Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

γ-Lactam Synthesis from Cyclobutanone with Oximes

via Transoximaiton and Beckmann Rearrangement

Yuhao Wu, Masanori Inoue, Shota Sakakura and Kengo Hyodo^{*} Department of Chemistry, Faculty of Science and Technology, Kindai University,
3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan Tel: +81-6-4307-3047; E-mail: hyodo@chem.kindai.ac.jp

Content

1. General Methods	S2
2. Optimization of reaction conditions	S3
3. Synthetic Procedures for <i>γ</i> -Lactam	S4
4. Synthetic Applications	S15
5. Mechanistic Studies	S19
6. References	S44
7. NMR Spectra	\$46

1. General Information

All reactions were performed in oven-dried glassware under a positive pressure of nitrogen. Solvents were transferred via syringe and were introduced into the reaction vessels through a rubber septum. All reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica-gel (60-F254). The TLC plates were visualized with UV light and basic KMnO₄ in H₂O/heat. Column chromatography was carried out on a column packed with silica-gel 60N spherical neutral size 40-50 μ m. Distillation was performed under reduced pressure. ¹H NMR (400 MHz), ¹³C NMR (100 MHz), ¹⁹F NMR (376 MHz) and ³¹P NMR (162 MHz) spectra for solution in CDCl₃ were recorded on a JEOL RESONANCE JNM-ECS-400. Chemical shifts (δ) are expressed in ppm downfield from internal TMS or CHCl₃ or C₆F₆ or H₃PO₄. ESI-MS were recorded on a JEOL AccuTOF LC- plus 4G system with 1260 Infinity HPLC or Thermo Scientific Exactive Plus. Melting points were recorded on a Yanaco MICRO MELTING POINT APPARATUS. Cyclic ketones were synthesized by referring previous literatures.^{1, 2)} Oxime reagents **2a-2d** were prepared following previous reports.^{3, 4)} Other reagents and solvents not listed here are commercially available.

2. Synthetic Procedures for *γ*-Lactam

Table S1. Screening of various acid catalysts ^{a)}

		0,0	H ₂ O (1.05 eq) Catalyst (2.5 mol%)	Ph
Ph	EtO Me	`O´ ^S `Ph	CH ₃ CN, 40°C, 23 h	N H
1a		2a		3a
	Entry	Catalyst	Yield (%) ^{b)}	
	1	TsOH·H ₂ O	75	
	2	AcOH	-	
	3	CF ₃ COOH	40	
	4	HCl	52	
	5	H_2SO_4	72	
	6	MsOH	52	
	7	Cu(OTf) ₂	66	
	8	AgOTf	-	
	9	Mg(OTf) ₂	-	

a) Reaction conditions: **1a** (0.50 mmol), **2a** (0.60 mmol, 1.2 eq), Catalysts (0.0125 mmol, 2.5 mol%), H₂O (0.525 mmol, 1.05 eq) in CH₃CN at 40 $^{\circ}$ C for 23 h. b) Isolated yield.

Table S2. Screening of various solvents^{a)}

	(H ₂ O (1.05 eq) H·H ₂ O (2.5 mol%)	Ph
Ph	EIO Me	^{/ S} Ph Sc	olvent , 40°C, 23 h	N H
1a	2a			3a
	Entry	Catalyst	Yield (%) ^{b)}	
	1	CH ₃ CN	75	
	2	ClCH ₂ CH ₂ Cl	51	
	3	Hexane	27	
	4	THF	34	
	5	Dioxane	26	
	6	DMSO	-	
	7	DMF	-	
	8	Toluene	53	
	9	H_2O	-	

a) Reaction conditions: **1a** (0.50 mmol), **2a** (0.60 mmol, 1.2 eq), Catalysts (0.0125 mmol, 2.5 mol%), H_2O (0.525 mmol, 1.05 eq) in CH₃CN at 40 °C for 23 h. b) Isolated yield.

3. Synthetic Procedures for *γ*-Lactam

General procedure for direct synthesis of γ -Lactam from cyclic ketones

To a test tube was added cyclobutanone (0.500 mmol, 1.0 eq), oxime (0.600 mmol, 1.2eq), TsOH·H₂O (0.0125 mmol, 2.5 mol%), acetonitrile (1.0 M) under N₂ at 40°C. After indicated time, the reaction mixture was quenched by sat. NaHCO₃ (3 mL) and work up with ethyl acetate (10 ml \times 3). The combined organic phase was washed with brine and dried over Na₂SO₄. After removal of Na₂SO₄ by filtration, the collected solution was evaporated under reduced pressure and the remained crude mixture was purified by silica gel column chromatography (ethyl acetate/methanol = 98/2).

4-phenyl-pyrrolidin-2-one (3a)⁵⁾

White solid (62.8 mg, 78%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 99/1); mp 72-74 °C (73-75 °C) ⁶; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.35 (d, *J* = 8.0 Hz, 2H), 7.27 (t, *J* = 7.6 Hz, 3H), 6.94 (s, 1H), 3.79 (t, *J* = 8.4 Hz, 1H), 3.70 (quin, *J* = 8.0 Hz, 1H), 3.43 (dd, *J* = 7.6 Hz, 1H), 2.74 (q, *J* = 7.6 Hz, 1H), 2.51 (q, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 178.0, 142.2, 128.9, 127.2, 126.9, 49.7, 40.4, 38.1; HRMS *m*/*z* (ESI, positive) calcd for C₁₀H₁₂NO⁺ [M+H]⁺: 162.0913, Found 162.0913.

4-(*p*-tolyl)pyrrolidin-2-one (3b) ⁵)

Me

White solid (67.2 mg, 77%, 0.500 mmol scale using 5 mol% TsOH, column eluent: ethyl acetate/methanol = 98/2); mp 88-92 °C (137-139 °C) ⁶); ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.16 (s, 4H), 5.77 (s, 1H), 3.76 (t, *J* = 8.8 Hz, 1H), 3.68 (quint, *J* = 8.4 Hz, 1H), 3.40 (dd, *J* = 8.8, 7.2 Hz, 1H), 2.72 (dd, *J* = 16.8, 8.8 Hz, 1H), 2.49 (dd, *J* = 16.8, 8.8 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 207.3, 140.7, 136.4, 129.5, 126.5, 54.9, 28.2, 21.1;HRMS *m/z* (ESI, positive) calcd for C₁₁H₁₃NNaO⁺ [M+Na]⁺: 198.0895, Found 198.0890.

4-(m-tolyl)pyrrolidin-2-one (3c)⁸⁾

White solid (73.8 mg, 84%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 102-105 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.24 (t, *J* = 8.0 Hz, 1H), 7.07 (t, *J* = 8.8 Hz, 3H), 6.25 (s, 1H), 3.80-3.75 (m, 1H), 3.66 (quint, *J* = 8.4 Hz, 1H), 3.42 (dd, *J* = 9.6, 7.2 Hz, 1H), 2.72 (dd, *J* = 16.8, 8.8 Hz, 1H), 2.51 (dd, *J* = 16.8, 8.8 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 177.9, 142.2, 138.7, 128.9, 128.0, 127.7, 123.9, 49.7, 40.4, 38.1, 21.6; HRMS *m/z* (ESI, positive) calcd for C₁₁H₁₃NNaO⁺ [M+Na]⁺: 198.0895, Found 198.0889.

4-(*o*-tolyl)pyrrolidin-2-one (3d)

White solid (61.8 mg, 71%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 106-109 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.28 (d, *J* = 7.2 Hz, 1H), 7.24-7.14 (m, 3H), 6.35 (s, 1H), 3.91 (quint, *J* = 8.0 Hz, 1H), 3.77 (t, *J* = 8.8 Hz, 1H), 3.41 (dd, *J* = 9.6, 6.4 Hz, 1H), 2.73 (dd, *J* = 16.8, 8.8 Hz, 1H), 2.48 (dd, *J* = 16.8, 8.8 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 177.8, 140.4, 135.8, 130.8, 127.0, 126.8, 125.4, 48.9, 37.5, 36.2, 19.9; HRMS *m/z* (ESI, positive) calcd for C₁₁H₁₃NNaO⁺ [M+Na]⁺: 198.0895, Found 198.0890.

