Supporting Information

Cu(OTf)₂/HFIP Catalyzed Regioselective Cycloisomerization of Indole-C3-functionalized Alkynols to Carbazoles

Srinivasarao Yaragorla,* Tabassum Khan and Sayonika Chakroborthy

Table of Contents		Page no.	
I.	Experimental Procedures	S1-S3	
II.	References	S3	
III.	Single Crystal XRD data	S3-S6	
IV.	Spectral Copies of Synthesized Compounds	S7-S60	

I. Experimental section

II.A. General experimental procedure for the synthesis of 2,2-bis(1-alkyl/aryl-1H-indol-3-yl)-1-phenylethanone:¹ A mixture of phenylglyoxal (1 equiv.), *N*-alkyl/aryl Indole (2 equiv.), *p*TSA (5 mol%), and CH₃CN was stirred at room temperature for 7-8 hours. After completion of the reaction (monitored by TLC), the resulting mixture was quenched with water and extracted into ethyl acetate (thrice). Combined organic layers were washed with NaHCO₃ solution and dried over anhydrous Na₂SO₄ and the solvent was evaporated to obtain the crude product. The crude product was purified by column chromatography to obtain pure product **C** in good yield.

Scheme S1. Synthesis of 2,2-bis(1-alkyl/aryl-1H-indol-3-yl)-1-phenylethanone

II. B. General experimental procedure for the synthesis of ketone E:¹ A mixture of 2-hydroxy-1,2-diphenylethanone (1 equiv.) and N-alkyl/aryl Indole (1.2 equiv.), I₂ (1.2 equiv.) and acetonitrile were charged into an oven-dried round bottom flask and stirred at reflux temperature. The progress of the reaction was monitored by TLC. Then the reaction mass was quenched with $Na_2S_2O_3$ solution and extracted with ethyl acetate 2 times. The combined organic layer was concentrated, and crude was purified using column chromatography (60-120 mess size, 15% EtOAc in pet ether).

Scheme S2. Synthesis of heteroaryl substituted diphenylethanone

II.C. General experimental procedure for the propargyl alcohol 1:² To a solution of terminal alkyne (6 mmol) at 0 °C in THF (10-30 mL), was added 3 equiv., 6 mmol of *n*-BuLi (2 M in hexanes). The solution was stirred at 0 °C for 20 min, then the appropriate α -(3-indolyl) ketone was added (2 mmol, 1.0 equiv.) at -40°C. The resulting mixture was stirred at room temperature until the starting ketone was consumed as determined by TLC. The reaction was quenched with a saturated aqueous NH₄Cl solution and extracted with AcOEt (3 × 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated at reduced pressure. The residue was purified by flash chromatography on silica gel using mixtures of hexane and AcOEt as eluents to obtain the alkynols 1.

Scheme S3. Synthesis of propargyl alcohols

General experimental procedure for the Synthesis of carbazole 2: Alkynol 1 (100 mg, 1 equiv.), HFIP (0.2 mL) and 10 mol% Cu(OTf)₂ were weighed into a small round bottom flask equipped with a tiny magnetic bead and stirred slowly at room temperature. The reaction turned reddish immediately after the addition of HFIP. A slow stirring is required to avoid the spilling of the reaction mixture onto the walls of the reaction flask. The reaction progress was monitored by TLC. After completion of the reaction, the crude compound was absorbed into silica gel and purified by column chromatography on silica gel using a mixture of hexane and AcOEt as eluents to obtain the carbazole 2.

The detailed images of the reaction mixture are given below for more clarity.

				Sn Co RM
Before addition	Beginning of	Middle of the	After	TLC of the
of HFIP	the reaction	reaction	completion of	reaction
			the reaction	

II. References

- Suárez, A.; Martínez, F.; Suárez-Pantiga, S.; Sanz, R. *p*TSA-Catalyzed Reaction of Indoles with 2-Oxoaldehydes: Synthesis of α, α-Bis(indol-3-yl) Ketones. *ChemistrySelect* 2017, 2, 787-790.
- Suárez, A.; Suárez-Pantiga, S.; Nieto-Faza, O.; Sanz, R. Gold-catalyzed synthesis of 1-(indol-3-yl) carbazoles: Selective 1, 2-alkyl vs 1, 2-vinyl migration. Org. Lett. 2017, 19, 5074-5077.

