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S1. Experimental section

S1.1. Materials and methods.

Chemical reagents and solvents for the synthesis were commercially
purchased and purified according to the standard methods, if necessary.
Sumanene (1), 1,3,5-tri(9H-carbazol-9-yl)benzene(11)?, and 2-iodosumanene
(8)2 were synthesized following the literature procedures. Thin layer
chromatography (TLC) and preparative thin layer chromatography (PTLC) were
performed using Merck Silica gel 60 F254 plates.

The NMR experiments were carried out using a JEOL 600 MHz spectrometer
(*H and °F NMR at 600 MHz, {*H}*3C NMR at 150 MHz) equipped with a
multinuclear z-gradient inverse probe head or Varian VNMRS 500 MHz
spectrometer (*H NMR at 500 MHz, 13C{*H} NMR at 125 MHz) equipped with a
multinuclear z-gradient inverse probe head. The spectra were recorded at 25 °C
and standard 5 mm NMR tubes were used. 'H and *3C chemical shifts () were
reported in parts per million (ppm) relative to the solvent signal, i.e., THF-ds: dn
(residual THF) 3.58 ppm, &c (residual THF) 67.6 ppm; CDCls: dn (residual
CHCI3) 7.26 ppm, &c (residual CHCI3) 77.16 ppm. *H DOSY (Diffusion Ordered
SpectroscopY) and °F DOSY NMR experiments (500 MHz) were performed
using a stimulated echo sequence incorporating bipolar gradient pulses* and
with convection compensation.® The gradient strength was logarithmically
incremented in 15 steps from 25% up to 95% of the maximum gradient strength.
NMR spectra were analyzed with the MestReNova v12.0 software (Mestrelab
Research S.L).

ESI-HRMS (TOF) measurements were performed with a Q-Exactive
ThermoScientific spectrometer.

Elemental analyzes were performed using CHNS Elementar Vario EL lli
apparatus. Each elemental composition was reported as an average of two
analyses.

UV-vis measurements were performed with a WVR UV-1600PC
spectrometer, with the spectral resolution of 2 cm™. For the UV-Vis
measurements, the wavelengths for the absorption maxima Amax were reported
in nm.

Emission spectra were recorded with a HITACHI F-7100 FL spectrometer;
parameters for the spectra of liquid samples: scan speed: 1200 nm/min, delay:
0.0 s, EX slit: 5.0 nm, EM slit: 5.0 nm, PMT voltage: 400 V; parameters for the
spectra of solid samples: scan speed: 1200 nm/min, delay: 0.0 s, EX slit: 5.0 nm,
EM slit: 5.0 nm, PMT voltage: 700 V. The wavelengths for the emission maxima
(Aem) were reported in nm.



S1.2. Synthesis of compounds 4-5.
General method for the synthesis of compounds 4-5.

Sumanene (1; 15.0 mg, 0.057 mmol, 1 equiv.) was placed in a reaction test tube.
Tetrabutylammonium bromide (TBAB; 9.2 mg, 0.0285 mmol, 0.5 equiv.) was
added, followed by the addition of THF (0.2 mL) and NaOHaq (30%, 2 mL). The
reaction mixture was stirred for 5 min at room temperature. Solid aldehyde (6-7;
6 equiv.) was added in one portion, and the reaction mixture was stirred for 48
hours at room temperature. Distilled water (6 mL) was added, and the crude
product was extracted with CH2Cl2 (3x20 mL). Organic layers were combined,
washed with saturated NH4Cl, water, and brine. After drying with MgSOa4
followed by filtration, volatiles were distilled off on a rotary evaporator. Finally,
the product was purified using a column chromatography to provide the target
compound 4-5.

Compound 4. Red-orange solid. Yield 40% (23.2 mg). *H NMR (THF-ds, 500
MHz, ppm) 81 8.28-8.17 (m, 12H), 7.79-7.67 (m, 10H), 7.59-7.52 (m, 9H), 7.44-
7.35 (m, 8H), 7.28-7.26 (m, 6H). {{H}3C NMR (THF-ds; 125 MHz, ppm) &c
149.3, 149.0, 148.6, 148.4, 148.3,
148.2, 147.4, 147.1, 146.5, 146.4,
146.3, 146.2, 144.3, 144.1, 142.5,
142.2, 141.8x2, 141.6x3, 139.3,
139.2, 136.4, 136.3, 136.2, 132.3,
132.2x2, 128.9, 128.7, 128.6, 138.3,
127.8x3, 126.9x2, 124.8x2, 124.7x2,
124.5, 124.4, 124.1, 122.3, 122.2,
122.1,121.9,121.1x2,110.7x2. ESI-
HRMS (TOF) m/z [M]* calcd. for
C78H4sN3 1024.3686, found
1024.3801. Elemental analysis:

O O Anal. Calcd for C7sHasNs: C, 91.47;

H, 4.43; N, 4.10. Found: C, 91.01; H,
4.45; N, 4.09. Ry (50%
4 CHCls/hexane) = 0.56.



