstroms) Z
1	 و		-2 903780	-0 616307	1 784777
2	8	0	-5.063056	-1.364860	-0.210403
3	8	0	-2.271839	-0.331717	-2.729127
4	8	0	0.795020	-0.654491	1.552015
5	8	0	3.969593	-3.404208	-0.255201
6 7	8	0	-4.383465	-3.379159	-0.400802
8	7	Ő	2.367170	-2.028110	0.614256
9	6	0	-2.264269	0.234223	-1.637762
10	6	0	4.075180	0.204127	0.222200
12	6	0	4.50/055	-1.088112	-0.1/2128
13	6	0	1.903733	-0.770668	1.033930
14	6	0	-2.592547	0.084887	0.825797
15	6	0	2.802332	0.388763	0.820584
16	6	0	-1.989283	1.682137	-1.496170
10	6	0	3.628742	-2.261049	0.044328
19	6	0	-2.012326	2.291723	-0.214978
20	6	0	3.236184	2.771051	1.009285
21	6	0	-1.745310	3.690364	-0.092568
22	6	0	-1.776578	4.279154	1.200326
23	6	0	2.393757	1.656156	1.207531
24	6	0	4 478955	-3.211095	0.842902
26	6	0	-2.777833	-1.935557	-0.569810
27	6	0	-2.326980	2.136945	2.191393
28	6	0	-4.138772	-2.311012	0.025305
29	6	0	-1.710654	2.441329	-2.622928
30	6	0	-2.060554	3.517114	2.318090
32	6	0	-1.627048	-2.803021	-0.033165
33	6	0	5.753809	-1.257205	-0.755037
34	б	0	-1.446687	3.822821	-2.507475
35	6	0	6.602766	-0.148750	-0.962066
36	6	0	6.201684	1.118709	-0.584053
38	6	0	-0.370619	-2.754293	-0.915236
39	6	0 0	-6.398752	-1.641482	0.262430
40	1	0	-1.997562	-3.833180	0.009560
41	1	0	0.341457	-4.668921	-0.197279
42	1	0	-1.230917	4.402267	-3.400207
43 44	1	0	-6 987941	-1.724810	-0.014281
45	1	Õ	7.575631	-0.298875	-1.420694
46	1	0	0.814689	-2.943462	1.643025
47	1	0	1.490894	-3.823393	-1.218628
48	1	0	-2.550497	1.535958	3.066819
49	⊥ 1	0	0.000/05 -6.392132	1.9/18/2 -1.774840	-U. /42512 1.346842
51	1	0	5.127128	3.472504	0.272841
52	1	0	2.157772	-4.011458	1.193946
53	1	0	6.067298	-2.253396	-1.049850
54	1	0	2.900570	3.756341	1.319235
55 56	1	U	-2.8/6547	-2.111707 1 957966	-1.646208 -3.59/270
57	1	0	-1.574618	5.343067	1.297885
58	1	0	-1.399308	-2.502258	0.993123
59	1	0	1.417356	1.778084	1.664919
60	1	0	-0.640490	-3.063067	-1.934258
61	1	0	-1.262057	5.500624	-1.180556
62 63	⊥ 1	0	-2.U81839 -6 791707	3.97/590 -2 540136	J.JU⊥J88 -0 219159
	±				
SCF Done:	E(RB3LYP) =	-1756.	80714974	A.U. after	1 cycles
Zero-poin	nt correction	=		0.493472	(Hartree/Particle
Thermal	correction t	o Energy	=	0.5250	13
rnermal	correction to	o Enthalj	oy=	0.5260	1 /

L-LyMebNI (ground state (solvent= Chloroform) in Table S7) LysMebNIXCpcmh.out Standard orientation:

Ther	mal	L correction	n to	Gibbs	Free	Εı	nergy=
Sum	of	electronic	and	zero-p	oint	Εı	nergies=
Sum	of	electronic	and	therma	l En	erg	gies=
Sum	of	electronic	and	therma	l En	tha	alpies=
Sum	of	electronic	and	therma	l Fr	ee	Energies=

