Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Electrochemical Nickel-Catalyzed Cross-Coupling of Glycosyl Thiols with Preactivated Phenols and Ketones

Fuxin Li, ^{†a} Hui Liu, ^{†a} Wanyu Xing, ^a Qingju Zhang ^a and Liming Wang ^{*a}

^a National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.

Table of Contents

1. The general information and general procedure	S2
2. The structures of substrates used in article	S3
3. The table of condition optimization for the model reaction	S4
4. The experimental procedures and characterization data	S5
5. The references	S22
6. NMR spectra	S23

General Information

Commercial reagents were used without further purification unless otherwise indicated. Reactions were monitored by TLC analysis with detection by UV (254 nm) and where applicable by spraying with 20% sulfuric acid in EtOH or with a solution of $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ (25 g/L) and $(NH_4)_4Ce(SO_4)_4\cdot 2H_2O$ (10 g/L) in 10% sulfuric acid (aq.) followed by charring at ~150 °C. Flash column chromatography was performed on silica gel (300-400 mesh). ¹H and ¹³C spectra were recorded on a Bruker AV 400 in CDCl₃. Chemical shifts (δ) are given in ppm relative to tetramethyl silane as internal standard (¹H NMR in CDCl₃ or CD₃OD) or the residual signal of the deuterated solvent. Coupling constants (*J*) are given in Hz. All ¹³C spectra are proton decoupled. Where applicable COSY, HSQC, NOESY, HMBC experiments were used to further elucidate the structure. Structural assignments were made with additional information from COSY, HSQC, and HMBC experiments.

General Procedure:

Solution A: A Schlenk tube with stir bar charged with Ni catalyst (0.3 mmol) and dtbbpy (0.3 mmol) were dissolved in 1 mL of DMF under N_2 . The solution was stirred for 1 h at 60°C before usage. **Solution B:** A Schlenk tube with stir bar charged with LiBr (1 mmol) were dissolved in 2.5 mL of DMF under N_2 . The solution was stirred for 1 h at rt before usage.

In an oven-dried undivided three-necked bottle (5 mL) equipped with a stir bar with thio-sugar (0.3 mmol, 1 eq). The bottle was equipped with Ni electrode (15 mm×15 mm×1 mm) and Mg electrode (15 mm×15 mm×0.3 mm). Aryl halide (0.3 mmol, 1 eq), 1 mL of **Solution A** and 2 mL of **Solution B** was added under nitrogen atmosphere. The reaction mixture was electrolyzed under a constant current of 8 mA for 3 h at rt. After completion of the reaction, aqueous solution was extracted with EA (3×15 mL) and the combined extracts were dried with anhydrous Na₂SO₄. The solvent was removed under reduced pressure by rotary evaporation. Then, the pure product was obtained by flash column chromatography on silica gel (eluent: EA / PE = 1:5).

Scheme S1. The substrates structures used in article

$\begin{array}{c} \text{AcO} \\ \text{CF}_3 \end{array} \xrightarrow{\text{OTf}} \begin{array}{c} \text{NiBr}_2 \cdot \text{diglyme (7.5 mol\%)} \\ \text{dtbbpy (7.5 mol\%)} \\ \text{LiBr (4 equiv)} \\ \text{Mg(+)/Ni(-), 8 mA} \\ \text{DMF (4 mL), rt, 3 h} \end{array} \xrightarrow{\text{OAc}} \begin{array}{c} \text{OAc} \\ \text{AcO} \\ \text{AcO} \\ \text{OAc} \\ \text{OAc} \\ \text{OAc} \\ \text{OAc} \\ \text{OAc} \\ \text{CF}_3 \end{array}$								
	1 0.3 mmol 2a 0.6 mmol				12a			
Entry	Cat.	Ligand	Solvent	Current	Time	Electrolyte	Yield(%) ^b	
1°	NiBr ₂ ·diglyme	dtbbpy	DMF	4 mA	6 h	LiBr	53.3	
2°	NiBr ₂ ·diglyme	dtbbpy	DMF	8 mA	3 h	LiBr	52.6	
3 ^d	NiBr ₂ ·diglyme	dtbbpy	DMF	8 mA	3 h	LiBr	24	
4	NiBr ₂ ·diglyme	dtbbpy	DMF	8 mA	3 h	LiBr	71	
5 ^e	NiBr ₂ ·diglyme	dtbbpy	DMF	8 mA	3 h	LiBr	63.1	
6 ^e	NiBr ₂ ·diglyme	dtbbpy	DMF	-	3 h	LiBr	ND	
7	NiBr ₂ ·diglyme	dtbbpy	DMF	8 mA	3 h	TBAB	58.5	
8	NiBr ₂ ·diglyme	dtbbpy	DMF	8 mA	3 h	KI	65.1	
9	NiBr ₂ ·dme	dtbbpy	DMF	8 mA	3 h	LiBr	61	
10	Ni(acac) ₂	dtbbpy	DMF	8 mA	3 h	LiBr	41.8	
11	Ni(PPh ₃) ₂ Cl ₂	dtbbpy	DMF	8 mA	3 h	LiBr	7.2	
12	NiBr ₂ ·diglyme	bpy	DMF	8 mA	3 h	LiBr	10.6	
13	NiBr ₂ ·diglyme	dtbbpy	DMA	8 mA	3 h	LiBr	62.5	
14 ^f	NiBr ₂ ·diglyme	dtbbpy	DMF	8 mA	3 h	LiBr	56.4	
15 ^g	NiBr ₂ ·diglyme	dtbbpy	DMF	8 mA	3 h	LiBr	70.5	
16 ^h	NiBr ₂ ·diglyme	dtbbpy	DMF	8 mA	3 h	LiBr	60	
17 ⁱ	NiBr ₂ ·diglyme	dtbbpy	DMF	8 mA	3 h	LiBr	43.4	
18 ^j	NiBr ₂ ·diglyme	dtbbpy	DMF	8 mA	3 h	LiBr	NR	
19	-	dtbbpy	DMF	8 mA	3 h	LiBr	trace	
20	NiBr ₂ ·diglyme	dtbbpy	DMF	8 mA	3 h	-	28.8	
21	NiBr ₂ .diglyme	dtbbpy	DMF	-	3 h	LiBr	NR	
22 ^k	NiBr ₂ ·diglyme	dtbbpy	DMF	-	3 h	-	Trace	

Table S1. Optimization of the Reaction Conditions^a

^{*a*} standard condition: **1** (0.3 mmol), **2a** (0.6 mmol), NiBr₂·diglyme (7.5 mol%), dtbbpy (7.5 mol%), LiBr (1.2 mmol), DMF (4 mL) in an undivided cell with a Ni as electrode and Mg sheet as anode, 8 mA, rt, 3h. ^{*b*} Isolated yield. ^{*c*} **3-1a** (0.3 mmol), **3-2a** (0.3 mmol), **3-2a** (0.3 mmol). ^{*e*} NEt₃ (1.2 equiv). ^{*f*} [Ni] (5 mol%), ligand (5 mol%). ^{*g*} [Ni] (10 mol%), ligand (10 mol%). ^{*h*} [Ni] (20 mol%), ligand (20 mol%). ^{*i*} Zn anode. ^{*j*} C cathode. ^{*k*} Zn (2 eq).

Experimental Procedures and Characterization Data of Products

The synthesis procedure and data for the known compounds **1**, **3-11**, **30-32** to see references 1.¹ The synthesis procedure and data for the known compounds **2a-2m** and **2o-p** to see references 2.² And the synthesis procedure and data for the known compounds **22a-22h** to see references 3.³

benzyl (E)-3-(3-(((trifluoromethyl)sulfonyl)oxy)phenyl)acrylate 2n

p-Hydroxy cinnamic acid (164.2 mg, 1 mmol) was dissolved in 5.0 mL DMF, and KHCO₃ (120 mg, 1.2 mmol) was added slowly. The resultant mixture was stirred for several minutes at room temperature. Then, benzyl bromide (0.2 mL, 1.5 mmol) was added and stirred for 8 h at room temperature. Upon completion, the reaction mixture was added to water and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous magnesium sulfate. The solution was filtered and concentrated, then to dissolve in DCM (2 mL) and Pyridine (0.13 mL, 2 equiv) was added. The mixture was cooled to 0 °C Trifluoromethanesulfonic anhydride (0.16 mL, 1.2 equiv) was added dropwise and stirred for 1.5 h at room temperature. Thereafter, H₂O (5 mL) was added, the organic layer was separated, washed with brine, and dried over anhydrous sodium sulfate. The solution was concentrated under reduced pressure and the residue was directly subjected to purification by flash column chromatography to give 2n. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 16.0 Hz, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.48 (t, J = 7.9 Hz, 1H), 7.44 – 7.34 (m, 5H), 7.29 (d, J= 8.0 Hz, 1H), 6.52 (d, J = 16.0 Hz, 1H), 5.26 (s, 2H).¹³C NMR (150 MHz, CDCl₃) δ 166.1, 149.9, 142.6, 137.1, 135.7, 130.8, 128.7, 128.5, 128.4, 127.9, 122.6, 120.6, 120.4, 118.72 (CF₃), 66.74. ¹⁹F NMR (565 MHz, CDCl₃) δ -72.75. HRMS (ESI-TOF) Calculated for C₁₇H₁₄F₃O₅S [M+H]⁺ 387.0509, found 387.0510.

(8R,9R,12S,14R)-12-methyl-7,8,9,11,12,13,14,15-octahydro-6H-cyclopenta[a]phenanthrene-3,16-diyl bis(trifluoromethanesulfonate) 22h

Estrone (1.0 g, 3.7 mmol) was dissolved in 14.8 mL DCM, and 2,6-Di-tert-butyl-4-methylpyridine (1.6 g, 8.1 mmol) was added slowly. The mixture was cooled to 0 °C Trifluoromethanesulfonic anhydride (1.5 mL, 8.9 mmol) was added dropwise and stirred for 3 h at room temperature. Thereafter, H₂O (20 mL) was added, the organic layer was separated, washed with brine, and dried over anhydrous sodium sulfate. The solution was concentrated under reduced pressure and the residue was directly subjected to purification by flash column chromatography to give **22h**. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 8.7 Hz, 1H), 7.08 – 6.93 (m, 2H), 5.68 – 5.58 (m, 1H), 2.94 (dd, *J* = 8.9, 4.2 Hz, 2H), 2.44 – 2.30 (m, 3H), 2.17 – 2.07 (m, 1H), 2.00 – 1.88 (m, 2H), 1.84 – 1.75 (m, 1H), 1.72 – 1.56 (m, 3H), 1.53 – 1.43 (m, 1H), 1.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 147.6, 140.4, 139.2, 128.4, 127.8, 126.8, 121.3, 118.8 (CF₃), 118.6 (CF₃), 118.3, 53.5, 45.0, 44.3, 36.1, 32.7, 29.2, 28.4, 26.3, 25.6, 15.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -73.03, -73.60. HRMS (ESI-TOF) Calculated for C₂₀H₂₀F₆O₆S₂Na [M+Na]⁺ 557.0498, found 557.0455.

4-(trifluoromethyl)phenyl-2,3,4,6-tri-O-acetyl-1-thio-B-D-glucopyranoside 12a

The reaction was carried out according to the general procedure, using glycosyl thiols 1 (109.3 mg, 0.3mmol), aryl triflates 2a (110 µL, 0.6 mmol), Solution A (1 mL), Solution B (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **12a** (108.3 mg, 71% yield, β only, PE:EA = 3:1, Rf = 0.25) was obtained as white solid.

$$\begin{array}{c} \mathsf{AcO} \\ \mathsf{AcO} \\ \mathsf{AcO} \\ \mathsf{AcO} \\ \mathsf{OAc} \\ \mathsf{OAc} \\ \mathsf{CE}_2 \\ \mathsf{CE}$$

24.0 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.50 5.27 (t, J = 10.0 Hz, 1H, H-3), 5.18 - 4.92 (m, 2H, H-4, H-2), 4.81 CF_3 (d, J = 10.0 Hz, 1H, H-1), 4.32 - 4.16 (m, 2H, H-6), 3.87 - 3.71 (m, 1H, H-

5), 2.09 (s, 3H), 2.08 (s, 3H), 2.04 (s, 3H), 2.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 170.1, 169.3, 169.2, 136.9, 132.2, 130.5, 130.2, 130.0, 129.6, 125.7, 125.7, 125.7, 125.6, 123.9 (CF₃), 84.8 (C-1), 75.9 (C-5), 73.7 (C-3), 69.7 (C-2), 68.1 (C-4), 62.0 (C-6), 20.6, 20.5. HRMS (ESI-TOF) Calculated for C₂₁H₂₄F₃O₉S [M+H]⁺ 509.1093, found 509.1087.

4-cyanobphenyl-2,3,4,6-tri-O-acetyl-1-thio-β-D-glucopyranoside 12b

The reaction was carried out according to the general procedure, using glycosyl thiols 1 (109.3 mg, 0.3mmol), aryl triflates 2b (95 µL, 0.6 mmol), Solution A (1 mL), Solution B (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **12b** (77.9 mg, 56% yield, β only, PE:EA = 3:1, Rf = 0.25) was obtained as white solid.

