Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting information

Table of contents

1.	Materials and methods	_S2
2.	Synthesis	_S4
3.	DFT computations of the macrocyclization reaction	S13
4.	Photophysical studies in solution employing spectroscopic techniques and DFT computations	_S15
5.	Studies of aggregation-induced emission	_S23
6.	Single crystal X-ray analysis of N ₂ C ₈ O ₃ Q	S25
7.	Preparation of pH-sensitive paper test strips	S27
8.	NMR and HR-mass spectra	
9.	Atomic coordinates obtained by DFT computations	_S52
10.	References	

1. Materials and methods

Unless otherwise noted, all chemicals and starting materials were obtained commercially from ABCR and Sigma-Aldrich and used without further purification. Pd(dba)₂ was synthesized according to a known method¹ and used without recrystallization. N^{I} , N^{I} '-(ethane-1,2-diyl)diethane-1,2-diamine (N₄C₆) and N^{I} -(2-aminoethyl)- N^{2} -(2-(2-aminoethylamino)ethyl)ethane-1,2-diamine (N₅C₈) were prepared by treatment of the corresponding commercially available hydrochlorides with a 2.5 M solution of KOH in methanol. 1,2-Bis(3-bromophenyl)ethane-1,2-dione (1) was synthesized in two steps according to previously reported procedure² from 3-bromobenzaldehyde. Dioxane was distilled successively over NaOH and sodium under argon, CH₂Cl₂ was distilled over CaH₂, MeOH was used freshly distilled. Preparative column chromatography was carried out using Silica gel 60 (40–63 µm) from Merck.

The ¹H and ¹³C NMR spectra were recorded using a Bruker Avance-400 spectrometer in chloroform-*d1*, methanol-*d4* or DMSO-*d6*. The residual proton signals of solvents was used as internal standards. MALDI-TOF mass-spectra of macrocycles N₂C_nO_xQ and N_yC_nQ were registered on a Bruker Daltonics Autoflex II mass-spectrometer in positive ion mode with a dithranol matrix and polyethyleneglycols as internal standards. Mass spectroscopy studies of complexes were recorded on a MicrOTOFQ II (Bruker) apparatus equipped with an electrospray ionization (ESI) source. FT-IR spectra were registered on a Nicolet iS 5 with iD3 ATR accessory (ZnSe). Melting points were determined using Electrothermal IA 9200 apparatus. The nanoparticle size was measured using Zetasizer Nano-ZS analyzer. UV–vis spectra were recorded with a Hitachi U-2900 apparatus (Tokyo, Japan) in a quartz cuvette (Hellma, *l* = 1 cm). Photoluminescence (PL) spectra were registered with Horiba Jobin Yvon Fluoromax-4 apparatus in a quartz cuvette (Hellma, *l* = 1 cm), all the spectra were corrected. Fluorescence quantum yields were determined in dry toluene at 293 K by a relative method using quinine sulfate ($\sigma_{em} = 0.53$ in 0.05 M H₂SO₄) and fluorescein ($\sigma_{em} = 92\%$ in 0.1 M NaOH) as standards.³ The following equation was used to determine the relative fluorescence quantum yield:

$$\boldsymbol{\Phi}_{\mathrm{x}} = \boldsymbol{\Phi}_{\mathrm{st}} \times ((\boldsymbol{F}_{\mathrm{x}} \times \boldsymbol{A}_{\mathrm{st}} \times \boldsymbol{\eta}_{\mathrm{x}}^{2}) / (\boldsymbol{F}_{\mathrm{st}} \times \boldsymbol{A}_{\mathrm{x}} \times \boldsymbol{\eta}_{\mathrm{st}}^{2}))$$

where A is the absorbance (in the range of 0.01–0.1 A.U.), F is the area under the emission curve, η is the refractive index of the solvents (at 293 K) used in measurements, and the subscripts st and x represent standard and studied compound, respectively. The following refractive index values are used: 1.494 for toluene and 1.333 for aqueous solutions.

DFT computations were performed using the Firefly quantum chemistry package,⁴ which is partially based on the GAMESS (US)⁵ source code. The B3LYP functional with the 6-31G(d,p) basis

set for all elements was used. Full optimization of geometry was achieved, and the minima were confirmed by computation of vibration frequencies.

Additional information on the methods is provided in the respective sections.

2. Synthesis

2,3-Bis(3-bromophenyl)quinoxaline (3).⁶ A 50 mL round-bottomed flask with a magnetic stirrer

and a reflux condenser was charged with bis(3-bromophenyl)glyoxal (3.56 g, 9.67 mmol), 1,2-diaminobenzene (1.046 g, 9.67 mmol) and isopropanol (21 mL). The reaction mixture was stirred for 4 h at 80°C. The resulting precipitate was collected on glass filter, washed with isopropanol (3×5 mL) and dried

under reduced pressure. Yield 4.15 g (98%), beige powder. M. p. 178–181°C. ¹H NMR (400 MHz, CDCl₃): δ = 7.16 (t, *J* = 7.9 Hz, 2H, H5 (Ph)), 7.29 (d, *J* = 7.8 Hz, 2H, H6 (Ph)), 7.52 (d, *J* = 7.9 Hz, 2H, H4 (Ph)), 7.77–7.83 (m, 2H, H6, H7, Q), 7.83 (s, 2H, H2 (Ph)) 8.12–8.19 (m, 2H, H5, H8(Q))). ¹³C NMR (400 MHz, CDCl₃): δ = 122.6 (2C, CBr (Ph)), 128.5 (2C, CH (Ph)), 129.2 (2C, C5, C8 (Q)), 129.6 (2C, C6, C7 (Q)), 130.5 (2C, CH(Ph)), 132.0 (2C, CH(Ph)), 132.7 (2C, CH(Ph)), 140.5 (2C, C4a, C8a, Q), 141.2 (2C, C_{ipso}(Ph)), 151.4 (2C, C2, C3, Q); IR (neat): *v*_{max} (cm⁻¹) 661 (m), 669 (m), 685 (s), 698 (s), 723 (w), 736 (m), 759 (vs), 795 (s), 814 (m), 875 (m), 884 (w), 996 (m), 1058 (m), 1074 (m), 1142 (w), 1175 (w), 1212 (m), 1232 (w), 1267 (m), 1276 (m), 1295 (w), 1330 (m), 1340 (m), 1393 (w), 1406 (w), 1418 (m), 1457 (w), 1473 (m), 1507 (w), 1540 (m), 1559 (m), 3060 (w). HRMS (MALDI-TOF): *m/z* [M+H]⁺ calcd. for C₂₀H₁₃Br₂N₂: 438.9446; found: 438.9512.

2,3-Diphenylquinoxaline $(H_2Q)^6$ was prepared according the same procedure from 1,2diaminobenzene (100 mg, 0.93 mmol) and benzyl (195 mg, 0.93 mmol) in isopropanol (1.9 mL). Yield 137 mg (52%), beige powder. M. p. 124–125 °C (lit. 124–125 °C) ¹H NMR (400 MHz, CDCl₃): δ = 7.30–7.40 (m, 6H, H3, H4, H5 (Ph)), 7.50–7.55 (m, 4H, H2, H6 (Ph)), 7.74–7.80 (m, 2H, H6, H7 (Q)), 8.17–8.23

(m, 2H, H5, H8 (Q)).

General palladium-catalyzed macrocyclization procedure for of 2,3-bis(3bromophenyl)quinoxaline and polyamines. A two-neck flask, equipped with a magnetic stirrer and a reflux condenser, was charged with 2,3-bis(3-bromophenyl)quinoxaline (132 mg, 0.3 mmol), Pd(dba)₂ (14 mg, 8 mol%) and PhPF-tBu (15 mg, 9 mol%). The flask was filled with argon and absolute dioxane (15 mL) was added into the flask in a flow of dry argon. After stirring for 2–3 min, amine (0.3 mmol) and sodium tert-butoxide (0.9 mmol) were added and the reaction mixture was refluxed for 24 h under argon atmosphere. Upon completion of the reaction, the precipitate was separated by filtration, washed with dichloromethane, the combined filtrates were concentrated under reduced pressure, the residue was chromatographed on silica gel using gradual elution with CH₂Cl₂ and CH₂Cl₂-MeOH (50 : 1-5 : 1 v/v) mixtures. For pa-N₄C₉Q and N₅C₈Q, eluents CH₂Cl₂-MeOH- $NH_3(aq.)$ (100 : 20 : 1–100 : 20 : 3 v/v/v) were additionally used.

12,13,15,16,19,20-Hexahydro-11H,18H-10,6:25,21-dimetheno[1,4,7,20]dioxadiazacyclodo-

cosino[13,14-*b*]**quinoxaline** (N₂C₆O₂Q) was synthesized according to the general procedure from 2,3-bis(3-bromophenyl)quinoxaline (132 mg, 0.3 mmol) and 2,2'-(ethane-1,2-diylbis(oxy))bis(ethan-1-amine) (N₂C₆O₂) (44 mg, 0.3 mmol) in dioxane (15 mL), in the presence Pd(dba)₂ (14 mg, 8 mol%), PhPF-*t*Bu (15 mg, 9 mol%) and *t*BuONa (86 mg, 0.9 mmol).

The product was eluted with CH₂Cl₂–MeOH (50 : 1 v/v) mixture. Yield 69 mg (54%), yellow glassy substance. ¹H NMR (400 MHz, CDCl₃): δ = 3.13 (t, *J* = 5.5 Hz, 4H, CH₂N), 3.42 (t, *J* = 5.5 Hz, 4 H, CH₂O), 3.55 (s, 4 H, CH₂O), 3.90 (br. s, 2H, NH), 6.61 (d, *J* = 8.1 Hz, 2H, H4 (Ph)), 6.64 (s, 2H, H2 (Ph)), 7.03 (d, *J* = 7.6 Hz, 2H, H6 (Ph)), 7.17 (t, *J* = 7.8 Hz, 2H, H5 (Ph)), 7.69–7.74 (m, 2H, H6, H7 (Q)), 8.12–8.16 (m, 2H, H5, H8 (Q)). ¹³C NMR (400 MHz, CDCl₃): δ = 43.5 (2C, CH₂N), 68.7 (2C, CH₂O), 70.5 (2C, CH₂O), 114.0 (2C), 114.4 (2C), 118.6 (2C), 129.0 (2C), 129.2 (2C), 129.6 (2C), 140.0 (2C), 141.0 (2C), 147.4 (2C), 153.8 (2C); IR (neat): *v*_{max} (cm⁻¹) 3376 (w), 3050 (w), 2924 (w), 2858 (w), 1728 (w), 1603 (m), 1585 (m), 1512 (w), 1473 (w), 1430 (w), 1393 (w), 1345 (m), 1264 (m), 1203 (w), 1167 (w), 1125 (m), 1060 (m), 1031 (w), 991 (m), 928 (w), 858 (m), 815 (w), 782 (m), 762 (m), 730 (s), 700 (s), 612 (m); HRMS (MALDI-TOF): *m/z* [M+H]⁺ calcd. for C₂₆H₂₇N₄O₂: 427.2185; found: 427.2218.

11,12,13,14,16,17,18,19,21,22,23,24-Dodecahydro-10.6:29.25-dimetheno[1.22.5.18]dioxa-

diazacyclohexacosino[11.12-*b*]quinoxaline ($N_2C_{10}O_2Q$) was synthesized according to the general procedure from 2,3-bis(3bromophenyl)quinoxaline (132 mg, 0.3 mmol) and 3,3'-(butane-1,4diylbis(oxy))bis(propan-1-amine) ($N_2C_{10}O_2$) (66 mg, 0.3 mmol) in dioxane (15 mL), in the presence Pd(dba)₂ (14 mg, 8 mol%), PhPF-

*t*Bu (15 mg, 9 mol%) and *t*BuONa (86 mg, 0.9 mmol). The product was eluted with CH₂Cl₂–MeOH (50 : 1 v/v) mixture. Yield 72 mg (50%), yellow glassy solid. ¹H NMR (400 MHz, CDCl₃): δ = 1.62–1.76 (m, 8H, CH₂), 3.05 (t, *J* = 6.3 Hz, 4H, CH₂N), 3.39–3.45 (m, 8H, CH₂O), 3.99 (br. s, 2H, NH), 6.58 (dd, *J* = 7.7, 1.9 Hz, 2H, H4 (Ph)), 6.66 (t, *J* = 1.9 Hz, 2H, H2 (Ph)), 6.95 (d, *J* = 7.9 Hz, 2H, H6 (Ph)), 7.15 (t, *J* = 7.9 Hz, 2H, H5 (Ph)), 7.69–7.74 (m, 2H, H6, H7 (Q)), 8.13–8.17 (m, 2H, H5, H8 (Q)). ¹³C NMR (400 MHz, CDCl₃): δ = 25.7 (2C, CH₂), 28.8 (2C, CH₂), 42.1 (2C, CH₂N), 69.1 (2C, CH₂O), 70.3 (2C, CH₂O), 113.7 (2C), 113.9 (2C), 118.5 (2C), 128.9 (2C), 129.0 (2C), 129.5 (2C), 139.9 (2C), 141.0 (2C), 148.0 (2C), 154.1 (2C); IR (neat): v_{max} (cm⁻¹) 3387 (w), 3048 (w), 2937 (w), 2920 (w), 2858 (m), 2803 (w), 1603 (vs), 1584 (s), 1559 (w), 1540 (w), 1510 (m), 1473 (m), 1430 (m), 1392 (w), 1344 (s), 1264 (s), 1202 (m), 1167 (w), 1109 (s), 1062 (m), 1020 (m), 990 (m), 930 (w), 914 (w), 893 (w), 857 (m), 782 (m), 763 (m), 734 V (s), 703 (s), 669 (w), 616 (w); HRMS (MALDI-TOF): *m/z* [M+H]⁺ calcd. for C₃₀H₃₅N₄O₂: 483.2755; found: 483.2751.

12,13,15,16,18,19,22,23-Octahydro-11H,21H-10.6:28.24-dimetheno[1,4,7,10,23]trioxadiaza-

according to the general procedure from 2,3-bis(3bromophenyl)quinoxaline (132 mg, 0.3 mmol) and 2,2'-((oxybis(ethane-2,1-diyl))bis(oxy))bis(ethan-1-amine) (N₂C₈O₃) (58 mg, 0.3 mmol) in dioxane (15 mL), in the presence Pd(dba)₂ (14 mg, 8 mol%), PhPF-*t*Bu

cycloheptacosino[16,17-b]quinoxaline (N₂C₈O₃Q) was synthesized

(15 mg, 9 mol%) and *t*BuONa (86 mg, 0.9 mmol). The product was eluted with CH₂Cl₂–MeOH (50 : 1 v/v) mixture. Yield 65 mg (46%), yellow glassy solid. ¹H NMR (400 MHz, CDCl₃): δ = 3.06 (t, *J* = 4.9 Hz, 4H, CH₂N), 3.43 (t, *J* = 4.9 Hz, 4H, CH₂O), 3.55–3.60 (m, 8H, CH₂O), 3.92 (br. s, 2H, NH), 6.55 (s, 2H, H2 (Ph)), 6.62 (dd, *J* = 8.1, 1.2 Hz, 2H, H4 (Ph)), 7.06 (d, *J* = 7.5 Hz, 2H, H5 (Ph)), 7.20 (t, *J* = 7.8 Hz, 2H, H6 (Ph)), 7.71–7.75 (m, 2H, H6, H7 (Q)), 8.13–8.18 (m, 2H, H5, H8 (Q))). ¹³C NMR (400 MHz, CDCl₃): δ = 43.1 (2C, CH₂N), 68.7 (2C, CH₂O), 70.0 (2C, CH₂O), 70.7 (2C, CH₂O), 113.6 (2C), 114.8 (2C), 118.7 (2C), 129.1 (2C), 129.3 (2C), 129.6 (2C), 140.1 (2C), 141.0 (2C), 147.4 (2C), 154.1 (2C); IR (neat): ν_{max} (cm⁻¹) 3368 (w), 3056 (w), 2895 (w), 2865 (m), 1716 (w), 1653 (w), 1603 (vs), 1585 (s), 1559 (w), 1512 (m), 1473 (m), 1436 (m), 1394 (w), 1345 (s), 1265 (m), 1249 (m), 1205(w), 1169 (w), 1114 (s), 1098 (s), 1065 (s), 1031 (m), 1012 (w), 990 (m), 938 (w), 916 (w), 857(w), 763 (m), 732 (s), 701 (s), 612 (w); HRMS (MALDI-TOF): *m/z* [M+Na]⁺ calcd. for C₂₈H₃₀N₄O₃Na⁺: 493.2210; found: 493.2223.

11,12,13,14,16,17,19,20,22,23,24,25-Dodecahydro-10.6:30.26-dimetheno[1,4,7,11,24]trioxa-

diazacycloheptacosino[17,18-*b*]quinoxaline (N₂C₁₀O₃Q) was synthesized according to the general procedure from 2,3-bis(3bromophenyl)quinoxaline (132 mg, 0.3 mmol) and 3,3'-((oxybis(ethane-2,1-diyl))bis(oxy))bis(propan-1-amine) (N₂C₁₀O₃) (66 mg, 0.3 mmol) in dioxane (15 mL), in the presence Pd(dba)₂ (14

mg, 8 mol%), PhPF-*t*Bu (15 mg, 9 mol%) and *t*BuONa (86 mg, 0.9 mmol). The product was eluted with CH₂Cl₂–MeOH (50 : 1 v/v) mixture. Yield 78 mg (52%), yellow glassy solid. ¹H NMR (400 MHz, CDCl₃): δ = 1.68 (quint., *J* = 6.1 Hz, 4H, CH₂), 3.05 (t, *J* = 6.4 Hz, 4 H, CH₂N), 3.51 (t, *J* = 5.7 Hz, 4H, CH₂O), 3.56–3.58 (m, 4H, CH₂O), 3.61–3.63 (m, 4H, CH₂O), 4.11 (br. s, 2H, NH), 6.58–6.60 (m, 4H, H2, H4 (Ph)), 6.99 (d, *J* = 7.6 Hz, 2H, H6 (Ph)), 7.17 (t, *J* = 7.8 Hz, 2H, H5 (Ph)), 7.69–7.74 (m, 2H, H6, H7 (Q)), 8.12–8.17 (m, 2H, H5, H8 (Q)). ¹³C NMR (400 MHz, CDCl₃): δ = 28.7 (2C, CH₂), 41.7 (2C, CH₂N), 69.6 (2C, CH₂O), 70.2 (2C, CH₂O), 70.7 (2C, CH₂O), 113.9 (2C), 114.2 (2C), 118.5 (2C), 129.1 (4C), 129.5 (2C), 140.0 (2C), 141.0 (2C), 147.9 (2C), 154.1 (2C); IR (neat): v_{max} (cm⁻¹) 3378 (w), 3049 (w), 2916 (w), 2862 (m), 1603 (s), 1584 (s), 1559 (w), 1512 (m), 1473 (m), 1429 (m), 1392 (w), 1345 (s), 1265 (s), 1202 (m), 1119 (s), 1062 (m), 1012 (m), 990 (m), 957

(w), 916 (w), 858 (m), 783 (m), 763 (m), 733 (s), 704 (s), 669 (w), 615 (w); HRMS (MALDI-TOF): *m/z* [M+H]⁺ calcd. for C₃₀H₃₅N₄O₃: 499.2704; found: 499.2682.