Center Number	Atomic Number	Atomic Type	Co X	ordinates (A Y	ngstroms) Z
1	6	0	-3.792396	-0.546402	-2.173470
2	6	0	-4.077121	-1.105970	-0.915406
3	6	0	-3.612751	-0.489650	0.272114
4	6	0	-2.825278	0./0038/	0.16254/
5	6	0	-2.521106	1.228307	-2 276039
07	6	0	-3.016094	-1 005013	-2.2/0938
8	6	0	-3 421607	-0.344122	2 712284
9	6	0	-2.669611	0.821877	2.602755
10	6	0	-2.361486	1.346034	1,332176
11	6	Ő	-1.554142	2.579910	1.228005
12	7	0	-1.210659	3.019872	-0.055422
13	6	0	-1.676733	2.435408	-1.242542
14	6	0	-0.265526	4.158939	-0.154841
15	6	0	1.173550	3.761012	0.219016
16	6	0	1.713689	2.558731	-0.569283
17	6	0	2.994328	1.971851	0.041551
18	6	0	3.331289	0.572427	-0.510962
19	6	0	4.637020	0.019574	0.060141
20	8	0	4.749623	-1.305328	-0.128831
21	8	0	5.514482	0.710905	0.541835
22	7	0	2.214844	-0.383992	-0.369047
23	6	0	1.565115	-0.810290	-1.543789
24	6	0	0.400102	-1.685121	-1.376155
25	6	0	-0.020377	-2.075020	-0.077568
26	6	U	0.688084	-1.645420	1.073176
27	6	0	1.8/1626	-0.793408	0.928163
28	6	0	-0.294379	-2.144265	-2.516451
29	6	0	-1.403915	-2.9/1041	-2.3/045/
30	6	0	-1 160492	-3.340034	-1.094038
30	6	0	-1.573650	-2.922440	1 370702
22	6	0	-0.849877	-2 862302	2 504643
31	6	0	0.040077	-2 049408	2 359877
35	8	0	-1 382270	2 903889	-2 343661
36	8	0	-1.178384	3.198522	2.225636
37	8	0	1,966892	-0.440355	-2.655431
38	8	0	2.561285	-0.426389	1.889509
39	1	0	0.056621	-1.844190	-3.497431
40	1	0	-1.930393	-3.328258	-3.250983
41	1	0	-2.709576	-4.010144	-0.993157
42	1	0	-2.430401	-3.947594	1.502139
43	1	0	-1.167549	-3.172315	3.496165
44	1	0	0.837843	-1.716757	3.222061
45	1	0	-2.308439	1.340828	3.483701
46	1	0	-3.653466	-0.748345	3.692561
47	1	0	-4.490742	-1.901041	1.659103
48	1	0	-4.694839	-1.996319	-0.844616
49	1	0	-4.175303	-1.022787	-3.070280
50	1	0	-2.779497	1.034987	-3.243093
51	6	0	5.974212	-1.916006	0.329567
52	1	0	-0.624432	4.945622	0.512329
53	1	U	-0.324417	4.512122	-1.183483
54	1	U	1.806940	4.643864	0.058902
55 50	1	U	1.2096/7	3.540006	1.291001
20 57	1	U	T.88000.	∠.୪33154 1 770100	-1.01930/ -0.576150
J / E 0	1	0	0.944609	1.00C007	-U.J/0139 1 120277
50 50	1	0	2 050000	1.900984 2 621622	1.1292// -0 160052
59	1	0	3.032339 3 /07003	2.021033 0 615226	-U.100932 _1 502332
0U 61	1	0	5.40/003	U.043226 _1 767515	-1.J92332 1 /06100
62 62	1	0	0.00/022 6 830030	-1 /0/313	_0 105700
02 63	⊥ 1	0	0.030930 5 8715/0	-1.400000 -2 975/00	-0.133/23 0 096220
F Done:	⊥ E (RB3LYP)	= -1756.	79161212	-2.9/3482 A.U. after	1 cycles
ro-poin	t correctio	on=		0.490070	(Hartree/Partic
nermal	correction	to Energy=	-	0.5216	80
hormol	correction	to Enthalr		0 5226	24

L-LyMebNI (excited state (solvent=Chloroform) in Table S7) LysMebNICR.log Standard orientation:

The	rmal	L correction	n to	Gibbs 1	Free	Energy=
Sum	of	electronic	and	zero-po	oint	Energies=
Sum	of	electronic	and	therma	l Ene	rgies=
Sum	of	electronic	and	therma	l Ent	halpies=
Sum	of	electronic	and	therma	l Fre	e Energies=

	0.428176
	-1756.204423
	-1756.172813
	-1756.171869
=	-1756.266317

L-LyMebNI (conformational isomer, ground state (solvent=Chloroform) in Table S7) LysMebNIC2pcmh.log Standard orientation:

Center	Atomic	Atomic	Co	ordinates (Angstroms)		
		туре		T		
1	6	0	-4.525879	3.300815	-1.090266	
2	6	0	-5.642486	2.561140	-1.431023	
3	6	0	-5.856368	1.2/1181	-0.8/5329	
4	6	0	-4.892180	U./52253 1 529361	0.043034	
5	6	0	-3 578123	2 78/19/	-0 180947	
7	6	0	-6.990186	0.476391	-1.193923	
8	6	0	-7.159104	-0.773115	-0.627829	
9	6	0	-6.203510	-1.280864	0.278394	
10	6	0	-5.084334	-0.533101	0.611334	
11	6	0	-4.087996	-1.078919	1.561725	
12	7	0	-2.958779	-0.293265	1.836370	
13	6	0	-2.748401	1.002296	1.333647	
14	6	0	-1.960805	-0.853324	2.776260	
15	6	0	-1.032594	-1.897810	2.139530	
16 17	6	0	-0.131063	-1.365292	1.015984	
10	6	0	1 723046	-2.4/9204	-0 602461	
19	6	0	1 018237	-1 926027	-2 030433	
20	8	õ	1.890997	-1.573144	-2.990530	
21	8	0	-0.154757	-2.168693	-2.236409	
22	7	0	2.715624	-1.097282	-0.386329	
23	6	0	3.963314	-1.528051	0.104168	
24	6	0	4.957623	-0.482456	0.430430	
25	6	0	4.639451	0.887071	0.241813	
26	6	0	3.372059	1.273580	-0.264330	
27	6	0	2.364974	0.245649	-0.605231	
28	6	0	6.201444	-0.846871	0.924688	
29	6	0	6 960673	0.13/933	1.243/98	
30	6	0	5 606029	1 888505	0 565868	
32	6	0	5.263838	3.253801	0.371631	
33	6	0	4.021876	3.608654	-0.120351	
34	6	0	3.071455	2.616021	-0.440552	
35	8	0	-1.767992	1.657428	1.680555	
36	8	0	-4.222867	-2.175965	2.101823	
37	8	0	4.191830	-2.726965	0.251833	
38	8	0	1.261167	0.521970	-1.065734	
39	1	0	6.426637	-1.899288	1.062879	
40	1	0	8.129194	-0.164447	1.629488	
41	1	0	7.008043	2.230000	1.310020	
42	1	0	3 770077	4.019234	-0 262225	
44	1	0	2.094877	2.891702	-0.824948	
45	1	0	-6.332812	-2.262721	0.722071	
46	1	0	-8.029125	-1.372700	-0.878865	
47	1	0	-7.726479	0.866733	-1.892312	
48	1	0	-6.372484	2.959439	-2.131418	
49	1	0	-4.370996	4.285211	-1.522038	
50	1	0	-2.699671	3.362243	0.086538	
51	6	0	1.345098	-1.378411	-4.311853	
52	1	U	-2.516083	-1.306743	3.399980	
53 57	1	0	-1.38/61/ -0 209091	-0.00/96/ -2 207020	J.⊥J0040 2 952407	
55	⊥ 1	0	-1 635431	-2 736298	1 770345	
56	1	0	0.472328	-0.533412	1.399276	
57	1	Ũ	-0.740389	-0.962230	0.201203	
58	1	0	0.159282	-3.323181	0.147986	
59	1	0	1.408201	-2.859131	1.292435	
60	1	0	2.332909	-3.048098	-0.851695	
61	1	0	0.590689	-0.588252	-4.292395	
62	1	0	0.900174	-2.306667	-4.678648	
63	1	0	2.191797	-1.086608	-4.932750	
		_ 1750	90540044	→ II → £±→		
ber Done:	E(KB3LIP)	1/30.	00049944	A.U. AITER	J CYCLES	
Zero-noin	T ('() Y' Y' () () T ' '	n =				

Thermal correction to Enthalpy=0.525983Thermal correction to Gibbs Free Energy=0.426730Sum of electronic and zero-point Energies=-1756.312091Sum of electronic and thermal Energies=-1756.280461Sum of electronic and thermal Enthalpies=-1756.279517Sum of electronic and thermal Free Energies=-1756.378769

L-LyMebNI (conformational isomer, excited state (solvent=Chloroform) in Table S7) LysMebNIC2Rtdoptpcmh.log Standard orientation:

Standard (orientation:
------------	--------------

Center Number	Atomic Number	Atomic Type	Co X	Coordinates (Angstroms) X Y Z			
1	6	0	3.203474	3.616957	0.602827		
2	6	0	4.268816	3.056986	1.329835		
3	6	0	4.738017	1.755610	1.036914		
4	6	0	4.105805	1.022067	-0.009293		
5	6	0	3.038270	1.596866	-0.728655		
6	6	0	2.592629	2.897597	-0.419122		
/	6	0	5.802223	1.150/00	1./40/39		
8	6	0	6.22964U	-0.148953	1.413945		
10	6	0	5.608208	-0.860394	0.392260		
11	6	0	4.J42041 2.070214	-0.201013	-0.322447		
12	0	0	3.8/UZI4 2.700651	-1.065058	-1.402282		
13	6	0	2.700000	0 833819	-2.030033		
14	6	0	2.035318	-1 305302	-3 030208		
15	6	0	1 128052	-2 341691	-2 347637		
16	6	0	1.120032	-1 755617	_1 271286		
17	6	0	-0 727963	-2 81989/	-0 679175		
18	6	0	-1 558963	-2 411205	0.551704		
19	6	0	-0 746088	-2 333591	1 842164		
20	8	0	-1 524664	-1 997103	2 888223		
21	8	0	0 413752	-2 691438	1 959643		
22	7	0	-2.400788	-1.220996	0.342455		
23	6	0	-3.703396	-1.457175	-0.144970		
2.4	6	0	-4.536148	-0.291639	-0.366208		
2.5	6	0	-4.032967	1.008238	-0.079077		
2.6	6	0	-2.711642	1.189841	0.423740		
27	6	0	-1.860517	0.044299	0.640844		
2.8	6	0	-5.850500	-0.450787	-0.865853		
29	6	0	-6.656912	0.665797	-1.075848		
30	6	0	-6.185878	1.952633	-0.799234		
31	6	0	-4.874498	2.158942	-0.297822		
32	6	0	-4.353987	3.447592	0.000730		
33	6	0	-3.056570	3.599543	0.497618		
34	6	0	-2.235681	2.493924	0.710444		
35	8	0	1.467644	1.353362	-2.471669		
36	8	0	4.260493	-2.187943	-1.692741		
37	8	0	-4.075824	-2.632021	-0.366252		
38	8	0	-0.686731	0.111756	1.081594		
39	1	0	-6.210235	-1.451645	-1.077322		
40	1	0	-7.666340	0.535241	-1.459569		
41	1	0	-6.825181	2.816798	-0.965313		
42	1	0	-4.985053	4.318351	-0.161180		
43	1	0	-2.683770	4.596723	0.722440		
44	1	0	-1.229744	2.608294	1.098610		
45	1	0	5.924320	-1.864946	0.136032		
46	1	0	7.046386	-0.598625	1.967164		
47	1	0	6.291552	1.694953	2.542520		
48	1	0	4.736576	3.625894	2.127125		
49	1	0	2.855097	4.614299	0.845831		
50	1	0	1.766445	3.313876	-0.983281		
51	6	0	-0.875445	-1.911596	4.168281		
52	1	0	2.769623	-1.793461	-3.673972		
53	1	0	1.452028	-0.605843	-3.627311		
54	1	U	0.535981	-2.807943	-3.14/31/		
55	1	U	1./45365	-3.136692	-1.912351		
20	1	U	-0.391560	-0.938/05	-1.69/951		
5/ F0	1	U	0.0004/3	-1.318481	-0.403922		
28 50	1	U	-0.141800	-3.1500018	-U.J00939 _1 447000		
59	1	0	-1.43/321 -2 2775/1	-3.132339	-1.44/UUU 0.710106		
0U 61	1	0	-2.2//341	-3.221U38 _1 152000	U./IOIU0 / 130625		
6.0 D T	1	0	-0.008429	-1.133090	4.1J902J A AA7160		
63	⊥ 1	0	-0.440/04	-2.0//984	4.971197		
	±		±.0J/±J2	±.023009	1011101		
CF Done:	E(RB3LYP)	= -1756.	79624240	A.U. after	1 cycles		
ero-poin	nt correctio	on=		0.489935	(Hartree/Particle		
Thermal	correction	to Energy=	=	0.5219	59		

Thermal correction to Enthalpy=0.522903Thermal correction to Gibbs Free Energy=0.423032Sum of electronic and zero-point Energies=-1756.195646Sum of electronic and thermal Energies=-1756.163622Sum of electronic and thermal Enthalpies=-1756.162678Sum of electronic and thermal Free Energies=-1756.262550