4-(4-fluorophenyl)pyrrolidin-2-one (3e) ⁵⁾

White solid (62.8 mg, 70%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 99/1); mp 95-97 °C (98-99 °C) ⁷); ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.25-7.21 (m, 2H), 7.08-7.01 (m, 2H), 6.59 (s, 1H), 3.79 (t, *J* = 8.4 Hz, 1H), 3.69 (quin, *J* = 8.8 Hz, 1H), 3.39 (dd, *J* = 9.6, 7.2 Hz, 1H), 2.74 (dd, *J* = 16.8, 8.8 Hz, 1H), 2.46 (dd, *J* = 16.8, 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 177.7, 162.0 (q, *J* = 245 Hz), 137.9 (q, *J* = 3 Hz), 128.4 (q, *J* = 8 Hz), 115.8 (q, *J* = 21 Hz), 49.8, 39.7, 38.2; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -118.7; HRMS *m/z* (ESI, positive) calcd for C₁₀H₁₀FNNaO⁺ [M+Na]⁺: 202.0644, Found 202.0638.

4-(4-chlorophenyl)pyrrolidin-2-one (3f) ⁵⁾

White solid (69.0 mg, 71%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 99/1); mp 110-113 °C (115-117 °C) ⁷); ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.32 (dt, *J* = 9.2, 2.4 Hz, 2H), 7.19 (dt, *J* = 8.8, 2.4 Hz, 2H), 6.01 (s, 1H), 3.79 (td, *J* = 8.8, 0.8 Hz, 1H), 3.68 (quin, *J* = 8.4 Hz, 1H), 3.38 (dd, *J* = 9.6, 7.2 Hz, 1H), 2.74 (q, *J* = 8.4 Hz, 1H), 2.46 (q, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 177.9, 140.8, 132.9, 129.0, 128.2, 49.6, 39.7, 38.1; HRMS *m*/*z* (ESI, positive) calcd for C₁₀H₁₀ClNNaO⁺ [M+Na]⁺ : 218.0349, Found 218.0343.

4-(4-bromophenyl)pyrrolidin-2-one (3g)

White solid (91.9 mg, 77%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 99/1); mp 123-126 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.47 (dt, *J* = 9.2, 2.4 Hz, 2H), 7.14 (dt, *J* = 8.8, 2.4 Hz, 2H), 5.91 (s, 1H), 3.79 (td, *J* = 8.8, 1.2 Hz, 1H), 3.67 (quin, *J* = 8.4 Hz, 1H), 3.38 (dd, *J* = 9.6, 7.2 Hz, 1H), 2.74 (dd, *J* = 16.8, 8.8 Hz, 1H), 2.45 (dd, *J* = 16.8, 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 177.5, 141.3, 132.1, 128.6, 121.0, 49.4, 39.9, 37.9; HRMS *m/z* (ESI, positive) calcd for C₁₀H₁₀BrNNaO⁺ [M+Na]⁺ : 261.9843, Found 261.9839.

4-(4-methoxyphenyl)pyrrolidin-2-one (3h) 9)

White solid (70.5 mg, 74%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 99/1); mp 125-127 °C (121-123 °C) ⁷); ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.18 (d, *J* = 8.8 Hz, 2H), 6.88 (d, *J* = 8.8 Hz, 2H), 5.68 (br, 1H), 3.80 (s, 3H), 3.75 (dd, *J* = 9.2, 8.4 Hz, 1H), 3.70-3.62 (m, 1H), 3.38 (dd, *J* = 9.2, 7.2 Hz, 1H), 2.71 (dd *J* = 8.8, 8.8 Hz, 1H), 2.47 (dd, *J* = 9.2, 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 178.2, 158.6, 134.2, 127.8, 114.2, 55.3, 49.9, 39.7 38.3; HRMS *m/z* (ESI, positive) calcd for C₁₁H₁₄NO₂⁺ [M+H]⁺: 192.1019, Found 192.1015.

4-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one (3i)⁵⁾

White solid (85.6 mg, 75%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 116-118 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.61 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.07, (s, 1H), 3.87-3.73 (m, 2H), 3.46-3.42 (m, 1H), 2.79 (dd, *J* = 16.8, 8.8 Hz, 1H), 2.50 (dd, *J* = 16.8, 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 177.7, 146.4, 129.6 (q, *J* = 32 Hz), 127.3, 125.8, 124.1(q, *J* = 271 Hz) 49.4, 40.1, 38.0; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -65.8; HRMS *m*/*z* (ESI, positive) calcd for C₁₁H₁₀F₃NNaO⁺ [M+Na]⁺: 252.0612, Found 252.0606.

4-(naphthalen-2-yl)pyrrolidin-2-one (3j) ⁵⁾

White solid (873 mg, 81%, 5.10 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 137-140 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.86-7.80 (m, 3H), 7.69 (s, 1H), 7.52-7.45 (m, 2H), 7.39 (dd, *J* = 8.4, 2.0 Hz, 1H), 5.69 (s, 1H), 3.93-3.84 (m, 2H), 3.56-3.50 (m, 1H), 2.82 (dd, *J* = 16.8, 8.8 Hz, 1H), 2.63 (dd, *J* = 16.8, 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 177.7, 139.5, 133.5, 132.6, 128.9, 127.8, 126.6, 126.1, 125.5, 125.0, 49.5, 40.5, 37.9; HRMS *m*/*z* (ESI, positive) calcd for C₁4H₁₃NNaO⁺ [M+Na]⁺ : 234.0895, Found 234.0890.

4-(2-thienyl)pyrrolidin-2-one (3k)¹⁰⁾

White solid (61.8 mg, 74%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 99/1); mp 80-82 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.21-7.20 (m, 1H), 6.97 (dd, J = 3.6, 3.2 Hz, 1H), 6.91 (m, 1H), 5.97 (br, 1H), 3.97 (quin, J = 8.4 Hz, 1H), 3.82-3.78 (m, 1H), 3.47 (dd, J = 8.0, 8.0 Hz, 1H), 2.78 (dd, J = 8.4, 8.8 Hz, 1H), 2.54 (dd, J = 8.4, 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 177.3, 145.3, 127.1, 124.1, 124.0, 50.2, 39.1, 36.2; HRMS m/z (ESI, positive) calcd for C₈H₁₀NOS⁺ [M+H]⁺: 168.0478, Found 168.0476.

4-cyclohexyl-pyrrolidin-2-one (3l)⁵⁾

White solid (60.0 mg, 72%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 99/1); mp 108-111 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 5.77 (br, 1H), 3.44 (t, *J* = 8.4 Hz, 1H), 3.08 (t, *J* = 9.2 Hz, 1H), 2.36 (quin, *J* = 8.0 Hz, 1H), 2.28-2.17 (m, 1H), 2.05 (q, *J* = 6.4 Hz, 1H), 1.76-1.64 (m, 5H), 1.31-1.10 (m, 4H), 1.00-0.88 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 178.7, 46.6, 42.3, 41.4, 35.1, 31.3, 30.7, 26.4, 26.1, 26.0; HRMS *m/z* (ESI, positive) calcd for C₁₀H₁₈NO⁺ [M+H]⁺: 168.1383, Found 168.1385.

Pregabalin lactam (3m)¹¹⁾

Colorless liquid (51.8 mg, 73%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); ¹H NMR (400 MHz, CDCl₃, ppm) δ 5.98 (s, 1H), 3.48 (td, *J* = 8.6, 1.6 Hz, 1H), 3.00 (dd, *J* = 9.6, 7.2 Hz, 1H), 2.55 (sep, *J* = 8.0 Hz, 1H), 2.42 (dd, *J* = 16.8, 8.4 Hz, 1H), 1.99 (dd, *J* = 16.8, 8.4 Hz, 1H), 1.58 (sep, *J* = 6.8 Hz, 1H), 1.36 (td, *J* = 7.2, 2.4 Hz, 2H), 0.91 (dd, *J* = 6.4, 4.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 178.5, 48.3, 44.0, 37.0, 33.2, 26.3, 22.8, 22.7; HRMS *m/z* (ESI, positive) calcd for C₈H₁₆NO⁺ [M+H]⁺: 142.1232, Found 142.1226.

4-benzyl-pyrrolidin-2-one (3n) ¹²⁾

White solid (59.0 mg, 67%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 97-102 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.32-7.15 (m, 5H), 6.24 (br, 1H), 3.41 (d, *J* = 9.2 Hz, 1H), 3.11 (d, *J* = 9.2 Hz, 1H), 2.79-2.71 (m, 3H), 2.40 (d, *J* = 7.6 Hz, 1H), 2.12 (d, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 178.2, 139.4, 128.8, 128.7, 126.6, 47.5, 40.5, 36.6, 36.5; HRMS *m*/*z* (ESI, positive) calcd for C₁₁H₁₃NNaO⁺ [M+Na]⁺ : 198.0895, Found 198.0890.