III. Single Crystal XRD data

The vapor diffusion crystallization method was used for crystal growth, where the compound was dissolved in chloroform by heating to make a saturated solution in a small vial which was placed in a closed bottle with another solvent as *n*-hexane. The crystal data was recorded on Bruker Apex-II CCD.

III.A. X-ray data of Compound 2j:

Identification code	ysr013
Empirical formula	$C_{31}H_{26}N_2$
Formula weight	426.54
Temperature	296 K
Wavelength	0.71073 Å
Crystal system	'Monoclinic'
Space group	P1 21/n 1
Unit cell dimensions	$a = 13.23 (18) \text{ Å} \alpha = 90.$
	$b = 9.3280 (11) \text{ Å } \beta = 102.019 (5).$
	$c = 19.219 (3) \text{ Å } \gamma = 90 (5).$
Volume	2320.3 (5)

Z	4
Density	1.221 g/cm^3
Absorption coefficient	0.071 mm ⁻¹
F (000)	904
Crystal size	0.21 x 0.17 x 0.12 mm ³
Theta (max)	25.35
Index ranges	-15<=h<=15, -11<=k<=11, -23<=l<=23
Reflections collected	54774
R (reflection)	0.049 (3215)
wR2 (reflections)	0.2386(4254)
restraints / parameters	285/288
Goodness-of-fit on F ²	1.034
Tmin, Tmax	0.655, 0.746
Data completeness	1.000
S	1.034
Npar	288
CCDC No.	2249416

Figure S1. ORTEP representation of compound 2j and thermal ellipsoids are drawn with 50% probability.

III.B. X-ray data of Compound 2k:

Identification code	ysr032
Empirical formula	$C_{35}H_{28}N_2$
Formula weight	476.59
Temperature	298 K
Wavelength	0.71073 Å
Crystal system	'Monoclinic'
Space group	P 1 21/n 1

Figure S2. ORTEP representation of compound 2k and thermal ellipsoids are drawn with 50% probability.

Unit cell dimensions	$a = 10.7077 (8) Å \alpha = 90.$
	b = 9.2729 (7) Å β = 98.298 (3).
	$c = 25.954$ (2) Å $\gamma = 90$.
Volume	2550.0 (3)
Z	4
Density	1.241 g/cm^3
Absorption coefficient	0.072 mm^{-1}
F (000)	1008.0
Crystal size	0.21 x 0.17 x 0.11 mm ³
Theta (max)	27.539
Index ranges	-13<=h<=13, -12<=k<=12, -33<=l<=33
Reflections collected	50346
R (reflection)	0.0514 (4500)
wR2 (reflections)	0.1462 (5871)
restraints / parameters	0/337
Goodness-of-fit on F ²	1.064
Tmin, Tmax	0.502, 0.746
Data completeness	0.999
S	1.064
Npar	337
CCDC No.	2294921

II.C. X-ray data of Compound 2y:

Figure S3. ORTEP representation of compound 2y and thermal ellipsoids are drawn with 50% probability.

Identification code	ysr014
Empirical formula	C ₃₇ H ₂₇ N
Formula weight	485.59
Temperature	298 K
Wavelength	0.71073 Å
Crystal system	'Triclinic'
Space group	P -1
Unit cell dimensions	$a = 9.6614 (12) \text{ Å} \alpha = 66.465 (4).$
$b = 12.3016 (5) \text{ Å } \beta = 77.764 (5).$	
$c = 12.4047 (5) \text{ Å } \gamma = 82.339 (5).$	
Volume	1319.0 (3)
Z	2
Density	1.223 g/cm^3
Absorption coefficient	0.070 mm^{-1}
F (000)	512.0
Crystal size	$0.2 \ge 0.15 \ge 0.1 \text{ mm}^3$
Theta (max)	25.349
Index ranges	-11<=h<=11, -14<=k<=14, -14<=l<=14
Reflections collected	20603
R (reflection)	0.1040 (2010)
wR2 (reflections)	0.2919 (4319)
restraints / parameters	0/344
Goodness-of-fit on F ²	0.970
Tmin, Tmax	0.609, 0.746
Data completeness	0.892
S	0.970
Npar	344
CCDC No.	2294918

IV. Copies ¹H and ¹³C NMR

SYTK-49 b

SYSC-P-28-overnight

SYSC-P-28

SYSC-P-54