Center	Atomic	Atomic	Co	ordinates (Angstroms)		
Jumber	Number	Туре	X	Y	Ζ	
1	8	0	-2.895287	-0.590294	1.790348	
2	8	0	-5.077106	-1.366172	-0.187206	
3	8	0	-2.317638	-0.342990	-2.731455	
4	8	0	0.823821	-0.709030	1.620098	
5	8	0	3.954897	-3.401461	-0.339366	
6	7	0	-2.529121	-0.475901	-0.453998	
7	8	0	-4.372431	-3.344385	0.642310	
8		0	2.3/0622	-2.049391	0.59/0/4	
9	6	0	-2.28/03/	0.233901	-1.645011	
11	6	0	4.071934	-1 088779	0.240459	
12	6	0	4 924024	1 323384	0.050191	
13	6	0	1.919409	-0.805870	1.067833	
14	6	0	-2.590952	0.105501	0.822228	
15	6	0	2.810067	0.359693	0.866574	
16	6	0	-1.995584	1.677575	-1.517618	
17	6	0	3.621867	-2.265287	-0.000026	
18	б	0	-2.293043	1.547401	0.928168	
19	6	0	-2.002651	2.296741	-0.240779	
20	6	0	3.245174	2.738011	1.107321	
21	б	0	-1.720293	3.693269	-0.131241	
22	б	0	-1.737788	4.293810	1.156433	
23	6	0	2.407723	1.617414	1.292150	
24	6	0	1.507989	-3.237221	0.800143	
25	6	0	4.478217	2.595759	0.498842	
26	6	0	-2.793793	-1.927235	-0.553105	
27	6	0	-2.304/28	2.16/10/	2.1694//	
20	6	0	-4.143333	-2.293923	0.071911	
29	6	0	-2 024238	2.420230	2 282839	
31	6	0	0 746521	-3 662619	-0 465865	
32	6	0	-1 633007	-2 793190	-0 035942	
33	6	0	5.734896	-1.240416	-0.804990	
34	6	0	-1.435350	3.804901	-2.549061	
35	6	0	6.579866	-0.126489	-0.996149	
36	6	0	6.184056	1.130172	-0.577652	
37	6	0	-1.437179	4.427083	-1.314512	
38	6	0	-0.383553	-2.725238	-0.926972	
39	6	0	-6.410440	-1.633888	0.302067	
40	1	0	-1.995617	-3.826672	-0.006172	
41	1	0	0.330370	-4.660935	-0.269815	
42	1	0	-1.218145	4.375001	-3.447203	
43	1	0	-0.009612	-1.695035	-0.986486	
44	1	0	-7.004670	-0.771991	0.000866	
45	1	0	7.544791	-0.263267	-1.474953	
46	1	U	0.828148	-2.993310	1.615525	
4 /	1	U	1.470425	-3.787458	-1.2/8867	
48	1	U	-2.530215	1.007040	3.052955	
49	1	U	6.835432	1.98/942 _1 701514	-U./245/8	
JU 51	1	0	-0.39//08 5 100100	3 450000	1.390080 0 356001	
J⊥ 52	⊥ 1	0	J.123122 2 162653	J.4J9∠3U _4 0/017/	U.JJ000⊥ 1 121/80	
52 53	⊥ 1	0	2.1020JJ 6 0/5662	-2 2268/6	-1 133/01	
52	⊥ 1	0	0.04J002 2 913780	2.220040 3 714716	1 446939	
55	± 1	n	-2.914737	-2.111357	-1.625674	
56	± 1	n	-1.715520	1,938021	-3.621247	
57	1	0	-1.522927	5.355797	1.243599	
58	1	0 0	-1.397499	-2.506042	0.992668	
59	1	Ő	1.439450	1.729919	1.768664	
60	1	õ	-0.663534	-3.008536	-1.950502	
61	-	0	-1.222291	5.489726	-1.235204	
62	1	0	-2.035276	4.014398	3.261880	
63	1	0	-6.801083	-2.548406	-0.150196	
F Done:	E(RB3LYP)	= -1756.	81454236	A.U. after	1 cycles	
ro-poin	t correctio	on=		0.493253	(Hartree/Partic	
ermal	correction	to Energy=	=	0.5248	65	
ermal	correction	to Enthalp	=ve	0.5258	09	

L-LyMebNI (ground state (solvent=methanol) in Table S7) LysMebNIRXMeOHpcmh.out Standard orientation:

Ther	mal	L correctior	n to	Gibbs	Free	Energy=
Sum	of	electronic	and	zero-p	oint	Energies=
Sum	of	electronic	and	therma	l Ene	ergies=
Sum	of	electronic	and	therma	l Ent	thalpies=
Sum	of	electronic	and	therma	l Fre	ee Energies=

