Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Highly selective and additive-free Pd(OAc)₂/CPP catalyzed

hydroaminocarbonylation of alkynes

Chenghui Dai ^a, Yan Chen ^a, Jiaqi Xu ^a, Xueli Zheng ^a, Hua Chen ^a, Haiyan Fu ^{*a} and Ruixiang Li^{*a}

Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry,

Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China

* Corresponding author: Ruixiang Li and Haiyan Fu, Fax: (+86)-28-85412904;

E-mail address: *liruixiang@scu.edu.cn, scufhy@scu.edu.cn*

Table of Contents

S1. General Information: Marterials and Methods	3
S2. General Procedure for the synthesis of products	4
S3. Optimization of reaction conditions	5
S3.1. The effect of ligand	5
S3.2. The effect of Palladium precursor	6
S3.3. The effect of additive	6
S3.4. The effect of CO pressure	7
S3.5. The effect of reaction temperature	7
S3.6. The effect of solvents	8
S3.7. Optimal reaction conditions	8
S4. General Procedure for the synthesis of substrates	9
S5. Procedure for the NMR studies on the crude reaction mixture	10
S6. NMR spectra of drug-derived substrates	11
S7. Structural characterization of products	12
S8. The NMR spectra relevant to elucidating CPP coordination behavior	25
S9. NMR spectra of substrates and products	

S1. General Information: Marterials and Methods

All commercial reagents were ordered from commercial suppliers, unless otherwise stated, commercial reagents were used without purification.

NMR spectra, including ¹H NMR (400 MHz), ¹³C NMR (100 MHz) and ³¹P NMR (162 MHz), were recorded on the Bruker AVENCE III HD-400 spectrometer. Chemical shifts δ (ppm) are given relative to solvent: references for CDCl₃ were 7.26 ppm (¹H NMR) and 77.16 ppm (¹³C NMR), for CD₃CN were 1.94 ppm (¹H NMR) and 117.34 ppm (¹³C NMR), for DMSO-*d*₆ were 2.50 ppm (¹H NMR) and 39.52 ppm (¹³C NMR). Signals were assigned as s (singlet), d (doublet), t (triplet), dd (doublet of doublet), m (multiplet) and br. s (broad singlet). All measurements were carried out at room temperature unless otherwise stated. GC analysis was performed with Agilent 7890B (KB-1, 30 m × 0.32 mm × 0.25 µm) and AT (C- 2000, 3 m ×3 mm). GC-Mass analysis was performed with SHIMADZU GCMS-QP2020 (SH-Rtx- 35MS, 30 m ×0.25 mm × 0.25 µm). High resolution mass spectra (HRMS) were measured on SHIMADZU LCMS-IT-TOF (ESI) mass spectrometer, and the corresponding molecular ion, such as [M]⁺, [M+H]⁺, were given in m/z units. Column chromatography was carried out using silica gel (200-300 mesh) eluating with petroleum ether/ethyl acetate.

S2. General Procedure for the synthesis of products

Under nitrogen protection, a mixture of alkyne (1.0 mmol), amine (1.25 mmol), Pd(OAc)₂ (1.0 mol%), **CPP** (2.0 mol%), an oven-dried stirring bar and CH₃CN (2.0 mL) was added to a stainless-steel autoclave. The autoclave was flushed three times with CO and then pressurized to appointed pressure of CO. The reaction was heated under specified temperature for 10 hours. Then, the stainless-steel autoclave was cooled to room temperature and slowly depressurized. The reaction solution was analyzed by GC to determine the conversion and selectivity use n-dodecane as internal standard. Finally, the solvent was removed under vacuum and the obtained residue was purified by flash column chromatography on a silica gel (eluted with ethyl acetate/petroleum ether = $1/10 \sim 1/0$) to furnish the desired α,β -unsaturated amides products.