12,13,14,15-Tetrahydro-11H-10.6:20,16-dimetheno[1,5]diazacycloheptadecino[11,12-

b]quinoxaline (N₂C₃Q) was synthesized according to the general procedure from 2,3-bis(3-bromophenyl)quinoxaline (132 mg, 0.3 mmol) and propane-1,3-diamine (N₂C₃) (22 mg, 0.3 mmol) in dioxane (15 mL), in the presence Pd(dba)₂ (14 mg, 8 mol%), PhPF-*t*Bu (15 mg, 9 mol%) and

*t*BuONa (86 mg, 0.9 mmol). The product was eluted with CH₂Cl₂–MeOH (50 : 1 v/v) mixture. Yield 175 mg (75%), yellow powder. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.75$ (quint., J = 6.7 Hz, 2H, CH₂), 3.21 (t, J = 6.8 Hz, 4H, CH₂NH), 3.38 (br. s., 2H, NH), 6.72 (d, J = 8.1 Hz, 2H, H4 (Ph)), 7.04 (s, 2H, H2 (Ph)), 7.10 (d, J = 7.5 Hz, 2H, H6 (Ph)), 7.25 (t, J = 7.9 Hz, 2H, H5 (Ph)), 7.76–7.78 (m, 2H, H6, H7 (Q)), 8.16–8.18 (m, 2H, H5, H8 (Q)). ¹³C NMR (400 MHz, CDCl₃): $\delta = 31.0$ (1C, CH₂), 43.7 (2C, CH₂N), 118.4 (2C), 118.7 (2C), 121.2 (2C), 129.2 (2C), 129.7 (2C), 130.0 (2C), 139.4 (2C), 141.0 (2C), 146.4 (2C), 153.9 (2C); IR (neat): v_{max} (cm⁻¹) 3334 (w), 3045 (w), 2934 (w), 2874 (w), 1709 (w), 1604 (s), 1583 (m), 1507 (w), 1469 (m), 1428 (m), 1394 (w), 1342 (s), 1263 (s), 1189 (m), 1165 (w), 1123 (w), 1051 (m), 996 (m), 958 (w), 898 (m), 869 (w), 851 (w), 790 (m), 762 (m), 733 (vs), 701 (s), 611 (w); HRMS (MALDI-TOF): m/z [M+H]⁺ calcd. for C₂₃H₂₁N₄: 353.1761; found: 353.1735.

12,13,14,15,16,17-Hexahydro-11H-10.6:22,18-dimetheno[1,4,7]triazacyclononadecino[13,14-

b]quinoxaline (N₃C₄Q) was synthesized according to the general procedure from 2,3-bis(3-bromophenyl)quinoxaline (132 mg, 0.3 mmol) and N¹-(2aminoethyl)ethane-1,2-diamine (N₃C₄) (31 mg, 0.3 mmol) in dioxane (15 mL), in the presence Pd(dba)₂ (14 mg, 8 mol%), PhPF-*t*Bu (15 mg, 9 mol%) and *t*BuONa (86 mg, 0.9 mmol). The product was eluted with CH₂Cl₂-

MeOH (5 : 1 v/v) mixture. Yield 105 mg (92%), yellow glassy solid. ¹H NMR (400 MHz, CDCl₃– CD₃OD (10 : 1 v/v)): δ = 2.37 (br. s, 1H, NH), 2.71 (t, *J* = 5.8 Hz, 4H, C<u>H</u>₂N), 3.32(t, *J* = 5.8 Hz, 4H, C<u>H</u>₂NHAr), 3.68 (br. s, 2H, NHAr), 6.48 (t, *J* = 1.7 Hz, 2H, H2 (Ph)), 6.64 (dd, *J* = 8.3, 1.6 Hz, 2H, H4 (Ph)), 7.00 (d, *J* = 7.4 Hz, 2H, H6 (Ph)), 7.21 (t, *J* = 7.7 Hz, 2H, H5 (Ph)), 7.71–7.76 (m, 2H, H6, H7 (Q)), 8.11–8.15 (m, 2H, H5, H8 (Q)). ¹³C NMR (400 MHz, CDCl₃): δ = 40.2 (2C, CH₂N), 46.4 (2C, CH₂NHAr), 113.8 (2C), 115.2 (2C), 119.1 (2C), 129.1 (2C), 129.7 (2C), 130.0 (2C), 140.1 (2C), 140.9 (2C), 145.2 (2C), 154.3 (2C); IR (neat): *v*_{max} (cm⁻¹) 3302 (w), 3046 (vw), 2923 (w), 2850 (vw), 1604 (m), 1586 (m), 1519 (w), 1487 (w), 1473 (w), 1433 (w), 1394 (w), 1347 (m), 1263 (m), 1204 (w), 1168 (w), 1128 (w), 1099 (w), 1061 (w), 1011 (w), 992 (w), 957 (w), 918 (w), 857 (w), 787 (w),

764 (m), 730 (vs), 698 (s), 670 (m), 612 (m); HRMS (MALDI-TOF): m/z [M+H]⁺ calcd. for C₂₄H₂₄N₅: 382.2026; found: 382.2054.

12,13,14,15,16,17,18,19-Octahydro-11H-10.6:24,20-dimetheno[1,5,9]triazacyclohenicosino

[15,16-b]quinoxaline (N₃C₆Q) was synthesized according to the general procedure from 2,3-bis(3-bromophenyl)quinoxaline (132 mg, 0.3 mmol) and N^1 -(3-aminopropyl)propane-1,3-diamine (N₃C₆) (39 mg, 0.3 mmol) in dioxane (15 mL), in the presence Pd(dba)₂ (14 mg, 8 mol%), PhPF-*t*Bu (15

mg, 9 mol%) and *t*BuONa (86 mg, 0.9 mmol). The product was eluted with CH₂Cl₂–MeOH (5 : 1 v/v) mixture. Yield 92 mg (75%), yellow glassy solid. ¹H NMR (400 MHz, CD₃OD): δ = 1.81 (quint., J = 6.9 Hz, 4H, CH₂), 3.05 (t, J = 7.3 Hz, 4H, CH₂N), 3.21 (t, J = 6.2 Hz, 4H, CH₂NHAr), 6.61 (t, J = 1.9 Hz, 2H, H2 (Ph)), 6.74 (dd, J = 8.0, 2.1 Hz, 2H, H4 (Ph)), 6.98 (d, J = 7.6 Hz, 2H, H6 (Ph)), 7.22 (t, J = 7.9 Hz, 2H, H5 (Ph)), 7.78–7.83 (m, 2H, H6, H7 (Q)), 8.09–8.13 (m, 2H, H5, H8 (Q)), NH-protons were not observed. ¹³C NMR (400 MHz, DMSO-*d*6): δ = 23.3 (2C, CH₂), 42.3 (2C, CH₂NHAr), 112.2 (2C), 114.0 (2C), 117.4 (2C), 128.7 (2C), 128.8 (2C), 130.3 (2C), 140.1 (2C), 140.4 (2C), 147.6 (2C), 154.6 (2C), one CH₂ signal overlaps with DMSO signal; IR (neat): v_{max} (cm⁻¹) 3323 (w), 3043 (w), 2934 (w), 2849 (w), 2778 (w), 1603 (m), 1585 (m), 1514 (w), 1472 (w), 1429 (w), 1393 (w), 1347 (m), 1264 (m), 1202 (w), 1168 (w), 1127 (w), 1104 (w), 1056 (w), 1011 (w), 990 (w), 957 (w), 895 (w), 858 (w), 785 (w), 763 (w), 730 (vs), 700 (s), 669 (w), 614 (w); HRMS (MALDI-TOF): m/z [M+H]⁺ calcd. for C₂₆H₂₈N₅: 410.2339; found: 410.2339.

11,12,13,14,15,16,17,18,19,20-Decahydro-10,6:25,21-dimetheno[1,4,7,10]tetraazacyclodocosino

[16,17-*b***]quinoxaline (N₄C₆Q)** was synthesized according to the general procedure from 2,3-bis(3-bromophenyl)quinoxaline (132 mg, 0.3 mmol) and N^{1} , N^{1} -(ethane-1,2-diyl)bis(ethane-1,2-diamine) (N₄C₆) (44 mg, 0.3 mmol) in dioxane (15 mL), in the presence Pd(dba)₂ (14 mg, 8 mol%), PhPF-*t*Bu (15 mg, 9 mol%) and *t*BuONa (86 mg, 0.9 mmol). The product

was eluted with CH₂Cl₂–MeOH (5 : 1 v/v) mixture. Yield 72 mg (57%), yellow glassy solid. ¹H NMR (400 MHz, CDCl₃–CD₃OD (5 : 1 v/v)): δ = 2.77 (t, *J* = 6.2 Hz, 4H, C<u>H</u>₂CH₂NHAr), 2.90 (s, 4H, CH₂N), 3.13 (t, *J* = 6.2 Hz, 4H, C<u>H</u>₂NHAr), 6.57–6.60 (m, 4H, H2, H4 (Ph)), 6.86 (d, *J* = 7.6 Hz, 2H, H6 (Ph)), 7.09 (t, *J* = 7.9 Hz, 2H, H5 (Ph)), 7.66–7.70 (m, 2H, H6, H7 (Q)), 8.03–8.07 (m, 2H, H5, H8 (Q)). ¹³C NMR (400 MHz, CDCl₃–CD₃OD (5:1 v/v)): δ = 41.4 (2C, CH₂N), 44.6 (2C, CH₂N), 46.1 (2C, CH₂NHAr), 113.2 (2C), 113.9 (2C), 118.9 (2C), 128.6 (2C), 129.3 (2C), 130.0 (2C), 139.7 (2C), 140.7 (2C), 146.8 (2C), 153.8 (2C); IR (neat): *v*_{max} (cm⁻¹) 3378 (w), 3051 (w), 2955 (w), 2918 (w), 2849 (w), 1653 (m), 1636 (m), 1616 (w), 1603 (m), 1582 (m), 1559 (m), 1540 (w), 1521 (w), 1507 (w), 1490 (w), 1473 (m), 1457 (m), 1436 (m), 1395 (w), 1347 (m), 1299 (w), 1269 (m), 1264

(m), 1249 (m), 1207 (w), 1168 (w), 1140 (w), 1127 (w), 1115 (w), 1061 (w), 1011 (w), 990 (w), 960
(w), 913 (w), 894 (w), 862 (w), 815 (w), 786 (m), 761 (w), 731 (s), 700 (s), 668 (m), 618 (w), 613
(w); HRMS (MALDI-TOF): *m/z* [M+H]⁺ calcd. for C₂₆H₂₉N₆: 425.2448; found: 425.2496.

12,13,14,15,16,17,18,19,20,21-Decahydro-11H-10.6:26.22-dimetheno[1,4,8,11]tetraazacyclo-

tricosino[17,18-*b*]**quinoxaline** (N₄C₇**Q**) was synthesized according to the general procedure from 2,3-bis(3-bromophenyl)quinoxaline (132 mg, 0.3 mmol) and N^{I} , $N^{I'}$ -(propane-1,3-diyl)bis(ethane-1,2-diamine) (N₄C₇) (48 mg, 0.3 mmol) in dioxane (15 mL), in the presence Pd(dba)₂

(14 mg, 8 mol%), PhPF-*t*Bu (15 mg, 9 mol%) and *t*BuONa (86 mg, 0.9 mmol). The product was eluted with CH₂Cl₂–MeOH (5 : 1 v/v) mixture. Yield 85 mg (65%), yellow glassy solid. ¹H NMR (400 MHz, CDCl₃): δ = 1.51 (quint., *J* = 5.9 Hz, 2H, CH₂), 2.53 (t, *J* = 5.9 Hz, 4H, CH₂NH), 2.54 (t, *J* = 5.9 Hz, 4H, CH₂NH) 2.93 (t, *J* = 5.9 Hz, 4H, CH₂NHAr)), 6.53 (s, 2H, H3 (Ph)), 6.54 (d, *J* = 8.1 Hz, 2H, H4 (Ph)), 6.85 (d, *J* = 7.3 Hz, 2H, H6 (Ph)), 7.08 (t, *J* = 7.8 Hz, 2H, H5 (Ph)), 7.64–7.70 (m, 2H, H6, H7 (Q)), 8.00–8.06 (m, 2H, H5, H8 (Q)), the signals of four NH-protons were not observed. ¹³C NMR (400 MHz, CDCl₃): δ = 23.4 (1C, CH₂), 41.1 (2C, CH₂N), 46.9 (2C, CH₂N), 49.3 (2C, CH₂N), 113.6 (2C), 113.7 (2C), 118.9 (2C), 129.0 (2C), 129.6 (2C), 129.9 (2C), 140.1 (2C), 140.9 (2C), 147.0 (2C), 153.8 (2C); IR (neat): v_{max} (cm⁻¹) 3400 (w), 3314 (w), 3046 (w), 2925 (w), 2850 (w), 1675 (w), 1603 (m), 1585 (w), 1526 (w), 1490 (w), 1473 (w), 1430 (w), 1347 (m), 1264 (m), 1205 (w), 1169 (w), 1114 (w), 1059 (w), 1013 (w), 990 (w), 958 (w), 916 (w), 862 (w), 784 (w), 763 (w), 730 (s), 698 (s), 613 (w); HRMS (MALDI-TOF): *m/z* [M+H]⁺ calcd. for C₂₇H₃₀N₆Na: 461.2424; found: 461.2379.

11,12,13,14,15,16,17,18,19,20,21,22-Dodecahydro-10,6:27,23-dimetheno[1,4,8,21]tetraaza-

cyclotetracosino[14,15-*b*]**quinoxaline** (N₄C₈Q) was synthesized according to the general procedure from 2,3-bis(3-bromophenyl)quinoxaline (132 mg, 0.3 mmol) and N^1 , N^1 '-(ethane-1,2-diyl)bis(propane-1,3-diamine) (N₄C₈) (52 mg, 0.3 mmol) in dioxane (15

mL), in the presence Pd(dba)₂ (14 mg, 8 mol%), PhPF-*t*Bu (15 mg, 9 mol%) and *t*BuONa (86 mg, 0.9 mmol). The product was eluted with CH₂Cl₂–MeOH (5 : 1 v/v) mixture. Yield 65 mg (48%), yellow glassy solid. ¹H NMR (400 MHz, CDCl₃–CD₃OD (10 : 1 v/v)): δ = 1.57 (quint., *J* = 6.0 Hz, 4H, CH₂CH₂NHAr), 2.64 (t, *J* = 5.9 Hz, 4H, CH₂N), 2.76 (s, 4H, CH₂N), 2.94 (t, *J* = 6.2 Hz, 4H, CH₂NHAr), 3.80 (br. s., 4H, NH), 6.56 (s, 2H, H3 (Ph)), 6.62 (d, *J* = 8.1 Hz, 2H, H4 (Ph)), 7.01 (d, *J* = 7.2 Hz, 2H, H6 (Ph)), 7.15 (t, *J* = 7.8 Hz, 2H, H5 (Ph)), 7.68–7.73 (m, 2H, H6, H7 (Q)), 8.10–8.14 (m, 2H, H5, H8 (Q)). ¹³C NMR (400 MHz, CDCl₃–CD₃OD (10:1 v/v)): δ = 27.9 (2C, CH₂CH₂CH₂CH₂), 42.4 (2C, CH₂N), 47.2 (2C, CH₂N), 47.3 (2C, CH₂N), 112.9 (2 C), 115.1 (2 C), 118.9 (2 C), 129.0 (2

C), 129.2 (2 C), 129.6 (2 C), 140.0 (2 C), 141.0 (2 C), 147.6 (2 C), 154.0 (2 C); IR (neat): v_{max} (cm⁻¹) 3310 (w), 3048 (w), 2921 (m), 2850 (m), 1732 (w), 1649 (w), 1602 (vs), 1585 (s), 1559 (m), 1514 (m), 1471 (m), 1431 (m), 1393 (m), 1346 (s), 1264 (s), 1203 (m), 1166 (w), 1140 (w), 1114 (m), 1060 (m), 1013 (w), 990 (w), 915 (vw), 858 (w), 785 (m), 762 (m), 732 (vs), 703 (vs), 670 (w), 614 (w); HRMS (MALDI-TOF): m/z [M+H]⁺ calcd. for C₂₈H₃₃N₆: 453.2761; found: 453.2749.

12,13,14,15,16,17,18,19,20,21,22,23-Dodecahydro-11*H*-10.6:28.24-dimetheno[1,5,9,13]

tetraazacyclopentacosino[19,20-*b*]quinoxaline (N₄C₉Q) was synthesized according to the general procedure from 2,3-bis(3bromophenyl)quinoxaline (132 mg, 0.3 mmol) and N^1 , N^1 -(propane-1,3diyl)bis(propane-1,3-diamine) (N₄C₉) (56 mg, 0.3 mmol) in dioxane (15

mL), in the presence Pd(dba)₂ (14 mg, 8 mol%), PhPF-*t*Bu (15 mg, 9 mol%) and *t*BuONa (86 mg, 0.9 mmol). The product was eluted with CH₂Cl₂–MeOH (5 : 1 v/v) mixture. Yield of 79 mg (57%), yellow glassy solid. ¹H NMR (400 MHz, CDCl₃): δ = 1.59 (quint., *J* = 6.0 Hz, 4H, CH₂CH₂NHAr), 1.80 (quint., *J* = 5.6 Hz, 2H, CH₂CH₂CH₂), 2.68 (t, *J* = 6.4 Hz, 4H, CH₂N), 2.82 (t, *J* = 5.6 Hz, 4H, CH₂N), 3.00 (t, *J* = 5.9 Hz, 4H, CH₂NHAr), 4.41 (br. s., 2H, NHAr), 6.53 (s, 2H, H2 (Ph)), 6.68 (d, *J* = 7.8 Hz, 2H, H4 (Ph)), 7.14 (d, *J* = 7.6 Hz, 2H, H6 (Ph)), 7.22 (t, *J* = 7.7, 2H, H5 (Ph)), 7.71–7.75 (m, 2H, H6, H7 (Q)), 8.13–8.17 (m, 2H, H5, H8 (Q)), the signals of two NH-protons were not observed. ¹³C NMR (400 MHz, CDCl₃–CD₃OD (5 : 1 v/v)): δ = 22.9 (1C, CH₂), 24.4 (2C, CH₂), 41.8 (2C, CH₂N), 46.4 (2C, CH₂N), 47.2 (2C, CH₂N), 114.1 (2C), 115.3 (2C), 119.2 (2C), 128.9 (2C), 129.5 (2C), 129.9 (2C), 140.3 (2C), 140.9 (2C), 147.2 (2C), 154.0 (2C); IR (neat): *v*_{max} (cm⁻¹) 3407 (w), 3321 (w), 3044 (w), 2952 (w), 2927 (w), 2852 (w), 1603 (m), 1586 (w), 1515 (w), 1474 (w), 1432 (w), 1394 (w), 1346 (w), 1264 (m), 1207 (w), 1167 (vw), 1114 (w), 1060 (w), 1012 (w), 991 (w), 894 (w), 858 (w), 763 (w), 730 (s), 698 (s), 611 (w); HRMS (MALDI-TOF): *m/z* [M+Na]⁺ calcd. for C₂₉H₃₄N₆Na: 489.2737; found: 489.2707.