0.427295
-1756.321290
-1756.289678
-1756.288734
-1756.387248

enter umber	Atomic Number	Atomic Type	Co X	ngstroms) Z	
1	 6	0	-3.799923	-0.542181	-2.182516
2	6	0	-4.090318	-1.101147	-0.925280
3	6	0	-3.625340	-0.487104	0.263339
4	6	0	-2.830690	0.698568	0.156886
5	6	0	-2.518675	1.224107	-1.120779
6	6	0	-3.015746	0.602884	-2.283393
/	6	0	-3.90242/	-1.004805	1.551095
8	6	0	-3.440151	-U.34691/	2.703865
9	6	0	-2.003140	1 340629	1 329030
11	6	0	-1 552686	2 567186	1 226831
12	7	0	-1 202419	3 006223	-0 055118
13	6	0	-1 663342	2 421006	-1 243353
14	6	0	-0 257984	4 145738	-0 150560
15	6	0	1,181801	3.750474	0.222755
16	6	0	1.726240	2.552717	-0.569464
17	6	0	3 005072	1 964447	0 044195
18	6	0	3.342251	0.564304	-0.505307
19	6	0	4.643475	0.005730	0.070543
2.0	8	0	4.768639	-1.310537	-0.155196
21	8	0	5.508608	0.689024	0.588140
22	7	0	2.223670	-0.390518	-0.365585
23	6	0	1.567273	-0.808354	-1.538845
24	6	0	0.398101	-1.675310	-1.372031
25	6	0	-0.025322	-2.060518	-0.072785
26	6	0	0.687904	-1.638337	1.077742
27	6	0	1.879016	-0.799979	0.930673
28	6	0	-0.302974	-2.127988	-2.511223
29	6	0	-1.421188	-2.942718	-2.364019
30	6	0	-1.875307	-3.312040	-1.086775
31	6	0	-1.183750	-2.894058	0.078243
32	6	0	-1.595801	-3.253323	1.385312
33	6	0	-0.868275	-2.832116	2.510355
34	6	0	0.263052	-2.035061	2.364797
35	8	0	-1.350927	2.885109	-2.344375
36	8	0	-1.172036	3.185716	2.225583
37	8	0	1.971098	-0.435869	-2.651264
38	8	0	2.579459	-0.442647	1.890542
39	1	0	0.046631	-1.832770	-3.494176
40	1	0	-1.954477	-3.292140	-3.243154
41	1	0	-2.738728	-3.963353	-0.984475
42	1	0	-2.463180	-3.895810	1.508106
43	1	0	-1.193886	-3.132555	3.501923
44	1	0	0.830825	-1.708477	3.229090
45	1	0	-2.324907	1.330828	3.482465
46	1	0	-3.6/6591	-0./51893	3.682624
4 /	1	0	-4.511338	-1.898943	1.644585
48	1	0	-4./14412	-1.986913	-0.856487
49	1	0	-4.184383	-1.015659	-3.0/99/6
50	1 C	0	-2.///04/ E 002622	1 020700	-3.230240
52	0	0	-0 619150	-1.930780	0.293131
52	1	0	-0.010100	4.930021	1 177555
57	1	0	1 012001	4.505505	-1.177555
55	⊥ 1	0	1 216979	3 523300	1 294213
55	⊥ 1	0	1 0001/7	2 22/01/	-1 616327
50	⊥ 1	0	1.500147	2.034014 1 772202	-0 583643
5.2	⊥ 1	0	2 902016	1 902011	1 131711
50 50	⊥ 1	0	2.302040 3 863001	1.JUZUII 2.61/270	-0 158250
60	⊥ 1	0	3 503750	0 636637	-1 585743
61	⊥ 1	0	5.303/30	-1 818/80	1 377075
62	⊥ 1	0	6 851887	-1 479988	-0 208653
63	⊥ 1	0	5 808617	-2 982074	0.200000
	±		5.050012	2.902074	U.UZJOUJ
F Done:	E (RR31.YP)	= -1756	79950182	A.U. after	1 cvcles
ro-noin	t correctio	- 1,50.	, , , , , , , , , , , , , , , , , , , ,	0 490035	(Hartree/Partic
ermal	correction	to Eperav-		0.5015	,
				0.0210	

L-LyMebNI (excited state (solvent=methanol) in Table S7) LysMebNI2RMeOH.tdoptpcmh.out Standard orientation:

Ther	mal	L correctior	n to	Gibbs F	ree	Energy=
Sum	of	electronic	and	zero-po	int	Energies=
Sum	of	electronic	and	thermal	Ene	rgies=
Sum	of	electronic	and	thermal	Ent	halpies=
Sum	of	electronic	and	thermal	Fre	e Energies=

	0.428361
	-1756.214170
	-1756.182616
	-1756.181672
=	-1756.275844

L-LyMebNI (conformational isomer, ground state (solvent=methanol) in Table S7) LysMebNIMeOH2pcmh.out Standard orientation:

Center Number	Atomic Number	Atomic Type	Co X	ordinates (A Y	ngstroms) Z
1	6	0	4.576897	3.285002	1.092476
2	6	0	5./04/63	2.549/52	1.405847
3	6	0	J.911519 4 020115	1.201090	0.0542853
4	6	0	4.929115	1 500070	-0.362273
5	6	0	3 610671	2 76/795	0.205284
0	6	0	7 056927	0 172922	1 13/200
8	6	0	7 220296	-0 774627	0 561578
9	6	0	6 247545	-1 285115	-0 324201
10	6	0	5.115921	-0.543266	-0.630133
11	6	0	4.103427	-1.089699	-1.560468
12	7	0	2.965716	-0.308665	-1.811493
13	6	0	2.755394	0.979166	-1.291552
14	6	0	1.957688	-0.866247	-2.743121
15	б	0	1.029999	-1.907311	-2.100092
16	б	0	0.123086	-1.365217	-0.985811
17	6	0	-0.778667	-2.474617	-0.428105
18	6	0	-1.733306	-2.129661	0.730050
19	б	0	-1.041673	-1.874532	2.069809
20	8	0	-1.923913	-1.516852	3.016364
21	8	0	0.133964	-2.100446	2.288519
22	7	0	-2.728882	-1.084584	0.398652
23	6	0	-3.971942	-1.529747	-0.091997
24	6	0	-4.968901	-0.496686	-0.441415
25	6	0	-4.660041	0.877203	-0.269529
20	6	0	-3.39/942	1.2/9135	0.238055
27	6	0	-2.380030	0.203138	0.029710
20	6	0	-7 170910	-0.074027	-1 276503
30	6	0	-6 889722	1 113161	-1.270303
31	6	0	-5 631544	1 867851	-0 610984
32	6	Ő	-5.301133	3.237976	-0.430617
33	6	0	-4.064894	3.608278	0.065323
34	6	0	-3.109136	2.626606	0.401212
35	8	0	1.755418	1.624580	-1.605764
36	8	0	4.230306	-2.186495	-2.106393
37	8	0	-4.191493	-2.733958	-0.218545
38	8	0	-1.282009	0.551628	1.050599
39	1	0	-6.428373	-1.929731	-1.065047
40	1	0	-8.135518	-0.214055	-1.664011
41	1	0	-7.631659	2.193929	-1.376717
42	1	0	-6.037475	3.994617	-0.689159
43	1	0	-3.822610	4.658201	0.198697
44	1	0	-2.138449	2.916534	0.789841
45	1	0	6.3/5362	-2.264452	-0.7/36/2
40	1	0	0.099320 7 006375	-1.309419	1 916390
47	1	0	6 449286	2 950497	2 088965
49	1	0	4 428084	4 268326	1 528338
50	1	0	2.725230	3.341816	-0.040383
51	6	Õ	-1.398018	-1.306863	4.345168
52	1	0	2.506174	-1.320871	-3.570294
53	1	0	1.384931	-0.020080	-3.122045
54	1	0	0.410057	-2.316821	-2.910589
55	1	0	1.633064	-2.740803	-1.719577
56	1	0	-0.487373	-0.546369	-1.385149
57	1	0	0.729902	-0.942441	-0.179085
58	1	0	-0.157082	-3.307816	-0.077659
59	1	0	-1.402131	-2.874898	-1.237863
60	1	0	-2.339191	-3.024943	0.902629
61	1	0	-0.649116	-0.511414	4.330753
62	1	0	-0.954267	-2.229777	4.725937
63	1	U	-2.255459	-1.015275	4.950666
TE Done.	E (BB31VD)	= _1756	 81290623		1 cycles
ero-poir	t correctio		01230023	A.U. AITER 0 493144	(Hartree/Partic)
2011				J. 170144	,

Thermal correction to	Enthalpy=	0
Thermal correction to	Gibbs Free Energy=	
Sum of electronic and	zero-point Energies=	
Sum of electronic and	thermal Energies=	
Sum of electronic and	thermal Enthalpies=	
Sum of electronic and	thermal Free Energies=	

.525758 0.426322 -1756.319762 -1756.288093 -1756.287148 -1756.386584 L-LyMebNI (conformational isomer, excited state (solvent=methanol) in Table S7) LysMebNIMeOH2Rtdoptpcmh.out