S3. Optimization of reaction conditions

S3.1. The effect of ligand

Table S1. Reaction conditions: Phenylacetylene (1.0 mmol), aniline (1.25 mmol,), $Pd(OAc)_2$ (1.0 mol%), Ligand (1.0 mol% or 2.0 mol%), CO (1.0 MPa), CH₃CN (2.0 mL), 100 °C, 10 h; the ratio of products and yields were determined by GC analysis with n-dodecane as the internal standard. b:l = **3a:4a**.

S3.2. The effect of Palladium precursor

+ 1a	NH2 1.0 mol% Pc 2.0 mol% CF 2.0 mol% CF CO (1.0 MPa CH ₃ CN (2.0 100 °C, 10 F	a) mL) 3a) mL) 3a	+	Aa
Entry	Pd salt	Conversion (%)	Yield 3a (%)	b:l
1	Pd(OAc) ₂	78	78	>99:1
2	PdCl ₂ (CH ₃ CN) ₂	4	3	86:14
3	Pd(PPh ₃) ₄	22	17	79:21
4	PdCl ₂	7	6	86:14
5	Pd(TFA) ₂	3	2	71:29

Table S2. Reaction conditions: Phenylacetylene (1.0 mmol), aniline (1.25 mmol), Pd salt (1.0 mol%), **CPP** (2.0 mol%), CO (1.0 MPa), CH₃CN (2.0 mL), 100 °C, 10 h; the ratio of products and yields were determined by GC analysis with n-dodecane as the internal standard. b:l = 3a:4a.

S3.3. The effect of additive

+ 1a	NH2 2.0 mol% C 2.0 mol% C 2.0 mol% A 2a CO (1.0 MP CH ₃ CN (2.0 100 °C, 10 M	Pd(OAc) ₂ H H H H H H H H H H H H H	+	4a
Entry	Additive	Conversion (%)	Yield 3 (%)	b:l
1	Al(OTf) ₃	Trace		
2	PTSA·H ₂ O	NR		
3	-	78	78	>99:1
4	Cs ₂ CO ₃	42	28	2:1
5	KO ^t Bu	96	81	84:16
6	NaO'Bu	87	84	93:7
7	КОН	42	40	97:3

Table S3. Reaction conditions: Phenylacetylene (1.0 mmol), aniline (1.25 mmol), $Pd(OAc)_2$ (1.0 mol%), **CPP** (2.0 mol%), additive (2.0 mol%), CO (1.0 MPa), CH₃CN (2.0 mL), 100 °C, 10 h; the ratio of products and yield were determined by GC analysis with n-dodecane as the internal standard. b:l = **3a**:**4a**.

S3.4. The effect of CO pressure

+ 1a	2a NH ₂	1.0 mol% Pd(OAc) ₂ 2.0 mol% CPP CO (1.0 MPa) CH ₃ CN (2.0 mL) T °C, 10 h	Jan Sa	+	Aa
Entry	CO (MI	Pa) Conve	rsion (%)	Yield 3a (%)	b:l
1	0.5		44	43	>99:1
2	1		78	78	>99:1
3	2		55	54	>99:1

Table S4. Reaction conditions: Phenylacetylene (1.0 mmol), aniline (1.25 mmol), $Pd(OAc)_2$ (1.0 mol%), **CPP** (2.0 mol%), CO, CH₃CN (2.0 mL), 100 °C, 10 h; the ratio of products and yield were determined by GC analysis with n-dodecane as the internal standard. b:l = **3a**:**4a**.

S3.5. The effect of reaction temperature

+ 1a	NH ₂ 1.0 m 2.0 m 2a CH ₃ C T °C,	nol% Pd(OAc) ₂ nol% CPP 1.0 MPa) CN (2.0 mL) 10 h		Aa
Entry	T (°C)	Conversion (%)	Yield 3a (%)	b:l
1	60	10	8	87:13
2	80	29	28	>99:1
3	100	78	77	>99:1
4	120	91	91	>99:1

Table S5. Reaction conditions: Phenylacetylene (1.0 mmol), aniline (1.25 mmol), $Pd(OAc)_2$ (1.0 mol%), **CPP** (2.0 mol%), CO (1.0 MPa), CH₃CN (2.0 mL), T °C, 10 h; the ratio of products and yield were determined by GC analysis with n-dodecane as the internal standard. b:l = 3a:4a.