 $[\alpha]_D^{25}$ 37.8 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.49 (m, 4H), 5.27 (t, J = 10.0 Hz, 1H, H-3), 5.07 (t, J = 10.0 Hz, 1H, H-4), 5.03 CN (t, J = 8.0 Hz, 1H, H-2), 4.85 (d, J = 8.0 Hz, 1H, H-1), 4.29 - 4.16 (m, 2H, 10.16 Hz)

H-6), 3.88 - 3.72 (m, 1H, H-5), 2.10 (s, 3H), 2.08 (s, 3H), 2.04 (s, 3H), 2.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 170.4, 170.0, 169.4, 169.2, 139.2, 132.3, 131.4, 118.3, 111.3, 84.4 (C-1), 76.0 (C-5), 73.6 (C-3), 69.6 (C-2), 68.0 (C-4), 62.1 (C-6), 20.7, 20.7, 20.5. HRMS (ESI-TOF) Calculated for C₂₁H₂₄NO₉S [M+H]⁺ 466.1172, found 466.1159.

4-chlorophenyl-2,3,4,6-tri-O-acetyl-1-thio-β-D-glucopyranoside 12c

The reaction was carried out according to the general procedure, using glycosyl thiols 1 (109.3 mg, 0.3mmol), aryl triflates 2c (98 µL, 0.6 mmol), Solution A (1 mL), Solution B (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **12c** (90.8 mg, 64% yield, β only, PE:EA = 3:1, Rf = 0.25) was obtained as white foam.

 $[\alpha]_D^{25}$ +1.2 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.37 (m, 2H), 7.33 – 7.25 (m, 2H), 5.22 (t, J = 8 Hz, 1H, H-3), 5.02 (t, J = 10.0 Hz, ^{Cl} 1H, H-4), 4.93 (t, J = 10.0 Hz, 1H, H-2), 4.65 (d, J = 12.0 Hz, 1H, H-1), 4.25

- 4.15 (m, 2H, H-6), 3.76 - 3.67 (m, 1H, H-5), 2.09 (s, 3H), 2.08 (s, 3H), 2.02 (s, 3H), 1.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 170.5, 170.1, 169.4, 169.2, 135.0, 129.5, 129.1, 85.2 (C-1), 75.9 (C-5), 73.9 (C-3), 69.8 (C-2), 68.1 (C-4), 62.0 (C-6), 20.74, 20.72, 20.6. HRMS (ESI-TOF) Calculated for C₂₀H₂₃ClO₉SNa [M+Na]⁺ 497.0649, found 497.0645.

4-methylbenzoate-2,3,4,6-tri-O-acetyl-1-thio-B-D-glucopyranoside 12d

The reaction was carried out according to the general procedure, using glycosyl thiols 1 (109.3 mg, 0.3mmol), aryl triflates 2d (113 µL, 0.6 mmol), Solution A (1 mL), Solution B (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **12d** (101.3 mg, 68% yield, β only, PE:EA = 3:1, Rf = 0.2) was obtained as white solid.

12.0 Hz, 1H, H-1), 4.25 (dd, J_1 = 12.0, J_2 = 4.0 Hz, 1H, H-6a), 4.19 (dd, J_1 = 12.0, J_2 = 4.0 Hz, 1H, H-6b), 3.92 (s, 3H), 3.87 – 3.78 (m, 1H, H-5), 2.10 (s, 3H), 2.08 (s, 3H), 2.04 (s, 3H), 2.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.1, 169.3, 169.2, 166.4, 138.7, 130.8, 129.9, 129.3, 84.8 (C-1), 75.9 (C-5), 73.7 (C-3), 69.7 (C-2), 68.1 (C-4), 62.1 (C-6), 52.2, 20.7, 20.6, 20.5. HRMS (ESI-TOF) Calculated for C₂₂H₂₇O₁₁S [M+H]⁺499.1274, found 499.1256.

Phenyl-2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside 12e

The reaction was carried out according to the general procedure, using glycosyl thiols **1** (109.3 mg, 0.3mmol), aryl triflates **2e** (97 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **12e** (73.7 mg, 56% yield, β only, PE:EA =3:1, R*f* = 0.3) was obtained as white solid.

Aco OAc Aco OAc

OAc

ÒAc

 $[\alpha]_D^{25}$ 36.0(c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.50 (m, 2H), 7.40 - 7.16 (m, 3H), 5.24 (t, *J* = 10.0 Hz, 1H, H-3), 5.04 (t, *J* = 10.0 Hz, 1H, H-4), 4.97 (t, *J* = 10.0 Hz, 1H, H-2), 4.73 (d, *J* = 8.0 Hz, 1H, H-1), 4.27 - 4.15 (m, 2H,

H-6), 3.78 - 3.68 (m, 1H, H-5), 2.08 (s, 3H), 2.08 (s, 3H), 2.02 (s, 3H), 1.99 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 170.5, 170.1, 169.3, 169.2, 133.0, 131.6, 128.9, 128.4, 85.6 (C-1), 75.7 (C-5), 73.9 (C-3), 69.9 (C-2), 68.2 (C-4), 62.1 (C-6), 20.69, 20.68, 20.54, 20.53. HRMS (ESI-TOF) Calculated for C₂₀H₂₄O₉SNa [M+Na]⁺ 463.1039, found 463.1018.

4-methoxyphenyl-2,3,4,6-tri-O-acetyl-1-thio-β-D-glucopyranoside 12f

The reaction was carried out according to the general procedure, using glycosyl thiols **1** (109.3 mg, 0.3mmol), aryl triflates **2f** (109 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **12e** (28.2 mg, 20% yield, β only, PE:EA =3:1, R*f* = 0.3) was obtained as white solid.

 $[\alpha]_D^{25} 23.0 (c = 0.50, CHCl_3); ^1H NMR (600 MHz, CDCl_3) \delta 7.44 (d, J = 4.0 Hz, 2H), 6.98 - 6.63 (m, 2H), 5.20 (t, J = 6.0 Hz, 1H), 5.00 (t, J = 6.0 Hz, 1H), 4.89 (t, J = 8.0 Hz, 1H), 4.56 (d, J = 8.0 Hz, 1H), 4.31 - 6.0 Hz, 1H), 4.89 (t, J = 8.0 Hz, 1H), 4.56 (d, J = 8.0 Hz, 1H), 4.31 - 6.0 Hz, 1H), 4.89 (t, J = 8.0 Hz, 1H), 4.56 (d, J = 8.0 Hz, 1H), 4.31 - 6.0 Hz, 1H), 4.89 (t, J = 8.0 Hz, 1H), 4.56 (d, J = 8.0 Hz, 1H), 4.31 - 6.0 Hz, 1H), 4.89 (t, J = 8.0 Hz, 1H), 4.56 (d, J = 8.0 Hz, 1H), 4.31 - 6.0 Hz, 1H), 4.89 (t, J = 8.0 Hz, 1H), 4.56 (d, J = 8.0 Hz, 1H), 4.31 - 6.0 Hz, 1H), 4.89 (t, J = 8.0 Hz, 1H), 4.56 (d, J = 8.0 Hz, 1H), 4.31 - 6.0 Hz, 1H), 4.89 (t, J = 8.0 Hz, 1H), 4.56 (d, J = 8.0 Hz, 1H), 4.31 - 6.0 Hz, 1H), 4.89 (t, J = 8.0 Hz, 1H), 4.56 (d, J = 8.0 Hz, 1H), 4.31 - 6.0 Hz, 1H), 4.89 (t, J = 8.0 Hz, 1H), 4.56 (t, J = 8.0 Hz, 1H), 4.31 - 6.0 Hz, 1H), 4.89 (t, J = 8.0 Hz, 1H), 4.56 (t, J = 8.0 Hz, 1H), 4.31 - 6.0 Hz, 1H), 4.89 (t, J = 8.0 Hz, 1H), 4.89 (t, J = 8.0 Hz, 1H), 4.89 (t, J = 8.0 Hz, 1H), 4.80 (t, J = 8.0 Hz, 1H), 4.81 - 6.0 Hz, 1H), 4.81 + 6.0 Hz, 1H), 4.81 + 6.0 Hz, 1H), 4.81$

4.08 (m, 2H), 3.82 (s, 3H), 3.73 - 3.58 (m, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 2.01 (s, 3H), 1.98 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 170.6, 170.2, 169.4, 169.3, 160.5, 136.6, 120.8, 114.4, 85.7, 75.7, 74.1, 69.9, 68.2, 62.1, 55.3, 20.81, 20.8, 20.6, 20.6. HRMS (ESI-TOF) Calculated for C₂₁H₂₇O₁₀S [M+H]⁺ 471.1320, found 471.1320.

4-Acetoxyphenyl-2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside 12g

The reaction was carried out according to the general procedure, using glycosyl thiols **1** (109.3 mg, 0.3mmol), aryl triflates **2g** (106 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **12g** (31.3 mg, 21% yield, β only, PE:EA = 3:1, R*f* = 0.3) was obtained as white foam.

 $[\alpha]_{D}^{25} 32.0 (c = 0.50, CHCl_{3}); {}^{1}H NMR (400 MHz, CDCl_{3}) \delta 7.53 (d, J = 8.0 Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), 5.22 (t, J = 8.0 Hz, 1H, H-3), 5.04 (t, J = 10.0 Hz, 1H, H-4), 4.97 (t, J = 10.0 Hz, 1H, H-2), 4.67 (d, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, 1H, H-2), 4.67 (d, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, 1H, H-2), 4.67 (d, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, 1H, H-2), 4.67 (t, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, 1H, H-2), 4.67 (t, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, IH, H-2), 4.67 (t, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, IH, H-2), 4.67 (t, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, IH, H-2), 4.67 (t, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, IH, H-2), 4.67 (t, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, IH, H-2), 4.67 (t, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, IH, H-2), 4.67 (t, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, IH, H-2), 4.67 (t, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, IH, H-2), 4.67 (t, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, IH, H-2), 4.67 (t, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, IH, H-2), 4.67 (t, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, IH, H-2), 4.67 (t, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, IH, H-2), 4.67 (t, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, IH, H-2), 4.67 (t, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, IH, H-2), 4.67 (t, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 Hz, IH, H-2), 4.67 (t, J = 8.0 Hz, IH, H-4), 4.97 (t, J = 10.0 H$

1H, H-1), 4.25 – 4.14 (m, 2H, H-6), 3.75 – 3.68 (m, 1H, H-5), 2.31 (s, 3H), 2.10 (s, 3H), 2.08 (s, 3H), 2.02 (s, 3H), 2.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.2, 169.4, 169.3, 169.2, 151.1,

134.8, 128.6, 122.2, 85.8 (C-1), 75.8 (C-5), 73.9 (C-3), 70.0 (C-2), 68.2 (C-4), 62.1 (C-6), 21.1, 20.77, 20.75, 20.60, 20.58. HRMS (ESI-TOF) Calculated for C₂₂H₂₇O₁₁S [M+H]⁺ 499.1274, found 499.1266.

1,1'-biphenyl-2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside 12h

The reaction was carried out according to the general procedure, using glycosyl thiols **1** (109.3 mg, 0.3mmol), aryl triflates **2h** (129 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **12h** (91.1 mg, 59% yield, β only, PE:EA = 3:1, R*f* = 0.3) was obtained as white solid.

 $[\alpha]_D^{25}$ 12.7 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.52 (m, 6H), 7.45 (t, *J* = 8.0 Hz, 2H), 7.36 (t, *J* = 6.0 Hz, 1H), 5.25 (t, *J* = 8.0 Hz, 1H, H-3), 5.11 – 4.97 (m, 2H, H-4, H-2), 4.74 (d, *J* = 8.0 Hz, 1H, H-1), 4.32 – 4.15 (m, 2H, H-6), 3.80 – 3.71 (m, 1H, H-5), 2.11

(s, 3H), 2.08 (s, 3H), 2.02 (s, 3H), 2.00 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 170.6, 170.2, 169.4, 169.3, 141.4, 140.1, 133.6, 130.4, 128.9, 127.7, 127.6, 127.1, 85.7 (C-1), 75.8 (C-5), 74.0 (C-3), 70.0 (C-2), 68.2 (C-4), 62.1 (C-6), 20.79, 20.78, 20.62, 20.60. HRMS (ESI-TOF) Calculated for C₂₆H₂₈O₉SNa [M+Na]⁺ 539.1352, found 539.1346.

2-cyanophenyl-2,3,4,6-tri-O-acetyl-1-thio-β-D-glucopyranoside 12i

The reaction was carried out according to the general procedure, using glycosyl thiols **1** (109.3 mg, 0.3mmol), aryl triflates **2i** (129 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **12i** (94.5 mg, 68% yield, β only, PE:EA = 3:1, R*f* = 0.25) was obtained as white solid.