Compound 5. Red solid. Yield 53% (25.9 mg). *H NMR (THF-ds, 500 MHz, ppm)
o1 8.70-8.56 (m, 3H), 8.18-8.13 (m, 6H), 7.75-7.66 (m, 6H), 7.54-7.42 (m, 11H),
7.29-7.21 (m, 4H), 4.52-4.39 (m, 6H), 1.48-1.36 (m, 9H). {*H}'3C NMR (THF-ds;
125 MHz, ppm) 6c 149.3, 148.9, 148.3, 148.2, 148.0x2, 147.2, 146.8, 146.1x2,
145.8x2, 144.4, 144.1, 142.4, 142.1,
141.6x2, 141.5x2, 141.4x2, 141.3x2,
139.1x2, 139.0x2, 130.8, 130.5, 130.4,
130.2, 128.7x2, 128.4x2, 128.3, 128.2,
12.,0, 126.9, 126.8, 124.4x2, 124.3x2,
124.1x2, 124.0x2, 123.9, 123.8, 123.6,
123.4, 123.3, 123.2, 123.0, 121.5, 121.4,
121.3x3, 121.2, 121.1, 120.2x2, 109.8,
109.7x2, 109.6x3. ESI-HRMS (TOF) m/z
[M]* calcd. for CesHasN3s 879.3608, found
879.3603. Elemental analysis: Anal. Calcd
for CesHasN3: C, 90.07; H, 5.15; N. 4.77.
Found: C, 89.63; H, 5.18; N, 4.75. Rr (50%
CHCls/hexane) = 0.51.




S1.3. Synthesis of compound 10.

A solution of 2-iodoosumanene (8; 37.0 mg, 0.095 mmol, 1 equiv.), copper(l)
iodide (Cul; 1.0 mg, 0.00475 mmol, 0.05 equiv.) and
bis(triphenylphosphine)palladium(ll) dichloride (Pd(PPh3z)2Clz2; 6.7 mg, 0,0095
mmol, 0.1 equiv.) in triethylamine (TEA; 6 mL) was stirred under argon
atmosphere at 45°C for 15 minutes. A solution of 1-ethynyl-4-
(trifluoromethyl)benzene (17; 23.5 uL, 24.3 mg, 0,143 mmol, 1.5 equiv.) in TEA
(5 mL) was added, and the reaction mixture was stirred under argon atmosphere
at 45°C for 48 hours. Distilled water (10 mL) was added, and the crude product
was extracted with CH2Cl2 (3x20 mL). Organic layers were combined, washed
with 1M HCI (3x20 mL), water, and. After drying with MgSOa4 followed by
filtration, volatiles were distilled off on a rotary evaporator. Finally, the product
was purified using a PTLC (SiOz2, 30% CH2Clz/hexane Nete 1) to provide the target
compound 10 as a light-yellow solid (29.6 mg, 72%).

Note 1: Compound 10 can also be purified with PTLC (SiO>) using 100% cyclohexane
as the eluent (Rf = 0.25).

CF, Compound 10. 'H NMR (CDClz, 600 MHz, ppm) dH 7.64-7.61
(m, 4H), 7.27 (s, 1H), 7.15-7.1 (m, 4H), 4.78 (d, 2Jw-n = 19.9 Hz,

O 1H), 4.73-4.72 (2xd, 2Jnn = 19.5 Hz, 2Jun = 19.3 Hz, 2H), 3.62
(d, 2Jnn = 19.9 Hz, 1H), 3.64-3.42 (2xd, 2Jun = 19.5 Hz, 2Jnn =

19.3 Hz, 2H). **F NMR (CDClIs, 600 MHz, ppm) & —=62.60 ppm

Il (s, 3F). {*H}3C NMR (CDCl3; 150 MHz, ppm) 151.7, 149.3,
149.2x3, 149.1x2, 149.0x2, 148.8, 148.4, 148.3, 148.1, 131.9,
.Q 129.9 (q, 2Jcr = 32.7 Hz), 127.5, 126.9, 125.4 (g, 3Jcr = 3.7 Hz),
124.0x2, 124.1 (q, YJcF = 272.2 Hz), 123.5, 123.4, 117.2, 91.7,
O" 89.5, 41.9x2, 41.8. ESI-HRMS (TOF) m/z [M+H]* calcd. for
" CsoHieF3 433.1199, found 433.1120. R (50% CHCls/hexane) =

10 0.65.



S1.4. Synthesis of compound 3.

Compound 10 (16.0 mg, 0.039 mmol, 1 equiv.) was placed in a reaction test
tube. Tetrabutylammonium bromide (TBAB; 10.0 mg, 0.020 mmol, 0.5 equiv.)
was added, followed by the addition of dry THF (0.3 mL) and NaOHaq (30%, 2
mL). The reaction mixture was stirred under argon atmosphere for 5 min at room
temperature. Solid 4-(9H-carbazol-9-yl)benzaldehyde (6; 85.0 mg, 0.312 mmol,
8 equiv.) was added in one portion, and the reaction mixture was stirred under
argon atmosphere for 72 hours at room temperature. Distilled water (6 mL) was
added, and the crude product was extracted with CH2Cl2 (3x20 mL). Organic
layers were combined, washed with saturated NH4Cl, water, and brine. After
drying with MgSOa followed by filtration, volatiles were distilled off on a rotary
evaporator. Finally, the product was purified using a PTLC (SiO2, 50%
CHzClz2/hexane) to provide the target compound 3 as a red solid (22.3 mg, 48%).