S3.6. The effect of solvents

() 1a	+	NH ₂ 2a	1.0 mol% Pd(OA 2.0 mol% CPP CO (1.0 MPa) Solvents (2.0 ml 120 °C, 10 h	Ac) ₂	a +	H 4a	-
-	Entry	Solven	nt Co	onversion (%)	Yield 3a	ı (%) b:l	
-	1	THF		45	44	>99:1	
	2	CH ₃ Cl	Ν	91	91	>99:1	
	3	Toluen	ne	82	82	99:1	
	4	NMP)	4	4	87:13	

Table S6. Reaction conditions: Phenylacetylene (1.0 mmol), aniline (1.25 mmol), $Pd(OAc)_2$ (1.0 mol%), **CPP** (2.0 mol%), CO (1.0 MPa), solvents (2.0 mL), 120 °C, 10 h; the ratio of products and yield were determined by GC analysis with n-dodecane as the internal standard. b:l = **3a**:**4a**.

S3.7. Optimal reaction conditions

Table S7. Reaction conditions: Phenylacetylene (1.0 mmol), aniline (1.25 mmol), $Pd(OAc)_2$ (1.0 mol%), **CPP** (2.0 mol%), CO (1.0 MPa), CH₃CN (2.0 mL), 120 °C, 10 h; the ratio of products and yield were determined by GC analysis with n-dodecane as the internal standard. b:l = **3a**:**4a**.

S4. General Procedure for the synthesis of substrates

Reactions were set up in a nitrogen-filled glove box. To round-bottom flask with magnetic stirring bar were added Pd(PPh₃)₂Cl₂ (0.2 mmol), CuI (0.2mmol), aryl bromides (5.0 mmol), THF (5.0 mL) and Et₃N (7.7 mmol). Then the flask was sealed with a rubber plug, removed from glovebox and stirred at 0 °C 15 min. Trimethylsilylacetylene (10 mmol) was slowly added to the reaction mixture and the color of the reactants gradually darkened. Then, the flask was transferred to oil bath and the mixture was reacted for 24 h at 50 °C. After the reaction was completed, the reaction mixture was cooled to room temperature and dissolved in ethyl acetate, which was then washed with water/ brine sequentially. The organic phase was dried with anhydrous Na₂SO₄ and concentrated *via* vacuum to get the crude products¹. Finally, the crude products were purified by a short fast column to get the chromatographyl-Aryl-2-trimethylphenylacetyl derivatives.

1-Aryl-2-trimethylphenylacetyl derivative (1.0 equiv.) was added to a mixture of potassium carbonate (2 equiv.) and anhydrous MeOH. Then, the reaction was stirred at room temperature for 10 hours under the protection of nitrogen and the reaction process was observed by TLC or GC-MS, When the reaction finished, the reaction mixture was quenched by saturated NH₄Cl. The MeOH were evaporated under reduced pressure and the residue was dissolved in ethyl acetate, which was washed with water/ brine sequentially and concentrated *via* vacuum to get crude products. Then, the crude products were purified by a short fast column chromatography to obtain the terminal alkyne substrates.

S5. Procedure for the NMR studies on the crude reaction mixture

Given the low concentration of Palladium active species, the catalyst amount was increased by a factor of 10 in NMR experiments. The specific experimental steps are as follows: under nitrogen protection, $Pd(OAc)_2$ (10 mol%), **CPP** (20 mol%), Phenylacetylene (1.0 mmol), amine (1.25 mmol), an oven-dried stirring bar and CD₃CN (2.0 mL) was added to a stainless-steel autoclave. The reaction was heated at 120 °C under CO (1.0 MPa) for 0.5 hours. Then, the stainless-steel autoclave was cooled to room temperature and slowly depressurized. The reaction solution was analyzed by NMR immediately to analyze active species.