12,13,14,15,16,17,18,19,20,21,22,23-Dodecahydro-11*H*-10.6:28.24-dimetheno[1,4,7,10,13]

pentaazacyclopentacosino[19,20-*b*]quinoxaline (N₅C₈Q) was synthesized according to the general procedure from 2,3-bis(3bromophenyl)quinoxaline (132 mg, 0.3 mmol) and N^1 -(2-aminoethyl)- N^2 -(2-((2-aminoethyl)amino)ethyl)ethane-1,2-diamine (N₅C₈) (57 mg, 0.3 mmol) in dioxane (15 mL), in the presence Pd(dba)₂ (14 mg, 8

mol%), PhPF-*t*Bu (15 mg, 9 mol%) and *t*BuONa (86 mg, 0.9 mmol). The product was eluted with CH₂Cl₂–MeOH–NH₃(aq.) (100:20:1 v/v/v) mixture. Yield 20 mg (14%), yellow glassy solid. ¹H NMR (400 MHz, CDCl₃–CD₃OD (1 : 1 v/v)): δ = 2.88–2.91 (m, 4H, CH₂N), 3.00–3.03 (m, 4H, CH₂N), 3.07–3.10 (m, 4H, CH₂N), 3.32 (t, *J* = 5.6 Hz, 4H, CH₂NHAr), 6.59 (d, *J* = 7.8 Hz, 2H, H4

(Ph)), 6.63 (d, J = 7.6 Hz, 2H, H6 (Ph)), 6.68 (s, 2H, H2 (Ph)), 6.93 (t, J = 7.8 Hz, 2H, H5 (Ph)), 7.59–7.63 (m, 2H, H6, H7 (Q)), 7.93–7.97 (m, 2H, H5, H8 (Q)), the signals of NH-protons were not observed; ¹³C NMR (400 MHz, CDCl₃–CD₃OD (1:1 v/v)): $\delta = 40.0$ (2C, CH₂N), 44.0 (2C, CH₂N), 46.2 (2C, CH₂N), 46.6 (2C, CH₂N), 113.9 (2C), 114.2 (2C), 118.8 (2C), 128.2 (2C), 128.7 (2C), 129.9 (2C), 139.4 (2C), 140.4 (2C), 146.9 (2C), 154.4 (2C); IR (neat): v_{max} (cm⁻¹) 3346 (w), 2957 (w), 2918 (w), 2850 (w), 1734 (w), 1722 (vw), 1653 (m), 1603 (s), 1586 (m), 1559 (m), 1540 (m), 1522 (w), 1464 (m), 1436 (m), 1394 (m), 1346 (s), 1275 (m), 1261 (s), 1204 (m), 1167 (w), 1125 (m), 1061 (m), 1030 (w), 990 (w), 916 (w), 860 (w), 764 (s), 751 (s), 701 (m), 669 (w); HRMS (MALDI-TOF): m/z [M+Na]⁺ calcd. for C₂₈H₃₃N₇Na: 490.2690; found: 490.2655.

2-(12,13,16,17-Tetrahydro-11*H*-10,6:22,18-dimetheno[1,4,7]triazacyclononadecino[13,14-

b]quinoxalin-14(15*H*)-yl)ethanamine[2-(12,13,16,17-tetrahydro-11*H*-10,6:22,18-dimetheno[1,4,7]triazacyclononadecino[13,14*b*]quinoxalin-14(15*H*)-yl)ethyl]amine (*pa*-N₄C₆Q) was synthesized

according to the general procedure from 2.3-bis(3bromophenyl)quinoxaline (132 mg, 0.3 mmol) and N¹,N¹-bis(2-aminoethyl)ethane-1,2-diamine (pa- N_4C_6) (66 mg, 0.45 mmol) in dioxane (15 mL), in the presence Pd(dba)₂ (28 mg, 16 mol%), PhPFtBu (29 mg, 18 mol%) and tBuONa (86 mg, 0.9 mmol). The product was eluted with CH₂Cl₂-MeOH (5 : 1 v/v) mixture. Yield 97 mg (76%), yellow glassy substance. ¹H NMR (400 MHz, DMSO-*d6*): δ = 2.52 (br. s, 4H, CH₂N), 2.70 (br. s, 2H, CH₂NH₂), 2.88 (br. s, 2H, CH₂CH₂NH₂), 2.94 (br. s, 4H, CH₂NHAr), 3.34 (br. s, 2H, NH₂), 6.57 (br. d, *J*_{obs} = 7.9 Hz, 2H, H4 (Ph)), 6.61 (br. d, *J*_{obs} = 7.4 Hz, 2H, H6 (Ph)), 6.76 (br. s, 2H, H2 (Ph)), 7.02 (t, J = 7.8 Hz, 2H, H5 (Ph)), 7.74 (br. s, 2H, NHAr), 7.83-7.87 (m, 2H, H6, H7 (Q)), 8.09-8.13 (m, 2H, H5, H8 (Q)), the signals of two NH-protons were not assigned because of overlapping; ¹³C NMR (400 MHz, DMSO-*d6*): $\delta = 37.2$ (1C, CH₂NH₂), 41.7 (1C, CH₂N), 51.9 (4C, CH₂), 113.4 (2C), 113.7 (2C), 116.4 (2C), 128.6 (2C), 128.8 (2C), 130.1 (2C), 139.9 (2C), 140.2 (2C), 148.1 (2C), 154.6 (2C); IR (neat): v_{max} (cm⁻¹) 3401 (w), 3343 (w), 3056 (w), 2954 (m), 2922 (m), 2852 (m), 1653 (w), 1602 (s), 1584 (s), 1560 (s), 1520 (m), 1485 (m), 1452 (s), 1436 (m), 1426 (s), 1395 (m), 1345 (s), 1293 (m), 1278 (m), 1259 (m), 1204 (m), 1159 (m), 1108 (m), 1058 (m), 1048 (m), 1008 (m), 991 (m), 930 (w), 870 (w), 854 (w), 824 (w), 783 (m), 763 (s), 750 (m), 700 (s), 669 (w), 612 (w); HRMS (MALDI-TOF): m/z [M+Na]⁺ calcd. for C₂₆H₂₈N₆Na: 447.2268; found: 447.2242.

3-(11,12,13,14,16,17,18,19-Octahydro-15H-10,6:24,20-dimetheno[1,5,9]triazacyclohenicosino

[15,16-b]quinoxalin-15-yl)propan-1-amine[3-(11,12,13,14,16,17,18,19-octahydro-15H-10.6:24.20-dimetheno[1,5,9]triazacyclohenicosino-[15,16-b]quinoxalin-15-yl)propyl]amine (pa-N₄C₉Q) was synthesized according to the general procedure from 2,3-bis(3-

bromophenyl)quinoxaline (132 mg, 0.3 mmol) and N^l , N^l -bis(3-aminopropyl)propane-1,3-diamine $(pa-N_4C_9)$ (85 mg, 0.45 mmol) in dioxane (15 mL), in the presence Pd(dba)₂ (28 mg, 16 mol%), PhPF-tBu (29 mg, 18 mol%) and tBuONa (86 mg, 0.9 mmol). The product was eluted with CH₂Cl₂-MeOH-NH₃(aq.) (100 : 20 : 3 v/v/v) mixture. Yield 107 mg (77%), yellow glassy solid. ¹H NMR (400 MHz, CDCl₃-CD₃OD (10 : 1 v/v)) : $\delta = 1.57$ (quint., 4H, J = 6.5 Hz, CH₂CH₂NHAr), 1.66 $(quint., J = 6.6 Hz, 2H, CH_2CH_2NH_2), 2.40 (t, J = 6.6 Hz, 4H, CH_2N), 2.47 (t, J = 6.6 Hz, 2H, CH_2N),$ 2.81 (t, J = 6.2 Hz, 2H, CH₂NH₂), 3.04 (t, J = 6.2 Hz, 4H, CH₂NHAr), 4.03 (br. s, 4H, NH), 6.57 (d, J = 7.9 Hz, 2H, H4 (Ph)), 6.60 (s, 2H, H2 (Ph)), 6.88 (d, J = 8.0 Hz, 2H, H6 (Ph)), 7.13 (t, J = 7.8 Hz, 2H, H5 (Ph)), 7.68–7.72 (m, 2H, H6, H7 (Q)), 8.11–8.16 (m, 2H, H5, H8 (Q)). ¹³C NMR (400 MHz, CDCl₃-CD₃OD (10:1 v/v)): $\delta = 25.1$ (3C, <u>C</u>H₂CH₂N), 40.3 (1C, CH₂NH₂), 42.3 (2C, CH₂NHAr), 51.5 (2C, CH₂N), 53.2 (1C, CH₂N), 113.9 (2C), 114.1 (2C), 118.3 (2C), 129.1 (2C), 129.3 (2C), 129.7 (2C), 140.1 (2C), 140.9 (2C), 147.5 (2C), 154.5 (2C); IR (neat): v_{max} (cm⁻¹) 3409 (w), 3301 (w), 3043 (w), 2925 (m), 2853 (w), 2818 (w), 1602 (s), 1584 (m), 1512 (m), 1471 (m), 1431 (m), 1391 (w), 1375 (w), 1345 (m), 1263 (m), 1202 (w), 1165 (w), 1111 (w), 1060 (w), 1012 (w), 990 (w), 957 (vw), 925 (w), 855 (w), 782 (m), 762 (m), 731 (s), 701 (s), 614 (w); HRMS (MALDI-TOF): m/z [M+Na]⁺ calcd. for C₂₉H₃₄N₆Na: 489.2737; found: 489.2717.

Cu-catalyzed synthesis of N₂C₆O₃Q. In a two-necked flask, equipped with a magnetic stirrer and a reflux condenser, 2,3-bis(3-bromophenyl)quinoxaline (132 mg, 0.3 mmol) and CuI (12 mg, 20 mol%) were added. The flask was filled with argon. Dry DMF (2 mL) and 2-isobutyrylcyclohexanone (20 mg, 40 mol%) were added into the flask in a flow of dry argon. After stirring for 2–3 min, 0.3 mmol of N₂C₆O₂ (45 mg, 0.3 mmol) and cesium carbonate (391 mg, 1.2 mmol) were added and the reaction mixture was refluxed for 30 h under argon atmosphere. Upon completion of the reaction, the reaction mixture was diluted with CH₂Cl₂ (*ca.* 20 mL), the precipitate was separated by filtration, washed with dichloromethane and the combined filtrates were washed with H₂O (10 mL), the water layer was also extracted with CH₂Cl₂. The organic phases were combined, dried over 3Å sieves and the concentrated under reduced pressure, the resulting residue was chromatographed on silica gel using the sequence of eluents CH₂Cl₂, CH₂Cl₂–MeOH (50:1–5:1 v/v). The product was eluted with CH₂Cl₂–MeOH (50: 1 v/v) mixture. Yield 21 mg (16%), yellow glassy solid. The spectroscopic data of the obtained product were in agreement with those reported above.

3. DFT computations of the macrocyclization reaction

The structure of complexes was modeled by DFT calculations using the Firefly quantum chemistry package,⁴ which is partially based on the GAMESS (US)⁵ source code. The calculations were performed using the B3LYP functional with the 6-31G(d,p) basis set for all elements, at each step full optimization of geometry was achieved, and the minima were confirmed by computation of vibration frequencies. The optimized structures details are given in section 9.

Fig. S1. DFT-optimized geometries of two isomers of (PhPF-*t*Bu)Pd(Ph)(Br) (a and b) and intermediate complex **A** (c and d). Color code for the atoms: C (dark grey), H (light grey), N (blue), P (yellow), Pd (blue-green), Fe (orange-red), Br (yellow-grey).

Fig. S2. DFT-optimized geometries of two isomers of intermediate complex **D** (a and b) and complex **E** (c). Color code for the atoms: C (dark grey), H (light grey), N (blue), P (yellow), Pd (blue-green), Fe (orange-red).

4. Photophysical studies in solution employing spectroscopic techniques and

DFT computations

Spectroscopic studies of macrocycles $N_2C_nO_xQ$ and N_xC_nQ .

Fig. S3. Electronic absorbance (solid lines) and PL (dashed lines, $\lambda_{ex} = 395$ nm) spectra of 2,3diphenylquinoxaline (H₂Q, $\lambda_{ex} = 320$ nm) and macrocycles N₂C₃Q, N₂C₁₀O₃Q, N₃C₄Q and N₃C₆Q in toluene (blue), dioxane (green), dichloromethane (yellow) and acetonitrile (red).

Fig. S4. Electronic absorbance (solid lines) and luminescence (dashed lines, $\lambda_{ex} = 395$ nm) spectra of macrocycles N₄C₆Q, N₄C₇Q, N₄C₈Q, N₄C₉Q, *pa*-N₄C₆Q and *pa*-N₄C₉Q in toluene (blue), dioxane (green), dichloromethane (yellow) and acetonitrile (red).

Compound	Solvent	$\lambda_{abs} (nm) (\epsilon \times 10^{-3} (M^{-1} cm^{-1}))$	λ _{em} (nm) ^a
H ₂ Q	MeCN	204 (42.8), 242 (38.3), 338 (11.3)	398
	DCM	341 (11.3)	395
	Dioxane	341 (12.2)	396
	Toluene	343 (12.3)	395
N ₂ C ₆ O ₂ Q	MeCN	227 (29.0), 243 (39.8), 325 (7.9)	650
	DCM	333 (8.8)	603
	Dioxane	330 (8.4)	571
	Toluene	335 (8.3)	522
N2C10O3Q	MeCN	224 (36.0), 244 (50.6), 326 (10.2)	655
	DCM	329 (8.8)	625
	Dioxane	330 (9.8)	574
	Toluene	331 (9.6)	554
N ₂ C ₃ Q	MeCN	206 (25.7), 243 (15.1), 328 (2.6)	635
	DCM	332 (2.8)	602
	Dioxane	334 (3.1)	581
	Toluene	335 (3.2)	545
N ₃ C ₄ O	MeCN	202 (26.2), 242 (28.2), 321 (6.1)	576
	DCM	328 (6.5)	571
	Dioxane	324 (6.4)	541
	Toluene	326 (6.2)	526
N ₃ C ₆ O	MeCN	205 (14.9), 242 (16.2), 332 (3.2)	635
	DCM	338 (5.4)	597
	Dioxane	336 (3.3)	567
	Toluene	338 (5.0)	536
N4C6O	MeCN	219 (20.3), 242 (20.2), 329 (4.1)	615
	DCM	337 (3.8)	585
	Dioxane	338 (4.9)	551
	Toluene	335 (4.3)	543
N4C7Q	MeCN	203 (14.1), 219 (14.9), 243 (13.2), 328 (2.6)	617
	DCM	334 (2.8)	577
	Dioxane	334 (2.6)	563
	Toluene	335 (2.7)	536
N ₄ C ₈ Q	MeCN	220 (24.3), 243 (27.8), 329 (5.1)	604
	DCM	335 (5.3)	592
	Dioxane	333 (5.2)	562
	Toluene	335 (5.3)	527
N ₄ C ₉ O	MeCN	221 (20.5), 243 (20.5), 334 (4.2)	605
	DCM	337 (4.4)	600
	Dioxane	336 (4.4)	569
	Toluene	337 (4.4)	546
pa-N ₄ C ₉ O	MeCN	242 (37.0), 321 (7.3)	648
I	DCM	323 (7.7)	609
	Dioxane	326 (7.5)	577
	Toluene	324 (7.5)	545
pa-N ₄ C ₆ Q	MeCN	204 (47.8), 242 (33.8), 322 (7.5)	584
<u>.</u>	DCM	334 (7.4)	578
	Dioxane	308 (7.6)	563
	Toluene	328 (7.0)	545
3 1 200	C 11 O		NCOO NCO

Table S1. UV–vis absorption and photoluminescence of macrocycles $N_2C_nO_xQ$ and N_xC_nQ in different organic solvents.

 $\frac{1}{a} = \frac{320 \text{ nm for } H_2Q}{pa-N_4C_6Q, N_4C_7Q, N_4C_8Q, N_3C_4Q; 335 \text{ nm for } N_4C_6Q; 330 \text{ nm for } N_2C_{10}O_3Q, N_2C_6O_2Q, N_4C_9Q, N_4C_6Q, N_4C$

DFT computations of rotamers and rotation barriers in model compound N_2Q and macrocycles $N_2C_nO_xQ$ and N_xC_nQ .

The structures were modeled by DFT calculations using the Firefly quantum chemistry package,⁴ which is partially based on the GAMESS (US)⁵ source code. The calculations were performed using the B3LYP functional with the 6-31G(d,p) basis set for all elements, at each step full optimization of geometry was achieved. The atomic coordinates obtained by the computations are presented in Section 10 of the ESI.

The dihedral angle formed by the quinoxaline scaffold and the phenyl ring (Θ_l) was fixed, and the geometry of the molecule was optimized. The calculations were repeated, systematically changing the value of Θ_l to obtain 1) the dihedral angle formed by the quinoxaline scaffold and the second phenyl ring (Θ_2); 2) a rotamers relative energy diagram as a function of the dihedral angle Θ_l ; 3) the rotation barriers in the macrocycles. In the preliminary step of this study, the relative conformation energy diagram of 1,2-bis(3-aminophenyl)quinoxaline (N₂Q) was elucidated to validate this computational approach.

Fig. S5. Results of DFT calculations of 1,2-bis(3-aminophenyl)quinoxaline (N₂Q) molecules by geometry optimization with varying dihedral angle Θ_l shown on (a): (a) structure showing the rotation axes of aryl substituents relative to quinoxaline residue. (b) DFT-optimized values of dihedral angle Θ_2 (color coding for schematic representation of the rotamers obtained is as such: quinoxaline plane (red line); phenyl plane (black line), the amino group positions (blue points)); (c) full energies of the optimized structures vs dihedral angle Θ_l being fixed; (d) energies of the HOMO₋₁, HOMO and LUMO levels, and (e) the HOMO-LUMO energy gap.

Fig. S6. Results of DFT calculations of N₂C₃Q molecules by geometry optimization with varying dihedral angle Θ_l shown on (a): (a) structure showing the rotation axes of aryl substituents relative to quinoxaline residue. (b) DFT-optimized values of dihedral angle Θ_2 (color coding for schematic representation of the rotamers obtained is as such: quinoxaline plane (red line); phenyl plane (black line), the amino group positions (blue points)); (c) full energies of the optimized structures vs dihedral angle Θ_l being fixed.

Fig. S7. Results of DFT calculations of N₄C₆Q molecules by geometry optimization with varying dihedral angle Θ_l shown on (a): (a) structure showing the rotation axes of aryl substituents relative to quinoxaline residue. (b) DFT-optimized values of dihedral angle Θ_2 (color coding for schematic representation of the rotamers obtained is as such: quinoxaline plane (red line); phenyl plane (black line), the amino group positions (blue points)); (c) full energies of the optimized structures vs dihedral angle Θ_l being fixed.

Fig. S8. DFT-optimized geometries for *anti-* (a) and *syn-* (b) rotamers of the N₄C₆Q.

	Rotamer	Dihedral angle (deg)		Orbitals energy (eV)				2
Macrocycle		Θ_l	\varTheta_2	LUMO	НОМО	HOMO_1	ΔE (eV)	(nm) ^a
N ₂ C ₃ Q	syn	99.3	54.5	-2.00	-5.53	-6.01	3.53	602
	anti	42.6	40.6	-2.04	-5.43	-5.67	3.39	
N_3C_4Q	syn	67.5	28.4	-1.70	-5.08	-5.36	3.38	571
	anti	45.1	36.0	-1.71	-5.12	-5.29	3.41	
N_4C_6Q	syn	47.1	37.3	-1.64	-5.05	-5.17	3.41	585
	anti	40.9	39.9	-1.64	-5.06	-5.17	3.42	
$N_2C_6O_2Q$	syn	52.4	40.8	-1.65	-5.15	-5.21	3.50	603
	anti	48.2	46.9	-1.70	-5.13	-5.94	3.43	
$N_2 C_{10} O_3 Q$	syn	44.9	40.6	-1.75	-5.17	-5.35	3.42	635
	anti	49.4	40.6	-1.73	-5.16	-5.25	3.43	

Table S2. Selected parameters of DFT-optimized structures of macrocycles N_2C_3Q , N_3C_4Q , N_4C_6Q , $N_2C_6O_2Q$ and $N_2C_{10}O_3Q$ and experimental value of maxima of emission band in CH₂Cl₂.