Compound 3. 'H NMR (THF-ds, 600 MHz, ppm) 81 8.33-8.21 (m, 4H), 8.19-8.01
(m, 8H), 7.90-7.67 (m, 11H), 7.65-7.58 (m, 5H), 7.55-7.48 (m, 3H), 7.45-7.35 (m,
6H), 7.32-7.06 (m, 11H). °F NMR (CDCls, 600 MHz, ppm) & —63.45 - —63.48
ppm (m, 3F). {{H}'3C NMR (THF-ds; 150 MHz, ppm) &c 149.3, 149.0, 148.5,
148.4, 148.3x2, 147.2, 147.0, 146.7, 146.4, 146.2, 145.4, 145.1, 144.6, 144.5x2,
144.4, 144.3, 141.9, 141.8x2, 141.7x3, 141.6x3, 139.7, 139.6x2, 139.5, 136.4,
136.3x2, 136.2x2, 134.1, 133.0x2, 132.6x4, 132.5x4, 132.4x4, 132.3x2, 132.2,
131.9, 131.1, 129.8, 129.6, 129.5, 129.4, 129.3x2, 129.1, 129.0x2, 128.1x3,

CF, 128.0x4, 127.9, 127.1, 127.0,
126.9x3, 126.8x2, 126.7, 126.6,
126.3, 125.9, 125.6, 125.4,
125.3, 125.2, 125.0x2, 124.9x3,
124.8, 124.7, 124.6, 124.5,
123.0, 122.9, 121.3x2, 121.2,
121.1x2, 121.0, 120.9, 110.8x3,
110.7x4, 110.6x2, 93.4, 93.2,
92.7, 92.4. 'H DOSY NMR (500
MHz, THF-ds), D 4.78:1070
m%s. 19F DOSY NMR (500
MHz, THF-ds), D 4.76-107°
m%s. ESI-HRMS (TOF) m/z

[M]* calcd. for Cs7HasF3Ns
1191.3795, found 1191.3778.
N
3

O Elemental analysis: Anal. Calcd
for Cs7H4sF3N3: C, 87.64; H,

4.06; N, 3.52. Found: C, 87.20:;
H, 4.08; N, 3.50. Rf (50%
CH2zCl2/hexane) = 0.40.
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S1.5. Cation binding experiments.

The cation binding experiments between compounds 3-5 (optical
chemoreceptors) and metal cations (analytes; Na*, K*, Li*, Cs*) were performed
employing the emission spectra titration experiments. In the case of Na*, K*, Li*
and Cs* hexafluorophosphate (PFe”) salts were used. The experiments were
performed in the THF:H20 1:1 v/v solvent mixture as follows. Stock solutions of
analyte (1.5-1072 M or 6.0-1072 M in the case of compounds 4-5, 1.5-10™* M or
6.0-107* M in the case of compound 3) in THF:H20 1:1 v/v were added to the
solution of receptor (2:107° M in the case of compounds 4-5 and 2:107° M in the
case of compound 3) in THF:H20 1:1 v/v (3 mL) to reach given receptor-to-cation
molar ratio. The selectivity studies were performed as follows. Proper portions
of stock solutions of NaPFs, KPFs, LiPFs and CsPFs (6.0-1072 M in the case of
compounds 4-5, 6.0-10™* M in the case of compound 3) in THF:H20 1:1 v/v were
added in this order to the solution of the receptor (2:107°> M in the case of
compounds 4-5 and 2-107% M in the case of compound 3) in THF:H20 1:1 v/v (3
mL) to reach receptor-to-cation molar ratio of 1:5 in each case. The final solution
contained the receptor, Na* (5 equiv.), K* (5 equiv.), Li* (5 equiv.) and Cs* (5
equiv.).

S1.6. Estimation of fluorescence quantum yield for 3-5

The measurements were performed at room temperature according to the
published procedures.®-8 Fluorescence quantum yields (®r) were determined by
comparison with known standard, namely Rhodamine 6G (R6G) in ethanol
(EtOH; ®rref = 0.957). The concentrations for the reference and sample solutions
were adjusted and, sequentially, excitations wavelengths were selected, as
presented in Figure S1. The concentrations (C; diluted solutions, absorbance
for the highest wavelength A < 0.1 a.u.) and selected excitation wavelengths
(Aex) were as follows:
e Crec =9-107" M.

C3=2-10"" M; Aex= 511 nm.

Cs=2-105 M; Aex =502 nm.

Cs =1-10"% M; Aex =504 nm.

11
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Figure S1. UV-vis spectra of compounds 3 (CHCIz; 2:1077 M), 4 (CHCls; 2:10°® M), 5
(CHCIz; 1-107® M), and R6G (EtOH; 9-1077 M), for the selection of Aex regarding the
fluorescence quantum yield (®r) measurements.

The following formula was used for the calculation of ®:

2
Fcompound . ncompound

bF = (I)F,ref ’

2
Freference nreference

where Qrrefis the quantum vyield for R6G (0.957), F is the integral photon flux
taken as integrated area under the fluorescence spectra, n is the refractive index
of the solvent (1.3614 for EtOH, 1.4458 for CHCIz), absorption factors
component in the equation was omitted, since the determined absorbances for
the sample and reference matched, see Figure S1).
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S2. NMR spectra

S2.1. NMR spectra of compound 5 and discussion

The 'H NMR (Figure S4) and {*H}**C NMR (Figure S9) spectra of compound 5
were relatively complex since compound 5 exists as a mixture of two diastereoisomers,
a Cs-symmetrical and unsymmetrical one (see Figure S2). Overlapping of the signals
coming from these diastereoisomers resulted in the multiplication of the signals in the
NMR spectra.