S6. NMR spectra of drug-derived substrates

Ethynyl-4-isobutyl benzene 1aa¹

¹**H** NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.2 Hz, 2H), 7.11 (d, *J* = 8.2 Hz, 2H), 3.04 (s, 1H), 2.48 (d, *J* = 7.2 Hz, 2H), 1.93 – 1.80 (m, 1H), 0.90 (d, *J* = 6.6 Hz, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 142.8, 131.9, 129.1, 119.3, 83.9, 77.4, 45.3, 30.2, 22.3.

(3-ethynylphenyl) (phenyl)methanone 1ab²

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (t, J = 1.7 Hz, 1H), 7.79 (ddd, J = 7.7, 3.7, 2.0 Hz, 3H), 7.69 (d, J = 7.7 Hz, 1H), 7.60 (s, 1H), 7.52 – 7.39 (m, 3H), 3.12 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 195.77, 137.85, 137.12, 135.71, 133.55, 132.74, 130.09 (d, J = 9.5 Hz), 128.45 (d, J = 2.6 Hz), 122.47, 82.63, 78.34, 29.71.

S7. Structural characterization of products

N,2-diphenylacrylamide (3aa)³

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.27 (s, 1H), 7.72 (d, *J* = 7.7 Hz, 2H), 7.51 – 7.47 (m, 2H), 7.41 – 7.30 (m, 5H), 7.10 – 7.06 (m, 1H), 5.94 (s, 1H), 5.72 (s, 1H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 167.8, 145.7, 139.5, 136.8, 129.6 – 128.2 (m), 127.4, 124.2, 120.4, 118.1.

2-Phenyl-N-(p-tolyl) acrylamide (3ab)⁴

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.17 (s, 1H), 7.61 (d, *J* = 8.3 Hz, 2H), 7.54 – 7.46 (m, 2H), 7.44 – 7.33 (m, 3H), 7.14 (d, *J* = 8.3 Hz, 2H), 5.93 (s, 1H), 5.72 (s, 1H), 2.28 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 145.8, 136.9 (d, *J* = 16.7 Hz), 133.0, 129.5, 128.9, 128.7, 128.4 – 127.9 (m), 127.3, 120.4, 117.9, 21.0.

N-(4-ethylphenyl)-2-phenylacrylamide (3ac)

¹**H NMR** (400 MHz, DMSO- d_6) δ 10.18 (s, 1H), 7.62 (d, J = 8.4 Hz, 2H), 7.53 – 7.44 (m, 2H), 7.44 – 7.29 (m, 3H), 7.16 (d, J = 8.5 Hz, 2H), 5.92 (s, 1H), 5.71 (s, 1H), 2.57 (q, J = 7.6 Hz, 2H), 1.16 (t, J = 7.6 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO- d_6) δ 167.6, 139.6, 137.2, 136.8, 128.9, 128.7, 128.3, 127.3, 120.5, 117.9, 28.1, 16.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₇H₁₇NO: 252.1383; Found: 252.1387.

N-(4-(tert-butyl) phenyl)-2-phenylacrylamide (3ad)⁵

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.18 (s, 1H), 7.63 (d, *J* = 8.6 Hz, 2H), 7.53 – 7.46 (m, 2H), 7.43 – 7.26 (m, 5H), 5.92 (s, 1H), 5.71 (s, 1H), 1.27 (s, 10H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 167.6, 146.5, 145.8, 136.90 (d, *J* = 9.6 Hz), 128.9, 128.7, 127.3, 125.7, 120.2, 118.0, 34.5, 31.7.

(4-methoxyphenyl)-2-phenylacrylamide (3ae)⁶

¹**H** NMR (400 MHz, DMSO- d_6) δ 10.11 (s, 1H), 7.62 (d, J = 9.0 Hz, 2H), 7.51 – 7.45 (m, 2H), 7.42 – 7.29 (m, 3H), 6.90 (d, J = 9.0 Hz, 2H), 5.90 (s, 1H), 5.71 (s, 1H), 3.73 (s, 3H). ¹³**C** NMR (100 MHz, DMSO- d_6) δ 167.4, 156.0, 145.8, 136.9, 132.6, 128.9, 128.7, 127.3, 122.0, 117.9, 114.2, 55.7.