^a Emission maxima in CH₂Cl₂, $\lambda_{ex} = 395$ nm.

Fig. S9. Calculated isodensity plot of the LUMO, HOMO and HOMO₋₁ orbitales for N₂C₃Q, N₃C₄Q, N₄C₆Q, N₂C₆O₂Q and N₂C₁₀O₃Q in *syn-* and *anti-*rotamers.

Macrocycle	Rotamer	Relative energy (a.u.)
N ₂ C ₃ Q	syn	-1107.765
	anti	-1107.773
N_3C_4Q	syn	-1202.193
	anti	-1202.198
N_4C_6Q	syn	-1336.169
	anti	-1336.172
$N_2C_6O_2Q$	syn	-1375.868
	anti	-1375.895
$N_2C_{10}O_3Q$	syn	-1608.361
	anti	-1608.359

Table S3. Relative energies of DFT-optimized structures of macrocycles N_2C_3Q , N_3C_4Q , N_4C_6Q , $N_2C_6O_2Q$ and $N_2C_{10}O_3Q$.

5. Studies of aggregation-induced emission

Preparation of nano-aggregates

A solution of the ligand was prepared dissolving 0.008 mmol of the ligand in CH₂Cl₂ in a 5 mL volumetric flask. A CH₂Cl₂-hexane mixture (3 mL) with appropriate hexane fraction (f_w) was placed in a quartz fluorimeter cuvette, closed with a cap and stirred at room temperature. A solution of the macrocycle (30 µL) was added in this cuvette using a syringe. After 1 minute, the stirring was stopped, and the PL spectra were recorded ($\lambda_{ex} = 380$ nm).

Fig. S10. UV–vis spectra of N₂C₁₀O₃Q in CH₂Cl₂–hexane mixtures.

Fig S11. Images of the $N_2O_{10}O_3Q$ crystals: (a) before and (b and c) during grinding under a 365 nm UV lamp.

Fig. S12. (a) Emission spectra of $N_2C_8O_3Q$ in CH_2Cl_2 -hexane mixtures. (b) Evolution of the maximum and intensity of emission for $N_2C_8O_3Q$ with the composition of the solvent mixture.

Fig. S13. (a) Emission spectra of N_2C_3Q in CH_2Cl_2 -hexane mixtures. (a) Change of the position of the maximum of the emission band and its intensity for N_2C_3Q with the composition of the solvent mixtures.

6. Single crystal X-ray analysis of N₂C₈O₃Q

Yellow greenish (clear green under a 365 nm diode, Fig. S38) needle-shaped crystals of $N_2C_8O_3Q$ suitable for single crystal X-ray diffraction analysis were obtained by slow diffusion of toluene to a solution of $N_2C_8O_3Q$ in CH₂Cl₂ at 4 °C. SCXRD analysis of $N_2C_8O_3Q$ was carried out on a Bruker D8 Quest diffractometer (Mo*Ka* radiation, ω and φ -scan mode), the crystal data and refinement parameters are listed in Table S5. The structures were solved with direct methods and refined by least-squares method in the full-matrix anisotropic approximation on F^2 . All hydrogens at carbon atoms were located in calculated positions and refined freely, and hydrogens at nitrogen atoms were localized from electron density difference map and refined freely. The asymmetric unit of the crystal contains one molecule of $N_2C_8O_3Q$ (Fig. S15). Two carbon atoms of the C₈O₃ fragment are disordered over two positions with occupancies of 0.7/0.3. All calculations were performed using the SHELXTL^{7, 8} and Olex2⁹ software packages. Atomic coordinates, bond lengths, angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre with deposition number CCDC 2312920, which are available free of charge at www.ccdc.cam.ac.uk.

Molecular Formula	$C_{28}H_{30}N_4O_3$
М	470.56
Temperature, K	100(2)
System	Monoclinic
Space group	$P2_1/c$
<i>a</i> , Å	13.6697(5)
b, Å	10.2676(4)
<i>c</i> , Å	18.2714(7)
β , deg.	109.3910(10)
V, Å ³	2419.01(16)
Ζ, Ζ'	4, 1
$\rho_{\rm calc}, {\rm g/cm^3}$	1.292
$\mu(MoK_{\alpha}), \text{ mm}^{-1}$	0.085
F(000)	1000
$\theta_{\min} - \theta_{\max}$, deg.	1.579-30.585
Number of measured reflections	39741
Number of unique reflections (R_{int})	7421 (0.0640)
Number of reflections with $I > 2\sigma(I)$	5697
Number of refined parameters	342
\mathbf{D} for the set $(\mathbf{L} > 2 - (\mathbf{D}))$	$R_1 = 0.0585$
<i>R</i> -factors $(I \ge 2\sigma(I))$	$\omega R_2 = 0.1528$
	$R_1 = 0.0746$
R-factors (all reflections)	$\omega R_2 = 0.1669$
GOOF	1.063
$\Delta \rho_{\rm max} / \Delta \rho_{\rm min}, e/{\rm \AA}^3$	0.643/-0.552

Table S4. Crystal data and refinement parameters for macrocycle N₂C₈O₃Q.

Fig. S14. Image of crystals of N₂C₈O₃Q under a 365 nm UV lamp.

Fig. S15. (a) General view of $N_2C_8O_3Q$ (left). Thermal ellipsoids of atomic displacement are shown at 50% probability. Disordered fragments were omitted for clarity; (b) view of the positional disorder of the C_8O_3 fragment in $N_2C_8O_3Q$. Non-disordered hydrogen atoms were omitted for clarity. Purple-colored illustrates the 70% occupied site of the disordered carbon and hydrogen atoms, and orange-colored atoms represents the 30% occupied site of the same carbon and hydrogen atoms. All thermal ellipsoids of atomic displacement are shown at 50% probability.

Fig. S16. (a) General view packing in the crystal of $N_2C_8O_3Q$; (b) general view packing of $N_2C_8O_3Q$ in the crystal along the crystallographic axis. Thermal ellipsoids of atomic displacement, disordered fragments and hydrogen atoms are omitted for clarity.

7. Preparation of pH-sensitive paper test strips

The test strips were prepared by immersing cellulose filter paper ("Belaya lenta" Bashkhimservice, Ufa, Russia, with 8–12 μ m pore size, or Whatman filter paper, cat N 1005-070) into a CH₂Cl₂ solution of N₂C₁₀O₃Q (0.1–1 mM) with subsequent drying in air for 15 min. The procedure was repeated 3–4 times to obtain test strips (TS 1') with an intense color visible to the naked eye in daylight and under a 365 nm UV lamp (Fig. 5 and S19).

In the next series of experiments, Whatman filter paper (cat N 1005-070) was coated with a thin film of PVA. Initially, a 5% aqueous solution of PVA was prepared, and the paper was immersed in this solution. After drying at 80 °C for 2 h, this support was immersed in a CH_2Cl_2 solution of N₂C₁₀O₃Q (0.1–1 mM) and dried in air for 15 min. The dye deposition process was repeated 3–4 times to obtain test strips TS 1 (Fig. 5).

The same procedures were employed to prepare AIE-exhibiting test strips (TS 2' and TS 2), with the only exception being that the CH₂Cl₂ solution of the N₂C₁₀O₃Q dye was replaced by a suspension of N₂C₁₀O₃Q in a CH₂Cl₂-heptane solvent mixture ($f_w = 0.9$). The test strips prepared on PVA-covered paper (TS 2) were utilized for pH measurements.

Initially, test strips TS 1 and TS 2 were consistently exposed to HCl and NH₃ vapors for 10 seconds to successfully observe the color change in acidic vapors and the regeneration of PL in the basic vapors.

Then, a series of aqueous solutions with pH 1.0–5.0 was prepared by adding concentrated HCl to deionized water. pH was measured using a portable Ecotest 2000 pH-meter with a combined ESK-10601/7 glass electrode (Econix, Moscow, Russia). The electrode was calibrated with commercial buffers (pH = 4.01, 6.86, and 9.18) before determining the pH of the studied solutions. The test strips were immersed in deionized water with different pH for 1 sec. The color of the paper immediately changed and was different, as shown in Fig. S19.

The regeneration experiments were performed using a solution with pH 1 and a closed vial filled with NH₃ vapors. The color regeneration of test strips TS 1 and TS 2 in the vial with NH₃ vapors was observed after 10 sec. Repeating the measurements and regeneration for 5 times, we observed the excellent stability of both pH indicators.

Fig. S17. Images of N₂C₁₀O₃Q in CH₂Cl₂ (DCM) and CH₂Cl₂-hexane ($f_w = 0.9$) solvent mixture under 365 nm UV lamp before and after addition of TFA and 4 M aqueous HCl.

Fig. S18. Comparison of pH indicators prepared from the $N_2C_{10}O_3Q$ dyes using immersion of different paper supports in a CH₂Cl₂ solution (TS 1 and TS 1') and in a CH₂Cl₂-heptane solvent mixture (TS 2 and TS 2').

Fig. S19. Color changes of test strips TS 1 (1) in daylight and (2) under irradiation by LED ($\lambda = 365$ nm) observed after immersion in aqueous solutions with different pH.

8. NMR and HR-mass spectra

Fig. S20. ¹H NMR spectrum of **3** (CDCl₃, 400 MHz, 300 K).

Fig. S21. ¹³C NMR spectrum of 3 (CDCl₃, 100.6 MHz, 300 K).

Fig. S22. ¹H NMR spectrum of N₂C₆O₂Q (CDCl₃, 400 MHz, 300 K).

Fig. S23. ¹³C NMR spectrum of N₂C₆O₂Q (CDCl₃, 100.6 MHz, 300 K).

Fig. S24. ¹H NMR spectrum of N₂C₁₀O₂Q (CDCl₃, 400 MHz, 300 K).

Fig. S25. ¹³C NMR spectrum of N₂C₁₀O₂Q (CDCl₃, 100.6 MHz, 300 K).

Fig. S26. ¹H NMR spectrum of N₂C₈O₃Q (CDCl₃, 400 MHz, 300 K).

Fig. S27. ¹³C NMR spectrum of N₂C₈O₃Q (CDCl₃, 100.6 MHz, 300 K).

Fig. S28. ¹H NMR spectrum of N₂C₁₀O₃Q (CDCl₃-CD₃OD, 400 MHz, 300 K).

Fig. S29. ¹³C NMR spectrum of N₂C₁₀O₃Q (CDCl₃, 100.6 MHz, 300 K).

Fig. S30. ¹H NMR spectrum of N₂C₃Q (CDCl₃, 400 MHz, 300 K).

Fig. S31. ¹³C NMR spectrum of N₂C₃Q (CDCl₃, 100.6 MHz, 300 K).

Fig. S32. ¹H NMR spectrum of N₃C₄Q (CDCl₃–CD₃OD (10:1 v/v), 400 MHz, 300 K).

Fig. S33. ¹³C NMR spectrum of N₃C₄Q (CDCl₃, 100.6 MHz, 300 K).

Fig. S34. ¹H NMR spectrum of N₃C₆Q (CD₃OD, 400 MHz, 300 K).

Fig. S35. ¹³C NMR spectrum of N₃C₆Q (DMSO-D6, 100.6 MHz, 300 K).

Fig. S36. ¹H NMR spectrum of N₄C₆Q (CDCl₃–CD₃OD (5:1 v/v), 400 MHz, 300 K).

Fig. S37. ¹³C NMR spectrum of N₄C₆Q (CDCl₃-CD₃OD (5:1 v/v), 100.6 MHz, 300 K).

Fig. S38. ¹H NMR spectrum of N₄C₇Q (CDCl₃-CD₃OD (10:1 v/v), 400 MHz, 300 K).

Fig. S39. ¹³C NMR spectrum of N₄C₇Q (CDCl₃, 100.6 MHz, 300 K).

Fig. S40. ¹H NMR spectrum of N₄C₈Q (CDCl₃–CD₃OD (10:1 v/v), 400 MHz, 300 K).

Fig. S41. ¹³C NMR spectrum of N₄C₈Q (CDCl₃–CD₃OD (10:1 v/v), 100.6 MHz, 300 K).

Fig. S42. ¹H NMR spectrum of N₄C₉Q (CDCl₃, 400 MHz, 300 K).

Fig. S43. ¹³C NMR spectrum of N₄C₉Q (CDCl₃-CD₃OD (5:1 v/v), 100.6 MHz, 300 K).

Fig. S44. ¹H NMR spectrum of N₅C₈Q (CDCl₃–CD₃OD (1:1 v/v), 400 MHz, 300 K).

Fig. S45. ¹³C NMR spectrum of N₅C₈Q (CDCl₃-CD₃OD (1:1 v/v), 100.6 MHz, 300 K).

Fig. S46. ¹H NMR spectrum of *pa*-N₄C₆Q (DMSO-*d6*, 400 MHz, 300 K).

Fig. S47. ¹³C NMR spectrum of *pa*-N₄C₆Q (DMSO-*d6*, 100.6 MHz, 300 K).

Fig. S48. ¹H NMR spectrum of *pa*-N₄C₉Q (CDCl₃-CD₃OD (10:1 v/v), 400 MHz, 300 K).

Fig. S49. ¹³C NMR spectrum of *pa*-N₄C₉Q (CDCl₃-CD₃OD (10:1 v/v), 100.6 MHz, 300 K).

Fig. S50. MALDI-TOF spectrum of **3**. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-400.

Fig. S51. MALDI-TOF spectrum of N₂C₆O₂Q. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-400.

Fig. S52. MALDI-TOF spectrum of N₂C₁₀O₂Q. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-500.

Fig. S53. MALDI-TOF spectrum of N₂C₈O₃Q. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-500.

Fig. S54. MALDI-TOF spectrum of $N_2C_{10}O_3Q$. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-500.

Fig. S55. MALDI-TOF spectrum of N₂C₃Q. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-400.

Fig. S56. MALDI-TOF spectrum of N₃C₄Q. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-400.

Fig. S57. MALDI-TOF spectrum of N₃C₆Q. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-400.

Fig. S58. MALDI-TOF spectrum of N₄C₆Q. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-400.

Fig. S59. MALDI-TOF spectrum of the compound N₄C₇Q. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-500.

Fig. S60. MALDI-TOF spectrum of N_4C_8Q . Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-500.

Fig. S61. MALDI-TOF spectrum of N₄C₉Q. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-500.

Fig. S62. MALDI-TOF spectrum of N₅C₈Q. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-500.

Fig. S63. MALDI-TOF spectrum of *pa*-N₄C₆Q. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-400.

Fig. S64. MALDI-TOF spectrum of *pa*-N₄C₉Q. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-500.

10. Atomic coordinates obtained by DFT computations

Molecular structures of DFT-optimized intermediates of the macrocyclization reaction

PhPdBr(PhPF-tBu)

1	26	-2.725209303	-1.906140554	0.732650407
2	6	-2.298515452	-0.877855756	-1.093752202
3	6	-3.937611665	-3.613004471	0.778888742
4	6	-1.269459286	-1.851628493	-0.819428815
5	6	-2.368259671	0.004124529	0.033916341
6	6	-4.737196658	-2.440655377	0.950206923
7	6	-2.982974073	-3.653051042	1.843141502
8	6	-0.710229013	-1.535741153	0.470915269
9	6	-1.373408252	-0.382664734	0.985281690
10	6	-4.270529777	-1.750585009	2.112316946
11	6	-3.187539011	-2.502839338	2.665798847
12	1	-4.024346757	-4.343429661	-0.024007315
13	1	-3.072866999	0.827836110	0.148514595
14	1	-5.557862999	-2.120223132	0.308544675
15	1	-2.224684536	-4.419192986	1.997405049
16	1	0.099366142	-2.077880331	0.955174203
17	1	-1.184565047	0.090779602	1.948565682
18	1	-4.659880212	-0.808090590	2.498166928
19	1	-2.602956614	-2.232364825	3.545531837
20	15	-0.529601594	-2.932101845	-2.124100905
21	6	1.185390593	-3.187951717	-1.456355418
22	6	1.758284188	-4.462132347	-1.322450055
23	6	1.969775684	-2.058901991	-1.160142527
24	6	3.074347703	-4.603973191	-0.866734543
25	6	3.284756511	-2.202104135	-0.708687932
26	6	3.841157373	-3.477369077	-0.553984933
27	1	1.187004265	-5.351827806	-1.592217052
28	1	1.554604494	-1.056553720	-1.285178008
29	1	3.503178202	-5.606347306	-0.768586998
30	1	3.878041933	-1.310186171	-0.482812047
31	1	4.871552484	-3.590601752	-0.201898879
32	6	-1.338982473	-4.591587146	-1.990865690
33	6	-1.950129450	-5.145435057	-3.126136654
34	6	-1.354012447	-5.314478721	-0.786288830
35	6	-2.584328088	-6.391159636	-3.053660175

36	6	-1.977208916	-6.564336296	-0.715949631
37	6	-2.600222603	-7.103336143	-1.849510168
38	1	-1.902280606	-4.600842907	-4.072262930
39	1	-0.868634360	-4.901986299	0.101564777
40	1	-3.054952145	-6.810101148	-3.948736305
41	1	-1.975740025	-7.120441037	0.227193914
42	1	-3.088676878	-8.081678277	-1.794605168
43	6	-3.099034716	-0.744940365	-2.369885793
44	15	-1.967174614	-0.347032394	-3.887770023
45	1	-3.752105296	0.133869530	-2.252389399
46	6	-4.000094813	-1.972065508	-2.607320652
47	1	-4.482189282	-2.245165758	-1.659317857
48	1	-3.433709954	-2.849045821	-2.954576043
49	1	-4.793279620	-1.767994352	-3.337507350
50	6	-1.190389925	1.382771315	-3.417278199
51	6	-3.272883799	-0.128830237	-5.327868686
52	6	-2.698265570	0.663508522	-6.523614507
53	1	-1.687642402	0.342994782	-6.808177102
54	-	-3 356740616	0 487604592	-7 393888708
55	- 1	-2 694372736	1 746380344	-6 340261033
56	-	-4 559171757	0 594575457	-4 878038841
57	1	-5 234972435	0.675982261	-5 749882143
58	1	-5 117569789	0.067456440	-4 089745060
59	1	-4 360402374	1 621413888	-4 530764676
60	-	-0 675510445	2 158179878	-4 649583477
61	1	-0.1/365/707	1 529301233	-5 37/022/56
62	1	1 495449221	2 695145505	-5.574922450
63	1	0 032000909	2.000140000	-1 204534174
64	-	0.020953016	1 090391050	-2 520307723
65	1	0.529335010	2.021067622	-2.520597725
66	1	0.240420964	2.031907032	1 571946240
67	1	-0.249439004	0.000023335	2 020020040
67	I C	0.740028392	1 520105105	-5.050059040
68	0	-3.624088394	-1.539125185	-5.855480735
69	1	-2.726316581	-2.060396673	-6.212048155
70	1	-4.113/52302	-2.180686557	-5.112/920/2
71	1 C	-4.31/3544/0	-1.431285148	-6./1013509/
72	6	-2.15/495830	2.312816339	-2.658939951
/3	1	-3.060535414	2.552816796	-3.243238074
74	1	-2.464963227	1.910586818	-1.68431/580
75	1	-1.638241501	3.270049158	-2.462983614
/6	46	-0.447758248	-1.9892/8180	-4.223589234
//	6	0.122165583	-1.331892435	-6.03/044353
78	6	1.181569159	-0.402334012	-6.131859904
79	6	-0.321166611	-1.889624385	-7.256550781
80	6	1.736349993	-0.022312772	-7.362848700
81	6	0.219760719	-1.511458808	-8.491396580
82	6	1.248040617	-0.563590387	-8.556216813
83	1	1.611817555	0.031419251	-5.222837543
84	1	-1.087800042	-2.670613623	-7.252818514
85	1	2.560258355	0.700400161	-7.382912224
86	1	-0.158857134	-1.974667246	-9.409865850
87	1	1.672908469	-0.264985747	-9.520352819
88	35	0.982937989	-3.994663893	-4.817686960