 $\begin{bmatrix} \alpha \end{bmatrix}_{\text{AcO}}^{\text{CO}} \\ \begin{bmatrix} \alpha \end{bmatrix}_{\text{OAc}}^{\text{CO}} \\ \begin{bmatrix} \alpha \end{bmatrix}_{\text{OAc}}^{\text{$

12.0 Hz, 1H, H-1), 4.26 (dd, J_1 = 12.0, J_2 = 4.0 Hz, 1H, H-6a), 4.17 (dd, J_1 = 12.0, J_1 = 4.0 Hz, 1H, H-6b), 3.83 – 3.74 (m, 1H), 2.14 (s, 3H), 2.10 (s, 3H), 2.03 (s, 3H), 1.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.0, 169.5, 169.4, 135.2, 134.8, 133.7, 132.9, 129.2, 117.9, 116.9, 85.0 (C-1), 76.0 (C-5), 73.7 (C-3), 69.4 (C-2), 68.0 (C-4), 62.0 (C-6), 20.72, 20.69, 20.53. HRMS (ESI-TOF) Calculated for C₂₁H₂₄NO₉S [M+H]⁺466.1172, found 466.1159.

2-formylphenyl-2,3,4,6-tri-O-acetyl-1-thio-β-D-glucopyranoside 12j

The reaction was carried out according to the general procedure, using glycosyl thiols **1** (109.3 mg, 0.3mmol), aryl triflates **2j** (101 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **12j** (96.6 mg, 69% yield, β only, PE:EA = 3:1, R*f* = 0.2) was obtained as white solid.

Aco OAc OHC Aco OAc $[\alpha]_D^{25}$ -12.6 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 10.51 (s, 1H), 7.95 (m, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.63 – 7.56 (m, 1H), 7.53 (t, *J* = 8.0 Hz, 1H), 5.22 (t, *J* = 10.0 Hz, 1H, H-3), 5.09 – 4.87 (m, 2H, H-4, H-2), 4.72 (d, *J* = 12.0

Hz, 1H, H-1), 4.22 - 4.04 (m, 2H, H-6), 3.77 - 3.66 (m, 1H, H-5), 2.12 (s, 3H), 2.07 (s, 3H), 2.01 (s, 3H), 1.99 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 191.8, 170.5, 170.1, 169.3, 169.2, 137.8, 135.7, 134.2, 134.0, 129.44, 129.39, 84.6 (C-1), 75.8 (C-5), 73.8 (C-3), 69.9 (C-2), 68.0 (C-4), 62.0 (C-6), 20.7, 20.62, 20.54, 20.52. HRMS (ESI-TOF) Calculated for $C_{21}H_{25}O_{10}S$ [M+H]⁺469.1168, found 469.1150.

2,4-Difluorphenyl-2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside 12k

The reaction was carried out according to the general procedure, using glycosyl thiols 1 (109.3 mg,

0.3mmol), aryl triflates **2k** (96 µL, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **12k** (101.1 mg, 71% yield, β only, PE:EA = 3:1, R*f* = 0.4) was obtained as white foam.

OAc

0

ÒAc

 $[\alpha]_D^{25} -11.0 (c = 0.50, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3) \delta 7.65 - 7.56 (m, 1H), 6.94 - 6.81 (m, 2H), 5.21 (t, J = 10.0 Hz, 1H, H-3), 5.04 (t, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (d, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (d, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (d, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (t, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (t, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (t, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (t, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (t, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (t, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (t, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (t, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (t, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (t, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (t, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (t, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (t, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (t, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (t, J = 10.0 Hz, 1H, H-4), 4.88 (t, J = 10.0 Hz, 1H, H-2), 4.63 (t, J =$

H-1).4.22 (dd, $J_1 = 12.0$, $J_2 = 4.0$ Hz, 1H, H-6a), 4.14 (dd, $J_1 = 12.0$, $J_2 = 4.0$ Hz, 1H, H-6b), 3.73 - 3.65 (m, 1H, H-5), 2.11 (s, 3H), 2.07 (s, 3H), 2.02 (s, 3H), 1.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170. 6, 170.2, 169.4, 164.7 (CF), 162.2 (CF), 138.2, 138.1, 113.09, 113.05, 112.91, 112.87, 112.2, 112.1, 112.0, 111.9, 104.9, 104.7, 104.4, 84.9 (C-1), 75.9 (C-5), 73.8 (C-3), 69.2 (C-2), 68.0 (C-4), 62.0 (C-6), 20.7, 20.7, 20.61, 20.60. HRMS (ESI-TOF) Calculated for C₂₀H₂₃F₂O₉S [M+H]⁺499.0850, found 499.0839.

1-Naphthoic -2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside 12l

The reaction was carried out according to the general procedure, using glycosyl thiols **1** (109.3 mg, 0.3mmol), aryl triflates **2l** (118 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **12l** (99.7 mg, 68% yield, β only, PE:EA = 3:1, R*f* = 0.3) was obtained as white solid.

 $[\alpha]_D^{25} - 25.0 (c = 0.50, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3) \delta 8.46 (d, J = 8.0 Hz, 1H), 7.86 (m, 2H), 7.82 (d, J = 4.0 Hz, 1H), 7.59 - 7.49 (m, 2H), 7.43 (t, J = 8.0 Hz, 1H), 5.19 (t, J = 10.0 Hz, 1H, H-3), 5.09 - 5.05 (m, 2H, H-4, H-2),$

4.72 (d, J = 12.0 Hz, 1H, H-1), 4.19 (dd, $J_I = 12.0$, $J_2 = 8.0$ Hz, 1H, H-6a), 4.08 (dd, $J_I = 12.0$, $J_2 = 4.0$ Hz, 1H, H-6b), 3.64 – 3.56 (m, 1H, H-5), 2.12 (s, 3H), 2.01 (s, 3H), 2.00 (s, 3H), 1.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.2, 169.4, 169.3, 134.3, 134.1, 133.5, 129.9, 129.2, 128.5, 126.8, 126.4, 125.8, 125.5, 86.6 (C-1), 75.7 (C-5), 74.0 (C-3), 70.4 (C-2), 68.2 (C-4), 62.2 (C-6), 20.8, 20.7, 20.58, 20.55. HRMS (ESI-TOF) Calculated for C₂₄H₂₇O₉S [M+H]⁺ 491.1376, found 491.1380.

2-Naphthoic-2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside 12m

The reaction was carried out according to the general procedure, using glycosyl thiols **1** (109.3 mg, 0.3mmol), aryl triflates **2m** (111 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **12m** (117.3 mg, 80% yield, β only, PE:EA = 3:1, Rf = 0.3) was obtained as white solid.

 $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{25} 2.4 \ (c = 0.50, CHCl_3); \ ^{1}H \ NMR \ (400 \ MHz, CDCl_3) \ \delta \ 7.99 \ (s, 1H), \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ Ac \end{bmatrix}$ $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{25} 2.4 \ (c = 0.50, CHCl_3); \ ^{1}H \ NMR \ (400 \ MHz, CDCl_3) \ \delta \ 7.99 \ (s, 1H), \\ 7.85 - 7.75 \ (m, 3H), \ 7.56 \ (m, 1H), \ 7.52 - 7.46 \ (m, 2H), \ 5.24 \ (t, J = 10.0 \ Hz, 1H, H-3), \ 5.03 \ (dd, J_1 = 10.0, J_2 = 8.0 \ Hz, 2H, H-4, H-2), \ 4.79 \ (d, J = 8.0 \ Hz, 2H, H-4, Hz, 2H, H-4, Hz, 2H, Hz, 2H, Hz, 2H, Hz, 2H, Hz, 2H, Hz, 2H, 2H, 2$

Hz, 1H, H-1), 4.24 (dd, J_1 = 12.0, J_2 = 8.0 Hz, 1H, H-6a), 4.18 (m, 1H, H-6b), 3.77 – 3.68 (m, 1H, H-5), 2.11 (s, 3H), 2.03 (s, 3H), 2.01 (s, 3H), 1.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.2, 169.4, 169.3, 133.5, 132.9, 132.7, 130.2, 128.8, 128.5, 127.7, 126.8, 126.7, 85.8 (C-1), 75.9 (C-5), 75.8 (C-5), 74.0 (C-3), 70.1 (C-2), 68.2 (C-4), 62.2 (C-6), 20.80, 20.77, 20.71, 20.69, 20.58, 20.56. HRMS (ESI-TOF) Calculated for C₂₄H₃₀O₉SN [M+NH₄⁺]⁺ 508.1641, found 508.1685.

benzyl cinnamate-2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside 12n

The reaction was carried out according to the general procedure, using glycosyl thiols **1** (109.3 mg, 0.3mmol), aryl triflates **2n** (231 mg, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **12n** (96.9 mg, 54% yield, β only, PE:EA = 3:1, R*f* = 0.3) was obtained as colorless oil.

 $[\alpha]_D^{25}$ 26.4 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.63 (m, 2H), 7.53 – 7.46 (m, 2H), 7.43 – 7.38 (m, 3H), 7.37 – 7.31 (m, 2H), 6.51 (d, *J* = 16.0 Hz, 1H), 5.30 – 5.19 (m, 3H, H-3), 5.02 (t, *J* = 8.0 Hz, 1H, H-4), 4.96 (t, *J* = 10.0 Hz, 1H, H-2), 4.71 (d, *J* = 12.0

Hz, 1H, H-1), 4.24 (dd, J_1 = 12.0, J_2 = 4.0 Hz, 1H, H-6a), 4.17 (dd, J_1 = 12.0, J_2 = 4.0 Hz, 1H, H-6b), 3.78 – 3.72 (m, 1H, H-5), 2.09 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H), 1.99 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 170.2, 169.4, 169.2, 166.5, 144.1, 135.9, 135.2, 134.8, 132.7, 132.4, 129.4, 128.6, 128.3, 128.0, 119.0, 85.3 (C-1), 75.9 (C-5), 73.9 (C-3), 69.8 (C-2), 68.1 (C-4), 66.5, 62.1 (C-6), 20.74, 20.65, 20.6. HRMS (ESI-TOF) Calculated for C₃₀H₃₃O₁₁S [M+H]⁺ 601.1738, found 601.1737.

$((4-((R)-2-(((benzyloxy)carbonyl)amino)-3-methoxy-3-oxopropyl)phenyl)-2,3,4,6-tetra-O-acetyl-1-thio-\beta-D-glucopyranoside 12o$

The reaction was carried out according to the general procedure, using glycosyl thiols **1** (109.3 mg, 0.3mmol), aryl triflates **2o** (276 mg, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **12o** (60.6 mg, 30% yield, β only, PE:EA = 3:1, R*f* = 0.3) was obtained as white foam.

 $[\alpha]_D^{25}$ 30.0 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.29 (m, 7H), 7.05 (d, *J* = 8.0 Hz, 2H), 5.28 (d, *J* = 8.0 Hz, 1H), 5.22 (t, *J* = 10.0 Hz, 1H, H-3), 5.12 – 5.00 (m, 3H, H-4), 4.95 (t, *J* = 10.0 Hz, 1H, H-2), 4.72 – 4.63 (m, 2H, H-1), 4.28 – 4.10 (m, 2H, H-6a, H-6b), 3.73 (s, 3H), 3.18 – 3.03 (m, 2H, H-5), 2.07 (s, 6H), 2.02 (s, 3H),

1.98 (s, 3H), 1.73 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 170.6, 170.2, 169.4, 169.3, 155.6, 136.3, 136.2, 133.2, 130.5, 129.9, 128.6, 128.3, 128.1, 85.7 (C-1), 75.8 (C-5), 74.0 (C-3), 69.9 (C-2), 68.2 (C-4), 67.0, 62.1 (C-6), 54.7, 52.4, 37.7, 20.7, 20.6. HRMS (ESI-TOF) Calculated for C₃₂H₄₁N₂O₁₃S [M+NH₄]⁺ 675.2224, found 675.2238.

cyclopenta[a]phenanthren-3-yl)-2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside 12p

The reaction was carried out according to the general procedure, using glycosyl thiols **1** (109.3 mg, 0.3mmol), aryl triflates **2p** (276 mg, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **12p** (92.2 mg, 50% yield, β only, PE:EA = 3:1, R*f* = 0.3) was obtained as white foam.

 $[\alpha]_{D}^{25}$ 63.8 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.27 (s, 1H), 7.23 (d, *J* = 8.0 Hz, 2H), 5.21 (t, *J* = 10.0 Hz, 1H, H-3), 5.04 (t, *J* = 10.0 Hz, 1H, H-4), 4.93 (t, *J* = 10.0 Hz, 1H, H-2), 4.66 (d, *J* = 8.0 Hz, 1H, H-1), 4.24 (dd, *J*_l = 12.0, *J*₂ = 4.0 Hz, 1H, H-6a), 4.18

(dd, J_1 = 12.0, J_2 = 4.0 Hz, 1H, H-6b), 3.77 – 3.69 (m, 1H, H-5), 2.95 – 2.86 (m, 2H), 2.52 (dd, J_1 = 16.0, J_2 = 8.0 Hz, 1H), 2.45 – 2.35 (m, 1H), 2.36 – 2.24 (m, 1H), 2.17 (m, 1H), 2.11 – 1.95 (m, 16H), 1.68 – 1.40 (m, 5H), 0.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.2, 169.4, 169.2, 140.5, 137.38, 134.3, 131.1, 127.9, 126.0, 85.7 (C-1), 75.7 (C-5), 74.1 (C-3), 69.9 (C-2), 68.2 (C-4), 62.1 (C-6), 50.5, 47.9, 44.3, 37.9, 35.8, 31.6, 29.3, 26.3, 25.6, 21.6, 20.80, 20.77, 20.6, 13.9, 13.8. HRMS (ESI-TOF) Calculated for C₃₂H₄₁O₁₀S [M+H]⁺ 617.2420, found 617.2408.