The most direct conclusions could be drawn from *H NMR spectra analyzes. In the
case of 'H NMR spectra, 11 groups and 36 groups of signals shall be observed for the
symmetrical and unsymmetrical diastereoisomer, respectively (see Figure S3). The
signals found in the 'H NMR spectra were carefully assigned to the given groups of
protons, based on the spin-spin couplings observed on the H-'H COSY NMR
spectrum (see Figure S5 and Figure S6). The two multiplets labelled in pink (4.52-
4.39 ppm) were ascribed to six protons of methylene (CH2) groups bonded to nitrogen
atoms. The two multiplets marked in light purple (1.48-1.36 ppm) corresponded to the
nine protons of methyl (-CHs) groups. The two multiplets located at 8.70-8.56 ppm
were ascribed to 3H labelled in green. The multiplet at 8.18-8.13 ppm were ascribed
to the 6H labelled in grey and red. The signals from the protons labelled yellow and
orange were split, and formed multiplets at 7.75-7.66 ppm, 7.54-7.42 ppm and 7.29-
7.21 ppm. These multiplets correspond to a total of 21H, including 6H from the aromatic
positions of sumanene (orange), 3H from methidene (=CH-) groups (yellow). The
remaining protons, i.e., 3H marked in blue, 3H marked in dark purple, 3H marked in
dark green, and 3H marked in dark blue, were further analyzed. Figure S6 shows an
inset of the 'H-'H COSY NMR spectrum of compound 5. Correlations of protons
labelled in dark purple with protons labelled in dark green and dark blue were observed.
The correlations of protons labelled in dark blue with protons labelled in grey and dark
purple were also detected. A long-range cross-correlation (through four bonds) was
observed between the protons labelled in light green and red. This phenomenon was
also confirmed with the 'H-'H COSY NMR experiment for the starting material
(aldehyde 7; Figure S7). The signal from the grey-labelled protons overlapped with the
red-labelled signal, as determined by other correlations for protons coupled to the grey-
labelled protons. The correlation of the grey-labelled protons and the protons marked
with dark blue color was determined by comparing with the profile of the 'H NMR
spectrum of aldehyde 7, see Figure S8. An analogy was concluded when assigning
the correlation of the protons labelled with dark blue and dark violet, and when
determining the correlation of the protons labelled with dark green and the dark violet.
After assigning the above protons to their respective signals, nine protons (1.5H + 4.5H
+ 3H) remained. The first two (1.5+4.5H) give a total of 6H and were ascribed from the
aromatic positions of sumanene (orange). The remaining 3H were ascribed to
methidene protons (yellow).

The {*H}*3C NMR spectrum (Figure S9) of compound 5 comprised the signals that
were ascribed to the presence of carbon nuclei coming from sumanene and carbazole
moieties, as well as linkers between these motifs. The multiplication of the signals (see

13



the inset of the {*H}*3C NMR spectrum in Figure S10) was the result of the presence
of diastereoisomers of 5 in the sample. Notably, signals coming from the methylene
(CH2) and methyl (CHs) groups could be identified with the *H-13C HSQC spectrum
(see Figure S11 and insets in Figure S12), by the presence of 38.3-38.0 ppm « 4.52-
4.38 ppm (CHz) and 14.2-14.1 ppm « 1.49-1.36 ppm (CHs) cross-correlations.

ESI-HRMS (TOF) experiment (see spectrum in Section S3) ultimately supported
the formation of 5, i.e., the calculated and measured spectra were consistent (m/z [M]*
calcd. for CesHasN3 879.3608, found 879.3603). The purity of the 5 sample was also
further supported with elemental analysis (Anal. Calcd for CesHasNs: C, 90.07; H, 5.15;
N. 4.77. Found: C, 89.52; H, 5.18; N, 5.12.).

5 - symmetrical diastereoisomer 5 - unsymmetrical diastereoisomer

Figure S2. Diastereoisomers forming compound 5. The DFT-optimized structures of
those diastereoisomers are presented and discussed in Section S5.

11 groups of signals 36 groups of signals

Figure S3. Graphical representation of the number and types of signals observed in
the 'H NMR spectrum of compound 5 (left — symmetrical diastereoisomer, right —
unsymmetrical diastereoisomer). The same color does not correspond to the same
chemical shift in the *H NMR spectrum.
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S2.2. NMR spectra of compound 4 and discussion

The 'H NMR (Figure S15) and {*H}*3C NMR (Figure S18) spectra of compound 4
are presented below. Similarly to the NMR spectra of compound 3, the NMR spectra
of compound 4 were relatively complex due to the presence of two diastereoisomers
of compound 4 (see Figure S13). The signals’ shifts for these diastereoisomers did
not differ significantly. This overlapping resulted in the multiplication of the signals in
the NMR spectra.