1	26	-2.789278844	-1.895716191	0.743135481
2	6	-2.356993761	-0.867987169	-1.077487504
3	6	-3.992765294	-3.608084272	0.762684049
4	6	-1.315968872	-1.828770332	-0.792430864
5	6	-2.443251876	0.022205689	0.040716870
6	6	-4.798777569	-2.445184060	0.961721321
7	6	-3.031948566	-3.662625032	1.821133034
8	6	-0.780729208	-1.502452168	0.507177745
9	6	-1.460197573	-0.352791786	1.007685947
10	6	-4.329993396	-1.774200323	2.133954269
11	6	-3.240054536	-2.530522937	2.667622610
12	1	-4.080636392	-4.322735109	-0.054080262
13	1	-3.149485525	0.848445905	0.130205603
14	1	-5.626172687	-2.118115870	0.332572433
15	1	-2.268012802	-4.426909187	1.954483209
16	1	0.018840840	-2.039554647	1.012336503
17	1	-1.288102353	0.124526073	1.972126838
18	1	-4.723915424	-0.842075716	2.539838473
19	1	-2.652704908	-2.273581553	3.549597326
20	15	-0.537905251	-2.946697427	-2.051084915
21	6	1.141139195	-3.247895509	-1.313652557
22	6	1.711198202	-4.530771841	-1.280983036
23	6	1.921232898	-2.153160788	-0.899169702
24	6	3.013068867	-4.719098255	-0.804264784
25	6	3.222136728	-2.342466781	-0.423592523
26	6	3.771146293	-3.628875663	-0.366503676
27	1	1.151883600	-5.391128738	-1.652305755
28	1	1.516339498	-1.140211154	-0.951809096
29	1	3.438171881	-5.727562220	-0.791041709
30	1	3.809586851	-1.476354931	-0.101998138
31	1	4.789777663	-3.778289618	0.005449890
32	6	-1.402771363	-4.579783663	-1.903319882
33	6	-2.155811496	-5.044322844	-2.991776296
34	6	-1.343668130	-5.357716619	-0.734688954
35	6	-2.845799644	-6.259776129	-2.915482782
36	6	-2.020901832	-6.578482596	-0.661194108
37	6	-2.776896473	-7.031722388	-1.750811471
38	1	-2.187420031	-4.436986919	-3.901339513
39	1	-0.755912710	-5.015290496	0.120580914
40	1	-3.428660443	-6.606526732	-3.774568272
41	1	-1.958066034	-7.179634190	0.251551183
42	1	-3.305609946	-7.988430910	-1.692108668
43	6	-3.162989855	-0.732853337	-2.347716503
44	15	-2.042712741	-0.435574903	-3.879307593

45	1	-3.792553880	0.163584031	-2.236388118
46	6	-4.093578520	-1.943851406	-2.553685683
47	1	-4.711739387	-2.070791564	-1.654160617
48	1	-3.529489616	-2.875636749	-2.700449912
49	1	-4.767627623	-1.820617055	-3.408730808
50	6	-1.085411193	1.222809352	-3.513336494
51	6	-3.382047165	-0.120994622	-5.279639591
52	6	-2.854824847	0.778213729	-6.418813280
53	1	-1.884114082	0.440654840	-6.806676251
54	1	-3.584973897	0.728896364	-7.248534298
55	1	-2.787458847	1.834551091	-6.115905171
56	6	-4.661674357	0.559364002	-4.741672599
57	1	-5.319204313	0.783720839	-5.601788578
58	1	-5.247759315	-0.063364905	-4.050478584
59	1	-4.449703062	1.518777508	-4.242196741
60	6	-0.289793247	1.693316852	-4.752981767
61	1	0.278041757	0.875323268	-5.223706181
62	1	-0.921066124	2.152981531	-5.522523089
63	1	0.430929543	2.463398599	-4.420935416
64	6	-0.025388689	0.926218540	-2.428483759
65	1	0.605870376	1.825211372	-2.303700754
66	1	-0.456443024	0.685135109	-1.448684424
67	1	0.625785667	0.094689999	-2.744441856
68	6	-3.730417688	-1.486998926	-5.916223906
69	1	-2.870262132	-1.886312101	-6.474397700
70	1	-4.045883357	-2.248216873	-5.188215217
71	1	-4.565553580	-1.340871287	-6.627346880
72	6	-2.001327997	2.363297226	-3.035252089
73	1	-2.711756667	2.683555814	-3.814321514
74	1	-2.571501459	2.103800461	-2.127852755
75	1	-1.379663739	3.244083405	-2.785889701
76	46	-0.487720355	-2.164533405	-4.137120834
77	6	0.972217133	-3.510842795	-4.459986069
78	6	2.319960721	-3.101145781	-4.367266699
79	6	0.742121663	-4.834794184	-4.882561237
80	6	3.377771495	-3.963162186	-4.675920457
81	6	1.797303517	-5.707493366	-5.189050838
82	6	3.123993626	-5.278935683	-5.083938947
83	1	2.557404417	-2.077858290	-4.057864160
84	1	-0.280137860	-5.205484956	-5.001416693
85	1	4.409324106	-3.601312989	-4.597555788
86	1	1.573384317	-6.728446341	-5.519923591
87	1	3.949505986	-5.956855857	-5.326037046
88	35	-0.094078479	-1.609871808	-6.572314149

Intermediate A isomer

1	26	0.393732622	1.646972844	0.165192751
2	6	-0.351841391	2.118739745	-1.782478225
3	6	0.431839605	-0.323655603	0.873578934
4	6	1.078307810	1.926937032	-1.828245643
5	6	-0.615703795	3.153014347	-0.825805348
6	6	-0.805785948	0.298536993	1.225186540
7	6	1.489502748	0.437765214	1.463275806
8	6	1.669826540	2.866087172	-0.908628379
9	6	0.627738309	3.631533489	-0.307377664
10	6	-0.514189190	1.448734568	2.023014379
11	6	0.905601681	1.532024560	2.172951518
12	1	0.556210295	-1.211150616	0.255098839
13	1	-1.604936758	3.506126824	-0.534206079
14	1	-1.801401048	-0.036925153	0.935174279
15	1	2.555077247	0.229118203	1.380527813
16	1	2.736175829	2.981467668	-0.725259612
17	1	0.754706127	4.410419058	0.444324841
18	1	-1.244458073	2.149542297	2.428381690
19	1	1.448494077	2.310299328	2.709973323
20	15	1.931272852	1.015776146	-3.188287772
21	6	3.603742467	1.825520276	-3.190005936
22	6	4.798768709	1.093016506	-3.112573261
23	6	3.672704390	3.219008129	-3.367191491
24	6	6.035262106	1.747349807	-3.174705930
25	6	4.907879222	3.869424427	-3.434235664
26	6	6.095943091	3.135451231	-3.331935820
27	1	4.778938821	0.004830729	-3.026760078
28	1	2.753918106	3.802776911	-3.460224612
29	1	6.955669895	1.158349087	-3.108219215
30	1	4.939890254	4.954924454	-3.573123549
31	1	7.064154704	3.643607009	-3.385324135
32	6	2.245224059	-0.713533888	-2.613948786
33	6	1.790152995	-1.780743609	-3.403671562
34	6	2.940663500	-0.990399706	-1.425339475
35	6	2.011702672	-3.103504000	-3.003968611
36	6	3.170557013	-2.311641401	-1.030442077
37	6	2.702139297	-3.372159324	-1.817431417
38	1	1.274259704	-1.563449983	-4.342569813
39	1	3.315416240	-0.169151412	-0.809865921
40	1	1.652369293	-3.924314145	-3.632477004
41	1	3.722087928	-2.514661221	-0.106773106
42	1	2.884993093	-4.406521134	-1.509319382
43	6	-1.383950897	1.427021675	-2.644400706
44	15	-1.141707533	1.824133824	-4.522757589
45	1	-2.363420484	1.856755194	-2.382703219

S56

46	6	-1.440426466	-0.085013641	-2.358327800
47	1	-1.468749562	-0.236408961	-1.270890104
48	1	-0.555573863	-0.614309588	-2.741705767
49	1	-2.332330849	-0.558818228	-2.785515503
50	6	-1.381352940	3.762496949	-4.603172395
51	6	-2.677524219	0.919596390	-5.324245341
52	6	-3.032468163	1.465695182	-6.725942855
53	1	-2 151312116	1 633761255	-7 358456455
55	1	2.151512110	0.709942445	7.0000000000
54	1	-3.03/3/8408	0.700042443	-7.233001730
55	1	-3.022713380	2.391400034	-0.075925074
56	6	-3.950295045	1.033032307	-4.45/111/89
57	1	-4./80413681	0.543646111	-4.999389496
58	1	-3.871000098	0.534661035	-3.478977954
59	1	-4.252688350	2.078714361	-4.286944670
60	6	-1.765685173	4.250829858	-6.016401643
61	1	-1.193948845	3.765636769	-6.818158654
62	1	-2.836221790	4.115609922	-6.223555589
63	1	-1.562171742	5.336403432	-6.068536048
64	6	-0.013563531	4.390292822	-4.254502718
65	1	-0.092650136	5.489356962	-4.347647037
66	1	0.306994009	4.166004757	-3.227185926
67	1	0.769972573	4.039566076	-4.945764250
68	6	-2.306418583	-0.570456592	-5.517807269
69	1	-1.619822132	-0.694475097	-6.363722854
70	1	-1 856847728	-1 045645517	-4 637235714
71	1	-3 229600979	-1 127564205	-5 763927424
71		-3.229000879	-1.12/304203	-5.705027424
72	0	-2.446560059	4.299192767	-3.62/419684
/3	1	-3.448465029	3.88/203833	-3.828541236
74	1	-2.196355631	4.119583544	-2.573392260
75	1	-2.518896885	5.395281187	-3.759537834
76	46	0.903262191	1.167695007	-5.248646991
77	6	0.424556674	1.303518328	-7.196427983
78	6	0.600847712	2.508738103	-7.909217613
79	6	0.094663788	0.170606346	-7.966633223
80	6	0.410419553	2.581577324	-9.297122677
81	6	-0.093674332	0.220227262	-9.359569894
82	6	0.053940243	1.447894860	-10.028697646
83	1	0.914575206	3.416869856	-7.384212602
84	1	0.011558774	-0.809611983	-7.492374877
85	1	0.545945779	3.538268806	-9.813525828
86	1	-0.104598696	1.514815511	-11.108132411
87	35	3.082073605	0.242466623	-6.173448037
88	6	-0.513071476	-1.018072189	-10.076672774
89	6	0.007743453	-1.418103652	-11.380463925
90	7	-1.445086692	-1.741603731	-9.474473112
91	7	-0 541475665	-2 420524778	-12 047361194
92	6	-1 962557489	-2 817833264	-10 128406111
93	6	-1 545744269	-3 125487558	-11 459082865
91	6	1 188330604	-0 778078182	-12 031107703
05	6	2 332554379	-0.459521679	-11 292569094
95	6	1 100751004	-0.439321079	12 410500750
90	G	2 462051041	-0.JJ00/J142	11 0077775066
91 00	U C	3.403951041	0.110005000	-11.03///3966
90	0	2.289403901	0.010092899	-14.033614805
99	6	3.421820054	0.346323038	-13.292512691
100	1	2.341733897	-0.661591882	-10.211049022
101	1	0.285263040	-0.834821414	-13.997262059
102	1	2.282183948	0.193618792	-15.113295605
103	1	4.288732597	0.799805136	-13.787587926
104	6	-2.157226999	-4.204699988	-12.153621267
105	1	-1.821809456	-4.416300000	-13.173513975
106	6	-3.133527141	-4.959350752	-11.531127140
107	1	-3.602376658	-5.793193631	-12.063367495

108	6	-2.960187256	-3.616597186	-9.506205366
109	1	-3.258219855	-3.364603026	-8.483913814
110	6	-3.532329995	-4.667717150	-10.197854910
111	1	-4.303743295	-5.280660794	-9.720571299
112	7	4.584346207	0.513208666	-11.174883784
113	1	5.409520445	0.688675495	-11.741986489
114	6	4.844178609	0.117911580	-9.804483821
115	1	5.506297379	0.878135626	-9.348554418
116	1	3.907196639	0.156596601	-9.225969239
117	6	5.482689392	-1.272492262	-9.632857261
118	1	6.540410836	-1.229465855	-9.995438404
119	1	4.957473049	-2.000264900	-10.282822864
120	7	5.378594504	-1.696450126	-8.244972208
121	1	5.444132345	-0.881783762	-7.628761246
122	6	6.330999998	-2.703295920	-7.812911366
123	1	6.204707491	-3.607973262	-8.441048790
124	1	7.397109753	-2.379701221	-7.947614141
125	6	6.105111513	-3.087338794	-6.341707178
126	1	5.102324893	-3.541838900	-6.243722438
127	1	6.844096069	-3.866036603	-6.069133532
128	7	6.189606855	-1.998519839	-5.363177154
129	1	5.392189478	-1.360682323	-5.470017116
130	1	7.038791828	-1.444147740	-5.519852963

Intermediate A isomer

1	26	-0.357451797	5.618051131	-2.474455343
2	6	-0.860703733	3.722991008	-3.316832908
3	6	0.374200790	5.761196301	-0.516460281
4	6	0.489539303	4.081330981	-3.686089607
5	6	-1.727552770	4.767646185	-3.771637096
6	6	-1.048948373	5.889678963	-0.518236322
7	6	0.911159093	6.812067858	-1.325536649
8	6	0.419616765	5.352389669	-4.366011346
9	6	-0.944422531	5.760749080	-4.436941559
10	6	-1.392898266	7.011843475	-1.334863693
11	6	-0.179702930	7.584212488	-1.830332376
12	1	0.952191260	4.993932238	-0.003636441
13	1	-2.808314215	4.792028617	-3.627613897
14	1	-1.755915524	5.243863191	0.002094752

15	1	1.965339210	6.991258190	-1.530778577
16	1	1.268459648	5.898457518	-4.770015460
17	1	-1.315102475	6.684261885	-4.881458039
18	1	-2.402821116	7.358644396	-1.554978214
19	1	-0.102415561	8.442486465	-2.498410734
20	15	1.924608698	2.906324650	-3.710305910
21	6	3 079286781	3 732753262	-4 904698586
22	6	4 442624026	3 906955001	-4 619990126
22	0	4.442024020	4.000010001	-4.010000120
23	0	2.003939040	4.090010030	-0.1//43223/
24	0	2.461610654	4.475572215	-3.300304331
25	6	3.461610654	4.665701691	-7.121130848
26	6	4.813003605	4.864301388	-6.818150826
27	1	4.850473961	3.583166601	-3.660116637
28	1	1.557598573	3.926171542	-6.442284326
29	1	6.360892853	4.597826923	-5.326384257
30	1	3.072473299	4.942651095	-8.105209755
31	1	5.485937919	5.301272761	-7.562285365
32	6	2.778831901	3.050615139	-2.069712491
33	6	2.871155328	1.914745933	-1.250792290
34	6	3.329002242	4.262237514	-1.619163559
35	6	3.491266104	1.988043202	0.001840009
36	6	3.958723443	4.334696707	-0.372896859
37	6	4.037627156	3.197956781	0.443055073
38	1	2.446205044	0.972267022	-1.610604988
39	1	3.273624793	5.152107123	-2.250393123
40	1	3.551805193	1.093194524	0.629215870
41	1	4 389532938	5 283202073	-0 036381784
42	1	4 529413258	3 255917044	1 419283065
12	-	-1 321204956	2 445270691	-2 656200336
10	15	0.007000102	0.001740622	2.030200350
15	1	-0.007909103	2 /000000	-2 50/050163
40		0 766207202	2.400000100	1 222022044
40	0	-0.766387283	2.328922238	-1.222883844
4 /	1	-1.01/631882	3.2458/9963	-0.6/2114659
48	1	0.327668389	2.228925758	-1.213012294
49	1	-1.185788217	1.482026015	-0.668494214
50	6	-1.828298195	1.145667882	-5.403878477
51	6	-1.754142379	-0.522718532	-2.680048277
52	6	-2.171616906	-1.730487343	-3.547186134
53	1	-1.354136282	-2.096595187	-4.182980662
54	1	-2.457831075	-2.550821121	-2.862200886
55	1	-3.054281364	-1.511129953	-4.168150239
56	6	-3.033408549	-0.042424881	-1.955962225
57	1	-3.496568108	-0.916413078	-1.461757591
58	1	-2.852071330	0.705275546	-1.171115716
59	1	-3.781627236	0.368039012	-2.653000258
60	6	-1.713822709	-0.117040683	-6.288475910
61	1	-0.677390663	-0.479535537	-6.372028257
62	1	-2.341100643	-0.947122750	-5.942200994
63	1	-2.064503111	0.154086784	-7.302267288
64	6	-1.112393002	2.268676633	-6.187653296
65	1	-1.561320524	2.329607363	-7.196211930
66	1	-1.209210233	3.256077035	-5.720261628
67	1	-0.041523940	2.035508916	-6.306391900
68	6	-0.724878474	-1.044424534	-1.649557887
69	1	0.100035567	-1.569236432	-2.154173482
70	-	-0 289287857	-0 254253159	-1 021587366
71	-	-1 231737/22	-1 762606164	-0 977505962
72	± 6	-3 313660965	1 507803307	-5 229309992
73	1	_3 000011/70	1.50/035537	
15 74	1	-3.03UZII4/3	U.U20U0L399	-4.13/101212
75	1	-3.404329846	2.429423111	-4.043003062
/5	1	-3./60560390	1.683342291	-6.226380216
/6	46	1.406561299	0./86726966	-4.180196526