$\label{eq:constraint} 4-(trifluoromethyl) phenyl-2,3,4,6-tetra-O-benzoyl-1-thio-\beta-D-glucopyranoside 13a$

The reaction was carried out according to the general procedure, using glycosyl thiols **3** (183 mg, 0.3mmol), aryl triflates **2a** (110 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF

(1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **13a** (161.2 mg, 71% yield, β only, PE:EA = 4:1, R*f* = 0.3) was obtained as white foam.

$$[\alpha]_{\text{BZO}}^{\text{OBz}} = \begin{bmatrix} \alpha]_{\text{D}}^{25} 44.1 \text{ (c} = 0.50, \text{CHCl}_3); ^{1}\text{H NMR (400 MHz, \text{CDCl}_3)} \delta 8.09 - 8.03 \text{ (m}, \\ 2\text{H}), 7.99 - 7.89 \text{ (m}, 4\text{H}), 7.84 - 7.77 \text{ (m}, 2\text{H}), 7.61 \text{ (t}, J = 6.0 \text{ Hz}, 1\text{H}), 7.58 \\ -7.34 \text{ (m}, 11\text{H}), 7.32 - 7.23 \text{ (m}, 4\text{H}), 5.97 \text{ (t}, J = 10.0 \text{ Hz}, 1\text{H}, \text{H-3}), 5.63 \end{bmatrix}$$

(t, J = 10.0 Hz, 1H, H-4), 5.54 (t, J = 10.0 Hz, 1H, H-2), 5.13 (d, J = 8.0 Hz, 1H, H-1), 4.73 (dd, $J_I = 12.0, J_2 = 4.0$ Hz, 1H, H-6a), 4.51 (dd, J = 12.0, 4.0 Hz, 1H, H-6b), 4.31 – 4.23 (m, 1H, H-5). ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 165.8, 165.2, 165.1, 137.1, 133.6, 133.54, 133.49, 133.4, 132.0, 130.1, 129.9, 129.8, 129.5, 128.9, 128.7, 128.60, 128.56, 128.5, 128.4, 125.71, 125.67, 123.9 (CF₃), 85.4 (C-1), 76.6 (C-5), 74.0 (C-3), 70.4 (C-2), 69.3 (C-4), 63.1 (C-6). HRMS (ESI-TOF) Calculated for C₄₁H₃₁F₃O₉SNa [M+Na]⁺ 779.1539, found 779.1533.

4-(methoxycarbonyl)phenyl-2,3,4,6-tetra-O-benzoyl-1-thio-β-D-glucopyranoside 13d

The reaction was carried out according to the general procedure, using glycosyl thiols **3** (183 mg, 0.3mmol), aryl triflates **2d** (113 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **13d** (138.9 mg, 62% yield, β only, PE:EA = 3:1, R*f* = 0.25) was obtained as white foam.

BZO BZO OBZ OBZ

 $[\alpha]_D{}^{25} 47.0 (c = 0.50, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3) \delta 8.05 (d, J)$ = 4.0 Hz, 2H), 7.94 (m, 4H), 7.80 (t, J = 6.0 Hz, 4H), 7.61 (t, J = 6.0 $^{COOCH_3} Hz, 1H), 7.57 - 7.33 (m, 11H), 7.28 (m, 2H), 5.97 (t, J = 10.0 Hz, 1H), 7.80 (m, 2H), 5.97 (t, J = 10.0 Hz, 1H), 7.80 (m, 2H), 5.97 (t, J = 10.0 Hz, 1H), 7.80 (m, 2H), 5.97 (t, J = 10.0 Hz, 1H), 7.80 (m, 2H), 5.97 (t, J = 10.0 Hz, 1H), 7.80 (m, 2H), 5.97 (t, J = 10.0 Hz, 1H), 7.80 (m, 2H), 5.97 (t, J = 10.0 Hz, 1H), 7.80 (m, 2H), 5.97 (m, 2H), 5.97 (t, J = 10.0 Hz, 1H), 7.80 (m, 2H), 5.97 (t, J = 10.0 Hz, 1H), 7.80 (m, 2H), 5.97 ($

H-3), 5.64 (t, J = 10.0 Hz, 1H, H-4), 5.57 (t, J = 8.0 Hz, 1H, H-2), 5.19 (d, J = 10.0 Hz, 1H, H-1), 4.70 (d, J = 12.0 Hz, 1H, H-6a), 4.50 (m, 1H, H-6b), 4.34 – 4.23 (m, 1H, H-5), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 166.1, 165.8, 165.2, 165.1, 138.8, 133.6, 133.5, 133.4, 130.9, 130.0, 129.92, 129.90, 129.79, 129.76, 129.5, 129.3, 128.9, 128.64, 128.60, 128.55, 128.50, 128.48, 128.3, 85.3 (C-1), 76.6 (C-5), 74.0 (C-3), 70.4 (C-2), 69.3 (C-4), 63.2 (C-6), 52.2. HRMS (ESI-TOF) Calculated for C₃₀H₃₃O₁₁S [M+H]⁺ 601.1738, found 601.1737.

4-(trifluoromethyl)phenyl-2,3,4,6-tetra-O-acetyl-1-thio-β-D-galactopyranoside 14a

The reaction was carried out according to the general procedure, using glycosyl thiols **4** (109.3 mg, 0.3mmol), aryl triflates **2a** (110 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **14a** (93 mg, 61% yield, β only, PE:EA = 3:1, R*f* = 0.3) was obtained as white solid.

 $[\alpha]_{D}^{25} 15.4 (c = 0.50, CHCl_{3}); {}^{1}H NMR (400 MHz, CDCl_{3}) \delta 7.62 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 12.0 Hz, 2H), 5.44 (d, J = 2.7 Hz, 1H, H-4), 5.25 (t, J = 10.0 Hz, 1H, H-2), 5.08 (dd, J_{I} = 8.0, J_{2} = 4.0 Hz, 1H, H-3), 4.79 (d, J = 10.0 Hz, 1H, H-2), 5.08 (dd, J_{I} = 8.0, J_{2} = 4.0 Hz, 1H, H-3), 4.79 (d, J = 10.0 Hz, 1H, H-2), 5.08 (dd, J_{I} = 8.0, J_{2} = 4.0 Hz, 1H, H-3), 4.79 (d, J = 10.0 Hz, 1H, H-3), 4.79 (d, J$

12.0 Hz, 1H, H-1), 4.20 (dd, J_1 = 12.0, J_2 = 4.0 Hz, 1H, H-6a), 4.12 (dd, J_1 = 12.0, J_2 = 4.0 Hz, 1H, H-6b), 3.99 (t, J = 6.0 Hz, 1H, H-5), 2.12 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 1.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 170.1, 170.0, 169.4, 137.6, 130.1, 129.8, 129.5, 125.64, 125.61, 125.57, 123.9 (CF₃), 85.5 (C-1), 74.6 (C-5), 71.9 (C-3), 67.1 (C-4), 67.0 (C-2), 61.6 (C-5), 20.8, 20.63, 20.55, 20.5. HRMS (ESI-TOF) Calculated for C₂₁H₂₄F₃O₉S [M+H]⁺ 509.1093, found 509.1089.

2-cyanophenyl-2,3,4,6-tetra-O-acetyl-1-thio-β-D-galactopyranoside 14i

The reaction was carried out according to the general procedure, using glycosyl thiols **4** (109.3 mg, 0.3mmol), aryl triflates **2i** (129 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **14i** (85.2 mg, 61% yield, β only, PE:EA = 3:1, R*f* = 0.3) was obtained as white solid.

 $[\alpha]_D^{25}$ 17.8 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.61 – 7.54 (m, 1H), 7.47 (t, *J* = 8.0 Hz, 1H), 5.44 (d, *J* = 4.0 Hz, 1H, H-4), 5.22 (t, *J* = 10.0 Hz, 1H, H-2), 5.07 (dd, *J*₁ = 8.0, *J*₂ =

4.0 Hz, 1H, H-3), 4.77 (d, J = 12.0 Hz, 1H, H-1), 4.20 (dd, $J_1 = 12.0$, $J_2 = 8.0$ Hz, 1H, H-6a), 4.12 (dd, J = 12.0, 8.0 Hz, 1H, H-6b), 3.97 (t, J = 8.0 Hz, 1H, H-5), 2.16 (s, 3H), 2.13 (s, 3H), 2.05 (s, 3H), 1.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 170.01, 169.95, 169.7, 135.7, 134.7, 133.7, 132.7, 129.0, 117.5, 116.9, 86.0 (C-1), 74.7 (C-5), 71.8 (C-3), 67.1 (C-4), 66.6 (C-2), 61.5 (C-5), 20.8, 20.7, 20.6, 20.5. HRMS (ESI-TOF) Calculated for C₂₁H₂₄NO₉S [M+H]⁺ 466.1172, found 466.1157.

4-(trifluoromethyl)phenyl-2,3,4,6-tetra- O-benzoyl-1-thio-β-D-galactopyranoside 15a

The reaction was carried out according to the general procedure, using glycosyl thiols **5** (183 mg, 0.3mmol), aryl triflates **2a** (110 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **15a** (156.6 mg, 69% yield, β only, PE:EA = 3:1, R*f* = 0.3) was obtained as white foam.

 $\begin{bmatrix} \alpha \end{bmatrix}_D^{25} 83.1 (c = 0.50, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3) \delta 8.04 (d, J = 8.0 Hz, 2H), 7.97 (d, J = 4.0 Hz, 4H), 7.76 (d, J = 8.0 Hz, 2H), 7.70 - 7.58 (m, 4H), 7.56 - 7.37 (m, 10H), 7.27 - 7.20 (m, 2H), 6.04 (s, 1H, H-4), 5.81 (t, J = 8.0 Hz, 1H, H-3), 5.66 (d, J = 8.0 Hz, 1H, H-2), 5.12 (d, J = 8.0 Hz, 1H, H-1), 4.71 - 4.61 (m, 1H, H-6a), 4.57 - 4.41 (m, 2H, H-6b, H-5). {}^{13}C NMR (100 MHz, CDCl_3) \delta 166.1, 165.5, 165.2, 136.9, 133.8, 133.6, 133.5, 133.4, 132.5, 129.9, 129.9, 129.80, 129.78, 129.4, 129.0, 128.8, 128.7, 128.60, 128.56, 128.5, 128.4, 125.7, 124.1 (CF_3), 85.4 (C-1), 75.5 (C-5), 72.7 (C-2), 68.3 (C-4), 67.8 (C-3), 62.7 (C-6). HRMS (ESI-TOF) Calculated for C₂₁H₂₄NO₉S [M+H]⁺ 466.1172, found 466.1159.$

4-(trifluoromethyl)phenyl-2,3,4,6-tetra-O-acetyl-1-thio-α-D-mannopyranoside 16a

The reaction was carried out according to the general procedure, using glycosyl thiols **6** (109.3 mg, 0.3mmol), aryl triflates **2a** (110 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **16a** (65.6 mg, 43% yield, α only, PE:EA = 3:1, R*f* = 0.3) was obtained as white solid.

CF₂

 $[\alpha]_{D}^{25} 44.4 (c = 0.50, CHCl_{3}); {}^{1}H NMR (400 MHz, CDCl_{3}) \delta 7.66 - 7.51 (m, 4H), 5.61 (d,$ *J*= 1.1 Hz, 1H, H-1), 5.49 (dd,*J*_{*I*} = 3.0,*J*₂ = 1.6 Hz, 1H, H-2), 5.40 - 5.27 (m, 2H, H-4, H-3), 4.51 - 4.42 (m, 1H, H-5), 4.30 (dd,*J*_{*I*} = 12.0,*J*₂ = 6.0 Hz, 1H, H-6a), 4.11 (dd,*J*_{*I*} = 12.0,*J*₂ = 4.0 Hz, 1H, H-6b), 2.18 (s,

3H), 2.08 (s, 3H), 2.03 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 169.9, 169.8, 169.7, 137.9, 130.7, 129.9, 129.6, 126.0, 125.93, 125.89, 123.8 (CF₃), 84.8 (C-1), 84.7, 70.7 (C-2), 69.9 (C-5), 69.3 (C-3), 66.2 (C-4), 62.3 (C-6), 20.9, 20.8, 20.7, 20.62, 20.60. HRMS (ESI-TOF) Calculated for C₂₁H₂₄F₃O₉S [M+H]⁺ 509.1093, found 509.1094.

2-cyanophenyl-2,3,4,6-tetra-O-acetyl-1-thio-α-D-mannopyranoside 16i

The reaction was carried out according to the general procedure, using glycosyl thiols **6** (109.3 mg, 0.3mmol), aryl triflates **2i** (129 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **16i** (64.2 mg, 46% yield, α only, PE:EA = 3:1, R*f* = 0.3) was obtained as white solid.