4-((tert-butyldiphenylsilyl)methyl)pyrrolidin-2-one (30)

White solid (104 mg, 62%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 129-133 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.61 (dd, J = 8.0, 1.6 Hz, 4H), 7.44-7.35 (m, 6H), 5.55 (s, 1H), 3.04 (dd, J = 9.2, 7.6 Hz, 1H), 2.76 (t, J = 8.8 Hz, 1H), 2.50 (quint, J = 7.6 Hz, 1H), 2.07 (dd, J = 16.8, 8.0 Hz, 1H), 1.82 (dd, J = 16.4, 9.2 Hz, 1H), 1.38 (d, J = 7.6 Hz, 2H), 1.03 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 178.2, 136.1, 136.1, 134.3, 134.0, 129.6, 129.6, 128.0, 127.9, 50.6, 39.8, 32.1, 27.9, 18.2, 15.9; HRMS *m/z* (ESI, positive) calcd for C₂₁H₂₇NNaOSi⁺ [M+Na]⁺: 360.1760, Found 360.1755.

4-methyl-4-phenylpyrrolidin-2-one (3p) ¹³⁾

White solid (53.1 mg, 61%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 123-125 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.38-7.34 (m, 2H), 7.28-7.20 (m, 3H), 5.90 (s, 1H), 3.68 (d, *J* = 9.6 Hz, 1H), 3.50 (dd, *J* = 8.8, 1.2 Hz, 1H), 2.79 (d, *J* = 16.4 Hz, 1H), 2.46 (d, *J* = 16.4 Hz, 1H), 1.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 177.6, 147.0, 128.8, 126.7, 125.4, 54.8, 44.4, 43.6, 29.9; HRMS *m/z* (ESI, positive) calcd for C₁₁H₁₄NO⁺ [M+H]⁺: 176.1075, Found 176.1069.

4-cyclopentylpyrrolidin-2-one (3q)¹⁴⁾

White solid (70.6 mg, 84%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 130-132 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 5.73 (s, 1H), 3.15 (s, 2H), 2.18 (s, 2H), 1.57-1.40 (m, 10H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 178.2, 53.8, 43.2, 39.6, 36.9, 25.8, 23.0; HRMS *m*/*z* (ESI, positive) calcd for C₉H₁₆NO⁺ [M+H]⁺ : 154.1232, Found 154.1225.

3,4-dihydro-1*H*-spiro[naphthalene-2,3'-pyrrolidin]-5'-one (3r)

Yellowish solid (89.6 mg, 89%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 146-150 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.37 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.22-7.13 (m, 2H), 7.10-7.08 (m, 1H), 6.19 (s, 1H), 3.62 (d, *J* = 10.4 Hz, 1H), 3.44 (dd, *J* = 10.0, 0.8 Hz, 1H), 2.82 (t, *J* = 6.4 Hz, 2H), 2.76 (d, *J* = 17.6 Hz, 1H), 2.47 (d, *J* = 17.6 Hz, 1H), 2.02-1.97 (m, 1H), 1.92-1.78 (m, 3H),; ¹³C NMR (100 MHz, CDCl₃, ppm) δ 177.4, 141.8, 136.8, 129.5, 126.8, 126.6, 126.5, 57.2, 47.2, 42.1, 37.3, 30.2, 20.2; HRMS *m/z* (ESI, positive) calcd for C₁₃H₁₅NNaO⁺ [M+Na]⁺: 224.1051, Found 224.1046.

5-phenylpyrrolidin-2-one (5a)¹³⁾

White solid (55.7 mg, 69%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 99-103 °C (107-108 °C) ¹⁵); ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.37 (t, *J* = 7.2 Hz, 2H), 7.28 (dd, *J* = 7.6 Hz, 3H), 6.43 (s, 1H), 4.75 (t, *J* = 7.2 Hz, 1H), 2.61-2.35 (m, 3H), 2.01-1.92 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 178.7, 142.6, 129.0, 128.0, 125.7, 58.2, 31.5, 30.4; HRMS *m/z* (ESI, positive) calcd for C₁₀H₁₂NO⁺ [M+H]⁺: 162.0919, Found 162.0913.

5-(p-tolyl)pyrrolidin-2-one (5b) ¹⁶)

Yellow solid (61.8 mg, 71%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 115-119 °C (116-118 °C) ¹⁷); ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.18 (s, 4H), 5.93 (s, 1H), 4.72 (t, *J* = 6.8 Hz, 1H), 2.60-2.38 (m, 3H), 2.35 (s, 3H), 2.01-1.92 (s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 178.4, 139.6, 137.9, 129.7, 125.8, 58.0, 31.7, 30.5, 21.2; HRMS *m/z* (ESI, positive) calcd for C₁₁H₁₃NNaO⁺ [M+Na]⁺: 198.0895, Found 198.0889.

5-(*m*-tolyl)pyrrolidin-2-one (5c) ¹⁶⁾

Yellow solid (76.7 mg, 88%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 115-119 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.27-7.23 (m, 1H), 7.10 (t, *J* = 8.0 Hz, 3H), 6.28 (s, 1H), 4.71 (t, *J* = 7.2 Hz, 1H), 2.60-2.38 (m, 3H), 2.35 (s, 3H), 2.00-1.92 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 178.6, 142.6, 138.8, 128.9, 128.7, 126.4, 122.8, 58.1, 31.5, 30.4, 21.5; HRMS *m/z* (ESI, positive) calcd for C₁₁H₁₃NNaO⁺ [M+Na]⁺: 198.0895, Found 198.0890.

5-(o-tolyl)pyrrolidin-2-one (5d) ¹⁶⁾

Yellowish solid (66.6 mg, 76%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 123-125 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.34 (d, *J* = 7.6 Hz, 1H), 7.24-7.17 (m, 3H), 5.91 (s, 1H), 5.00 (t, *J* = 7.2 Hz, 1H), 2.68-2.59 (m, 1H), 2.51-2.38 (m, 2H), 2.35 (s, 3H), 1.93-1.84 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 178.6, 140.6, 134.6, 130.9, 127.7, 126.8, 124.1, 54.6, 29.9, 29.8, 19.1; HRMS *m*/*z* (ESI, positive) calcd for C₁₁H₁₃NNaO⁺ [M+Na]⁺: 198.0895, Found 198.0890.

5-(4-fluorophenyl)pyrrolidin-2-one (5e)¹⁶⁾

White solid (64.7 mg, 72%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 128-130 °C (138-139 °C) ¹⁵; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.29-7.25 (m, 2H), 7.09-7.03 (m, 2H), 6.20 (s, 1H), 4.75 (t, *J* = 7.2 Hz, 1H), 2.61-2.52 (m, 1H), 2.51-2.34 (m, 2H), 2.02-1.90 (m, 1H); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -117.4; ¹³C NMR (100 MHz, CDCl₃, ppm) δ 178.5, 162.5 (q, *J* = 245 Hz), 138.3, (q, *J* = 3 Hz), 127.5 (q, *J* = 8 Hz), 116.0 (q, *J* = 22 Hz), 57.6, 31.7, 30.4; HRMS *m/z* (ESI, positive) calcd for C₁₀H₁₀FNNaO⁺ [M+Na]⁺ : 202.0644, Found 202.0639.

5-(4-chlorophenyl)pyrrolidin-2-one (5f)¹⁶⁾

Yellowish solid (75.1 mg, 77%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 95-98 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.35 (dd, *J* = 8.8, 2.0 Hz, 2H), 7.24 (dd, *J* = 8.8, 2.0 Hz, 2H), 6.33 (s, 1H), 4.74 (t, *J* = 7.2 Hz, 1H), 2.62-2.53 (m, 1H), 2.52-2.35 (m, 2H), 1.98-1.88 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 178.6, 141.1, 133.8, 129.2, 127.2, 57.6, 31.5, 30.3; HRMS *m*/*z* (ESI, positive) calcd for C₁₀H₁₁ClNO⁺ [M+H]⁺ : 196.0529, Found 196.0524.

5-(4-methoxyphenyl)pyrrolidin-2-one (5g)¹⁶⁾

White solid (75.2 mg, 79%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 126-129 °C (115-116 °C) ¹⁵; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.22 (d, *J* = 8.4 Hz, 2H), 6.90 (d, *J* = 8.0 Hz, 2H), 5.98 (s, 1H), 4.71 (t, *J* = 7.2 Hz, 1H), 3.81 (s, 3H), 2.58-2.36 (m, 3H), 2.00-1.91 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 178.4, 159.5, 124.5, 127.1, 114.4, 57.8, 55.5, 31.8, 30.5; HRMS *m*/*z* (ESI, positive) calcd for C₁₁H₁₃NNaO₂⁺ [M+Na]⁺ : 214.0844, Found 214.0838.