The most essential signals assignments were achieved for the 'H NMR spectra.
Figure S14 shows the structure of compound 4 with the assignations of the protons in
the 'H NMR spectra. Signals in the *H NMR spectrum of 4 were assigned based on
the spin-spin couplings observed in the 'H-'H COSY NMR spectrum (see Figure S16
and Figure S17). In general, 8 groups of signals and 27 groups of signals shall be
observed for the Cs-symmetrical and unsymmetrical diastereoisomer, respectively.
The multiplets labelled in brown and blue (8.28-8.17 ppm) corresponded to a total of
12H and were ascribed to the protons of the phenylene rings from the linker and
protons within the carbazole unit. Signals from protons labelled in yellow and orange
were split and were found in the spectrum as multiplets located at 7.79-7.67 ppm, 7.59-
7.52 ppm and 7.44-7.35 ppm. Among these, 6H was ascribed to the protons located
at the aromatic positions of sumanene (orange), 3H were ascribed to the methidene
(=CH-) moieties (yellow). The remaining 18H were ascribed to the latter protons
coming from the introduced structural moieties, that is 6H protons labelled in dark
green, 6H labelled in purple, and 6H labelled in light green. The multiplet (6H) labelled
in pink (7.28-7.26 ppm) was ascribed to the protons of the phenylene rings closer to
the methidene linkers.

The {*H}3C NMR spectrum (Figure S18) of compound 4 comprised the signals
coming from the carbon nuclei of sumanene and carbazole moieties, as well as p-
phenylene between these motifs. The presence of two diastereocisomers of 4 in the
sample resulted in the multiplication of the signals, for clarity see the inset of the
{*H}*3C NMR spectrum in Figure S19. These findings were further with the H-13C
HSQC experiment (see Figure S20 and inset in Figure S21).

ESI-HRMS (TOF) experiment (see spectrum in Section S3) ultimately supported
the formation of 4, i.e., the calculated and measured spectra were consistent (m/z [M]*
calcd. for C7sHasN3 1024.3686, found 1024.3801). The purity of the 4 sample was also
further supported with elemental analysis (Anal. Calcd for C7sHasNs: C, 91.47; H, 4.43;
N, 4.10. Found: C, 90.74; H, 4.46; N, 4.07).
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4 - symmetrical diastereoisomer 4 - unsymmetrical diastereoisomer

Figure S13. Diastereoisomers forming compound 4. The DFT-optimized structures of
those diastereoisomers are presented and discussed in Section S5.

8 groups of signals 27 groups of signals

4 - symmetrical diastereoisomer 4 - unsymmetrical diastereocisomer
Figure S14. Graphical representation of the number and types of signals observed in
the 'H NMR spectrum of compound 4. The same color does not correspond to the
same chemical shift in the *H NMR spectrum.
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Figure S15. 'H NMR (500 MHz, THF-ds) spectrum of compound 4 together with the protons’ assignations (for the labels, see Figure
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Figure S16. 'H-'H COSY NMR (500 MHz, THF-ds) spectrum of compound 4.
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S2.3. NMR spectra of compound 10
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S2.4. NMR spectra of compound 3 and discussion

The NMR spectra of compound 3 comprised the signals coming from the sumanene
and carbazole moieties, as well as the linkers. The presence of multiplets in the spectra
resulted from the existence of 3 as the mixture of diastereoisomers. While two
diastereoisomers of compounds 4-5 were considered (see discussion in Subsections
S2.1-S2.2), four diastereoisomers of compound 3 can be considered, see Figure S27.

H NMR spectrum of compound 3 (Figure S28) consisted of the multiplets located
in the aromatic region, namely 8.33-7.06 ppm. Due to relatively complex structure of 3
and the existence of diastereocisomers od 3 in the sample, the straightforward
assignment of these multiplets in the *H NMR spectrum of 3 to the given protons was
hard to accomplish. The analysis of the spectrum of 3 was performed building on the
'H NMR spectrum analyzes on reference compound 4 (see Section S2.2). The total
number of protons in the *H NMR spectrum of 3 was 48H what conformed to the
anticipated value. The multiplets could be split into two major groups. The first multiplet
group at 8.33-8.01 ppm (12H), featuring the highest chemical shift

4 4b5 X , values, were ascribed to the H-1, H-4, H-5 and H-8 protons (3x4H)
3a O within of the carbazole moiety (see the atom numbering in the
2 sNo . ° presented image on the left). This hypothesis was supported with the

LW IH-1H COSY NMR experiment (Figure S31). The second multiplet

group at 7.89-7.06 ppm comprised significant number of signals that can be grouped
into several multiplets featuring the intensities between 3H and 11H. These signals
were ascribed to the remaining 36H coming from the sumanene (5H), carbazole H-2,
H-3, H-6, H-7 protons (3x4H=12H), p-phenylene (4x4H=16H) and methidene (3H)
moieties. The content of each diastereoisomer in the sample was not the same what
was the result of different integral values for their signals. However, the total intensity
of these signals was 36H with the respect to the total intensity of the signals from the
8.33-7.06 ppm multiplet (12H), see inset of the spectrum in Figure S29. Finally, no
signals in the sumanene benzylic region were detected in the *H NMR spectrum of
compound 3. This finding further confirmed the successful modification of sumanene
skeleton at all benzylic positions. Notably, as expected, the profile of the *H NMR
spectrum of 3 was similar to that of 4 with slight differences in the chemical shifts and
relative intensities of the respective signals, see stacked *H NMR spectra of 3 and 4 in
Figure S30. This finding also supported the presence of 2-substituted sumanene
backbone in compound’s 3 structure in comparison to compound 4 containing
sumanene skeleton non-substituted at the aromatic position. Therefore, taking into
account all the above-listed outcomes from the *H NMR spectra, tetra-substitution of
sumanene at aromatic and benzylic positions was achieved in 3.