 $[\alpha]_D^{25}$ 35.4 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.0 Hz, 1H), 7.70 (dd, *J*₁ = 8.0, *J*₂ = 1.2 Hz, 1H), 7.61 – 7.55 (m, 1H), 7.48 – 7.41 (m, 1H), 5.58 – 5.53 (m, 2H, H-1, H-2), 5.38 (t, *J* = 10.0 Hz, 1H, H-4), 5.31 (dd, *J*₁ = 12.0, *J*₂ = 4.0 Hz, 1H, H-3), 4.63 – 4.53 (m, 1H, H-5), 4.34 (dd, *J*₁ = 12.0, *J*₂ = 4.0 Hz,

1H, H-6a), 4.12 (dd, J_1 = 12.0, J_2 = 4.0 Hz, 1H, H-6b), 2.17 (s, 3H), 2.08 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 169.8, 169.7, 136.7, 133.9, 133.8, 133.4, 128.8, 117.2, 117.0, 86.3 (C-1), 70.7 (C-2), 70.3 (C-5), 69.2 (C-3), 65.9 (C-4), 62.1 (C-6), 20.8, 20.68, 20.66, 20.6. HRMS (ESI-TOF) Calculated for C₂₁H₂₄NO₉S [M+H]⁺ 466.1167, found 466.1168.

4-(trifluoromethyl)phenyl-2,3,5-tri-O-acetyl-1-thio-β-D-ribofuranoside 17a

The reaction was carried out according to the general procedure, using glycosyl thiols **7** (87.7 mg, 0.3mmol), aryl triflates **2a** (110 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **17a** (66.8 mg, 51% yield, α only, PE:EA = 3:1, R*f* = 0.3) was obtained as white foam.

 $[\alpha]_D{}^{25} 0.9 (c = 0.50, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3) \delta 7.59 - 7.54 (m, 4H), 5.50 (t, J = 4.0 Hz, 1H, H-3), 5.28 (d, J = 8.0 Hz, 1H, H-1), 5.14 - 5.05 (m, 2H, H-4, H-2), 4.18 (dd, <math>J_I = 12.0, J_2 = 4.0$ Hz, 1H, H-5a), 3.84 (dd, J_I

= 12.0, J_2 = 8.0 Hz, 1H, H-5b), 2.12 (s, 3H), 2.11 (s, 3H), 2.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.73, 169.70, 169.3, 137.7, 131.1, 130.2, 130.1, 129.8, 129.5, 129.2, 125.92, 125.88, 125.84, 125.80, 123.9 (CF₃), 83.5 (C-1), 68.2 (C-2), 67.1 (C-3), 66.33, 66.29 (C-4), 63.4 (C-5), 20.73, 20.70, 20.66. HRMS (ESI-TOF) Calculated for C₁₈H₂₀F₃O₇S [M+H]⁺437.0882, found 437.0880.

4-(trifluoromethyl)phenyl-2,3,4-tri-O-acetyl-1-thio-α-L-rhamnopyranoside 18a

The reaction was carried out according to the general procedure, using glycosyl thiols **8** (92 mg, 0.3mmol), aryl triflates **2a** (110 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **18a** (56.7 mg, 42% yield, β only, PE:EA = 3:1, R*f* = 0.3) was obtained as white foam.

AcO

AcO

ÓAc

 $[\alpha]_{D}^{25} -12.1 (c = 0.50, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3) \delta 7.53 - 7.58 (m, 4H), 5.54 (s, 1H, H-1), 5.49 (dd, <math>J_1 = 3.1, J_1 = 1.5$ Hz, 1H, H-2), 5.26 (dd, $J_1 = 12.0, J_2 = 4.0$ Hz, 1H, H-3), 5.17 (t, J = 10.0 Hz, 1H, H-4), 4.37 -

4.26 (m, 1H, H-5), 2.17 (s, 3H), 2.08 (s, 3H), 2.02 (s, 3H), 1.26 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 169.9, 138.7, 130.3, 129.9, 129.6, 129.3, 128.9, 125.99, 125.96, 125.92, 125.88, 123.9 (CF₃), 84.8 (C-1), 71.1 (C-2), 70.9 (C-4), 69.3 (C-3), 68.1 (C-5), 20.9, 20.8, 20.7, 17.3. HRMS (ESI-TOF) Calculated for C₁₉H₂₂F₃O₇S [M+H]⁺ 451.1038, found 451.1040.

4-(trifluoromethyl)phenyl-2,3,4-tri-O-acetyl-1-thio-α-L-fucosepyranoside 19a

The reaction was carried out according to the general procedure, using glycosyl thiols **9** (92 mg, 0.3mmol), aryl triflates **2a** (110 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **19a** (81.1 mg, 60% yield, α only, PE:EA = 3:1, R*f* = 0.3) was obtained as white foam.

 $[\alpha]_{D^{25}} 40.0 (c = 0.50, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3) \delta 7.61 (d, J = 8.0 Hz, 2H), \delta 7.56 (d, J = 8.0 Hz, 2H), 5.29 (d, J = 3.1 Hz, 1H, H-4), 5.24 (t, J = 10.0 Hz, 1H, H-3), 5.08 (dd, J_1 = 12.0, J_2 = 4.0 Hz, 1H, H-2), 4.78 (d, J = 12.0 Hz, 1H, Hz, 1H), 4.78 (d, J = 12.0 Hz, 1H), 4.78 (d, J = 12.0 Hz,$

Hz, 1H, H-1), 3.93 - 3.86 (m, 1H, H-5), 2.15 (s, 3H), 2.08 (s, 3H), 1.98 (s, 3H), 1.26 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.1, 169.5, 137.9, 131.4, 130.1, 129.8, 129.5, 129.1, 125.7, 125.62, 125.58, 125.55, 124.0 (CF₃), 85.2 (C-1), 73.3 (C-5), 72.3 (C-3), 70.2 (C-4), 67.0 (C-2), 20.8, 20.6, 16.4. HRMS (ESI-TOF) Calculated for C₁₉H₂₂F₃O₇S [M+H]⁺451.1038, found 451.1034.

2-cyanophenyl-2,3,4-tri-O-acetyl-1-thio-α-L-fucosepyranoside 19i

The reaction was carried out according to the general procedure, using glycosyl thiols 9 (92 mg,

0.3mmol), aryl triflates **2i** (129 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **19i** (80.7 mg, 66% yield, α only, PE:EA = 3:1, R*f* = 0.3) was obtained as white foam.

[α]_D²⁵ 33.7 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz, 1H), 7.69 (dd, *J*₁ = 7.7, *J*₂ = 1.2 Hz, 1H), 7.61 – 7.54 (m, 1H), 7.49 – 7.39 (m, 1H), 5.28 (d, *J* = 2.7 Hz, 1H, H-4), 5.20 (t, *J* = 10.0 Hz, 1H, H-3), 5.07 (dd, *J*₁ = 10.0, *J*₂ = 4.0 Hz, 1H, H-2), 4.74 (d, *J* = 8.0 Hz, 1H, H-1), 3.90 – 3.74 (m, 1H, H-5), 2.15 (s, 3H), 2.14 (s, 3H), 1.97 (s, 3H), 1.25 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃)

 δ 170.4, 170.0, 169.7, 136.3, 134.4, 133.7, 132.7, 128.7, 117.2, 117.0, 85.8 (C-1), 73.5 (C-5), 72.3 (C-3), 70.2 (C-4), 66.7 (C-2), 20.8, 20.63, 20.58, 16.4. HRMS (ESI-TOF) Calculated for C₁₉H₂₂NO₇S [M+H]⁺ 408.1117, found 408.1108.

4-(trifluoromethyl)pheny-2,3,6,2',3',4',6'-hepta-O-benzoyl-1-thio-β-cellobioside 20a

The reaction was carried out according to the general procedure, using glycosyl thiols **9** (195.7 mg, 0.3mmol), aryl triflates **2a** (110 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **20a** (162.5 mg, 68% yield, β only, PE:EA = 3:1, R*f* = 0.25) was obtained as white foam.

Aco Aco OAc Aco Aco OAc

 $[\alpha]_D^{25}$ -23.5(c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.63 - 7.49 (m, 4H), 5.22 (t, *J* = 10.0 Hz, 1H), 5.15 (t, *J* = 10.0 Hz, 1H), 5.07 (t, *J* = 8.0 Hz, 1H), 4.98 - 4.88 (m, 2H), 4.73 (d,

J = 8.0 Hz, 1H), 4.58 (d, J = 12.0 Hz, 1H), 4.50 (d, J = 8.0 Hz, 1H), 4.38 (dd, $J_1 = 12.0$, $J_2 = 4.0$ Hz, 1H), 4.10 (dd, $J_1 = 12.0$, $J_2 = 4.0$ Hz, 1H), 4.06 – 4.00 (m, 1H), 3.74 (t, J = 10.0 Hz, 1H), 3.70 – 3.61 (m, 2H), 2.11 (s, 3H), 2.09 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H), 1.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.2, 170.1, 169.7, 169.52, 169.3, 169.0, 136.8, 132.3, 130.3, 130.0, 125.7, 125.6, 123.9 (CF₃), 100.8, 84.6, 76.2, 73.4, 72.9, 72.02, 71.59, 70.0, 67.7, 61.9, 61.5, 20.8, 20.72, 20.6, 20.54, 20.50. HRMS (ESI-TOF) Calculated for C₃₃H₄₀F₃O₁₇S [M+H]⁺ 797.1938, found 797.1931.

4-chlorophenyl-2,3,6,2',3',4',6'-hepta-O-benzoyl-1-thio-β-maltobioside 21c

The reaction was carried out according to the general procedure, using glycosyl thiols **9** (195.7 mg, 0.3mmol), aryl triflates **2c** (98 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **21c** (162.5 mg, 68% yield, β only, PE:EA = 3:1, R*f* = 0.25) was obtained as colorless oil.

$$\begin{split} & [\alpha]_{D}{}^{25} \ 74.2 \ (c=0.50, CHCl_{3}); \ ^{1}H \ NMR \ (400 \ MHz, CDCl_{3}) \ \delta \ 7.59 \\ & -7.55 \ (m, \ 1H), \ 7.42 \ (d, \ J=8.0 \ Hz, \ 1H), \ 7.31 \ -7.27 \ (m, \ 1H), \\ & 7.27 \ -7.22 \ (m, \ 1H), \ 5.43 \ -5.25 \ (m, \ 3H), \ 5.10 \ -5.00 \ (m, \ 1H), \\ & 4.89 \ -4.82 \ (m, \ 1H), \ 4.82 \ -4.65 \ (m, \ 2H), \ 4.62 \ -4.53 \ (m, \ 1H), \\ & 4.29 \ -4.17 \ (m, \ 2H), \ 4.10 \ -4.02 \ (m, \ 1H), \ 4.00 \ -3.89 \ (m, \ 2H), \end{split}$$

3.79 - 3.69 (m, 1H), 2.13 (d, J = 4.0 Hz, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 2.04 - 2.02 (m, 6H), 2.01 - 1.98 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.3, 170.1, 170.0, 169.6, 169.4, 135.3, 135.1, 132.1, 129.1, 121.8, 95.60, 95.56, 84.5, 84.4, 76.3, 76.2, 72.3, 70.6, 70.0, 69.3, 69.0, 68.5, 68.0, 62.6, 61.5, 20.90, 20.85, 20.8, 20.73, 20.69, 20.62, 20.60, 20.58. HRMS (ESI-TOF) Calculated for C₃₂H₃₉ClO₁₇SK [M+K]⁺ 801.1234, found 801.1210.

6-cyclohex-1-en-2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside 23a

The reaction was carried out according to the general procedure, using glycosyl thiols 1 (109.3 mg,

0.3mmol), aryl triflates **22a** (105 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **23a** (88 mg, 66% yield, β only, PE:EA = 5:1, R*f* = 0.4) was obtained as white foam.

$$\begin{bmatrix} \alpha \end{bmatrix}_{D}^{25} 18.6 (c = 0.50, CHCl_3); ^{1}H NMR (400 MHz, CDCl_3) \delta 6.02 - 5.95 (m, 1H), 5.23 (t, J = 8.0 Hz, 1H, H-3), 5.07 (t, J = 10.0 Hz, 1H, H-4), 5.02 (t, J = 10.0 Hz, 1H, H-2), 4.65 (d, J = 12.0 Hz, 1H, H-1), 4.22 (dd, J_1 = 12.0, J_2 = 8.0 Hz, 1H, H-2) = 10.0 Hz, 1H, H-2) = 10.0 Hz, 1H, H-2)$$

Hz, 1H, H-6a), 4.15 (dd, $J_1 = 12.0$, $J_2 = 4.0$ Hz, 1H, H-6b), 3.80 - 3.55 (m, 1H, H-5), 2.26 - 2.09 (m, 4H), 2.07 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H), 2.01 (s, 3H), 1.74 - 1.64 (m, 2H), 1.63 - 1.55 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.2, 169.4, 169.3, 132.0, 129.4, 84.2 (C-1), 75.8 (C-5), 74.1 (C-3), 69.9 (C-2), 68.3 (C-4), 62.3 (C-6), 31.4, 26.7, 23.4, 21.5, 20.8, 20.7, 20.62, 20.59. HRMS (ESI-TOF) Calculated for C₂₀H₂₈O₉SNa [M+Na]⁺ 467.1346, found 467.1342.