5-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one (5h)¹⁸⁾

White solid (94.2 mg, 82%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 88-92 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.64 (d, *J* = 12.4 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 6.08 (s, 1H), 4.83 (t, *J* = 7.2 Hz, 1H), 2.68-2.59 (m, 1H), 2.54-2.40 (m, 2H), 2.01-1.92 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 179.0, 146.7, 130.3 (q, *J* = 32 Hz), 126.1, 125.8 (q, *J* = 4 Hz), 124.1 (q, *J* = 272 Hz), 57.8, 31.2, 30.3; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -65.8; HRMS *m/z* (ESI, positive) calcd for C₁₁H₁₁F₃NO⁺ [M+H]⁺: 230.0793, Found 230.0782.

5-(naphthalen-2-yl)pyrrolidin-2-one (5i) 16)

Yellow solid (47.5 mg, 45%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 167-170 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.88-7.81 (m, 3H), 7.74 (s, 1H), 7.53-7.47 (m, 2H), 7.41 (dd, *J* = 8.8, 2.0 Hz, 1H), 5.92 (s, 1H), 4.92 (t, *J* = 7.2 Hz, 1H), 2.70-2.61 (m, 1H), 2.58-2.42 (m, 2H), 2.12-2.03 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 178.5, 139.9, 133.4, 133.2, 129.2, 128.0, 127.9, 126.7, 126.4, 124.5, 123.7, 58.2, 31.4, 30.3; HRMS *m/z* (ESI, positive) calcd for C₁₄H₁₄NO⁺ [M+H]⁺: 212.1075, Found 212.1068.

5-(thiophen-2-yl)pyrrolidin-2-one (5j) 19)

Brownish solid (73.5 mg, 88%, 0.500 mmol scale using 5 mol% TsOH, column eluent: ethyl acetate/methanol = 98/2); mp 113-116 °C (115 °C) ²⁰; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.26-7.25 (m, 1H), 6.99-6.96 (m, 2H), 6.16 (s, 1H), 5.03 (t, *J* = 6.8 Hz, 1H), 2.66-2.37 (m, 3H), 2.18-2.10 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 177.7, 146.6, 127.1, 125.1, 124.3, 54.0, 31.9, 30.2; HRMS *m*/*z* (ESI, positive) calcd for C₈H₉NNaOS⁺ [M+Na]⁺: 190.0303, Found 190.0298.

5-phenethyl-pyrrolidin-2-one (5k)²²⁾

White solid (72.3 mg, 76%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 72-74 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.30 (t, *J* = 7.2 Hz, 2H), 7.23-7.17 (m, 3H), 5.88 (s, 1H), 3.65 (quint, *J* = 6.4 Hz, 1H), 2.67 (t, *J* = 8.0 Hz, 2H), 2.40-2.24 (m, 3H), 1.92-1.72 (m, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 178.7, 141.2, 128.6. 128.4, 126.2, 54.2, 38.6, 32.4, 30.4, 27.3; HRMS *m*/*z* (ESI, positive) calcd for C₁₂H₁₆NO⁺ [M+H]⁺:190.1226, Found 190.1224.

5-methyl-5-phenylpyrrolidin-2-one (5l)¹⁹⁾

White solid (55.4 mg, 63%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 77-79 °C (117 °C) ²³; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.36 (s, 2H), 7.32-7.26 (m, 2H), 6.18 (s, 1H), 2.42 (quint, *J* = 7.6 Hz, 2H), 2.29 (t, *J* = 8.0 Hz, 2H), 1.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 177.6, 146.5, 128.8, 127.3, 124.6, 61.9, 38.0, 30.4, 29.5; HRMS *m/z* (ESI, positive) calcd for C₁₁H₁₃NNaO⁺ [M+Na]⁺: 198.0895, Found 198.0890.

4,4-dimethyl-5-phenylpyrrolidin-2-one (7a)

White solid (82.6 mg, 87%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 143-146 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.39-7.30 (m, 3H), 7.23 (d, *J* = 6.8 Hz, 2H), 5.95 (s, 1H), 4.44 (s, 1H), 2.29 (s, 2H), 1.28 (s, 3H), 0.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 177.5, 138.2, 128.6, 128.2, 126.7, 68.2, 45.6, 40.5, 28.1, 24.4; HRMS *m/z* (ESI, positive) calcd for C₁₂H₁₅NNaO⁺ [M+Na]⁺ : 212.1051, Found 212.1045.

5, 5-dimethyl-4-phenylpyrrolidin-2-one (7b) ²⁴⁾

White solid (48.2 mg, 51%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 122-128 °C (129-131°C) ²⁵; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.37-7.28 (m, 3H), 7.24 (d, *J* = 7.2 Hz, 2H), 5.89 (s, 1H), 3.41 (dd, *J* = 10.0, 8.8 Hz, 1H), 2.84 (dd, *J* = 16.8, 10.0 Hz, 1H), 2.67 (dd, *J* = 16.8, 8.4 Hz, 1H), 1.39 (s, 3H), 0.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 175.8, 138.1, 128.6, 128.4, 127.6, 59.9, 51.8, 36.0, 29.0, 25.0; HRMS *m/z* (ESI, positive) calcd for C₁₂H₁₅NNaO⁺ [M+Na]⁺: 212.1051, Found 212.1045.

3. Synthetic Applications

3. 1. Synthesis of Rolipram ²⁶⁻²⁸⁾

Step 1: To a 500 ml three-necked flask was added K_2CO_3 (112 mmol, 2.0 eq), bromocyclopentane (112 mmol, 2.0 eq)), isovanillin (55.9 mmol, 1.0 eq), DMF (0.33 M) at room temperature under N₂. Then the reaction mixtures were warmed to 100 °C and stirred for 2 hours. The reaction was quenched by water at room temperature and worked up with AcOEt (100 mL× 3). The combined organic layer was washed with water and brine and dried over Na₂SO₄. After removal of Na₂SO₄ by filtration, the collected solution was evaporated under reduced pressure and the remained crude mixture was purified by silica gel column chromatography (hexane/ ethyl acetate = 80/20).

Step 2: To a 500 ml three-necked flask was added Wittiz reagent (59.0 mmol, 1.3 eq), THF (0.50 M) at room temperature under argon atmosphere. The reaction mixtures were cooling to 0 °C and dropwised KOt-Bu (59.0 mmol, 1.3 eq) in THF (1.0 M for KOt-Bu). After addition, the reaction was warmed to room temperature and stirred for 10 minutes. After 10 minutes, the reaction mixtures were cooling to 0 °C again and dropwised 3-(cyclopentyloxy)-4-methoxybenzaldehyde (45.4 mmol, 1.0 eq) in THF (2.0 M). Then the reaction was stirred at room temperature for 12 hours. After starting material was disappeared on the TLC, the mixture solution was filtered through a pad of celite and washed with Et₂O (30 ml \times 3). The combined solution was evaporated under reduced pressure and the remained crude mixture was purified by silica gel column chromatography (hexane/ ethyl acetate = 90/10).

Step 3: To a 500 ml three-necked flask was added Zn-Cu (82.5 mmol, 3.0 eq), olefin (27.5 mmol, 1.0 eq), Et₂O (0.5 M) at room temperature under argon atmosphere. To the reaction mixtures was dropwised 2,2,2-trichloroacetyl chloride (55.0 mmol, 2.0 eq), POCl₃ (30.2 mmol, 1.1 eq) in Et₂O solution (2.0 M) using dropping funnel at 40 °C and stirred overnight at reflux. After starting material was disappeared on the TLC, the mixture solution was filtered through a pad of celite and washed with Et₂O (30 ml × 3). The combined organic phase was washed with sat. NaHCO₃ aq. and brine and dried over MgSO₄. After removal of MgSO₄ by filtration, the collected solution was evaporated under reduced pressure and the remained crude mixture was used to next reaction.

Step 4: To a 500 ml flask was added Zn dust (69.3 mmol, 4.0 eq), AcOH (2.0 M) at room temperature under argon atmosphere. The crude obtained in previous reaction was dissolved in AcOH solution (1.0 M) and dropwised to the reaction mixtures at 0 °C. Then, the reaction mixtures was stirred for 2 h at 70 °C. After starting material was disappeared on the TLC, the mixture solution filtered through a pad of celite and washed with Et_2O (30 ml × 3). The combined organic phase was washed with sat. NaHCO₃ aq. and brine and dried over MgSO₄. After removal of MgSO₄ by filtration, the collected solution was evaporated under reduced pressure and the remained crude mixture was purified by silica gel column chromatography (toluene/ ethyl acetate = 95/5).