The presence of fluorine in the form of trifluoromethyl (CF3) group in compound 3
structure was confirmed with the °F NMR experiment (Figure S32). The multiplet
(6rfrom -63.45 to -63.48 ppm) in this spectrum resulted from the presence
diastereoisomers of compound 3 (Figure S27) in the sample.

The {*H}'3C NMR spectrum (Figure S33, Figure S34) of compound 3 comprised
the multiplicated signals (due to the presence of diastereoisomers) coming from the
sumanene and carbazole moieties, what supported successful tetra-substitution of the
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sumanene skeleton. Notably, compound 3 had relatively high molar mass and features
limited solubility as for the {{H}*3C NMR experiment. This fact made it hard to localize
and distinguish all the signals from each one of low-intensity quaternary carbons of
sumanene skeleton and -C=C-p-CesHa-CF3 group, as well as to directly analyze signals
from quaternary carbons included in C-F couplings (expected as quartets, similarly to
the {*H}*3C NMR spectrum of starting material in the synthesis of 3, i.e., compound 10,
see Figure S26). These signals additionally overlapped with signals coming from the
carbazole and p-phenylene moieties (three of each moiety in compound 3 structure).
Nevertheless, by means of the long-time acquisition (more than 60 hours) of the 13C
decoupled °F-13C HSQC experiment with 3 we were able to distinguish that the
chemical shift for the 3C nuclei signals coming from the CFs group were 125.3-125.2
ppm, see Figure S35. Additionally, the signals in the {*H}3C NMR spectrum of 3 were
also tracked based on the *H-13C HMBC NMR spectrum (long-time acquisition), see
Figure S36. Despite the complexity of the *H-3C HMBC NMR spectrum of 3 mostly
due to the presence of diastereoisomers and significant number C-H couplings by two,
three or four bonds, important outcomes from this analysis were found related to the
confirmation of the presence of low-intensity quaternary carbons in the {tH}*3*C NMR
spectrum. First, it was possible to confirm the presence of low-intensity quaternary
carbons coming from the sumanene skeleton between 150-120 ppm, see Figure S36.
Secondly, it was possible to confirm the presence of low-intensity quaternary carbons
coming from the -C=C- (93.4-92.3 ppm) within the -C=C-p-CsH4-CF3 group, see inset
in Figure S37.

ESI-HRMS (TOF) experiment (see spectrum in Section S3) ultimately supported
the successful formation of 3, i.e., the calculated and measured spectra were
consistent (m/z [M]* calcd. for Cs7HasF3N3 1191.3795, found 1191.3778). The purity of
the 3 sample was also further supported with elemental analysis (Anal. Calcd for
Cs7HasF3Ns: C, 87.64; H, 4.06; N, 3.52. Found: C, 87.20; H, 4.08; N, 3.50).

Importantly, one value of diffusion coefficient in the *H DOSY NMR spectrum of
compound 3 (Figure S38) further supported that the sample is composed of one type
of molecule. The hydrodynamic radii (rHsovy) was estimated using the unmodified
Stokes-Einstein equation®1°:

_ kgT
TH solv = W

where D is the measured diffusion coefficient for 3 (4.78:1071° m?s™), ks is the
Boltzmann constant (1.3806485-10723 kg-s™2K™1), T is the temperature for the *H DOSY
NMR spectrum acquisition (298 K), rusov is the hydrodynamic radius of 3, n is the
viscosity of the solvent (THF) at temperature T (0.00048 kg-m~'s™). The approximate
hydrodynamic radius for compound 3 equaled to ca. 0.96 nm. °F DOSY NMR
experiment also supported that the sample is composed of one type of molecule, see
Figure S39. Notably, the measured diffusion coefficient values from *H DOSY NMR
(4.78-:10719 m?s™1) and °F DOSY NMR (4.76-1071% m?s™1) were highly consistent.
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Figure S27. Representative, possible diastereoisomers of compound 3. The DFT-
optimized structures of those diastereoisomers are presented and discussed in Section
S5. The presented diastereoisomers’ numbers conform to that presented in Section
S5.
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Figure S28. 'H NMR (600 MHz, THF-ds) spectrum of compound 3.
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Figure S34. 150.0 ppm — 109.0 ppm inset of the {*H}**C NMR (150 MHz, THF-dg) spectrum of compound 3.
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Figure S35. 13C decoupled °F-13C HSQC (THF-ds) spectrum of compound 3 (}Jc.r of 270 Hz was set for the experiment, 96 scans).
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Figure S36. 'H-13C HMBC (THF-ds) spectrum of compound 3.

49

4.2

4.0

3.8

3.6

3.4

f1 (ppm)



{7.89,92.33
{7.83,92.61}
O {7.92,93.15 @

3 {7.79,93.40

194,93.13}

{7.81,93.38}

T T T T T T T T T T T T T T T T T T T

—T— T T T T T T T T T
8.35 8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40

ppm
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S4. Absorption and emission spectra

The color of compounds 4-5 solution was orange-red (see Figure 44a). The UV-
vis spectra (2:107° M; CHCIs) of compounds 4-5 are presented in Figure S44c. The
spectra featured three major absorption maxima (Aabs) located at 243-251 nm, 368-395
nm and 474-490 nm. Notably, the spectra of 4-5 were red-shifted in comparison to the
parent sumanene (1; Zabs = 280 nm). These changes were ascribed to the presence of
three carbazole units in the molecule and to the expansion of Tr-electron network.
Additionally, the spectra of compounds 4-5 were significantly red-shifted in comparison
to 1,3,5-tri(9H-carbazol-9-yl)benzene 112 (labs = 255, 290 nm), as the respective Cs-
symmetrical derivative comprising three carbazole units in the formula. It elucidated
the importance of the presence of sumanene skeleton in compounds 4-5 structure
toward providing their beneficial optical properties.