(1H-inden-2-yl)-2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside 23b

The reaction was carried out according to the general procedure, using glycosyl thiols **1** (109.3 mg, 0.3mmol), aryl triflates **22b** (113.2 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **23b** (81.8 mg, 57% yield, β only, PE:EA = 5:1, R*f* = 0.4) was obtained as white foam.

 $[\alpha]_{D}^{25} 148.0 (c = 0.50, CHCl_{3}); {}^{1}H NMR (400 MHz, CDCl_{3}) \delta 7.38 (d, J = 8.0 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.24 (d, J = 8.0 Hz, 1H), 7.16 (t, J = 6.0 Hz, 1H), 6.90 (s, 1H), 5.27 (t, J = 8.0 Hz, 1H, H-3), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H, H-30 (d, J = 8.0 Hz, H), 5.27 (t, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H, H-30 (d, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H, H-30 (d, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H (d, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H (d, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H (d, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H (d, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H (d, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H (d, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H (d, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H (d, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H (d, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H (d, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H (d, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H (d, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H (d, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H (d, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H (d, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H (d, J = 8.0 Hz, H), 5.15 - 5.04 (m, 2H, J) = 5.00 Hz, 1H (d, J = 8.0 Hz, H)$

H-2, H-4), 4.78 (d, J = 12.0 Hz, 1H, H-1), 4.25 (dd, $J_1 = 12.0$, $J_2 = 8.0$ Hz, 1H, H-6a), 4.19 (dd, $J_1 = 12.3$, $J_2 = 2.4$ Hz, 1H, H-6b), 3.80 (m, J = 10.0, 1H, H-5), 3.66 – 3.47 (m, 2H), 2.08 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 2.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.2, 169.4, 169.3, 144.1, 143.4, 136.9, 133.5, 126.7, 124.9, 123.3, 120.4, 84.1 (C-1), 75.9 (C-5), 73.8 (C-3), 69.9 (C-2), 68.2 (C-4), 62.2 (C-6), 43.7, 20.7, 20.6. HRMS (ESI-TOF) Calculated for C₂₀H₂₈O₉S [M+Na]⁺467.1346, found 467.1342.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(((3S)-6-isopropyl-3-methylcyclohex-1-en-1-yl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate 23c

The reaction was carried out according to the general procedure, using glycosyl thiols **1** (109.3 mg, 0.3mmol), aryl triflates **22c** (98 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **23c** (123.1 mg, 82% yield, β only, PE:EA = 5:1, R*f* = 0.4) was obtained as white foam.

OAc

-0

ÒAc

AcO AcO

 $[\alpha]_D^{25}$ 58.6 (c = 0.50, CHCl₃); 1H NMR (400 MHz, CDCl₃) δ 5.98 (d, J = 1.3 Hz, 1H), 5.23 (t, J = 10.0 Hz, 1H), 5.13 – 4.89 (m, 2H), 4.54 (d, J = 12.0 Hz, 1H), 4.23 (dd, J_I = 12.0, J_2 = 8.0 Hz, 1H), 4.12 (dd, J_I = 12.0, J_2 = 4.0 Hz, 1H), 3.78 – 3.64 (m, 1H), 2.45 – 2.27 (m, 1H), 2.26 – 2.11 (m, 2H), 2.08 (s, 3H),

2.05 (s, 3H), 2.03 (s, 3H), 2.00 (s, 3H), 1.86 – 1.77 (m, 1H), 1.77 – 1.68 (m, 1H), 1.43 – 1.30 (m, 1H), 1.18 – 1.04 (m, 1H), 1.00 (d, J = 7.0 Hz, 3H), 0.92 (d, J = 6.9 Hz, 3H), 0.70 (d, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDC13) δ 170.5, 170.2, 169.4, 169.1, 141.2, 134.4, 85.5, 75.8, 74.2, 69.7, 68.3, 62.4, 45.1, 32.6, 30.6, 28.2, 22.2, 21.7, 20.70, 20.67, 20.57, 20.55, 20.5, 15.6. HRMS (ESI-TOF) Calculated for C₂₄H₃₇O₉S [M+H]⁺ 501.2153, found 501.2153.

(6,7-dihydro-5H-benzo[7]annulen-9-yl) -2,3,4,6-tetra-*O*-acetyl-1-thio-β-D-glucopyranoside 23d

The reaction was carried out according to the general procedure, using glycosyl thiols **1** (109.3 mg, 0.3mmol), aryl triflates **22d** (125.2 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF

(1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **23d** (88.1 mg, 58% yield, β only, PE:EA = 5:1, Rf = 0.4) was obtained as white foam.

 $[\alpha]_{D}^{25}$ 99.0 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.0 Hz, 1H), 7.31 – 7.27 (m, 1H), 7.26 – 7.20 (m, 2H), 6.63 (t, *J* = 8.0 Hz, 1H), 5.18 – 4.92 (m, 3H, H-3, H-2, H-4), 4.36 (d, *J* = 8.0 Hz, 1H, H-1), 4.11 (dd, *J*₁ = 12.0, *J*₂ = 4.0 Hz, 1H, H-6a), 4.00 (dd, *J*₁ = 12.0, *J*₂ = 4.0 Hz, 1H, H-6b), 3.44 – 3.28

(m, 1H, H-5), 2.73 - 2.54 (m, 2H), 2.22 - 2.13 (m, 2H), 2.10 (s, 3H), 2.07 (s, 3H), 1.98 (s, 3H), 1.97 (s, 3H), 1.96 - 1.90 (m, 1H), 1.87 - 1.75 (m, 1H). 13 C NMR (100 MHz, CDCl₃) δ 170.6, 170.2, 169.3, 142.0, 137.6, 135.9, 132.1, 128.9, 128.1, 127.9, 126.3, 84.1 (C-1), 75.7 (C-5), 73.9 (C-3), 70.1 (C-2), 68.3 (C-4), 62.2 (C-6), 35.5, 32.1, 25.8, 20.74, 20.72, 20.6, 20.5. HRMS (ESI-TOF) Calculated for C₂₅H₃₁O₉S [M+H]⁺ 507.1684, found 507.1683.

1-((3S,5S,7S)-adamantan-1-yl)vinyl-2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside 23e

The reaction was carried out according to the general procedure, using glycosyl thiols **1** (109.3 mg, 0.3mmol), aryl triflates **22e** (132.9 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **23e** (70.8 mg, 45% yield, β only, PE:EA = 5:1, R*f* = 0.4) was obtained as white foam.

 $[\alpha]_D^{25}$ 102.0 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.29 – 5.19 (m, 3H, H-3), 5.09 (t, *J* = 8.0 Hz, 2H, H-4, H-2), 4.62 (d, *J* = 12.0 Hz, 1H, H-1), 4.26 – 4.18 (m, 1H, H-6a), 4.14 (d, *J* = 12.3 Hz, 1H, H-6b), 3.77 – 3.69 (m, 1H, H-5), 2.11 – 2.06 (m, 6H), 2.05 – 1.98 (m, 9H), 1.84 – 1.69 (m, 7H), 1.67 –

1.56 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 170.3, 169.4, 155.5, 110.9, 87.0 (C-1), 75.7 (C-5), 74.0 (C-3), 70.0 (C-2), 68.4 (C-4), 62.4 (C-6), 41.1, 39.8, 38.3, 36.6, 36.6, 28.5, 28.0, 20.8, 20.7, 20.6. HRMS (ESI-TOF) Calculated for C₂₆H₃₆O₉SNa [M+Na]⁺ 547.1972, found 547.1935.

((8S, 9S, 10R, 13R, 14S, 17R) - 10, 13 - dimethyl - 17 - ((S) - 6 - methyl heptan - 2 - yl) - 10, 13 - dimethyl - 17 - ((S) - 6 - methyl - 10, 13 - dimethyl -

2,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl-2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside 23f

The reaction was carried out according to the general procedure, using glycosyl thiols **1** (109.3 mg, 0.3mmol), aryl triflates **22f** (310 mg, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **23f** (146.9 mg, 67% yield, β only, PE:EA = 5:1, R*f* = 0.4) was obtained as white foam.

 $[\alpha]_{D}^{25}$ 126.0 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.16 (d, J = 1.6 Hz, 1H), 5.46 – 5.39 (m, 1H), 5.24 (t, J = 10.0 Hz, 1H, H-3), 5.09 – 5.04 (m, 1H, H-4), 5.04 – 4.99 (m, 1H, H-2), 4.71 (d, J = 8.0 Hz, 1H, H-1), 4.22 (dd, J_{I} = 12.0, J_{2} = 4.0 Hz, 1H, H-6a), 4.14 (dd, J_{I} = 12.0, J_{2} = 2.2 Hz, 1H, H-6b), 3.80 – 3.72 (m, 1H, H-5), 2.41 (t, J = 10.0 Hz, 1H), 2.29

- 2.13 (m, 2H), 2.07 (s, 3H), 2.06 (s, 3H), 2.02 (d, J = 12.0 Hz, 6H), 1.85 - 1.81 (m, 2H), 1.74 - 1.47 (m, 5H), 1.46 - 1.31 (m, 4H), 1.30 - 1.20 (m, 3H), 1.19 - 0.97 (m, 9H), 0.96 - 0.90 (m, 6H), 0.87 (dd, $J_I = 8.0, J_2 = 4.0$ Hz, 6H), 0.70 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.2, 169.4, 169.2, 141.2, 131.86, 127.3, 125.3, 84.0 (C-1), 75.8 (C-5), 74.0 (C-3), 70.0 (C-2), 68.3 (C-4), 62.4 (C-6), 56.8, 56.1, 48.0, 42.4, 39.7, 39.5, 36.2, 35.8, 34.52, 34.50, 31.8, 31.7, 29.0, 28.2, 28.0, 24.2, 23.8, 22.8, 22.6, 21.1, 20.7, 20.59, 20.57, 19.0, 18.7, 12.0. HRMS (ESI-TOF) Calculated for C₄₁H₆₃O₉S [M+H]⁺ 731.4188, found 731.4183.

((13S)-13-methyl-1,2,4,6,7,8,12,13,14,15-decahydrospiro[cyclopenta[a]phenanthrene-3,2'-[1,3]dioxolan]-17-yl)-2,3,4,6-tetra-*O*-acetyl-1-thio-β-D-glucopyranoside 23g

The reaction was carried out according to the general procedure, using glycosyl thiols **1** (109.3 mg, 0.3mmol), aryl triflates **22g** (267 mg, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **23g** (166.5 mg, 84% yield, β only, PE:EA = 5:1, R*f* = 0.4) was obtained as white foam.

[α]_D²⁵ 10.6 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.75 (d, J = 1.1 Hz, 1H), 5.54 (s, 1H), 5.25 (t, J = 10.0 Hz, 1H, H-3), 5.13 (t, 1H, J = 6.0 Hz,H-2), 5.09 (t, J = 6.0 Hz, 1H, H-4), 4.72 (d, J = 8.0 Hz, 1H, H-1), 4.24 (dd, J_I = 12.3, J_2 = 5.4 Hz, 1H, H-6a), 4.14 (dd, J_I = 12.0, J_2 = 4.0 Hz, 1H, H-6b), 3.99 (s, 4H), 3.85 – 3.69 (m, 1H, H-5), 2.56 – 2.46 (m, 1H), 2.39 – 2.26 (m, 3H), 2.26 – 2.16 (m, 3H), 2.15 – 2.09 (m, 2H), 2.07 (s, 3H), 2.06 (s, 3H), 2.03 (s, 6H), 1.99 – 1.72 (m, 5H), 1.71 – 1.61 (m, 1H), 1.34

-1.22 (m, 1H), 0.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.2, 169.4, 169.3, 143.9, 137.7, 130.3, 127.9, 126.2, 117.3, 108.0, 84.1(C-1), 75.8 (C-5), 74.0 (C-3), 69.6 (C-2), 68.2 (C-4), 64.4, 64.3, 62.2 (C-6), 52.2, 47.3, 41.3, 37.0, 36.4, 32.5, 31.3, 30.9, 27.6, 24.6, 20.7, 20.59, 20.56, 16.4. HRMS (ESI-TOF) Calculated for C₃₄H₄₅O₁₁S [M+H]⁺ 661.2677, found 661.2675.

$((8R,9R,12S,14R)-12-methyl-3-(((trifluoromethyl)sulfonyl)oxy)-7,8,9,11,12,13,14,15-octahydro-6H-cyclopenta[a]phenanthren-17-yl)-2,3,4,6-tetra-O-acetyl-1-thio-\beta-D-glucopyranoside 23h$

The reaction was carried out according to the general procedure, using glycosyl thiols **1** (109.3 mg, 0.3mmol), aryl triflates **22h** (320.7 mg, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **23h** (172.9 mg, 77% yield, β only, PE:EA = 5:1, R*f* = 0.4) was obtained as white foam.