77	6	3.304101694	0.598881302	-4.816409858
78	6	4.389981963	0.290310942	-3.974987815
79	6	3.567439385	0.674098840	-6.199251162
80	6	5.674562630	0.068206227	-4.491426247
81	6	4.844563106	0.426505457	-6.735509797
82	6	5.909050095	0.128856876	-5.864326540
83	1	4.245772167	0.201368178	-2.894476270
84	1	2.763804467	0.900547158	-6.905397190
85	1	6.500756400	-0.163189431	-3.809930011
86	1	6.913237802	-0.046780462	-6.257861777
87	35	1.310347002	-1.703629864	-4.651184657
88	6	5.077975141	0.561442377	-8.201630350
89	6	5.994351136	-0.300663536	-8.946681174
90	7	4.459349420	1.561421811	-8.809089366
91	7	6.378461115	0.020665154	-10.170217061
92	6	4.780114093	1.837123439	-10.103791117
93	6	5.814367496	1.107973358	-10.765369608
94	6	6.486713680	-1.609463381	-8.429667572
95	6	5 580998223	-2 499492190	-7 835730110
96	6	7 826237853	-1 985552332	-8 629463725
97	6	5 996645835	-3 777575733	-7 412449228
97	6	8 246512287	-3.247682113	- 9 1985/303/
90	6	7 353164004	-4 134059655	-7 503776202
100	1	1 525049662	-2 237409039	-7.750025213
101	1	9 516050220	1 206200710	-1.133323213
101	1	0.000000400	-1.290200719	-9.121100739
102	1	9.290920482	-3.549384529	-8.333696035
103	T	7.700840375	-5.118/63330	-7.258407351
104	6	6.210236112	1.485115300	-12.077095227
105	Ţ	7.009296944	0.911/30230	-12.55/08145/
106	0	5.574325999	2.533879658	-12./154499/3
107	T	5.8/5448/53	2.822053057	-13.727703195
108	6	4.128067662	2.89/96//8/	-10.789942720
109	Ţ	3.328303721	3.433400078	-10.269448861
110	0	4.520364336	3.23/480142	-12.0/162/044
111	1	4.021038562	4.058528170	-12.596613185
112	/	5.109134810	-4.69/2//104	-6.863242370
113	1	5.564634394	-5.534008928	-6.513198893
114	6	3.875450229	-4.349260262	-6.159289966
115	1	3.795598340	-5.014862644	-5.280644123
116	1	3.932301509	-3.318504463	-5.762158992
117	6	2.586545016	-4.507337715	-6.982752213
118	1	1.735556975	-4.627883876	-6.270244305
119	1	2.659468771	-5.448763111	-7.560896700
120	7	2.381861557	-3.405939434	-7.913698912
121	1	2.142400179	-2.558291179	-7.385792056
122	6	1.331783974	-3.637825716	-8.892061633
123	1	1.606509634	-4.512715615	-9.513234820
124	1	0.343156493	-3.884809244	-8.425212512
125	6	1.155181874	-2.427397660	-9.808126653
126	1	2.135599270	-2.189161576	-10.258734201
127	1	0.466231572	-2.705515723	-10.637478793
128	7	0.717947721	-1.254251807	-9.040053126
129	1	0.772697908	-0.409565022	-9.615696480
130	1	-0.264868204	-1.357244280	-8.765866751

Intermediate D isomer

1	26	-0.357451797	5.618051131	-2.474455343
2	6	-0.860703733	3.722991008	-3.316832908
3	6	0.374200790	5.761196301	-0.516460281
4	6	0.489539303	4.081330981	-3.686089607
5	6	-1.727552770	4.767646185	-3.771637096
6	6	-1.048948373	5.889678963	-0.518236322
7	6	0.911159093	6.812067858	-1.325536649
8	6	0.419616765	5.352389669	-4.366011346
9	6	-0.944422531	5.760749080	-4.436941559
10	6	-1.392898266	7.011843475	-1.334863693
11	6	-0.179702930	7.584212488	-1.830332376
12	1	0.952191260	4.993932238	-0.003636441
13	1	-2.808314215	4.792028617	-3.627613897
14	1	-1.755915524	5.243863191	0.002094752
15	1	1.965339210	6.991258190	-1.530778577
16	1	1.268459648	5.898457518	-4.770015460
17	1	-1.315102475	6.684261885	-4.881458039
18	1	-2.402821116	7.358644396	-1.554978214
19	1	-0.102415561	8.442486465	-2.498410734
20	15	1.924608698	2.906324650	-3.710305910
21	6	3.079286781	3.732753262	-4.904698586
22	6	4.442624026	3.906955001	-4.618880126
23	6	2.603939640	4.096816636	-6.177432237
24	6	5.300786498	4.473572213	-5.568364331
25	6	3.461610654	4.665701691	-7.121130848
26	6	4.813003605	4.864301388	-6.818150826
27	1	4.850473961	3.583166601	-3.660116637
28	1	1.557598573	3.926171542	-6.442284326
29	1	6.360892853	4.597826923	-5.326384257
30	1	3.072473299	4.942651095	-8.105209755
31	1	5.485937919	5.301272761	-7.562285365
32	6	2.778831901	3.050615139	-2.069712491
33	6	2.871155328	1.914745933	-1.250792290
34	6	3.329002242	4.262237514	-1.619163559
35	6	3.491266104	1.988043202	0.001840009
36	6	3.958723443	4.334696707	-0.372896859
37	6	4.037627156	3.197956781	0.443055073
38	1	2.446205044	0.972267022	-1.610604988
39	1	3.273624793	5.152107123	-2.250393123
40	1	3.551805193	1.093194524	0.629215870
41	1	4.389532938	5.283202073	-0.036381784
42	Ţ	4.529413258	3.255917044	1.419283065
43	6	-1.321204956	2.445270691	-2.656200336
44	15	-0.88/989103	0.901740622	-3./15486954
45	Ţ	-2.419828684	2.488888100	-2.594959163
40	0	-0.766387283	2.328922238	-1.222883844
10	1	-1.01/031002	2 220025750	-0.0/2114039
40	1	1 105700017	2.22092015	-1.213012294
オフ	T	-T.TOJ/00/T/	T.40202013	-0.000494214

50	6	-1.828298195	1.145667882	-5.403878477
51	6	-1.754142379	-0.522718532	-2.680048277
52	6	-2.171616906	-1.730487343	-3.547186134
53	1	-1.354136282	-2.096595187	-4.182980662
54	1	-2.457831075	-2.550821121	-2.862200886
55	1	-3.054281364	-1.511129953	-4.168150239
56	6	-3 033408549	-0 042424881	-1 955962225
57	1	-3 496569109	-0.916413079	-1 461757591
57	1	-3.490300100	-0.910415076	-1.401/5/591
50	1	-2.832071330	0.705275540	-1.1/1115/10
59	1	-3.781027236	0.368039012	-2.653000258
60	6	-1./13822/09	-0.11/040683	-6.2884/5910
61	1	-0.677390663	-0.479535537	-6.372028257
62	1	-2.341100643	-0.947122750	-5.942200994
63	1	-2.064503111	0.154086784	-7.302267288
64	6	-1.112393002	2.268676633	-6.187653296
65	1	-1.561320524	2.329607363	-7.196211930
66	1	-1.209210233	3.256077035	-5.720261628
67	1	-0.041523940	2.035508916	-6.306391900
68	6	-0.724878474	-1.044424534	-1.649557887
69	1	0.100035567	-1.569236432	-2.154173482
70	1	-0.289287857	-0.254253159	-1.021587366
71	1	-1.231737422	-1.762606164	-0.977505862
72	6	-3.313660865	1.507893397	-5.229398882
73	1	-3 890211473	0 696061399	-4 757101212
74	1	-3 464529846	2 429423111	-4 643065662
75	1	3.760560200	1 602242201	6. 226290216
75	1	-3.780380390	1.005542291	-0.220300210
76	46	1.406561299	0.786726966	-4.180196526
//	6	3.304101694	0.598881302	-4.816409858
78	6	4.389981963	0.290310942	-3.974987815
79	6	3.567439385	0.674098840	-6.199251162
80	6	5.674562630	0.068206227	-4.491426247
81	6	4.844563106	0.426505457	-6.735509797
82	6	5.909050095	0.128856876	-5.864326540
83	1	4.245772167	0.201368178	-2.894476270
84	1	2.763804467	0.900547158	-6.905397190
85	1	6.500756400	-0.163189431	-3.809930011
86	1	6.913237802	-0.046780462	-6.257861777
87	35	1.310347002	-1.703629864	-4.651184657
88	6	5.077975141	0.561442377	-8.201630350
89	6	5.994351136	-0.300663536	-8.946681174
90	7	4.459349420	1.561421811	-8.809089366
91	7	6.378461115	0.020665154	-10.170217061
92	6	4.780114093	1.837123439	-10.103791117
93	6	5.814367496	1.107973358	-10.765369608
94	6	6.486713680	-1.609463381	-8.429667572
95	6	5 580998223	-2 499492190	-7 835730110
96	6	7 826237853	-1 985552332	-8 629463725
07	6	5 996645935	-3 777575733	-7 412449229
0.0	6	9 246512297	-3 247692113	-9 1995/303/
90	0	0.240J12207	-3.24/002113	-0.190343034
99	0	1.353164994	-4.134058655	-7.593776292
100	1	4.525948662	-2.23/409039	-1.159925213
101	T	8.516950330	-1.296280719	-9.121166759
102	1	9.290920482	-3.549384529	-8.333696035
103	1	7.700840375	-5.118763330	-7.258407351
104	6	6.210236112	1.485115300	-12.077095227
105	1	7.009296944	0.911730230	-12.557081457
106	6	5.574325999	2.533879658	-12.715449973
107	1	5.875448753	2.822053057	-13.727703195
108	6	4.128067662	2.897967787	-10.789942720
109	1	3.328303721	3.433400078	-10.269448861
110	6	4.520364336	3.237480142	-12.071627044
111	1	4.021038562	4.058528170	-12.596613185

112	7	5.109134810	-4.697277104	-6.863242370
113	1	5.564634394	-5.534008928	-6.513198893
114	6	3.875450229	-4.349260262	-6.159289966
115	1	3.795598340	-5.014862644	-5.280644123
116	1	3.932301509	-3.318504463	-5.762158992
117	6	2.586545016	-4.507337715	-6.982752213
118	1	1.735556975	-4.627883876	-6.270244305
119	1	2.659468771	-5.448763111	-7.560896700
120	7	2.381861557	-3.405939434	-7.913698912
121	1	2.142400179	-2.558291179	-7.385792056
122	6	1.331783974	-3.637825716	-8.892061633
123	1	1.606509634	-4.512715615	-9.513234820
124	1	0.343156493	-3.884809244	-8.425212512
125	6	1.155181874	-2.427397660	-9.808126653
126	1	2.135599270	-2.189161576	-10.258734201
127	1	0.466231572	-2.705515723	-10.637478793
128	7	0.717947721	-1.254251807	-9.040053126
129	1	0.772697908	-0.409565022	-9.615696480
130	1	-0.264868204	-1.357244280	-8.765866751

Intermediate D isomer

1	26	-0.009019118	6.507016028	-2.215947105
2	6	-1.052145012	4.753962425	-2.837560068
3	6	1.118429324	6.510747200	-0.451471346
4	6	0.241014540	4.812188535	-3.479696424
5	6	-1.757957507	5.953217047	-3.174530570
6	6	-0.214963879	6.946264400	-0.179581427
7	6	1.687642519	7.409259352	-1.408369337
8	6	0.299794274	6.057800153	-4.205106377
9	6	-0.936131380	6.747270473	-4.032769987
10	6	-0.474233540	8.106462512	-0.974160484
11	6	0.704686256	8.394809640	-1.730367899
12	1	1.614474082	5.642272246	-0.021521771
13	1	-2.758999167	6.209508995	-2.825737423
14	1	-0.919392402	6.476943133	0.506884120
15	1	2.690562154	7.350773221	-1.828128943
16	1	1.145065051	6.403265789	-4.795629277
17	1	-1.189093987	7.722956144	-4.447172737
18	1	-1.411188561	8.662921493	-1.009128643
19	1	0.822573058	9.206741546	-2.448464919
20	15	1.368158375	3.360950997	-3.715181190
21	6	2.379991649	3.902193674	-5.174547271
22	6	3.782305601	3.844728109	-5.178821632
23	6	1.714895783	4.277851537	-6.355828559
24	6	4.503033206	4.185790487	-6.329784576
25	6	2.435670762	4.615967738	-7.502878638
26	6	3.834675598	4.577472934	-7.492841617

27	1	4.323060331	3.513907716	-4.290656189
28	1	0.623035959	4.296380889	-6.386890881
29	1	5.596046464	4.130115701	-6.314344873
30	1	1.898950034	4.896983430	-8.413955078
31	1	4.399304848	4.834847044	-8.394329295
32	6	2.547810590	3.324153499	-2.288018001
33	6	2 560462585	2 184615414	-1 469538334
34	6	3 418516297	4 385813524	-1 990557216
25	c	2 415014774	2.000206700	0.266090222
30	0	4.000550570	2.099290790	-0.300000222
20	0	4.280339373	4.302021311	-0.092204429
37	6	4.2//952/39	3.162420785	-0.075535326
38	1	1.891892971	1.353//9815	-1./12/16//6
39	1	3.429608470	5.276970472	-2.622503173
40	1	3.396989309	1.188287703	0.240334648
41	1	4.958993170	5.133292406	-0.672188156
42	1	4.954920789	3.103046075	0.782964011
43	6	-1.625169791	3.610653965	-2.035411250
44	15	-1.736570281	1.998884287	-3.074976796
45	1	-2.657703267	3.886434994	-1.771050282
46	6	-0.838312599	3.389763075	-0.728658851
47	1	-0.788102936	4.341434397	-0.180963736
48	1	0.194208032	3.064030779	-0.917511079
49	1	-1.307615959	2.651025029	-0.069303909
50	6	-2.897813051	2.417472355	-4.583555819
51	6	-2.689694445	0.813393575	-1.835427620
52	6	-3.509987740	-0.276115223	-2.558473209
53	1	-2.919810462	-0.822638280	-3.306851780
54	1	-3.842842086	-1.004552937	-1.795541079
55	1	-4.418597613	0.130788424	-3.028569793
56	6	-3.677092294	1.571597633	-0.917878967
57	1	-4.225412959	0.826148096	-0.312382000
58	1	-3.193165394	2.259848043	-0.210104998
59	1	-4.430373088	2.140002595	-1.487126711
60	6	-3.220179465	1.145589654	-5.402337106
61	1	-2.321855422	0.544703443	-5.614516104
62	1	-3.957873157	0.493952928	-4.919832250
63	1	-3.650728093	1.465362715	-6.369190088
64	6	-2.117739529	3.341240431	-5.545649119
65	1	-2.729742548	3,492924153	-6.453633465
66	1	-1 899404727	4 329307112	-5 123233801
67	1	-1 169920492	2 868933790	-5 851801786
68	-	-1 633625455	0 077528410	-0 978172047
69	1	-1 039107299	-0 600561933	-1 609244361
70	1	-0.944545851	0.749160215	-0 446090436
70	1	0.150265420	0.520702502	0.217647052
71	1	-2.139203439	-0.330703302	-0.217047955
72	1	-4.211451157	3.103361145	-4.108301375
73	1	-4.85211/412	2.44/639201	-3.556827878
74	1	-4.0481/5156	4.044006243	-3.616055749
75	1	-4.786940954	3.3388/8115	-5.078220024
/6	46	0.353118/24	1.381/60346	-3.943363/39
11	0	1.996156359	0.8068/8867	-4.949859437
/8	6	3.227435539	0.429660672	-4.382176275
19	6	1.885346208	0.691376728	-6.351008816
80	6	4.291667211	-0.028821704	-5.174264729
81	6	2.923724544	0.187332714	-7.152444663
82	6	4.149102836	-0.158522751	-6.555191557
83	1	3.379113932	0.484929200	-3.301329538
84	1	0.953844336	0.964511154	-6.854318177
85	1	5.241060664	-0.298543879	-4.698653675
86	1	4.978005045	-0.527658881	-7.165340548
87	35	-0.325188099	-1.052028985	-4.230814288
88	6	2.701759333	0.059611298	-8.621307973

89	6	3.069141852	-1.121004918	-9.401238327
90	7	2.143712837	1.106871523	-9.208624490
91	7	2.973052750	-1.103588219	-10.722419362
92	6	1.988007567	1.098149854	-10.560290494
93	6	2.460778476	-0.003546119	-11.334292787
94	6	3.528829987	-2.420154737	-8.819814050
95	6	3.041004214	-2.911301740	-7.598905525
96	6	4.413588841	-3.214880445	-9.578620890
97	6	3.454530270	-4.163730224	-7.102651825
98	6	4.805318757	-4.465971254	-9.104673151
99	6	4.341445237	-4.938833133	-7.872156277
100	1	2.311211686	-2.337114493	-7.025752303
101	1	4.770050966	-2.842888588	-10.541082568
102	1	5.493723689	-5.080241795	-9.694621763
103	1	4.674416267	-5.913374053	-7.495504483
104	6	2.351353087	0.036467437	-12.751421996
105	1	2.723991178	-0.820282589	-13.321006028
106	6	1.773424751	1.130700041	-13.366815844
107	1	1.684677145	1.161395287	-14.457494081
108	6	1.387627798	2.206952550	-11.216223513
109	1	1.026915864	3.035658147	-10.599602061
110	6	1.283316297	2.219371340	-12.594430814
111	1	0.823301427	3.074460982	-13.100298138
112	7	2.950735008	-4.643420610	-5.874120162
113	1	3.256309374	-5.605079180	-5.717572350
114	6	3.176809092	-3.832690384	-4.673508057
115	1	4.242376373	-3.881697582	-4.345401389
116	1	2.969367094	-2.776424146	-4.900776056
117	6	2.270374465	-4.267189663	-3.521019786
118	1	2.301730186	-5.379710337	-3.411260865
119	1	1.228447442	-4.001915430	-3.771987624
120	7	2.648970050	-3.558646872	-2.304018390
121	1	3.577955053	-3.867083061	-2.000449880
122	6	1.715130030	-3.658588517	-1.188551502
123	1	0.705190189	-3.427402999	-1.577947113
124	1	1.661346195	-4.678734965	-0.736089310
125	6	2.080849465	-2.630790757	-0.106391169
126	1	3.090413029	-2.866279420	0.289435002
127	1	1.385917640	-2.732143565	0.747891276
128	7	2.080493215	-1.236936600	-0.566505772
129	1	1.116927172	-0.982334872	-0.813196738
130	1	2.572337968	-1.233407269	-1.470389863

Intermediate E

S65

2	6	-1.063756122	3.454621565	-3.454360324
3	6	0.228421373	4.950121129	-0.366659115
4	6	0.318451186	3.757778174	-3.743511682
5	6	-1.839935618	4.617566960	-3.766002649
6	6	-1.177657410	5.206078378	-0.374655074
7	6	0.878738128	6.056593886	-0.998603701
8	6	0 361011149	5 113098885	-4 232431217
9	6	-0.966776927	5 632960354	-4 265922770
10	0	1 207020572	0.002009554	1 020122070
11	0	-1.397039372	0.403001330	-1.020123881
10	1	-0.124434662	0.909901454	-1.402343228
12	1	0.722638687	4.067784855	0.037031412
13	1	-2.920019298	4.703529334	-3.640//8688
14	1	-1.953857531	4.557567998	0.030906231
15	1	1.950199171	6.165833244	-1.154538779
16	1	1.259224665	5.643151261	-4.540903578
17	1	-1.255253977	6.636549058	-4.577825172
18	1	-2.366395434	6.927798714	-1.205549192
19	1	0.048821195	7.925956952	-1.934096945
20	15	1.669229465	2.487118747	-3.894659868
21	6	2.882117869	3.361240397	-4.999974762
22	6	4.257205120	3.400205907	-4.720367408
23	6	2.429756809	3.886994316	-6.223831918
24	6	5.151779179	3.983446598	-5.625577656
25	6	3.323331097	4.469383693	-7.125540310
26	6	4.689431502	4.525689479	-6.827551829
27	1	4.645719608	2.954523485	-3.803115949
28	1	1.369880581	3.834038525	-6.482201220
29	1	6.220277273	3.998577831	-5.388908454
30	1	2.949096936	4.870356853	-8.072664505
31	-	5 390959278	4 972823063	-7 538573345
32	-	2 509674176	2 459892071	-2 234684511
33	6	2 448747216	1 279854299	-1 477910860
34	6	3 181672832	3 571919618	-1 700481264
35	6	3 031888838	1 211629549	-0 207239260
36	6	3 777269919	3 503061616	-0 437180001
27	c	2 700155040	2 222602255	0.216011760
20	1	1 025100102	2.323000333	1 005766220
20	1	2.040002110	0.413063710	-1.903788330
39	1	3.248083118	4.496966466	-2.2/8094654
40	1	2.969854083	0.282982025	0.368947090
41	1	4.302621255	4.3/5981393	-0.036318545
42	1	4.165856811	2.271755275	1.305341619
43	6	-1.633178430	2.128443617	-3.003545467
44	15	-1.236144363	0.736661016	-4.267237706
45	1	-2.729518156	2.232391954	-2.983158084
46	6	-1.158550057	1.776853199	-1.580002175
47	1	-1.436149862	2.598289769	-0.904063946
48	1	-0.066662827	1.665774370	-1.528698020
49	1	-1.610672660	0.858720082	-1.187302304
50	6	-2.107337030	1.291114060	-5.921798038
51	6	-2.232526149	-0.781938533	-3.504621590
52	6	-2.710130898	-1.806426033	-4.560148503
53	1	-1.924664857	-2.140951557	-5.252454954
54	1	-3.079848378	-2.700578136	-4.024297614
55	1	-3.549550938	-1.421780223	-5.158690334
56	6	-3.505838193	-0.345695098	-2.743783219
57	1	-4.033180324	-1.254133889	-2.397502718
58	1	-3.306153254	0.264430530	-1.852217250
59	1	-4.207633207	0.209887966	-3.386032280
60	6	-2.008221504	0.177153620	-6.987499001
61	1	-0.978691929	-0.198929538	-7.082617574
62	1	-2.675309302	-0.672868280	-6.800405239
63	1	-2.301033807	0.608561179	-7.962327061