Step 5: The method was same as general procedure for synthesis of *y*-lactam from cyclobutanones.

3-(cyclopentyloxy)-4-methoxybenzaldehyde²⁹⁾

Yellow liquid (11.4 g, 93%, 55.9 mmol scale, column eluent: hexane/ethyl acetate = 8/2); ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.84 (s, 1H), 7.42 (td, *J* = 8.0, 2.0 Hz, 2H), 6.97 (d, *J* = 8.4 Hz, 1H), 4.86 (sep, *J* = 3.2 Hz, 1H), 3.93 (s, 3H), 2.04-1.95 (m, 2H), 1.91-1.79 (m, 4H), 1.68-1.59 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 191.1, 155.4, 148.3, 130.0, 126.4, 112.0, 110.8, 80.4, 56.2, 32.8, 24.1; HRMS *m/z* (ESI, positive) calcd for C₁₃H₁₇O₃⁺ [M+H]⁺: 221.1172, Found 221.1170.

2-(cyclopentyloxy)-1-methoxy-4-vinylbenzene²⁹⁾

Yellow liquid (7.29 g, 74%, 45.4 mmol scale, column eluent: hexane/ethyl acetate = 9/1); ¹H NMR (400 MHz, CDCl₃, ppm) δ 6.97 (d, J = 2.4 Hz, 1H), 6.93 (dd, J = 8.4, 2.0 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 6.64 (dd, J = 17.6, 10.8 Hz, 1H), 5.61-5.57 (m, 1H), 5.14-5.11 (m, 1H), 4.82-4.79 (m, 1H), 3.84 (s, 3H), 2.00-1.79 (m, 6H), 1.66-1.56 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 150.1, 147.8, 136.7, 130.7, 119.4, 112.5, 111.8, 111.8, 80.5, 56.2, 33.0, 24.2; HRMS *m/z* (ESI, positive) calcd for C₁₄H₁₉O₂⁺ [M+H]⁺: 219.1380, Found 219.1378.

3-(3-(cyclopentyloxy)-4-methoxyphenyl)cyclobutan-1-one (9)²⁹⁾

MeO

Yellow liquid (746 mg, 10%, 27.5 mmol scale, column eluent: toluene/ethyl acetate = 95/5); ¹H NMR (400 MHz, CDCl₃, ppm) δ 6.86-6.80 (m, 3H), 4.81-4.76 (s, 1H), 3.84 (s, 3H), 3.62 (quin, *J* = 8.8 Hz, 1H), 3.52-3.43 (m, 2H), 3.25-3.17 (m, 2H), 1.98-1.79 (m, 6H), 1.68-1.57 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 207.3, 148.9, 147.9, 136.2, 118.5, 113.8, 112.1, 80.6, 56.2, 54.9, 32.9, 28.2, 24.1; HRMS *m/z* (ESI, positive) calcd for C₁₆H₂₁O₃⁺ [M+H]⁺: 261.1485, Found 261.1483.

Rolipram (10)²⁹⁾

White solid (86.3 mg, 63%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 132-133 °C (132-133 °C) ³⁰; ¹H NMR (400 MHz, CDCl₃, ppm) δ 6.84-6.76 (m, 3H), 5.70 (br, 1H), 4.79-4.75 (m, 1H), 3.84 (s,3H), 3.75 (t, *J* = 9.2 Hz, 1H), 3.63 (q, *J* = 8.8 Hz, 1H), 3.38 (dd, *J* = 7.6, 7.2 Hz, 1H), 2.71 (dd *J* = 8.8, 8.8 Hz,1H), 2.47 (dd, *J* = 9.2, 8.8 Hz, 1H), 1.95-1.91 (m, 6H), 1.65-1.60 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 178.2, 149.2, 147.9, 134.7, 118.9, 113.9, 112.3, 80.6, 56.2, 49.9, 40.0, 38.4, 32.9, 24.1; HRMS *m/z* (ESI, positive) calcd for C₁₆H₂₂NO₃⁺ [M+H]⁺: 276.1594, Found 276.1591.

3. 2. Lactam synthesis from other substituted cyclic ketones

cis-4,5-Diphenyl-2-piperidinone (12a)

Procedure was same as synthesis of *γ*-lactam from cyclobutanones; White solid (48.2 mg, 39%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 191-198 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.21-7.16 (m, 6H), 6.79-6.76 (m, 4H), 6.13 (s, 1H), 3.66-3.63 (m, 2H), 3.53-3.46 (m, 2H), 2.85 (dd, J = 6.0, 6.0 Hz, 1H), 2.73 (dd, J = 6.0, 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 172.6, 139.7, 139.2, 128.5, 128.3, 128.1, 127.1, 127.0, 43.9, 43.4, 43.4, 43.3, 35.4; HRMS m/z (ESI, positive) calcd for C₁₇H₁₈NO⁺ [M+H]⁺: 252.1383, Found 252.1378.

5-(2-naphthyl)-azepan-2-one (12b)

Procedure was same as synthesis of *γ*-lactam from cyclobutanones; White solid (73.7 mg, 66%, 0.500 mmol scale, column eluent: ethyl acetate/methanol = 98/2); mp 209-212 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.82-7.78 (m, 3H), 7.62 (s, 1H), 7.49-7.42 (m, 2H), 7.32 (dd, J = 8.4, 1.6 Hz, 1H), 5.93 (s, 1H), 3.50-3.43 (m, 1H), 3.38-3.30 (m, 1H), 2.95 (tt, J = 12, 3.2 Hz, 1H), 2.72-2.60 (m, 2H), 2.13-2.08 (m, 2H), 1.97-1.80 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 178.6, 143.9, 133.7, 132.4, 128.4, 127.8, 127.7, 126.2, 125.6, 124.9, 49.0, 42.2, 37.5, 36.0, 30.6; HRMS *m/z* (ESI, positive) calcd for C₁₆H₁₈NO⁺ [M+H]⁺: 240.1383, Found 240.1380.

3. 3. Synthesis of γ -aminobutyric acids derivatives from γ -lactam

Procedure for ring-opening reaction for synthesis of γ-aminobutyric acids derivatives ³¹

To a test tube was added to γ -lacatam (1.0 eq), 6 N HCl (0.075 M), then the solution was refluxed at 120 °C for 24 hours. After cooling the reaction mixtures to room temperature, the solvent was removed under reduced pressure and isolated yield.

3-Carboxy-2-phenylpropan-1-ammonium chloride (13a) 32)

White solid (129 mg, 92%, 0.65 mmol scale); mp 169-172 °C; ¹H NMR (400 MHz, D₂O, ppm) δ 7.34-7.31 (m, 2H), 7.27-7.25 (m, 3H), 3.35-3.25 (m, 2H), 3.13 (dd, *J* = 12.0, 11.2 Hz, 1H), 2.75 (dd, *J* = 16.0, 6.0 Hz, 1H), 2.64 (dd, *J* = 16.0, 8.8 Hz, 1H); ¹³C NMR (100 MHz, D₂O, ppm) δ 175.5, 138.4, 129.4, 128.4, 127.9, 43.9, 40.0, 38.3; HRMS *m/z* (ESI, positive) calcd. for C₁₀H₁₄NO₂⁺ [M+H]⁺ : 180.1019, Found 180.1018.

3-Carboxy-2-(4-chlorophenyl)propan-1- ammonium chloride (13b) 33)

White solid (48.9 mg, 89%, 0.22 mmol scale); mp 161-168 °C; ¹H NMR (400 MHz, D₂O, ppm) δ 7.42 (d, J = 8.8 Hz, 2H), 7.32 (d, J = 8.8 Hz, 2H), 3.43-3.34 (m, 2H), 3.24-3.19 (m, 1H), 2.83 (dd, J = 16.1, 7.6 Hz, 1H); 2.72 (dd, J = 16.1, 7.6 Hz, 1H); ¹³C NMR (100 MHz, D₂O, ppm) δ 175.4, 137.0, 133.4, 129.5, 129.3, 43.6, 39.5, 38.3; HRMS m/z (ESI, positive) calcd. for C₁₀H₁₃ClNO₂⁺ [M+H]⁺: 214.0629, Found 214.0628.