 $[\alpha]_D^{25}$ 69.0 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 12.0 Hz, 1H), 7.02 (dd, *J*₁ = 8.0, *J*₂ = 4.0 Hz 1H), 6.98 (d, *J* = 2.5 Hz, 1H), 5.81 – 5.64 (m, 1H), 5.26 (t, *J* = 10.0 Hz, 1H, H-3), 5.16 (t, *J* = 8.0 Hz, 1H, H-2), 5.11 (t, *J* = 8.0 Hz,

1H, H-4), 4.72 (d, J = 8.0 Hz, 1H, H-1), 4.26 (dd, $J_I = 12.0$, $J_2 = 4.0$ Hz, 1H, H-6a), 4.14 (dd, $J_I = 12.0$, $J_2 = 2.1$ Hz, 1H, H-6b), 3.79 - 3.67 (m, 1H, H-5), 2.99 - 2.88 (m, 2H), 2.39 - 2.25 (m, 3H), 2.08 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H), 1.99 - 1.88 (m, 2H), 1.71 - 1.59 (m, 3H), 1.59 - 1.39 (m, 3H), 0.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.3, 169.5, 169.3, 147.5, 145.3, 140.8, 139.4, 127.6, 126.9, 121.2, 118.7 (CF₃), 118.2, 84.1 (C-1), 76.0 (C-5), 74.1 (C-3), 69.6 (C-4), 68.2 (C-2), 62.2 (C-6), 55.5, 48.8, 44.3, 36.8, 34.4, 31.8, 29.4, 27.1, 26.1, 20.8, 20.7, 20.6, 16.1. HRMS (ESI-TOF) Calculated for C₃₃H₄₀F₃O₁₂S₂ [M+H]⁺749.1908, found 749.1904.

((8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((S)-6-methylheptan-2-yl)-

2,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl)-2,3,4,6-tetra-*O*-benzoyl-1-thio-β-D-glucopyranoside 24f

The reaction was carried out according to the general procedure, using glycosyl thiols **3** (183 mg, 0.3mmol), aryl triflates **22f** (310 mg, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **24f** (196.8 mg, 67% yield, β only, PE:EA = 5:1, R*f* = 0.4) was obtained as white foam.

 $[\alpha]_D^{25}$ 33.0 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.0 Hz, 2H), 7.88 (d, *J* = 8.0 Hz, 2H), 7.85 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.52 – 7.40 (m, 3H), 7.38 – 7.29 (m, 6H), 7.23 – 7.17 (m, 3H), 6.05 (s, 1H), 5.86 (t, *J* = 10.0 Hz, 1H, H-3), 5.55 (t, *J* = 10.0 Hz, 1H, H-4), 5.47 (t, *J* = 10.0 Hz, 1H, H-2), 5.18 (s, 1H), 4.96 (d, *J* = 8.0 Hz, 1H, H-1),

4.58 (dd, $J_1 = 12.0$, $J_2 = 4.0$ Hz, 1H, H-6a), 4.41 (dd, $J_1 = 12.0$, $J_2 = 8.0$ Hz, 1H, H-6b), 4.21 – 4.11 (m, 1H, H-5), 2.35 – 2.22 (m, 1H), 2.20– 2.12 (m, 1H), 2.06 – 1.91 (m, 2H), 1.82 – 1.71 (m, 1H), 1.53 – 1.41 (m, 6H), 1.37 – 1.23 (m, 5H), 1.23 – 1.17 (m, 2H), 1.11 – 1.01 (m, 5H), 0.97 – 0.91 (m, 2H), 0.89 – 0.74 (m, 13H), 0.62 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 164.8, 164.2, 164.1, 140.1, 132.5, 132.3, 132.2, 132.1, 131.1, 128.89, 128.85, 128.8, 128.7, 128.6, 128.2, 127.8, 127.7, 127.42, 127.35, 127.3, 126.5, 124.3, 83.9 (C-1), 75.3 (C-5), 73.2 (C-3), 69.6 (C-2), 68.6 (C-4), 62.5 (C-6), 55.8, 55.1, 46.9, 41.4, 38.7, 38.5, 35.2, 34.8, 33.4, 30.8, 30.7, 28.1, 27.2, 27.0, 23.1, 22.8, 21.8, 21.6, 20.0, 17.8, 17.7, 10.9. HRMS (ESI-TOF) Calculated for C₆₁H₇₁O₉S [M+H]⁺979.4814, found 979.4811.

((8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((S)-6-methylheptan-2-yl)-2,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl)-2,3,4,6tetra-*O*-acetyl-1-thio-β-D-galactopyranoside 25f

The reaction was carried out according to the general procedure, using glycosyl thiols **3** (183 mg, 0.3mmol), aryl triflates **22f** (310 mg, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **25f** (153.51 mg, 70% yield, β only, PE:EA = 5:1, R*f* = 0.4) was obtained as white foam.

 $[\alpha]_D^{25}$ -12.1 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.19 (d, *J* = 4.0 Hz, 1H), 5.44 (d, *J* = 4.0 Hz, 2H, H-4), 5.25 (t, *J* = 10.0 Hz, 1H, H-3), 5.06 (dd, *J*₁ = 12.0, *J*₂ = 4.0 Hz, 1H, H-2), 4.69 (d, *J* = 10.0 Hz, 1H, H-1), 4.23 - 4.08 (m, 2H, H-6), 3.96 (t, *J* = 6.0 Hz, 1H, H-5), 2.44 (t, *J* = 12.0 Hz, 1H), 2.29 -2.13 (m, 5H), 2.07 (s, 3H), 2.05 (s, 3H), 2.02 - 1.96 (m, 4H),

1.88 – 1.81 (m, 2H), 1.74 – 1.50 (m, 5H), 1.44 – 1.32 (m, 3H), 1.30 – 1.21 (m, 3H), 1.19 – 1.05 (m, 7H), 1.01 – 0.95 (m, 5H), 0.92 (d, J = 8.0 Hz, 3H), 0.87 (dd, $J_1 = 8.0$, $J_2 = 4.0$ Hz, 6H), 0.70 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 170.2, 170.1, 169.4, 141.2, 132.4, 127.1, 125.4, 84.5 (C-1), 74.5 (C-5), 72.0 (C-2), 67.4 (C-4), 67.2 (C-3), 61.9 (C-6), 56.8, 56.1, 48.0, 42.4, 39.7, 39.5, 36.2, 35.8, 34.6, 34.5, 31.8, 31.7, 29.2, 28.2, 28.0, 24.2, 23.8, 22.8, 22.6, 21.1, 20.9, 20.71, 20.69, 20.6, 19.0, 18.7, 12.0. HRMS (ESI-TOF) Calculated for C₄₁H₆₃O₉S [M+H]⁺731.4188, found 731.4191.

((13S)-13-methyl-1,2,4,6,7,8,12,13,14,15-decahydrospiro[cyclopenta[a]phenanthrene-3,2'-[1,3]dioxolan]-17-yl)-2,3,4,6-tetra-*O*-benzoyl-1-thio-β-D- galactopyranoside 26g

The reaction was carried out according to the general procedure, using glycosyl thiols **9** (183 mg, 0.3mmol), aryl triflates **22g** (267 mg, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **26g** (166.3 mg, 92% yield, β only, PE:EA = 5:1, R*f* = 0.4) was obtained as white foam. [α]_D²⁵ 167.0 (c = 0.50, CHCl₃);¹H NMR (600 MHz, CDCl₃) δ 8.10 – 8.06 (m, 2H), 8.05 – 7.99 (m, 2H), 7.98 – 7.92 (m, 2H), 7.83 – 7.76 (m, 2H), 7.62 (t, *J* = 7.5 Hz, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.53 – 7.46 (m, 3H), 7.45 – 7.35 (m, 5H), 7.26 – 7.24 (m, 1H), 6.04 (d, *J* = 3.4 Hz, 1H), 6.01 – 5.87 (m, 2H), 5.64 (dd, *J*₁ = 10.0, *J*₂ = 3.4 Hz, 1H), 5.47 (d, *J* = 5.3 Hz, 1H), 5.06 (d, *J* = 10.0 Hz, 1H), 4.70 – 4.57 (m, 1H),

4.46 (dd, $J_1 = 11.5$, $J_2 = 5.6$ Hz, 1H), 4.39 (t, J = 6.4 Hz, 1H), 3.98 (d, J = 2.5 Hz, 4H), 2.47 (d, J = 16.7 Hz, 1H), 2.29 (s, 3H), 2.24 – 2.15 (m, 3H), 2.14 – 2.08 (m, 2H), 2.08 – 1.90 (m, 2H), 1.88 – 1.71 (m, 3H), 1.68 – 1.61 (m, 1H), 1.35 – 1.16 (m, 1H), 0.77 (s, 3H).¹³C NMR (150 MHz, CDCl3) δ 167.5, 167.03, 166.99, 166.8, 145.3, 139.0, 135.1, 134.8, 134.7, 131.6, 131.5, 131.3, 130.9, 130.7, 130.4, 130.2, 130.1, 129.90, 129.86, 129.8, 129.6, 127.8, 119.0, 109.5, 86.2, 76.8, 74.4, 70.0, 69.1, 65.9, 65.8, 64.1, 53.6, 48.9, 42.8,

38.6, 37.9, 33.9, 32.7, 32.4, 29.1, 26.1, 18.1. HRMS (ESI-TOF) Calculated for $C_{54}H_{52}O_{11}SNa$ [M+Na]⁺ 931.3122, found 931.3121.

((13S)-13-methyl-1,2,4,6,7,8,12,13,14,15-decahydrospiro[cyclopenta[a]phenanthrene-3,2'-[1,3]dioxolan]-17-yl) -2,3,4-tri-*O*-acetyl-1-thio-α-L-fucosepyranoside 27g

The reaction was carried out according to the general procedure, using glycosyl thiols **9** (92 mg, 0.3mmol), aryl triflates **22g** (267 mg, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **27g** (166.3 mg, 92% yield, α only, PE:EA = 5:1, R*f* = 0.4) was obtained as white foam.

[α]_D²⁵ 133.2 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.74 - 5.68 (m, 1H), 5.54 (d, J = 4.0 Hz, 1H), 5.36 - 5.27 (m, 2H, H-2, H-4), 5.07 (dd, J_I = 12.0, J_2 = 4.0 Hz, 1H, H-3), 4.70 (d, J = 12.0 Hz, 1H, H-1), 3.99 (s, 4H), 3.91 - 3.83 (m, 1H, H-5), 2.53 (d, J = 12.0 Hz, 1H), 2.40 - 2.31 (m, 1H), 2.30 - 2.15 (m, 8H), 2.13 - 2.03 (m, 5H),

2.02 - 1.90 (m, 5H), 1.89 - 1.64 (m, 4H), 1.36 - 1.30 (m, 1H), 1.26 (dd, $J_1 = 12.0, J_2 = 8.0$ Hz, 3H), 0.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.1, 169.6, 145.2, 137.6, 130.2, 126.3, 124.9, 117.4, 108.1, 85.1 (C-1), 73.2(C-5), 72.3(C-3), 70.3(C-4), 67.1(C-2), 64.5, 64.3, 52.1, 47.3, 41.3, 36.6, 36.4, 32.4, 31.3, 31.0, 27.6, 24.6, 20.8, 20.7, 20.6, 16.5, 16.4. HRMS (ESI-TOF) Calculated for C₃₂H₄₃O₉S [M+H]⁺ 603.2623, found 603.2616.

((13S)-13-methyl-1,2,4,6,7,8,12,13,14,15-decahydrospiro[cyclopenta[a]phenanthrene-3,2'-[1,3]dioxolan]-17-yl)-2,3,4-tri-*O*-acetyl-1-thio-α-L-rhamnopyranoside 28g

The reaction was carried out according to the general procedure, using glycosyl thiols **8** (92 mg, 0.3mmol), aryl triflates **22g** (267 mg, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **28g** (139.2 mg, 77% yield, β only, PE:EA = 5:1, R*f* = 0.4) was obtained as white foam.

 $[\alpha]_{D}^{25}$ 22.4 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.71 (d, *J* = 1.1 Hz, 1H), 5.56 (s, 1H), 5.44 (d, *J* = 1.1 Hz, 1H, H-1), 5.41 (dd, *J_I* = 3.3, *J_I* = 1.5 Hz, 1H, H-2), 5.28 (dd, *J_I* = 12.0, *J*₂ = 4.0 Hz, 1H, H-3), 5.10 (t, *J* = 10.0 Hz, 1H, H-4), 4.24 - 4.12 (m, 1H, H-5), 3.99 (s, 4H), 2.53 (d, *J* = 16.0 Hz, 1H), 2.36 - 2.25 (m, 4H), 2.24 - 2.18 (m, 2H), 2.19 - 2.12 (m, 5H), 2.06 (s, 3H), 2.02 - 1.91 (m, 5H), 1.88 - 1.76 (m, 3H), 1.71 - 1.60

(m, 1H), 1.29 - 1.17 (m, 4H), 0.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.03, 170.00, 169.9, 143.9, 137.7, 130.2, 126.5, 126.3, 117.5, 108.1, 82.4 (C-1), 71.4 (C-2), 71.3 (C-4), 69.4 (C-3), 67.7 (C-5), 64.5, 64.3, 52.1, 47.5, 41.3, 37.1, 36.4, 32.5, 31.3, 31.0, 27.6, 24.6, 21.0, 20.8, 20.7, 17.5, 16.5. HRMS (ESI-TOF) Calculated for C₃₂H₄₃O₉S [M+H]⁺ 603.2623, found 603.2632.