The emission spectra (2:10™ M in CHCI3) of compounds 4-5 are presented in
Figure S44d. Compounds 4-5 were found to be yellow-orange light emitters, as
graphically presented in Figure S44. Emission maximum (Amax) for 4-5 were located
between 549 nm and 558 nm and they are significantly red-shifted in comparison to
the native sumanene (1) (Amax = 375 nm??) and compound 11 (Amax = 361 nm; Figure
S45). The reason for this is that for the m-extended compounds 4-5, such Tr-1*
transitions occur at longer wavelengths than in the case of native sumanene. Hence,
such direct comparison only further proves the successful emergence of the extended
m-system. Emission maximum for compound 5 (558 nm) was slightly red-shifted in
comparison to 4 (549 nm). This change in the position of Amax resulted in the visible
change in the light emission properties, as representatively visualized for compounds
4-5 in Figure S44d. Emission intensity for 4 was ca. 12-fold higher in comparison to 5.
It was further visualized with the 3-D emission spectra experiments on compounds 4-
5 (Figures S46-48). The solid-state spectra 5 (Figure S44, dashed lines). were ca. 25-
35 nm red-shifted (Amax between 575 and 595 nm) in comparison to the spectra
measured in CHCIs solutions.

The spectra of compound 3 in different solvents (CHCIs, DMF, PhMe) are
presented in Figure S49.
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Figure S44. (a) Solution of sumanene (1) and compounds 4-5 in CHCIz (2:107° M); (b)
Structure of compound 11; (c) UV-vis spectra (2:10° M; CHCIs) of compounds 1, 4-5
and 11; (d) Solution (2:107> M; CHCIs, solid lines) and solid-state (dashed lines)
emission spectra of compound 4 (Aex =380 nm) and 5 (Aex= 390 nm. The inset image
presents the light emission of compounds 4-5 (2:10™° M; CHCI3, Aex= 365 nm).
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Figure S45. Emission spectrum (2:107° M; CHCI3) compound 11 (Aex = 325 nm).
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S5. DFT calculations

The starting geometries were adopted from the crystal structure of sumanene,
which was further modified using Avogadro software.'? The generated structures were
initially optimized using B3LYP functional with simple 3-21G basis set, which is not
computationally expensive. This was followed by the optimization at B3LYP-D3**-¢/6-
31+G(d,p)’ level of theory. It should be stressed that the applied level of theory
includes Grimme's empirical dispersion correction, which accounts for the long-range
interactions between pendant carbazole units. After proper structure optimization was
completed, the vibrational frequencies were calculated, which in turn provided the
thermal free energy correction to the electronic energy. It also confirmed that all
optimized molecules are stable geometric structures (no imaginary frequencies). All
the optimized geometries can be found in the XYZ file attached as part of the
Supporting Information. TD-DFT calculations were performed at B3LYP/6-31+G(d,p)
level of theory. For UV-vis spectra calculations, it is appropriate to incorporate the
solvent effect, as the UV-vis measurements were conducted in CHCIs. Consequently,
Integral Equation Formalism Polarizable Continuum Model (IEFPCM)* was used with
CHCIs solvent. The calculated electronic transitions for absorption and emission
spectra are provided in Tables S1 and S2.
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Figure S50. Molecular structures of four possible isomers of 3 and free enthalpy values
related to the most stable form.
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Figure S51. Molecular structures of two possible isomers of 4 and 5 along with the
free enthalpy values related to the most stable forms.
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Figure S52. Graphical representation of highest-occupied and lowest unoccupied
natural transition orbitals (HONTO and LUNTO, respectively) responsible for observed
absorption bands in UV-Vis spectra of 4 and 5.
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Table S1. Calculated values of Aabs for 3-5.

3 4 5

Aabs/ nm  f Aabs/ nm  f Aabs/ nm  f
S1 523 0.0556 497 0.2618 481 0.3561
S2 493 0.3272 492 0.3654 469 0.1687
S3 462 0.0258 442 0.0413 376 0.0523
S4 449 0.0366 428 0.0672 372 0.0741
Ss 431 0.0263 427 0.0052 369 0.2268
Se 421 0.0041 384 0.0000 366 0.1546
S7 401 0.2857 384 0.0000 363 0.0794
Ss 387 0.0788 378 0.0000 352 0.6486
So 386 0.0001 376 0.0399 348 0.1510
S1o0 383 0.0012 371 0.4320 342 0.0123
St 379 0.1235 367 0.3088 340 0.0008
S12 375 0.0218 358 0.3583 337 0.0051
S13 363 0.0502 352 0.0005 336 0.0069
S1a 360 0.3078 336 0.0007 325 0.0972
S15 356 0.1220 331 0.0163 325 0.1364

Table S2. Calculated values of Aem for 3-5.