4. Mechanistic study

4.1. Reaction with ketoxime intermediate under standard conditions

To a test tube was added cyclopentanone oxime **14** (0.250 mmol, 1.0 eq)¹, H₂O (1.05 eq), TsOH·H₂O (5 mol%), CH₃CN (1.0 M) under N₂ at indicated temperature. After 23 hours, the crude mixture was quenched by sat. NaHCO₃ (3 mL) and work up with ethyl acetate (10 ml × 3). The combined organic phase was washed with brine and dried over Na₂SO₄. After removal of Na₂SO₄ by filtration, the collected solution was evaporated under reduced pressure and the remained crude mixture was purified by silica gel column chromatography (ethyl acetate/methanol = 98/2) The product **12a** was isolated (10.6 mg, 17%).

4.2. Observation of reaction behavior in-situ monitored by HRMS

To a test tube was added cyclobutanone (0.500 mmol, 1.0 eq), oxime (0.600 mmol, 1.2eq), TsOH·H₂O (0.0125 mmol, 2.5 mol%), acetonitrile (1.0 M) under N₂ at 40°C. At 1 hours after the reaction started, a part (9.5 μ L) of reaction mixtures was taken by micropipette and transferred to vial, then which was diluted to MeOH (1 mL) solution for sample preparation of ESI-MS (Thermo Scientific Exactive Plus) measurement (Figure S1(a), (b)). The sample was measured by another ESI-MS (JEOL AccuTOF LC- plus 4G system with 1260 Infinity HPLC) (Figure S1(c)). From the MS spectra, a trace amount of ketoxime ester was observed. HRMS *m*/*z* (ESI, positive) calcd. for C₁₆H₁₆NO₃S⁺ [M+H]⁺ : 302.0845, Found: 302.0842. Interestingly, we assumed that adduct of lactam to cyclic carbocation was appeared at 305.1646; HRMS *m*/*z* (ESI, positive) calcd. for C₂₀H₂₁N₂O⁺ [M+H]⁺ : 305.1648, Found: 323.1751. Based on these results, the reaction proceeded *via* ketoxime ester and cyclic carbocation (nitrilium ion). Therefore, the reaction mechanism indicated that the reaction occurred through Beckmann rearrangement.

02/29/24 12:09:02

S20

Figure S1. ESI-MS spectra for observation of reaction *in-situ*. (a) Overall view. (b) Enlarged view. (c) Overall view by anther ESI-low MS.

4.3. Isotope experiment using 18O-water under standard condition

To a test tube was added cyclobutanone **1j** (0.500 mmol, 1.0 eq), oxime (0.600 mmol, 1.2eq), TsOH·H₂O (0.0125 mmol, 2.5 mol%), H₂O (0.525x [mmol], x [eq], x = 1.05, 2.1), acetonitrile (1.0 M) under N₂ at 40°C. After indicated time, the reaction mixture was quenched by sat. NaHCO₃ (3 mL) and work up with ethyl acetate (10 ml × 3). The combined organic phase was washed with brine and dried over Na₂SO₄. After removal of Na₂SO₄ by filtration, the collected solution was evaporated under reduced pressure and the remained crude mixture was purified by silica gel column chromatography (ethyl acetate/methanol = 98/2). The product **3j** was isolated (x = 1.05: 76.6 mg, 73%; x = 2.1: 68.2 mg, 65%) and measured by ESI-MS. The ration of 18O-product was calculated from the result of ESI-MS (Figure S2, S3).³⁴)

Detection of 18O ratio of product after isotope experiments by ESI-MS

Figure S2. ESI spectra of 18O enriched 3j used 18O-water (1.05 eq)

18O atm% of **3j**: (100-94.9*0.20%)/(100-94.9*0.20%+94.9) = 51.3%

Figure S3. ESI spectra of 180 enriched 3j used 180-water (2.1 eq)

18O atm% of **3j**: (100-60.1*0.20%)/(100-60.1*0.20%+60.1) = 62.4%

4.5. Observation of reaction behavior using cyclobutanone in-situ monitored by ¹⁹F NMR

First, we prepared ¹⁹F NMR for each reagent and ¹⁹F NMR for each reagent with acid because the chemical shift was possible to change in the presence of acid (Figure S4, S5). The obtained ¹⁹F NMR data were utilized to identify each compound on the ¹⁹F NMR of reaction behavior in-situ (Figure S6).

Ketone and acids

To NMR tube was added to ketone (10 mg, 0.0609 mmol, 1.0 eq.), 2-fluoro-1,1'-biphenyl (10.5 mg, 0.0609 mmol, 1.0 eq, as an internal standard for ¹⁹F NMR), CD₃CN (0.60 mL) at room temperature (\approx 23°C) under N₂. After the solution was taken ¹⁹F NMR, the solution was returned to a test tube and TsOH·H₂O (11.6 mg, 0.0609 mmol, 1.0 eq) was added to stirred reaction mixtures at room temperature. After 10 min, the solution was directly transferred to a NMR tube again and taken ¹⁹F NMR (Figure S4).

The ¹⁹F chemical shift of ketone was not changed in the presence of stoichiometric amount of acid.

Figure S4. ¹⁹F NMR for (a) 2-fluoro-1,1'-biphenyl; (b) ketone and 2-fluoro-1,1'-biphenyl; (c) ketone and 2-fluoro-1,1'-biphenyl with TsOH·H₂O (1.0 eq).

Lactam and acids

To NMR tube was added to Lactam (10 mg, 0.0558 mmol, 1.0 eq.), 2-fluoro-1,1'-biphenyl (9.6 mg, 0.0558 mmol, 1.0 eq, as an internal standard for ¹⁹F NMR), CD₃CN (0.75 mL) at room temperature (\approx 23°C) under N₂. After the solution was taken ¹⁹F NMR, the solution was returned to a test tube and TsOH·H₂O (10.6 mg, 0.0558 mmol, 1.0 eq) was added to stirred reaction mixtures at room temperature. After 10 min, the solution was directly transferred to a NMR tube again and taken ¹⁹F NMR. Then, the solution was returned to a test tube and TsOH·H₂O (5.3 mg, 0.0279 mmol, 0.5 eq) was added to stirred reaction mixtures at room temperature. After 10 min, the solution was directly transferred to a NMR tube again and taken ¹⁹F NMR. Then, the solution stirred reaction was directly transferred to a test tube and TsOH·H₂O (5.3 mg, 0.0279 mmol, 0.5 eq) was added to stirred reaction mixtures at room temperature. After 10 min, the solution was directly transferred to a NMR tube again and taken ¹⁹F NMR (Figure S5).

The ¹⁹F chemical shift of ketone was changed to downfield as increasing amount of loaded acid.

Figure S5. ¹⁹F NMR for (a) 2-fluoro-1,1'-biphenyl; (b) lactam and 2-fluoro-1,1'-biphenyl; (c) lactam and 2-fluoro-1,1'-biphenyl with TsOH·H₂O (1.0 eq); (d) lactam and 2-fluoro-1,1'-biphenyl with TsOH·H₂O (1.0 + 0.50 eq).

Observation of reaction behavior in-situ monitored by ¹⁹F NMR

To a test tube was added to ketone (41.0 mg, 0.250 mmol, 1.0 eq.), oxime **2a** (0.300 mmol, 1.2 eq.), 2-fluoro-1,1'biphenyl (43.1 mg, 0.250 mmol, 1.0 eq, as an internal standard for ¹⁹F NMR), CD₃CN (0.75 mL, 0.33 M) at room temperature (\approx 23°C) under N₂. Then TsOH·H₂O (1.2 mg, 0.00625 mmol, 2.5 mol%) was added to stirred reaction mixtures at room temperature and warmed to 40 °C. After 15 minutes, the solution was cooling to room temperature and directly transferred to the NMR tube and taken ¹⁹F NMR. The solution was returned to the test tube and stirred at 40 °C again. The same procedure was performed at 0.5, 1, 2, 4, 6, 8, 12, 16, 20 h after the reaction started (Figure S6). The yield was calculated by using internal standard from obtained NMR and plotted graph (Figure S7).

Figure S6. The reaction profile monitored by ¹⁹F NMR. (a) 0 h (Before addition of TsOH). (b) 15 min (After the reaction started). (c) 30 min. (d) 1 h. (e) 2 h. (f) 4 h. (g) 6 h. (h) 8 h. (i) 12 h. (j) 16 h. (k) 20 h.

Figure S7. Reaction behavior in-situ (The yields were calculated from ¹⁹F NMR using an internal standard).