64	6	-1.315026788	2.483270727	-6.502856905
65	1	-1.709351420	2.703222129	-7.512064889
66	1	-1.401388800	3.397863230	-5.904315063
67	1	-0.248929574	2.222416761	-6.601252534
68	6	-1.278013643	-1.524362296	-2.538730618
69	1	-0.414010280	-1.959214645	-3.064546345
70	1	-0.878313867	-0.877222245	-1.745134377
71	1	-1.833565679	-2.346831939	-2.049383036
72	6	-3.580035061	1.696612731	-5.736608575
73	1	-4.215132041	0.851681222	-5.424224385
74	1	-3.707071857	2.514614411	-5.008384251
75	1	-3.979936903	2.059756140	-6.702445544
76	46	1.039821000	0.480999861	-4.652067594
77	6	2.975659981	0.207047353	-5.160223225
78	6	3.950425712	-0.207575959	-4.226660069
79	6	3.421552528	0.361839232	-6.487176696
80	6	5.288915222	-0.415300637	-4.593412022
81	6	4.742478458	0.085529326	-6.891191134
82	6	5.693620856	-0.274993617	-5.921093667
83	1	3.677450693	-0.367653136	-3.180242703
84	1	2.729730917	0.695742066	-7.264555078
85	1	6.022139009	-0.699796964	-3.830153659
86	1	6.735277198	-0.448175882	-6.200379830
87	6	5.083740711	0.217376835	-8.335472462
88	6	6.005819490	-0.663807165	-9.052221615
89	7	4.483479594	1.214700157	-8.968934483
90	7	6.343466210	-0.393532124	-10.305224632
91	6	4.785902717	1.451926582	-10.271731702
92	6	5.772184971	0.665347629	-10.936777794
93	6	6.626809898	-1.912868058	-8.504345537
94	6	5.927084181	-2.818850199	-7.686686717
95	6	7.935824080	-2.219628410	-8.926659467
96	6	6.535494902	-4.022752633	-7.272317899
97	6	8.535081140	-3.413156329	-8.523619080
98	6	7.848684460	-4.308387736	-7.701778281
99	1	4.894856844	-2.632658818	-7.376747834
100	1	8.461756109	-1.522279276	-9.581307213
101	1	9.554828019	-3.647322182	-8.847355548
102	1	8.330906721	-5.239259104	-7.378726546
103	6	6.124687793	0.971445108	-12.279912432
104	1	6.886234109	0.354517080	-12.766776451
105	6	5.498559462	2.015476925	-12.934777798
106	1	5.765301065	2.250709899	-13.970096652
107	6	4.147355918	2.512698530	-10.970353363

N₂C₃Q (syn-conformer)

15 1 7 -0.255606765 0.261087946 -5.478346110 2 6 0.553014478 -0.250616656 -4.461474174 -3.568484030 -3.294937429 3 7 1.686822966 0.386175048 -3.223703453 6 0.710687973 4 5 6 -2.949137355 0.832016736 -2.333234279 -1.903169520 1.259813997 6 6 -1.508430784 7 6 1.183591968 -1.497027903 -4.639443563 1.397912191 -0.223351758 -2.170041046 8 6 9 6 -1.154762697 0.341780000 -0.768966837 10 6 2.034758622 -1.449115757 -2.371508615 -2.071770983 -3.613833791 11 6 1.922126817 -2.012829830 12 1 1.086235829 -5.590194469 13 6 1.393852697 0.413975255 -0.818786303 14 1 2.586873969 -1.910382802 -1.562640807 15 1 2.406551893 -3.027327432 -3.782134774 -3.332376394 -0.513487970 -2.291220235 16 6 17 6 -1.538443706 -1.000171177 -0.749738454 18 6 -2.645677719 -1.414818739 -1.486303680 6 0.146704766 0.751879056 -0.152568203 19 -1.718473837 -0.180813750 20 1 -0.959879473 21 1 -2.954766558 -2.453586618 -1.455429463 22 1 -4.165186003 -0.835141442 -2.905599772 23 6 -0.539066954 1.680603365 -5.694048070 -0.887081273 1.761580826 -6.727661066 24 1 0.380201303 2.280745300 -5.624371751 25 1 26 6 -2.948945334 1.581864989 -4.640277657 1 -2.810561585 -4.849427058 27 0.519846927 1 -3.661847841 1.967655964 -5.374808111 28 2.315024567 29 6 -1.593273904 -4.763043725 30 1 -1.754688801 3.340740636 -5.114615400 31 1 -1.168067300 2.411318826 -3.765161083 7 -0.240819847 32 2.552710565 0.642632447 33 7 0.132011448 1.380521637 0.998982051 34 6 2.550577317 1.264178028 0.970288454 35 1.330510787 1.668984401 1.580603351 6 36 1 0.256601702 1.347598568 -3.053928112 1 -1.601760589 2.302362945 -1.517699482 37 38 1 -3.538195323 2.652237795 -2.982684974 39 -0.161739884 -0.253384779 -6.340199779 1 40 6 3.777811380 1.535628138 1.622116960 1.215894125 4.691300489 1.135557319 41 1 42 6 1.363334527 2.350377196 2.820483042 43 3.782441286 2.195084080 2.828161306 6 44 1 0.419038000 2.645755885 3.261627659 2.406270461 3.326339161 45 1 4.721769042

46	6	2.568660561	2.607311441	3.429593056
47	1	2.595532092	3.126800470	4.380616583

N₂C₃Q (anti-conformer)

1	7	-0.721820910	-1.209723188	-4.708171072
2	6	0.369685913	-0.513365826	-4.192337670
3	7	-2.478183906	1.737698264	-4.052327320
4	6	0.521974478	-0.451416849	-2.799627956
5	6	-2.442338372	1.261816045	-2.742708725
6	6	-1.311436945	1.521093250	-1.953698578
7	6	1.311127511	0.154017987	-4.992501344
8	6	1.479291430	0.365269063	-2.203462395
9	6	-1.141130836	0.927974351	-0.704688145
10	6	2.424200712	1.012924701	-3.011964627
11	6	2.339604273	0.881675923	-4.394141053
12	1	1.242412370	0.111638735	-6.072642786
13	6	1.434577073	0.661335260	-0.740741352
14	1	3.186416512	1.627727133	-2.551725208
15	1	3.065932096	1.382477463	-5.024927399
16	6	-3.484325990	0.505802272	-2.178783761
17	6	-2.191565194	0.184259781	-0.149494079
18	6	-3.356078464	-0.003010425	-0.887411091
19	6	0.189293037	0.931400287	-0.026220325
20	1	-2.071434822	-0.257420781	0.831115283
21	1	-4.174997079	-0.572673760	-0.461850149
22	1	-4.395071262	0.330622378	-2.738800927
23	6	-1.329473573	-0.898683876	-5.994804694
24	1	-2.111332019	-1.647778905	-6.151821930
25	1	-0.593955494	-1.068483743	-6.787852166
26	6	-3.015768217	0.965332526	-5.176727806
27	1	-3.553233113	0.099204457	-4.780406790
28	1	-3.758533035	1.572088587	-5.705822691
29	6	-1.941725654	0.508309626	-6.193181764
30	1	-2.392561304	0.504735794	-7.192368295
31	1	-1.146839390	1.261170422	-6.230180979
32	7	2.590596966	0.709677825	-0.114183219
33	7	0.191247433	1.136023804	1.273381856
34	6	2.599517449	0.957853491	1.221601409
35	6	1.380690039	1.142455499	1.931101736
36	1	-0.193462209	-0.977879752	-2.180660804
37	1	-0.504643019	2.101606024	-2.384321919
38	1	-1.640356767	2.244288859	-4.300058202
39	1	-1.394594864	-1.456236492	-3.996676215
40	6	3.828625690	1.004043496	1.922497153
41	1	4.741620113	0.859702704	1.357570087
42	6	1.413921753	1.355626145	3.330298422
43	6	3.834258417	1.215640762	3.280743435
44	1	0.471380296	1.493341363	3.846298234

45	1	4.774009376	1.247136379	3.820161500
46	6	2.620290236	1.389719236	3.988823374
47	1	2.648429765	1.553501336	5.060009943

N₃C₄Q (*syn*-conformer)

1	6	-5.087917720	-7.053274919	8.753818671
2	6	-5.102989218	-5.686045988	8.586585940
3	6	-4.573736966	-7.630087674	9.943646708
4	6	-4.086443772	-6.834967537	10.956862538
5	6	-4.093742357	-5.423346482	10.810853379
6	6	-4.597030697	-4.846357834	9.610209961
7	1	-4.570220155	-8.710606011	10.052864054
8	1	-3.697067078	-7.251538567	11.880124859
9	7	-3.655225848	-4.633735026	11.823957308
10	7	-4.560801984	-3.497949541	9.428273200
11	6	-4.075666052	-2.743718344	10.396970883
12	6	-3.658742037	-3.318405959	11.664528153
13	1	-5.468321861	-7.700693868	7.969314452
14	1	-5.481336729	-5.218874577	7.683221412
15	6	-3.266070850	-2.531194284	12.872723266
16	6	-3.774681725	-1.251823860	13.137081893
17	6	-2.448647624	-3.152170662	13.835597621
18	6	-3.475894157	-0.585351180	14.336919157
19	6	-2.156913870	-2.498183408	15.027087316
20	6	-2.659711859	-1.222488917	15.282290337
21	1	-4.438350723	-0.764938050	12.435305674
22	1	-2.074119671	-4.149515971	13.641626794
23	1	-1.521528924	-2.979645250	15.765224530
24	1	-2.412503034	-0.712986115	16.210972654
25	6	-3.971421952	-1.286933247	10.077064380
26	6	-5.140083761	-0.548651661	9.885883433
27	6	-2.718832760	-0.675896840	9.932053910
28	6	-5.087947108	0.829399253	9.618766531
29	6	-2.661011891	0.672043286	9.579778478
30	6	-3.826310231	1.421765290	9.433283203
31	1	-6.097023592	-1.050807349	9.974139349
32	1	-1.810191964	-1.251145121	10.075203356
33	1	-1.696899715	1.151820111	9.434960043
34	1	-3.764150440	2.482038602	9.197994864
35	7	-4.039425603	0.679803804	14.605394022
36	1	-3.849711281	0.967522481	15.557344018
37	7	-6.256399343	1.589880174	9.478980908
38	1	-6.047567134	2.561039445	9.277596203
39	6	-7.363934282	1.468250313	10.425894148
40	1	-8.261157095	1.891188901	9.956766356
41	1	-7.573900483	0.408203358	10.590972960
42	6	-3.851260158	1.790064283	13.657020711

43	1	-3.390137442	1.402808328	12.744622441
44	1	-3.163374817	2.535467108	14.082707669
45	6	-5.161132859	2.484038391	13.276500249
46	1	-4.911860036	3.345158495	12.643277928
47	1	-5.643978721	2.889057009	14.186576479
48	6	-7.128582903	2.171892216	11.777851207
49	1	-8.075808450	2.173264854	12.347222013
50	1	-6.897565418	3.226449088	11.577738458
51	7	-6.008878861	1.587988148	12.504718150
52	1	-6.303461370	0.809429033	13.085861117

N₃C₄Q (anti-conformer)

1	7	-0.200678761	-2.108781880	-4.719289551
2	6	0.547324364	-1.037370994	-4.228828409
3	7	-3.112879831	1.818508331	-3.750003663
4	6	0.499327934	-0.738026918	-2.855903251
5	6	-2.930851146	1.226239396	-2.493760591
6	6	-1.652728630	1.276923795	-1.912803362
7	6	1.409000818	-0.281378243	-5.045030530
8	6	1.267937780	0.290423939	-2.304373850
9	6	-1.385589829	0.693469591	-0.672866437
10	6	2.130476015	1.027150167	-3.130966035
11	6	2.183725673	0.736326291	-4.492035557
12	1	1.496821678	-0.505046795	-6.102997844
13	6	1.211641387	0.613886619	-0.847601637
14	1	2.743793376	1.809222430	-2.699118234
15	1	2.849344984	1.302964570	-5.137366581
16	6	-3.969605689	0.613767858	-1.772528582
17	6	-2.437197273	0.090877277	0.039962706
18	6	-3.712576788	0.063145077	-0.515181537
19	6	-0.018681602	0.722222448	-0.076032774
20	1	-2.238795635	-0.343571122	1.012484065
21	1	-4.526146276	-0.404731024	0.032344637
22	1	-4.972733265	0.567442950	-2.183531982
23	6	-0.837594102	-2.122012328	-6.029675031
24	1	-0.718102219	-3.114204516	-6.486420951
25	6	-4.115702645	1.317204929	-4.681061436
26	1	-5.116495834	1.447427395	-4.255196182
27	7	2.387192665	0.793092763	-0.270677171
28	7	0.025015823	0.881676554	1.236548984
29	6	2.432099154	1.010390084	1.070504333
30	6	1.235073694	1.008681812	1.842336293
31	1	-0.170779592	-1.307168140	-2.218404290
32	1	-0.855582831	1.765940261	-2.461903320
33	1	-2.221428783	1.937423818	-4.215028336
34	1	-0.786189223	-2.523899261	-4.005517276
35	6	3.680582767	1.203187345	1.713693201
36	1	4.576195317	1.199814172	1.101021226

37	6	1.310937492	1.180915456	3.248061860
38	6	3.727187530	1.374186107	3.079618166
39	1	0.385246282	1.177090439	3.814158368
40	1	4.682240370	1.518301438	3.575904945
41	6	2.536709922	1.359593646	3.850764141
42	1	2.597627942	1.495450200	4.926512557
43	6	-2.338114658	-1.790142352	-5.990443904
44	1	-2.791544214	-2.078263852	-6.957639226
45	1	-2.812293680	-2.432715285	-5.236368395
46	6	-3.943660968	-0.149556279	-5.114279350
47	1	-4.746737345	-0.394409591	-5.836161483
48	1	-4.092866875	-0.799486661	-4.244407301
49	7	-2.596961721	-0.402457310	-5.618863953
50	1	-2.408554018	0.200063516	-6.417944826
51	1	-0.320604551	-1.416385738	-6.685450087
52	1	-4.080191001	1.968176069	-5.563449500

N₄C₆Q (*syn*-conformer)

1	6	-0.864352883	4.022172466	6.008877690
2	6	-1.303617068	4.717323526	7.114038506
3	6	-0.251535135	2.750898114	6.150899653
4	6	-0.092259921	2.183011100	7.395764405
5	6	-0.545174842	2.873084122	8.548728768
6	6	-1.143472064	4.158952512	8.407429108
7	1	0.089103005	2.221883147	5.265779086
8	1	0.361706725	1.206635190	7.530709419
9	7	-0.451663033	2.285554443	9.771865487
10	7	-1.519612679	4.869152936	9.505054476
11	6	-1.357605749	4.321061496	10.696596205
12	6	-0.880298482	2.954835338	10.828180932
13	1	-0.981280028	4.449598654	5.017423895
14	1	-1.762849902	5.697306505	7.033854768
15	6	-0.894029839	2.198783480	12.113017350
16	6	-2.002443583	2.273069728	12.968285523
17	6	0.179095924	1.358237652	12.433517495
18	6	-2.056013224	1.517544324	14.149856287
19	6	0.141807053	0.625746352	13.620586421
20	6	-0.954752147	0.699426128	14.471818862
21	1	-2.826764493	2.923379240	12.706405788
22	1	1.022522029	1.287145341	11.756786086
23	1	0.977488701	-0.016235790	13.884924801
24	1	-0.975380297	0.113896373	15.387973512
25	6	-1.650912459	5.200928201	11.864109736
26	6	-2.796547638	6.005918507	11.835020253
27	6	-0.761179049	5.288126477	12.944068873
28	6	-3.102346928	6.868772662	12.900774314
29	6	-1.037238739	6.175597177	13.982939502
----	---	--------------	-------------	--------------
30	6	-2.196065131	6.944927598	13.975989625
31	1	-3.426838517	5.968929990	10.953709145
32	1	0.135792230	4.679817675	12.965789466
33	1	-0.348233068	6.258126880	14.818826474
34	1	-2.415545472	7.606279630	14.810811609
35	7	-3.175239203	1.523654184	14.980269254
36	1	-2.978612250	1.250747470	15.934137067
37	7	-4.234600372	7.687406399	12.891337660
38	1	-4.333476614	8.197123376	13.760503134
39	6	-5.524483044	7.229210434	12.384918418
40	1	-5.967651302	7.986295587	11.724270040
41	1	-5.364230981	6.338257586	11.770274269
42	6	-4.231078452	2.512562907	14.849387881
43	1	-4.639500721	2.450927885	13.831598851
44	1	-3.865805708	3.545097448	14.983395038
45	6	-5.376969390	2.213576980	15.832196322
46	1	-5.733405500	1.193231663	15.644648922
47	1	-4.994432792	2.222103813	16.861874723
48	6	-6.532858572	6.906498455	13.496679903
49	1	-7.501317946	6.646251871	13.025820685
50	1	-6.721267943	7.816006419	14.085866746
51	7	-6.024487707	5.886998079	14.402762813
52	7	-6.503000314	3.131624800	15.768543644
53	6	-6.338295093	4.452130307	16.389543296
54	1	-5.279821928	4.676940088	16.582886252
55	1	-6.853010273	4.463028345	17.361380792
56	6	-6.901439555	5.583686808	15.530444834
57	1	-7.935135284	5.323136613	15.225925206
58	1	-6.982582747	6.487777082	16.146849797
59	1	-5.824931693	5.037001604	13.880491591
60	1	-6.872300084	3.195278009	14.825968649

N₄C₆Q (anti-conformer)

1	6	24.373331160	57.930110923	55.005384191
2	6	23.051456306	58.063408040	54.641447786
3	6	24.797043618	56.836498827	55.803373894
4	6	23.896727110	55.881506869	56.221326415
5	6	22.532184795	55.990135430	55.851193437
6	6	22.103066329	57.098704329	55.066324138
7	1	25.843671053	56.753316578	56.080686861
8	1	24.196857940	55.029323279	56.822401715
9	7	21.651948224	55.018373958	56.207886963
10	7	20.788051484	57.256954206	54.760836380
11	6	19.924446825	56.341143553	55.166318144
12	6	20.384192568	55.143665720	55.852451276
13	1	25.101788681	58.668879712	54.684429083
14	1	22.699300720	58.896796481	54.042255712
15	6	19.519816062	53.970185011	56.168637951