3 4 5

Aem/ Nm f Aem/ nm f Aem/ nm f
S1 553 0.0546 527 0.2616 590 0.4073
S2 531 0.4086 522 0.3650 542 0.1590
S3 492 0.0156 472 0.0413 444 0.1863
S4 485 0.0479 458 0.0674 441 0.0922
Ss 467 0.0210 457 0.0052 423 0.0448
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S6. Cation binding experiments

In the Job’s plots, x stands for the mole fraction of Cs*.
The apparent binding constant (Kapp) values were estimated using the Benesi-
Hildebrand method*®2°, given by the equation:

1 1 1
I—Iy a a-Kgp-C(Cs*)

where lo and | are the fluorescence intensities of sumanene derivative in the
absence and presence of Cs*, respectively, a is a constant, and C(Cs") is the
concentration of Cs™* in solution. Kapp were determined as a ratio of intercept-to-
slope of 1/(l — lo) vs. 1/C(Cs") linear plots.

The data (for the estimation of Kapp and system stoichiometry — Job’s plot
method) for the studied systems were collected from the following emission
maxima (lem):

e Compound 5, Aem =567 nm (Adex = 390 nm).

e Compound 4, Aem =552 nm (Aex = 395 nm).

e Compound 3, Aem = 557 nm (Aex = 390 nm). For this compound, UV-vis

experiments were also performed, and the data were collected for Amax =

395 nm.

The limit of detection (LOD) values were estimated from the intercept and
slope of the linear plots?=22 of (I-Imin)/(Imax-Imin) versus log(Ccs+) for compounds
3-4 (lowering of the emission intensity) or (Imax-1)/(Imax-Imin) versus log(Ccs+) for
compound 5 (increase in the emission intensity). The x value for y =1 was
calculated (value x(y=1)), and LOD was taken as 10 *t=1),

The selectivity studies were performed for representative triscarbazolyl
derivative 4 and tetra-substituted derivative 3 using PFe salts of Na*, K*, Li* and Ca?*.
No interfering effects of Na* and K* were found. As compared to the Cs™ titration
experiments, the changes after the addition of Li* to the solutions were slight. Thus,
the designed sumanene-carbazole conjugates were characterized by satisfactory
selectivity toward the recognition of Cs™.

All the spectra and plots are presented below.
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Figure S53. Emission spectra of 5 in the presence of various molar equivalents of Cs*
(THF:water = 1:1 vol/vol, Aex= 390 nm, Cs = 2:107° M).
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Figure S54. Job’s plot regarding the interactions between 5 and Cs* (data were
collected for, Aem = 567 nm).
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Figure S55. Benesi-Hildebrand plots regarding the interactions between 5 and Cs*
(data were collected for, Aem = 567 nm). The data for the linear plot are also presented.
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Figure S56. Plot of (Imax-1)/(Imax-Imin) versus log(Ccs+) regarding the interactions
between 5 and Cs* (data were collected for, Aem = 567 nm). The data for the linear plot
are also presented.
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Figure S57. Emission spectra of 4 in the presence of various molar equivalents of Cs*
(THF:water = 1:1 vol/vol, Aex= 395 nm, C4 = 2:107° M).
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Figure S58. Job’s plot regarding the interactions between 4 and Cs* (data were
collected for, Aem = 552 nm).
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Figure S59. Benesi-Hildebrand plots regarding the interactions between 4 and Cs*
(data were collected for, Aem = 552 nm). The data for the linear plot are also presented.
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Figure S60. Plot of (I-Imin)/(Imax-Imin) versus log(Ccs+) regarding the interactions
between 4 and Cs* (data were collected for, Aem = 552 nm). The data for the linear plot
are also presented.
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Figure S61. The results of selectivity studies with 4.
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Figure S62. Emission spectra of 3 in the presence of various molar equivalents of Cs*
(THF:water = 1:1 vol/vol, Aex= 390 nm, C3 = 2:107% M).
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Figure S63. Job’s plot regarding the interactions between 3 and Cs* using emission
spectroscopy (data were collected for, Aem = 557 nm).
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Figure S64. Benesi-Hildebrand plots regarding the interactions between 3 and Cs*
using emission spectroscopy (data were collected for, Aem = 557 nm). The data for the
linear plot are also presented.
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Figure S65. Plot of (I-Imin)/(Imax-Imin) versus log(Ccs+) regarding the interactions
between 3 and Cs* using emission spectroscopy (data were collected for, Aem = 557
nm). The data for the linear plot are also presented.
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Figure S66. The results of selectivity studies with 3 using emission spectroscopy with
Na*, K*, Li* and Cs* cations (top) and Ca?* (bottom) cations in the form of PFe salts.
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Figure S67. UV-vis spectra of 3 in the presence of various molar equivalents of Cs*
(THF:water = 1:1 vol/vol, Cz = 2:107% M).
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Figure S68. Job’s plot regarding the interactions between 3 and Cs* using UV-vis
spectroscopy (data were collected for, Amax = 395 nm).
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Figure S69. Benesi-Hildebrand plots regarding the interactions between 3 and Cs*

using UV-vis spectroscopy (data were collected for, Amax = 395 nm). The data for the
linear plot are also presented.
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Figure S70. Plot of (I-Imin)/(Imax-Imin) versus log(Ccs+) regarding the interactions

between 3 and Cs* using UV-vis spectroscopy (data were collected for, Amax =395 nm).
The data for the linear plot are also presented.
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Figure S71. Emission spectra of 11 in the presence of various molar equivalents of
Cs* (THF:water = 1:1 vol/vol, Aex= 325 nm, C11 = 2:107° M).
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