4.6. Observation of reaction behavior using cyclopetanone *in-situ* monitored by ¹⁹F NMR Ketone and acids

To test tube was added to ketone (10 mg, 0.0367 mmol, 1.0 eq.), 2-fluoro-1,1'-biphenyl (6.3 mg, 0.0367 mmol, 1.0 eq, as an internal standard for ¹⁹F NMR), CD₃CN (0.60 mL) at room temperature (\approx 23°C) under N₂. After the solution was taken ¹⁹F NMR, the solution was returned to a test tube and TsOH·H₂O (7.0 mg, 0.0367 mmol, 1.0 eq) was added to stirred reaction mixtures at room temperature. After 10 min, the solution was directly transferred to a NMR tube again and taken ¹⁹F NMR (Figure S8).

Figure S8. ¹⁹F NMR for (a) 2-fluoro-1,1'-biphenyl; (b) ketone and 2-fluoro-1,1'-biphenyl; (c) ketone and 2-fluoro-1,1'-biphenyl with TsOH·H₂O (1.0 eq).
Lactam and acids

To test tube was added to lactam (8.0 mg, 0.0348 mmol, 1.0 eq.), 2-fluoro-1,1'-biphenyl (4.8 mg, 0.0348 mmol, 1.0 eq, as an internal standard for ¹⁹F NMR), CD₃CN (0.60 mL) at room temperature (\approx 23°C) under N₂. After the solution was taken ¹⁹F NMR, the solution was returned to a test tube and TsOH·H₂O (5.3 mg, 0.0348 mmol, 1.0 eq) was added to stirred reaction mixtures at room temperature. After 10 min, the solution was directly transferred to a NMR tube again and taken ¹⁹F NMR (Figure S9).

Figure S9. ¹⁹F NMR for (a) 2-fluoro-1,1'-biphenyl; (b) lactam and 2-fluoro-1,1'-biphenyl; (c) lactam and 2-fluoro-1,1'-biphenyl with TsOH·H₂O (1.0 eq).

Ketoxime ester and acids

To test tube was added to ketoxime ester (10 mg, 0.0234 mmol, 1.0 eq.), 2-fluoro-1,1'-biphenyl (4.0 mg, 0.0234 mmol, 1.0 eq.) as an internal standard for ¹⁹F NMR), CD₃CN (0.60 mL) at room temperature (\approx 23°C) under N₂. After the solution was taken ¹⁹F NMR, the solution was returned to a test tube and TsOH·H₂O (4.4 mg, 0.0234 mmol, 1.0 eq) was added to stirred reaction mixtures at room temperature. After 10 min, the solution was directly transferred to a NMR tube again and taken ¹⁹F NMR (Figure S10).

Figure S10. ¹⁹F NMR for (a) 2-fluoro-1,1'-biphenyl; (b) ketoxime ester and 2-fluoro-1,1'-biphenyl; (c) ketoxime ester and 2-fluoro-1,1'-biphenyl with TsOH·H₂O (1.0 eq).

Observation of reaction behavior in-situ monitored by ¹⁹F NMR

To a test tube was added to ketone (68.1 mg, 0.250 mmol, 1.0 eq.), oxime **2a** (73.0 mg, 0.300 mmol, 1.2 eq.), 2-fluoro-1,1'-biphenyl (43.1 mg, 0.250 mmol, 1.0 eq, as an internal standard for ¹⁹F NMR), CD₃CN (0.75 mL, 0.33 M) at room temperature (\approx 23°C) under N₂. Then TsOH·H₂O (2.4 mg, 0.0125 mmol, 5.0 mol%) was added to stirred reaction mixtures at room temperature and warmed to 40 °C. After 1 hour, the solution was cooling to room temperature and directly transferred to the NMR tube and taken ¹⁹F NMR. The solution was returned to the test tube and stirred at 40 °C again. The same procedure was performed at 2, 8, 22 h after the reaction started (Figure S11). From these results, we found ketoxime ester was observed reaction *in-situ*.

Figure S11. The reaction profile monitored by 19 F NMR. (a) 0 h (Before addition of TsOH). (b) 1 hour (After the reaction started). (c) 2 h. (d) 8 h. (e) 22 h.

5. References

[1] Tomiya, I.; Wu, Y.; Hyodo, K. Ring-Opening Amino Esterification of Cyclic Ketones to Access Distal Amino Acid Derivatives. *Adv. Synth. Catal. doi.org/10.1002/adsc.202301421*.

[2] Shima, Y.; Igarashi, E.; Yoshimura, T.; Matsuo, J. Reactions of Nitrosobenzenes with Cyclobutanones by Activation with a Lewis Acid. *Synlett*, **2018**, *29*, 723-726.

[3] Hyodo, K.; Togashi, K.; Oishi, N.; Hasegawa, G.; Uchida, K. Brønsted acid catalyzed nitrile synthesis from aldehydes using oximes via transoximation at ambient temperature. *Org. Lett.* **2017**, *19*, 3005-3008.

[4] Hyodo, K.; Miki, K.; Yauchi, T. Synthesis of Ethyl Acetohydroximate and Derivatives from Imidate Hydrochloride. *J. Org. Chem.* **2022**, *87*, 2959-2965.

[5] Lang, Q.; Gu, G.; Cheng, Y.; Yin, Q.; Zhang, X. Highly Enantioselective Synthesis of Chiral γ-Lactams by Rh-Catalyzed Asymmetric Hydrogenation. *ACS Catal*, **2018**, *8*, 4824-4828.

[6] Biswas, K.; Gholap. R.; Srinivas, P.; Kanyal S.; Sarma, K. D. β-Substituted γ -butyrolactams from mucochloric acid: synthesis of (±)baclofen and other γ -aminobutyric acids and useful building blocks. *RSC. Adv*, **2014**, *4*, 2538-2545.

[7] Sudalai, A.; Paraskar, A. S. Co-catalyzed reductive cyclization of azido and cyano substituted α , β -unsaturated esters with NaBH₄: enantioselective synthesis of (*R*)-baclofen and (*R*)-rolipram. *Tetrahedron*, **2006**, *62*, 4907-4916.

[8] Montoya-Balbás, I. J.; Valentin-Guevara, B.; López-Mendoza, E.; Linzaga-Elizalde, I.; Ordoňez, M.; Román-Bravo, P. Efficient Synthesis of β -Aryl- γ -lactams and Their Resolution with (*S*)-Naproxen: Praparation of (*R*)- and (*S*)- Baclofen. *Molecules*, **2015**, *20*, 22028-22043.

[9] Schmidt, B.; Elizarov, N.; Berger, R.; Petersen, M. H. From Paracetamol to Rolipram and Derivatives: Application of Deacetylation–Diazotation Sequences and Palladium-Catalyzed Matsuda–Heck Reaction. *Synthesis*, **2013**, *45*, 1174-1180.

[10] S. Roller, C. Siegers and R. Haag, Dendritic polyglycerol as a high-loading support for parallel multistep synthesis of GABA lactam analogues. *Tetrahedron*, **2004**, *60*, 8711-8720.

[11] Smith, S. N.; Trujillo, C.; Connon, S. J. Catalytic, asymmetric azidations at carbonyls: achiral and *meso*-anhydride desymmetrisation affords enantioenriched *y*-lactams. *Org. Biomol. Chem.* **2022**, *20*, 6384-6393.

[12] Liu, G.-X.; Liang, H.-C.; Fu, X.; Tang, J.; Hu, W.-H.; Qiu, H. Photoredox-Catalyzed Carbonyl Alkylative Amination with Diazo Compounds: A Three-Component Reaction for the Construction of γ-Amino Acid Derivatives. *Org. Lett.* **2022**, *24*, 4908-4913.

[13] Ong, M.; Mück-Lichtenfeld, C.; Daniliuc, C. G.; Wahl, J. M.; Desymmetrization of Prochiral Cyclobutanones via Nitrogen Insertion: A Concise Route to Chiral γ-Lactams. *Angew. Chem. Int. Ed.* **2021**, *60*, 9719-9723.

[14] Moriyama, K.; Ishida, K.; Togo, H. Effect of catalytic alkali metal bromide on Hofmann-type rearrangement of imides. *Chem. Commun.* **2012**, *48*, 8574-8576.

[15] Mourelle-Insua, Á.; Zampieri L. A.; Lavandera, I.; Gotor-Fernández, V. Conversion of γ - and δ -Keto Esters into Optically Active Lactams. Transaminases in Cascade Processes. *Adv. Synth. Catal.* **2018**, *360*, 686-695.