N-(4-chlorophenyl)-2-phenylacrylamide (3af)⁶

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.40 (s, 1H), 7.79 – 7.71 (m, 2H), 7.54 – 7.45 (m, 2H), 7.43 – 7.28 (m, 5H), 5.96 (s, 1H), 5.75 (s, 1H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 167.9, 145.5, 138.5, 136.6, 128.99 (d, *J* = 6.8 Hz), 128.8, 127.7, 127.3, 121.9, 118.5.

2-Phenyl-N-(4-(trifluoromethyl) phenyl) acrylamide (3ag)

¹**H** NMR (400 MHz, DMSO- d_6) δ 10.64 (s, 1H), 7.95 (d, J = 8.5 Hz, 2H), 7.71 (d, J = 8.5 Hz, 2H), 7.58 – 7.47 (m, 2H), 7.45 – 7.25 (m, 3H), 6.00 (s, 1H), 5.80 (s, 1H). ¹³**C** NMR (100 MHz, DMSO- d_6) δ 167.1, 144.1, 139.4, 138.0, 131.6, 130.1, 129.7(d, J = 31.2 Hz), 129.1, 125.3 (q, J = 3.9 Hz), 124.6 (d, J = 273.4 Hz), 124.3, 120.9, 120.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₆H₁₂NOF₃: 292.0944; Found: 292.0935.

2-Phenyl-N-(pyridin-3-yl) acrylamide (3ah)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.48 (s, 1H), 8.88 (d, *J* = 2.2 Hz, 1H), 8.31 (dd, *J* = 4.7, 1.4 Hz, 1H), 8.16 (ddd, *J* = 8.3, 2.2, 1.5 Hz, 1H), 7.54 – 7.48 (m, 2H), 7.46 – 7.35 (m, 4H), 6.00 (s, 1H), 5.82 (s, 1H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.2, 160.6, 145.3, 145.0, 142.0, 136.6, 136.2, 129.0, 128.8, 127.40, 127.36, 124.0, 119.0. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₄H₁₂NO: 225.1022; Found: 225.1027.

N-Methyl-N,2-diphenylacrylamide (3ai)⁴

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.93 – 6.69 (m, 10H), 5.61 (br, 1H), 5.22 (br, 1H), 3.29 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 169.8, 145.0, 144.1, 136.6, 135.2, 129.3, 129.0, 128.6, 128.0, 127.7, 127.2, 126.2, 37.5.

N-(2-phenylacryloyl) isonicotinamide (3aj)

¹**H NMR** (400 MHz, DMSO- d_6) δ 7.32 – 6.96 (m, 10H), 5.56 (s,1H), 5.22 (s, 1H), 3.94 – 3.71 (m, 2H), 1.07 (d, J = 5.8 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO- d_6) δ 169.3, 145.2, 142.4, 130.1, 129.3, 128.9, 128.7, 128.5, 128.4, 128.1, 128.0, 127.5, 127.3, 126.2, 117.0, 44.1, 13.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₇H₁₇NO: 252.1383; Found: 252.1385.

N-methyl-2-phenyl-N-(4-(trifluoromethyl) phenyl)acrylamide (3ak)

¹**H** NMR (400 MHz, DMSO-*d*₆) δ 7.63 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 7.7 Hz, 2H), 7.43 – 7.22 (m, 5H), 5.74 (s, 1H), 5.36 (s, 1H), 3.35 (s, 3H). ¹³**C** NMR (100 MHz, DMSO-*d*₆) δ 169.2, 147.6, 144.8, 136.2, 129.3, 129.0, 128.8, 128.4, 128.2 (q, *J* = 35.80 Hz), 127.2, 126.35 (q, *J* = 3.8 Hz), 124.4 (q, *J* = 273.1 Hz), 37.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₇H₁₄F₃NO: 306.1100; Found: 306.1099.