((13S)-13-methyl-1,2,4,6,7,8,12,13,14,15-decahydrospiro[cyclopenta[a]phenanthrene-3,2'-[1,3]dioxolan]-17-yl)-2,3,6,2',3',4',6'-hepta-*O*-benzoyl-1-thio-β-cellobioside 29g The reaction was carried out according to the general procedure, using glycosyl thiols **9** (195.7 mg, 0.3mmol), aryl triflates **22g** (267 mg, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **29g** (259.1 mg, 91% yield, β only, PE:EA = 5:1, R*f* = 0.4) was obtained as white foam.

 $[\alpha]_D^{25}$ 38.0(c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.71 (s, 1H), 5.54 (s, 1H), 5.21 (t, *J* = 10.0 Hz, 1H), 5.14 (t, *J* = 10.0 Hz, 1H), 5.10 – 5.05 (m, 1H), 5.02 (t, *J* = 8.0 Hz, 1H), 4.95 – 4.90 (m, 1H), 4.67 (d, *J* = 12.0 Hz, 1H), 4.53 – 4.45 (m, 2H), 4.38 (dd, *J*₁ = 12.0, *J*₂ = 4.0 Hz, 1H), 4.10 (dd, *J*₁ = 12.0, *J*₂ = 8.0 Hz, 1H), 4.08 – 4.02 (m, 1H), 3.99 (s, 4H), 3.77 (t, *J* = 10.0 Hz, 1H), 3.70 – 3.60 (m, 2H), 2.57 – 2.47 (m, 1H), 2.36 – 2.27

(m, 3H), 2.25 - 2.14 (m, 4H), 2.12 - 2.07 (m, 7H), 2.05 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H), 1.98 (s, 3H), 1.92 (s, 1H), 1.89 - 1.75 (m, 4H), 1.70 - 1.60 (m, 1H), 1.29 - 1.24 (m, 1H), 0.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.3, 170.2, 169.8, 169.6, 169.3, 169.1, 144.2, 137.7, 130.3, 127.8, 126.3, 117.4, 108.0, 100.8, 84.2, 76.6, 73.7, 72.9, 72.0, 71.6, 70.0, 67.7, 64.5, 64.3, 62.4, 61.5, 52.3, 47.3, 41.3, 37.1, 36.4, 32.5, 31.3, 30.9, 27.6, 24.6, 20.8, 20.7, 20.6, 20.5, 16.5. HRMS (ESI-TOF) Calculated for C₄₆H₆₀O₁₉SNa [M+Na]⁺ 971.3342, found 971.3336.

4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)thio)benzonitrile 33

The reaction was carried out according to the general procedure, using glycosyl thiols **30** (58.8 mg, 0.3mmol), aryl triflates **2b** (95 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **33** (60.6 mg, 68% yield, β only, DCM:MeOH = 10:1, R*f* = 0.4) was obtained as white foam.

OH $[\alpha]_D^{25}$ -2.0(c = 0.50, MeOH); ¹H NMR (400 MHz, D₂O) δ 7.65 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 4.93 (d, J = 8.0 Hz, 1H), 3.85 (dd, J₁ = 12.0, J₂ = 4.0 Hz, 1H), 3.66 (dd, J₁ = 16.0, J₂ = 8.0 Hz, 1H), 3.56 - 3.46 (m,

2H), 3.43 - 3.31 (m, 2H). ¹³C NMR (100 MHz, D₂O) δ 140.6, 132.8, 129.4, 119.4, 109.1, 85.8, 79.9, 77.2, 71.7, 69.3, 60.7. HRMS (ESI-TOF) Calculated for C₁₃H₁₅NO₅S [M+NH₄]⁺ 315.1015, found 315.1011. HRMS (ESI-TOF) Calculated for C₁₃H₁₉N₂O₅S [M+NH₄]⁺ 315.1015, found 315.1011.

4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)thio)benzonitrile 34

The reaction was carried out according to the general procedure, using glycosyl thiols **31** (54.0 mg, 0.3mmol), aryl triflates **2a** (110 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **34** (66 mg, 68% yield, α only, DCM:MeOH = 10:1, R*f* = 0.4) was obtained as foam.

 $[\alpha]_{D}^{25} -35.2 (c = 0.50, MeOH); {}^{1}H NMR (600 MHz, MeOD) \delta 7.64 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 8.0 Hz, 2H), 4.71 (d, J = 4.0 Hz, 1H), 3.87 - 3.71 (m, 1H), 3.69 (d, J = 3.3, 1.0 Hz, 1H), 3.62 (t, J = 6.0 Hz, 1H), 3.54 - 3.50 (m, 1H), 1.28 (d, J = 0.0 Hz, 1H), 3.54 - 3.50 (m, 1H), 1.28 (d, J = 0.0 Hz, 1H), 3.54 - 3.50 (m, 1H), 1.28 (d, J = 0.0 Hz, 1H), 3.54 - 3.50 (m, 1H), 1.28 (d, J = 0.0 Hz, 1H), 3.54 - 3.50 (m, 1H), 1.28 (d, J = 0.0 Hz, 1H), 3.54 - 3.50 (m, 1H), 1.28 (d, J = 0.0 Hz, 1H), 3.54 - 3.50 (m, 1H), 1.28 (d, J = 0.0 Hz, 1H), 3.54 - 3.50 (m, 1H), 1.28 (d, J = 0.0 Hz, 1H), 3.54 - 3.50 (m, 1H), 1.28 (d, J = 0.0 Hz, 1H), 3.54 - 3.50 (m, 1H), 1.28 (d, J = 0.0 Hz, 1H), 3.54 - 3.50 (m, 1H), 1.28 (d, J = 0.0 Hz, 1H), 3.54 - 3.50 (m, 1H), 1.28 (d, J = 0.0 Hz, 1H), 3.54 - 3.50 (m, 1H), 1.28 (d, J = 0.0 Hz, 1H), 3.54 - 3.50 (m, 1H), 1.28 (d, J = 0.0 Hz, 1H), 3.54 - 3.50 (m, 1H), 1.28 (d, J = 0.0 Hz, 1H), 3.54 - 3.50 (m, 1H), 3.$

= 4.0 Hz, 3H). ¹³C NMR (150 MHz, MeOD) δ 142.3, 130.84, 130.82, 129.4, 129.2, 128.4, 126.62, 126.59, 126.57, 126.5, 125.8 (CF₃), 88.6, 76.5, 76.2, 73.1, 70.6, 17.1. HRMS (ESI-TOF) Calculated for C₁₃H₁₅F₃O₄SNa [M+Na]⁺ 347.0535, found 347.0534.

(trifluoromethyl)phenyl)thio)tetrahydro-2H-pyran-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol 35

The reaction was carried out according to the general procedure, using glycosyl thiols **32** (107 mg, 0.3mmol), aryl triflates **2a** (110 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **35** (82.9 mg, 55% yield, β only, DCM:MeOH = 3:1, R*f* = 0.4) was obtained as colorless oil.

 $[\alpha]_D^{25}$ 68.8(c = 0.50, MeOH); ¹H NMR (400 MHz, D₂O) δ 7.64 – 7.56 (m, 4H), 4.87 (d, *J* = 12.0 Hz, 1H), 4.44 (d, *J* = 8.0 Hz, 1H), 3.95 – 3.81 (m, 2H), 3.79 – 3.71 (m, 1H), 3.70 – 3.58 (m, 4H),

 $\begin{aligned} 3.47 - 3.30 \ (m, 4H), \ & 3.29 - 3.20 \ (m, 1H). \ ^{13}C \ NMR \ (100 \ MHz, D_2O) \ & 137.8, \ 130.3, \ 128.9, \ 128.5, \ 126.0, \\ 125.9, \ & 124.1 \ (CF_3), \ & 102.5, \ & 100.0, \ & 86.3, \ & 78.7, \ & 78.2, \ & 76.0, \ & 75.7, \ & 75.5, \ & 73.2, \ & 71.5, \ & 69.5, \ & 60.6, \ & 60.1. \\ HRMS \ & (ESI-TOF) \ Calculated \ for \ C_{19}H_{26}F_{3}O_{10}S \ \ [M+H]^+ \ & 503.1194, \ found \ & 503.1195. \end{aligned}$

(2S,3R,4S,5S,6R)-2-(cyclohex-1-en-1-ylthio)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol 36

The reaction was carried out according to the general procedure, using glycosyl thiols **30** (58.8 mg, 0.3mmol), aryl triflates **22a** (105 μ L, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **36** (56.3 mg, 68% yield, β only, DCM:MeOH = 10:1, R*f* = 0.4) was obtained as colorless oil.

(2R,38,48,5R,68)-2-(hydroxymethyl)-6-(((138)-13-methyl-1,2,4,6,7,8,12,13,14,15-decahydrospiro[cyclopenta[a]phenanthrene-3,2'-[1,3]dioxolan]-17-yl)thio)tetrahydro-2H-pyran-3,4,5-triol **37**

The reaction was carried out according to the general procedure, using glycosyl thiols **30** (58.8 mg, 0.3mmol), aryl triflates **22g** (267 mg, 0.6 mmol), **Solution A** (1 mL), **Solution B** (2 mL) and DMF (1 mL) in 5 mL undivided three-necked bottle. The product was purified by silica chromatography. Compound **37** (91.6 mg, 62% yield, β only, DCM:MeOH = 10:1, R*f* = 0.4) was obtained as white foam.

$$\label{eq:alpha} \begin{split} & [\alpha]_D{}^{25} \ 7.0 (c=0.50, \ MeOH); \ {}^1H \ NMR \ (400 \ MHz, \ MeOD) \ \delta \ 5.67 \ (s, \ 1H), \\ & 5.55 \ (s, \ 1H), \ 4.61 \ (d, \ J=12.0 \ Hz, \ 1H), \ 3.95 \ (s, \ 4H), \ 3.85 \ (d, \ J=12.0 \ Hz, \\ & 1H), \ 3.71 - 3.57 \ (m, \ 1H), \ 3.42 - 3.26 \ (m, \ 4H), \ 2.52 - 2.45 \ (m, \ 1H), \ 2.36 - \\ & 2.27 \ (m, \ 1H), \ 2.26 - 1.59 \ (m, \ 13H), \ 1.34 - 1.18 \ (m, \ 1H), \ 0.83 \ (s, \ 3H). \ {}^{13}C \ NMR \ (100 \ MHz, \ MeOD) \ \delta \ 145.2, \ 138.0, \ 130.0, \ 126.0, \ 123.5, \ 116.9, \ 107.9, \\ & 85.7, \ 80.6, \ 78.4, \ 72.6, \ 70.0, \ 63.9, \ 63.9, \ 61.3, \ 52.4, \ 40.8, \ 37.1, \ 36.6, \ 32.0, \\ & 30.9, \ 30.7, \ 27.5, \ 24.3, \ 15.6. \ HRMS \ (ESI-TOF) \ Calculated \ for \ C_{26}H_{40}O_7SN \end{split}$$

 $[M+NH_4]^+$ 510.2520, found 510.2498.

References:

- (a) R. Venkatesh, V. Tiwari and J. Kandasamy, *J. Org. Chem.*, 2022, **87**, 11414-11432; (b) T. Ghosh, A. Santra and A. K. Misra, *Beilstein J. Org. Chem.*, 2013, **9**, 974-982; (c) N. Floyd, B. Vijayakrishnan, J. R. Koeppe and B. G. Davis, *Angew. Chem. Int. Ed.*, 2009, **48**, 7798-7802; (d) Y. C. Lee, C. P. Stowell and M. J. Krantz, *Biochemistry*, 1976, **15**, 3956-3963.
- (a) Z. Zhu, Y. Gong, W. Tong, W. Xue and H. Gong, Org. Lett., 2021, 23, 2158-2163; (b) B. Dogga, C. S. A. Kumar and J. T. Joseph, Eur. J. Org. Chem., 2021, 309-313; (c) F. Y. Kwong, C. W. Lai, M. Yu, Y. Tian and K. S. Chan, Tetrahedron, 2003, 59, 10295-10305.
- (a) T. Si, B. Li, W. Xiong, B. Xu and W. Tang, *Org. Biomol. Chem.*, 2017, **15**, 9903-9909; (b)
 B. Scheiper, M. Bonnekessel, H. Krause and A. Fürstner, *J. Org. Chem.*, 2004, **69**, 3943-3949;
 (c) F. Zhang, Y. Wang, Y. Wang and Y. Pan, *Org. Lett.*, 2021, **23**, 7524-7528.