[16] Shi, Y.; Tan, X.; Gao, S.; Zhang, Y.; Wang, J. Zhang, X.; Yin, Q. Direct Synthesis of Chiral NH lactams via Ru-Catalyzed Asymmetric Reductive Amination/Cyclization Cascade of Keto Acids/Esters. *Org. Lett.* **2020**, *22*, 2707-2713.

[17] Rosenmund, K. W.; Zymalkowski, F.; Engels, P. Über die Synthese von γ -Oxyphenyl- und γ - Dioxphenylbutyrolactonen. *Chem. Eur. J.* **1951**, *84*, 711-718.

[18] Wang, H.; Park, Y. Bai, Z. Chang, S.; He, G.; Chen, G. Iridium-Catalyzed Enantioselective C(sp³)-H Amidation Controlled by Attractive Noncovalent Interactions. *J. Am. Chem. Soc.* **2019**, *141*, 7194-7201.

[19] Zhou, Z.; Chen, S.; Hong, Y.; Winterling, E.; Tan, Y.; Hemming, M.; Harms, K.; Houk, K. N.; Meggers, E. Non-*C*₂-Symmetric Chiral-at-Ruthenium Catalyst for Highly Efficient Enantioselective Intramolecular C(sp₃)-H Amidation. *J. Am. Chem. Soc.* **2019**, *141*, 19048-19057.

[20] Rigo, B.; Fasseur, D.; Cherepy, N.; Couturier, D. Decarboxylation of pyroglutamic acids with P2O5/CH3SO3H : A general synthesis of 5-aryl-2-pyrrolidinones. *Tetrahedron. Lett.* **1989**, *30*, 7057-7060.

[21] Liu, J.; Ye, W.; Wang, S.; Zheng, J.; Tang, W.; Li, X. Synthesis of Lactams via Ir-Catalyzed C-H Amidation Involving Ir-Nitrene Intermediates. *J. Org. Chem.* **2020**, *85*, 4430-4440.

[22] Armanio, N.; Carreira, E. M. Ruthenium-Catalyzed Intramolecular Hydrocarbamoylation of Allylic Formamides: Convenient Access to Chiral Pyrrolidones. *J. Am. Chem. Soc.* **2013**, *135*, 6814-6817.

[23] Miller, R. D.; Goelitz, P. An efficient and general synthesis of 5-substituted pyrrolidinones. *J. Org. Chem.* **1981**, *46*, 1616-1618.

[24] Keum, H.; Jung, H.; Jeong, J.; Kim, D. Chang, S. Visible-Light Induced $C(sp^2)$ -H Amidation with an Aryl-Aryl σ -Bond Relocation via Redox-Neutral Radical-Polar Crossover. *Angew. Chem. Int. Ed.* **2021**, *60*, 25235-25240.

[25] Hwang, Y.; Jung, H.; Lee, E.; Kim, D.; Chang, S. Quantitative Analysis on Two-Point Ligand Modulation of Iridium Catalysts for Chemodivergent C-H Amidation. *J. Am. Chem. Soc.* **2020**, *142*, 8880-8889.

[26] Langlois, N.; Wang, H.-S. Synthesis of the Novel Antidepressant (R)-(-)-Rolipram. *Synth. Commun.* **1997**, *27*, 3133–3144.

[27] Crudden, C. M.; Ziebenhaus C.; Rygus, J. P. G.; Ghozati, K.; Unsworth P. J.; Nambo, M.; Voth, S.; Hutchinson, M.; Laberge, V. S.; Maekawa, Y.; Imao, D. Iterative protecting group-free cross-coupling leading to chiral multiply arylated structures. *Nat. Commun.* 2016, *7*, 11065-11071.

[28] Wang, P. Z.; He, B. Q.; Cheng, Y.; Chen. J. R.; Xiao, W. J. Radical C–C Bond Cleavage/Addition Cascade of Benzyl Cycloketone Oxime Ethers Enabled by Photogenerated Cyclic Iminyl Radicals. *Org. Lett.* **2019**, *21*, 6924-6929.

[29] Ong, M.; Arnold, M.; Walz, W. A.; Wahl, M. J. Stereospecifiv Nitrogen Insertion Using Amino Diphenylphophinates: An Aza-Baeyer-Villiger Rearrangment. *Org. Lett.* **2022**, *24*, 6171-6175.

[30] Helling, C.; Wölper, C.; Cutsail III, G. E.; Haberhauer, G. CoverFeature: A Mechanistiv Study on Reactions of Group 13 Diyls LM with Cp*SbX₂: From Stibanyl Radicals to Antimony Hydrides. *Chem. Eur. J.* **2020**, *26*, 13318-13382.

[31] Wang, P.-L.; Li, Y.; Wu, Y.; Li, C.; Lan, Q.; Wang, X.-S. Pd-Catalyzed C(sp3)–H Carbonylation of Alkylamines: A Powerful Route to γ-Lactams and γ-Amino Acids. *Org. Lett.* **2015**, *17*, 3698–3701.

[32] Biswas, K.; Gholap, R.; Srinivas, P.; Kanyal, S.; Sarma, K. β -Substituted γ -butyrolactams from mucochloric acid: synthesis of (±)-baclofen and other γ -aminobutyric acids and useful building blocks. *RSC Adv.* **2014**, *4*, 2538-2545.

[33] Ishitani, H.; Kanai, K.; Saito, Y.; Tsubogo, T.; Kobayashi, S. Synthesis of (±)-Pregabalin by Utilizing a Three-Step Sequential-Flow System with Heterogeneous Catalysts. *Eur. J. Org. Chem*, **2017**, 6491-6494.

[34] Kang, Q.-K.; Wang, L.; Liu, Q.-J.; Li, J.-F.; Tang, Y. Asymmetric H₂O-Nucleophilic Ring Opening of D–A Cyclopropanes: Catalyst Serves as a Source of Water. *J. Am. Chem. Soc.* **2015**, *137*, 14594-14597.

6. NMR spectra

X		0
200.0		NH
190.(r Millio	MeO	3h
) 18 n : Cai		¹³ C NMR
0.0 bon13		178.217
170.0		
160.0		
150.0		
140.0		
130		134.224
0.0 1		127.827
20.0		
110.0		114.221
100.0		
90.0		
80.0		77.475
70.		77.160 76.841
6 0		
0.0		55.340
50.0		
40.0		39.651
30.(38.339
0 2		
0.0		
10.0		
0		

-600 -700 -700 -700 -700 -700 -300 -900 -900 -900 -900 -900 -900 -900 -	766
ts per Million : Fluorine 19 50.0 -70.0	766
$= -65$ $= -70.0 \qquad -7$	766
$\begin{array}{c} -65\\ \hline \\ 100\\ -70.0\\ -80.0\\ -9$	766
$\begin{array}{c} -65 \\ \hline & -70.0 \\ -80.0 \\ -90.0 \\ \hline & -90.0 \\ \end{array}$	766
Luorine 19 -70.0 -80.0 -90.0	700
-80.0 -80.0 -90.0	
5 -80.0 -80.0 -80.0 -90.0	
-80.0 -90.0	
500 500 500 500 500 500 500 500	
50 F ₃ C 3i ¹⁹ F NMR	
F ₃ C 3i ¹⁹ F NMR	
31 19F NMR	
-6	
-164	900

X	 0
190.0 : parts per	NH
180.0 Million :	S
170.0 Carbon13	
160.0	
50.0	
140.0	
130.0	
120.0	123.989
110.0	
100.0	
90.0	
80.0	77.460
70.0	76.826
60.0	
50.0	50.177
40.0	
30.0	
20.0	
10.0	
0	

S82

×	
-60.0 parts per Milli	HN
-70.0 -70.0 on : Fluorine1	F 5e ¹⁹ F NMR
9	
-80.0	
-90.0	
-100.0	
-110.0	
-120.0	-117.423
-130.0	
-140.0	
-150.0	
-160.0	
-170.0	-164.900
-	

÷		
par 2		
1 s1		
er o		
11 8 I		191.051
Э <u>п</u> .О		
0_1		
arb 80		Ť I
on .0		0
13		
70		MeO
.o		12
		'°C NMR
60		
.0		
		155.410
50		
.0		148.250
40		
.0		
130		
0.0		126.001
		126.397
12(
0.0		
0.0		110.760
10		
0.0		
90		
.0		
8		80.449
.0	36	77.484
		76.845
2		70.045
.0		
6		
0.0		
		56.184
S		
0.0		
4		
0.0		
ω		32.767
0.0		
2		24.129
0.0		
0.0		
0		
	3	