		Standard	orientation	:	
Center Number	Atomic Number	Atomic Type	Co X	ordinates (A Y	ngstroms) Z
1	6	0	4.608948	3.276489	1.068190
2	6	0	5.735038	2.537303	1.378678
3	6	0	5.932080	1.245369	0.821128
4	6	0	4.941816	0.723379	-0.067267
5	6	0	3.793351	1.498088	-0.372795
6	6	0	3.635001	2.756594	0.189288
7	6	0	7.075243	0.452412	1.109947
8	6	0	6 249554	-0./9888/	0.342780
10	6	0	5.118824	-0.563220	-0.637657
11	6	0	4.098013	-1.109517	-1.558920
12	7	0	2.962511	-0.324328	-1.806918
13	6	0	2.762186	0.967665	-1.293441
14	6	0	1.945510	-0.882551	-2.728333
15	6	0	1.017236	-1.914764	-2.072052
16	6	0	0.114255	-1.359634	-0.960872
10	6	0	-0./81091	-2.463862	-0.383266
19	6	0	-1 044887	-1 818032	2 102241
20	8	0	-1.928805	-1.451992	3.044572
21	8	0	0.132095	-2.034810	2.324433
22	7	0	-2.734843	-1.067317	0.417751
23	6	0	-3.969914	-1.523116	-0.070844
24	6	0	-4.959948	-0.512179	-0.436283
25	6	0	-4.664046	0.864348	-0.284534
20	6	0	-2 402648	1.273331	0.221/9/ 0.591815
2.8	6	0	-6.234244	-0.926849	-0.948745
29	6	0	-7.172341	0.025930	-1.293685
30	6	0	-6.890893	1.409010	-1.147135
31	6	0	-5.643556	1.848752	-0.644711
32	6	0	-5.318629	3.216161	-0.480858
33	6	0	-4.054693	3.611656	0.028800
34	6	0	-3.108001	2.009209	-1 605646
36	8	0	4.216404	-2.209700	-2.099962
37	8	0	-4.198913	-2.741809	-0.186238
38	8	0	-1.292996	0.600011	1.053789
39	1	0	-6.433300	-1.986513	-1.055271
40	1	0	-8.139261	-0.277811	-1.683172
41	1	0	-7.641742	2.143663	-1.424256
42	1	0	-3 838101	2.972040 4 669533	0 141666
44	1	0	-2.137988	2.953238	0.768477
45	1	0	6.368797	-2.291426	-0.779608
46	1	0	8.106438	-1.396871	0.770142
47	1	0	7.830578	0.845642	1.785648
48	1	0	6.485551	2.937759	2.055388
49	1	0	4.467487	4.262699	1.499965
50	1 6	0	-1 402685	-1 220262	-0.054093
52	1	0	2.486257	-1.345207	-3.556152
53	1	0	1.374514	-0.035942	-3.108918
54	1	0	0.394103	-2.331511	-2.876423
55	1	0	1.619849	-2.745545	-1.684881
56	1	0	-0.501592	-0.548917	-1.368537
57	1	0	0.723015	-0.922765	-0.163190
58	1	U	-0.155335	-3.287865	-U.U18545
59 60	⊥ 1	0	-2 340173	-2.001102 -2 995956	-1.10JJ24 0.957141
61	1	0	-0.658160	-0.420997	4.342813
62	1	Ū	-0.953327	-2.135195	4.762718
63	1	0	-2.260920	-0.924835	4.971841
SCF Done: E(RB3LYP) = -1756.80634937 A.U. after 1 cycles Zero-point correction= 0.489449 (Hartree/Particle)					
THCTMAT	COTTCCCTOH	co nuerdă-		0.02100	

Thermal correction to Enthalpy=0.522513Thermal correction to Gibbs Free Energy=0.422572Sum of electronic and zero-point Energies=-1756.203129Sum of electronic and thermal Energies=-1756.171009Sum of electronic and thermal Enthalpies=-1756.170065Sum of electronic and thermal Free Energies=-1756.270006

13. References

- S1 CrysAlisPro Data Collection and Processing Software, Rigaku Corporation, Japan (2015).
- S2. SHELXL 97, Sheldrick, G. M. University of Göttingen, Germany (1997).
- S3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H.: J. Appl. Cryst. 42, 339–341 (2009).
- S4. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K., Puschmann, H.: Acta Cryst. A71, 59– 75 (2015).
- S5. Gaussian 16, Revision C.01, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J.: Gaussian, Inc., Wallingford CT (2016).
- S6. Becke, A. D.: J. Chem. Phys. 98, 5648-5652 (1993).
- S7. Lee, C., Yang, W., Parr, R. G.: Phys. Rev. B37, 785-789 (1988).
- S8. Cancès, E., Mennucci, B., Tomasi, J.: J. Chem. Phys. 107, 3032-3041 (1997).
- S9. Cossi, M., Barone, V., Mennucci, B., Tomasi,: J. Chem. Phys. Lett. 286, 253-260 (1998).
- S10. Mennucci, B., Tomasi, J.: J. Chem. Phys. 106, 5151-5158 (1997).