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1. General information  

All the reactions were performed in oven-dried glass apparatus, the air and moisture sensitive 

reactions were carried out under inert atmosphere (nitrogen) using freshly distilled anhydrous 

solvents. Commercially available reagents were used as such without further purification. All 

reactions were monitored by thin-layer chromatography carried out on silica plates using UV-light 

and anisaldehyde for visualization. Column chromatography was performed on silica gel (100-200 

mesh) using hexanes and ethyl acetate as eluent. 
1
H NMR was recorded in CDCl3, DMSO on 500 

MHz and 400 MHz and 
13

C NMR was recorded on 151 MHz, 126 MHz and 101 MHz. δ7.26 and δ77 

and δ 2.5, δ 39.5 are corresponding to CDCl3 and DMSO-d6 in 
1
H NMR and 

13
C NMR respectively. 

Chemical shifts were reported in δ (ppm) relative to TMS as an internal standard and J values were 

given in Hz (hertz). Multiplicity is indicated as, s (singlet); d (doublet); t (triplet); m (multiplet); dd 

(doublet of doublets), etc. FTIR spectra were recorded on Alpha (Bruker) Infrared Spectrophotometer. 

High resolution mass spectra (HRMS) [ESI+] were obtain using either a TOF or a double focusing 

spectrometer. 
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Structures of Bialy Enones: 

All the biaryl enones were prepared following the literature procedures.
1-3

 

 

2. Optimization table, Control experiments and Plausible mechanism: 

A. Optimization of reaction conditions:  

Optimization of the reaction conditions, the cyclic reaction of 1-([1,1'-biphenyl]-2-yl)-2-methylprop-

2-en-1-one (1a) with 2 equiv. of oxoacetic acid as the carbamoylating agent was chosen as a model 

reaction. 
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Table S1: Optimization of carbamoyl radical-promoted cyclization of biaryl enones: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Radical trapping experiment: 

Control experiment was conducted by adding methyl(p-tolyl) carbamic acid to biaryl enone in 

presence of 3.0 equiv of butylated hydroxytoluene (BHT; radical scavenger), and was found that the 

reaction was completely inhibited and no product (5a) formation, instead BHT-adduct Y-4a was 

isolated (confirmed by the reaction mass HRMS). 

 

 

 

 

 

 

Scheme S1 
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HRMS for BHT-carbamoyl adduct Y-4a 

 

Plausible mechanism: 

A plausible mechanism is proposed based on the result of control experiment and literature 

survey (scheme 5). First, Ag(I) is oxidized to an Ag (II) species by S2O8
2-

. Then, the Ag (II) 

species oxidizes oxamic acid to form carbamoyl radical E via decarboxylation. 

Regioselective addition of E on to olefin produces the tertiary radical F, which undergoes an 

intramolecular cyclization with the adjacent phenyl ring to give radical intermediate G. Then, 

a single electron transfer (SET) from G to oxidant, generates the cation H, which then 

rearomatizes through the loss of a proton producing the phenanthrenone 5a. 
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Scheme S2 

3. X-ray Crystallography: 

X-ray data for the compound was collected at room temperature on a Bruker D8 QUEST instrument 

with an IμS Mo microsource (λ = 0.7107 A) and a PHOTON-III detector.
4
 The raw data frames were 

reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs [1]. 

The structure was solved using intrinsic phasing method [2] and further refined with the SHELXL [2] 

program and expanded using Fourier techniques.
5
 Anisotropic displacement parameters were included 

for all non-hydrogen atoms. All C bound H atoms were positioned geometrically and treated as riding 

on their parent C atoms [C-H = 0.93-0.97 Å, and Uiso(H) = 1.5Ueq(C) for methyl H or 1.2Ueq(C) for 

other H atoms]. 

A. Crystal structure determination of 3a: 

Crystal Data for C23H18O2 (M =326.37 g/mol): monoclinic, space group P21/c (no. 14), a = 

16.843(8) Å, b = 13.341(7) Å, c = 16.884(7) Å, β = 116.018(17)°, V = 3409(3) Å
3
, Z = 8, T = 

294.15 K, μ(MoKα) = 0.080 mm
-1

, Dcalc = 1.272 g/cm
3
, 29333 reflections measured (2.69° ≤ 

2Θ ≤ 50°), 5915 unique (Rint = 0.1299, Rsigma = 0.1005) which were used in all calculations. 

The final R1 was 0.0599 (I > 2σ(I)) and wR2 was 0.1517 (all data). CCDC 2344358 

deposition numbers contains the supplementary crystallographic data for this paper which can 

be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/ 

https://www.ccdc.cam.ac.uk/structures/
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Figure S1: ORTEP diagram of 3a compound with the atom-numbering. Displacement ellipsoids are 

drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.  

B. Crystal structure determination of 7: 

Crystal Data for C17H14O2 (M =250.28 g/mol): orthorhombic, space group Pbca (no. 61), a = 

18.905(6) Å, b = 7.073(2) Å, c = 18.994(7) Å, V = 2539.8(14) Å
3
, Z = 8, T = 294.15 K, 

μ(MoKα) = 0.085 mm
-1

, Dcalc = 1.309 g/cm
3
, 14223 reflections measured (4.288° ≤ 2Θ ≤ 

57.834°), 3225 unique (Rint = 0.0342, Rsigma = 0.0372) which were used in all calculations. 

The final R1 was 0.0471 (I > 2σ(I)) and wR2 was 0.1500 (all data). CCDC 2344359 

deposition numbers contains the supplementary crystallographic data for this paper which can 

be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/ 

 

 

Figure S2: ORTEP diagram of 7 compound with the atom-numbering. Displacement ellipsoids are 

drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.  
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HRMS spectrum of TEMPO-benzoyl adduct X-2a 