16	6	18.561836094	53.506869613	55.265126507
17	6	19.731837510	53.269972754	57.369158314
18	6	17.785022460	52.364143351	55.534870408
19	6	18.963615980	52.144825683	57.645747640
20	6	17.992413649	51.690677656	56.751678818
21	1	18.415784608	54.021905545	54.320994705
22	1	20.495419486	53.613356117	58.056725456
23	1	19.113337932	51.607319850	58.578123306
24	1	17.402847602	50.817832221	57.008440784
25	6	18.491125457	56.662816670	54.906512613
26	6	17.510627853	56.428278823	55.871733382
27	6	18.135497068	57.287117167	53.698267227
28	6	16.165818651	56.786843363	55.660164625
29	6	16.807206813	57.633496663	53.477041153
30	6	15.822390983	57.385702724	54.434972905
31	1	17.784601435	55.974688838	56.818983818
32	1	18.901253708	57.493841418	52.960021438
33	1	16.522321094	58.101111149	52.538469005
34	1	14.795208795	57.658357638	54.220412720
35	7	15.260296008	56.579012117	56.701368340
36	1	15.511687872	55.795967348	57.290788287
37	6	13.825228017	56.725748287	56.550147737
38	1	13.404919423	56.917373166	57.548265893
39	1	13.617273073	57.625039184	55.964145413
40	6	13.096462409	55.522581641	55.934649730
41	1	13.519768147	55.301578424	54.949114852
42	1	12.032981465	55.798576737	55.786338281
43	7	13.266000842	54.344208912	56.783623613
44	7	13.927382980	52.361666519	54.636743961
45	6	12.553423666	52.663294807	55.034669994
46	1	11.890200392	51.777232189	54.984353407
47	1	12.157026349	53.387814100	54.313559216
48	6	12.393179713	53.218179437	56.454839757
49	1	11.318702692	53.467618028	56.557681929
50	1	12.596901651	52.424004010	57.182578971
51	1	13.064839249	54.610129669	57.746480566
52	1	13.895175689	52.018509210	53.677828561
53	7	16.892800610	51.931728543	54.553152176
54	1	16.548929234	52.686392683	53.973826771
55	6	15.897996307	50.900319269	54.776360554
56	1	15.640798915	50.471777300	53.796747783
57	1	16.349224735	50.084066632	55.346623769
58	6	14.603113564	51.361185675	55.461718980
59	1	14.839285814	51.813514476	56.430895447
60	1	13.976197373	50.467476187	55.655462136

N₂C₆O₂Q (syn-conformer)

1	6	-0.813256985	3.968303813	5.952071034
2	6	-1.206032098	4.711121558	7.044107243
3	6	-0.272388806	2.667614773	6.118646938
4	6	-0.135208457	2.119797640	7.374767069
5	6	-0.541002995	2.860410708	8.514115860
6	6	-1.069897618	4.173597684	8.348766885
7	1	0.032148117	2.100944365	5.243781357
8	1	0.263255606	1.122149456	7.529767811
9	7	-0.468700106	2.295366053	9.747898965
10	7	-1.410476362	4.923924520	9.433383039
11	6	-1.276252143	4.386980362	10.632229596
12	6	-0.861942131	3.005018455	10.791795744
13	1	-0.914518469	4.377951728	4.951533819
14	1	-1.614455722	5.711319176	6.945937304
15	6	-0.909287666	2.271366953	12.088115989
16	6	-1.997464058	2.422732090	12.960717599
17	6	0.110628028	1.360129184	12.392124257
18	6	-2.088639060	1.660063754	14.135691375
19	6	0.039513562	0.624835272	13.575029463
20	6	-1.040656328	0.766960511	14.438906386
21	1	-2.778530084	3.132108201	12.717783183
22	1	0.935017887	1.232767506	11.700052442
23	1	0.828983483	-0.080794090	13.818221711
24	1	-1.094854630	0.171868588	15.347513374
25	6	-1.535047145	5.280905834	11.797436516
26	6	-2.737598626	5.995157325	11.864603060
27	6	-0.571674998	5.427541207	12.803605798
28	6	-3.025033087	6.817965493	12.967749942
29	6	-0.822256489	6.301126795	13.861327487
30	6	-2.030398861	6.982623159	13.953300731
31	1	-3.439875252	5.903304273	11.044526245
32	1	0.355634799	4.867713831	12.758216985
33	1	-0.071493106	6.442531359	14.634630818
34	1	-2.221175736	7.636038872	14.801702752
35	7	-3.195046776	1.720268931	14.981555071
36	1	-2.997176678	1.437607531	15.931628578
37	7	-4.242042214	7.484882271	13.096684549
38	1	-4.369395321	7.875436871	14.021451732
39	6	-5.477159280	6.947950755	12.533662120
40	1	-5.859056606	7.584122013	11.722157736
41	1	-5.287606011	5.957212455	12.108542371
42	6	-4.245738095	2.714392889	14.852382995
43	1	-4.607794363	2.727012536	13.819626918
44	1	-3.904964737	3.738131259	15.077192146
45	6	-5.428412657	2.323706576	15.749511540
46	1	-5.773436136	1.324185985	15.466355532

47	1	-5.114673858	2.275198400	16.806474767
48	6	-6.563655026	6.789549308	13.589332596
49	1	-7.491189712	6.440042960	13.107487683
50	1	-6.789819536	7.759512036	14.068668977
51	8	-6.107843521	5.854585074	14.546975397
52	8	-6.533484322	3.193407919	15.585498185
53	6	-6.520638912	4.377909526	16.366711121
54	1	-5.506045404	4.628910752	16.704307747
55	1	-7.154367255	4.251443846	17.260106783
56	6	-7.063606326	5.525269212	15.535534611
57	1	-8.014335783	5.215300931	15.073284149
58	1	-7.273232601	6.389766250	16.189555671

N₂C₆O₂Q (anti-conformer)

1	7	-1.775203204	1.684447473	-5.135080088
2	6	-0.483786479	1.561262546	-4.632768872
3	7	0.782222385	-3.869929032	-3.681862253
4	6	-0.306073459	1.205747592	-3.281143231
5	6	-0.016267441	-3.159765719	-2.787354347
6	6	0.503598302	-1.989562846	-2.203419729
7	6	0.662387935	1.833721187	-5.404103307
8	6	0.961970896	1.177858958	-2.696564565
9	6	-0.190539400	-1.300587441	-1.204424568
10	6	2.091678407	1.486495155	-3.470253954
11	6	1.927498045	1.794425884	-4.817197573
12	1	0.571255788	2.096536461	-6.452032762
13	6	1.107979348	0.939363242	-1.231073105
14	1	3.072048325	1.490319843	-3.007842085
15	1	2.797620758	2.019999685	-5.427712607
16	6	-1.291216959	-3.593435595	-2.378143358
17	6	-1.440194367	-1.771360072	-0.776414749
18	6	-1.980535166	-2.901912733	-1.384052870
19	6	0.436244369	-0.133162847	-0.522473594
20	1	-1.965510484	-1.253779377	0.018003508
21	1	-2.959597714	-3.260345436	-1.078005209
22	1	-1.750128713	-4.460421475	-2.837013523
23	7	1.845178854	1.823647109	-0.582356301
24	7	0.404139426	-0.153144137	0.798934368
25	6	1.881025153	1.762634378	0.776311039
26	6	1.094807307	0.802373879	1.477583114
27	1	-1.180352689	0.983839145	-2.675117499
28	1	1.480436679	-1.632171528	-2.518893794
29	1	1.591203662	-3.357265651	-4.004567320
30	1	-2.496350475	1.280772194	-4.555534348
31	6	2.662342679	2.694057229	1.506030496
32	1	3.253263562	3.412688718	0.947575022
33	6	1.077968629	0.815486966	2.895507646

6	2.638188742	2.677880723	2.883096507
1	0.468381117	0.076584405	3.405275749
1	3.232018297	3.392892948	3.444756416
6	1.836796998	1.738232076	3.581088862
1	1.829224270	1.747519150	4.667021204
6	0.310845606	-4.885661340	-4.602494214
1	1.146695774	-5.556291433	-4.839258420
1	-0.444397827	-5.499145598	-4.104905855
6	-0.252410235	-4.346594584	-5.919260435
1	0.523202747	-3.753091789	-6.433280024
1	-0.515820194	-5.187096071	-6.584901623
6	-2.097771184	1.751341353	-6.548665663
1	-1.476611845	2.518016971	-7.027699132
1	-3.134271020	2.093556580	-6.633889684
6	-1.963920001	0.433519890	-7.323014329
1	-0.947302485	0.032388805	-7.215577878
1	-2.134697524	0.628303383	-8.389411933
8	-1.374342292	-3.541539496	-5.630299794
8	-2.942581385	-0.516379461	-6.910407328
6	-1.783927766	-2.659103297	-6.659655159
1	-0.912320903	-2.288301403	-7.221694331
1	-2.453457512	-3.156215350	-7.377841715
6	-2.498416190	-1.492351420	-5.976648971
1	-3.389726334	-1.863098236	-5.461136511
1	-1.826818034	-1.067905811	-5.221132676
	6 1 1 6 1 6 1 1 6 1 1 6 1 1 8 8 6 1 1 8 8 6 1 1 1 6 1 1 8 8 6 1 1 8 8 6 1 1 1 8 8 6 1 1 1 8 8 6 1 1 1 8 8 6 1 1 1 8 8 6 1 1 1 8 8 6 1 1 1 1 1 6 1 1 1 8 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1	6 2.638188742 1 0.468381117 1 3.232018297 6 1.836796998 1 1.829224270 6 0.310845606 1 1.146695774 1 -0.444397827 6 -0.252410235 1 0.523202747 1 -0.515820194 6 -2.097771184 1 -1.476611845 1 -3.134271020 6 -1.963920001 1 -0.947302485 1 -2.134697524 8 -1.374342292 8 -2.942581385 6 -1.783927766 1 -0.912320903 1 -2.453457512 6 -2.498416190 1 -3.389726334 1 -1.826818034	6 2.638188742 2.677880723 1 0.468381117 0.076584405 1 3.232018297 3.392892948 6 1.836796998 1.738232076 1 1.829224270 1.747519150 6 0.310845606 -4.885661340 1 1.146695774 -5.556291433 1 -0.444397827 -5.499145598 6 -0.252410235 -4.346594584 1 0.523202747 -3.753091789 1 -0.515820194 -5.187096071 6 -2.097771184 1.751341353 1 -1.476611845 2.518016971 1 -3.134271020 2.093556580 6 -1.963920001 0.433519890 1 -0.947302485 0.032388805 1 -2.134697524 0.628303383 8 -1.374342292 -3.541539496 8 -2.942581385 -0.516379461 6 -1.783927766 -2.659103297 1 -0.912320903 -2.288301403 1 -2.453457512 -3.156215350 6 -2.498416190 -1.492351420 1 -3.389726334 -1.863098236 1 -1.826818034 -1.067905811

N₂C₁₀O₃Q (syn-conformer)

1	6	22.426135811	59.321672487	56.792447305
2	6	21.492180481	58.875822506	55.883160554
3	6	23.102927200	58.408221164	57.640565034
4	6	22.830941973	57.059243786	57.579373769
5	6	21.865612322	56.575600813	56.660194116
6	6	21.201491390	57.491154739	55.792743378
7	1	23.838514287	58.781949382	58.346635728
8	1	23.325715247	56.340873079	58.224766909
9	7	21.548646572	55.253109628	56.642993386
10	7	20.328586097	57.039906193	54.851215470
11	6	20.081550379	55.743428215	54.792236054
12	6	20.650591635	54.830418584	55.770222339
13	1	22.653958948	60.381245913	56.860887562
14	1	20.971370641	59.552142844	55.213155496
15	6	20.243045084	53.402591616	55.889008425
16	6	18.902187450	53.033301036	55.772903877
17	6	21.209279694	52.418939253	56.158433739
18	6	18.496894924	51.691552047	55.881551375
19	6	20.814685741	51.088810465	56.266940043
20	6	19.477646341	50.713471782	56.123607950
21	1	18.148868925	53.791875700	55.582830997

22	1	22.247103809	52.709352286	56.272432807
23	1	21.559615388	50.321933472	56.459924395
24	1	19.199070021	49.668658636	56.205922782
25	6	19.238641236	55.291851533	53.646540273
26	6	18.089903315	56.013734886	53.315388233
27	6	19.611126604	54.184006592	52.867350254
28	6	17.273754819	55.637936410	52.231449010
29	6	18.819434161	53.818683542	51.784143019
30	6	17.655240059	54.518579015	51.468321246
31	1	17.831953031	56.887326848	53.907745580
32	1	20.505426863	53.621375697	53.108265739
33	1	19.105930470	52.968108577	51.172040486
34	1	17.057763244	54.199114563	50.621950000
35	7	16.150477975	56.404109156	51.922352494
36	1	15.872391660	57.034780494	52.661557815
37	6	15.046487005	55.890053300	51.127854456
38	1	14.420149191	56.743563610	50.845662342
39	1	15.450134256	55.496556245	50.187788017
40	6	14.179773522	54.819019678	51.821401029
41	1	14.841737066	54.072959883	52.275146608
42	7	17.143133843	51.386089063	55.767589941
43	1	16.614018191	52.122483377	55.319083669
44	6	16.686065755	50.051387403	55.402026977
45	1	17.257590907	49.639769761	54.555709798
46	1	16.840674088	49.366597812	56.246772790
47	6	15.198699387	50.091842937	55.050961167
48	1	14.627636115	50.451456355	55.916323718
49	1	15.029549186	50.820244120	54.246803501
50	6	14.621348397	48.738859050	54.633627495
51	1	14.706798818	48.025716583	55.460755800
52	1	13.556021551	48.859923735	54.401876732
53	8	15.310495320	48.108018908	53.553401043
54	1	13.603100692	55.279396520	52.633018184
55	6	13.211823670	54.156691336	50.835231463
56	1	13.778488848	53.543799039	50.115784891
57	1	12.692754518	54.926847620	50.253387717
58	8	12.161859449	53.405282790	51.434051826
59	6	15.242367946	48.735029371	52.281563033
60	1	15.838430808	48.089989869	51.626480692
61	1	15.720670027	49.727404107	52.288617206
62	6	13.831923572	48.861822880	51.703440499
63	1	13.889008437	48.921525262	50.606967037
64	1	13.260000551	47.962128778	51.957931889
65	6	12.532270577	52.278715456	52.210622360
66	1	13.215094571	52.550009349	53.028475555
67	1	11.605134953	51.917228538	52.664427160
68	6	13.133831470	51.133233808	51.392584319
69	1	14.160399308	51.369624357	51.071491032
70	1	12.527526254	50.973512372	50.486926619
71	8	13.115470019	49.981830326	52.223323026

N₂C₁₀O₃Q (*anti*-conformer)

1	6	24.288788187	58.018221393	55.213197218
2	6	23.008660556	58.039355915	54.705235242
3	6	24.667937404	57.049618608	56.177743728
4	6	23.768117575	56.102549418	56.614334668
5	6	22.447499489	56.093909200	56.097669659
6	6	22.059514042	57.083999980	55.148154536
7	1	25.681313270	57.055153834	56.568069401
8	1	24.038633166	55.340491287	57.337884536
9	7	21.579230260	55.115080029	56.468674538
10	7	20.774913516	57.147480618	54.704385862
11	6	19.917593299	56.238345974	55.132241032
12	6	20.354254320	55.137661610	55.971780272
13	1	25.017086784	58.751408280	54.879638366
14	1	22.688263717	58.778681328	53.978367130
15	6	19.509822829	53.945872598	56.264660337
16	6	18.734334152	53.368458122	55.257291745
17	6	19.559802072	53.341525076	57.531634393
18	6	17.998603652	52.189186177	55.475952026
19	6	18 815745403	52 188201426	57 762106455
20	6	18 038863891	51 609011065	56 757578663
21	1	18 708888081	53 823456490	54 271605670
22	1	20 180831959	53 775122336	58 306844386
22	1	19 930377020	51 721146630	50.300044300
2.5	1	17 490470947	51.721140039	56.067010200
24	1	19 404207516	56 466745650	54 746094412
25	0	17 400000014	50.400/45059	54.740984413
20	0	17.492882814	56.401831011	55./19080039
27	0	16.172341098	56.772836959	53.416009733
28	6	16.156001503	56.//4281/3/	55.401/05540
29	6	16.845935960	5/.0346/98/5	53.086269315
30	6	15.841507236	57.035231579	54.053917189
31	1	17.751022591	56.238310167	56.751027966
32	1	18.956251377	56.806328915	52.668272572
33	1	16.581588198	57.256655063	52.055920725
34	1	14.824399151	57.262185572	53.755541564
35	7	15.231834164	56.867811893	56.434413809
36	1	15.561773553	56.538227304	57.329934212
37	6	13.791684394	56.932525302	56.292318294
38	1	13.396335863	57.642697769	57.031104852
39	1	13.556807698	57.362743761	55.315334233
40	6	13.067644747	55.583246001	56.465927973
41	1	13.566539889	54.827669890	55.848099845
42	7	17.312330927	51.621886289	54.407417116
43	1	17.205448562	52.245352632	53.619539365
44	6	16.233376582	50.658985372	54.555020525
45	1	15.980219481	50.297008099	53.554382524
46	1	16.603116329	49.786398139	55.108149855
47	6	14.956218830	51.197001271	55.224580842
48	1	15.146752177	51.417436614	56.281749883
49	1	14.687734905	52.154427264	54.759436896
50	6	13.782802430	50.219196669	55.129035602
51	1	14.080895236	49.240142527	55.522048230

52	1	12.933875651	50.573855847	55.720841711
53	8	13.378922953	49.962013545	53.777496022
54	1	13.154876258	55.258380006	57.510484855
55	6	11.580580984	55.705233709	56.107356051
56	1	11.466951117	55.737027657	55.011771104
57	1	11.187149518	56.652457546	56.493517372
58	8	10.731799848	54.718813633	56.682535579
59	6	12.595419003	50.967185384	53.153170100
60	1	12.618468802	50.731112043	52.082738865
61	1	13.044009385	51.965570715	53.272417687
62	6	11.134354698	50.991738128	53.605782508
63	1	10.530186231	51.538811285	52.864589975
64	1	10.764400607	49.962459553	53.651062528
65	6	11.038472374	53.363914164	56.405578005
66	1	12.065227575	53.108225850	56.703746284
67	1	10.360048463	52.773821209	57.028195536
68	6	10.824919320	52.957411991	54.946468815
69	1	11.569172125	53.438420238	54.293899430
70	1	9.827258839	53.277178660	54.606878498
71	8	10.943100872	51.543311994	54.906112279

11. References

- 1. T. Ukai, H. Kawazura, Y. Ishii, J. J. Bonnet and J. A. Ibers, *J. Organomet. Chem.*, 1974, **65**, 253–266.
- 2. F. Romanov-Michailidis, C. Besnard and A. Alexakis, Org. Lett., 2012, 14, 4906–4909.
- 3. A. M. Brouwer, *Pure Appl. Chem.*, 2011, **83**, 2213–2228.
- 4. A. A. Granovsky, *Firefly Version 8.0.0*, https://classic.chem.msu.su/gran/firefly/index.html..
- 5. M. Dolg, H. Stoll, H. Preuss and R. M. Pitzer, J. Phys. Chem., 1993, 97, 5852–5859.
- 6. S. V. More, M. N. V. Sastry and C.-F. Yao, *Green Chem.*, 2006, **8**, 91–95.
- 7. G. Sheldrick, Acta Crystallogr., Sect. C, 2015, 71, 3-8.
- 8. G. Sheldrick, Acta Crystallogr., Sect. A, 2015, 71, 3–8.
- 9. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.