2-Phenyl-N-propylacrylamide (3al)³

¹**H** NMR (400 MHz, DMSO-*d*₆) δ 8.15 (s, 1H), 7.56 – 7.07 (m, 5H), 5.70 (s, 1H), 5.54 (s, 1H), 3.11 (dd, *J* = 13.0, 6.9 Hz, 2H), 1.47 (dd, *J* = 14.3, 7.3 Hz, 2H), 0.85 (t, *J* = 7.4 Hz, 3H). ¹³**C** NMR (100 MHz, DMSO-*d*₆) δ 168.7, 146.0, 137.2, 128.8, 128.5, 127.4, 117.4, 41.1, 22.8, 11.9.

N-Butyl-2-phenylacrylamide (3am)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.16 (t, *J* = 5.1 Hz, 1H), 7.78 – 7.19 (m, 5H), 5.72 (s, 1H), 5.55 (s, 1H), 3.16 (dd, *J* = 12.9, 7.0 Hz, 2H), 1.51 – 1.39 (m, 2H), 1.30 (dd, *J* = 15.0, 7.4 Hz, 2H), 0.89 (t, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.7, 146.0, 137.2, 128.8, 128.5, 127.4, 117.4, 38.9, 31.6, 20.1, 14.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₇H₁₇NO: 204.1383; Found: 294.1381.

N-Exyl-2-phenylacrylamide (3an)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.17 (s, 1H), 7.43 – 7.29 (m, 5H), 5.74 (s, 1H), 5.56 (s, 1H), 3.22 – 3.11 (m, 2H), 1.54 – 1.43 (m, 2H), 1.33 – 1.24 (m, 6H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168, 146.0, 137.2, 128.7, 128.5, 127.4, 117.3, 39.2, 31.4, 29.4, 26.6, 22.6, 14.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₅H₂₁NO: 232.1896; Found: 232.1899.

*N-(tert-butyl)-2-phenylacrylamide (3ao)*⁷

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.67 (s, 1H), 7.54 – 7.18 (m, 5H), 5.69 (s, 1H), 5.44 (s, 1H), 1.33 (s, 9H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.9, 146.4, 137.3, 128.8, 128.4, 127.1, 116.2, 51.1, 28.9.

N-Isobutyl-2-phenylacrylamide (3ap)

¹**H** NMR (400 MHz, DMSO- d_6) δ 8.17 (s, 1H), 7.63 – 6.94 (m, 5H), 5.73 (s, 1H), 5.56 (s, 1H), 3.00 (dd, J = 6.8, 6.2 Hz, 2H), 1.80 (dt, J = 13.5, 6.8 Hz, 1H), 0.87 (d, J = 6.7 Hz, 7H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.8, 146.0, 137.2, 128.8, 128.5, 127.4, 117.3, 46.8, 28.6, 20.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₇H₁₇NO: 204.1383; Found: 204.1381.

N-Cyclohexyl-2-phenylacrylamide (3aq)³

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.03 (d, *J* = 7.9 Hz, 1H), 7.65 – 7.06 (m, 5H), 5.72 (s, 1H), 5.49 (s, 1H), 3.83 – 3.50 (m, 1H), 1.69 (ddd, *J* = 52.5, 42.4, 10.7 Hz, 6H), 1.41 – 1.18 (m, 4H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.1, 145.9, 137.2, 128.8, 128.5, 127.2, 116.7, 48.4, 32.7, 25.7, 25.3.

N-Benzyl-2-phenylacrylamide (3ar)³

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.76 (t, *J* = 5.8 Hz, 1H), 7.88 – 6.83 (m, 10H), 5.79 (s, 1H), 5.68 (s, 1H), 4.40 (d, *J* = 6.1 Hz, 2H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.7, 145.6, 140.1, 137.2, 128.78 (d, *J* = 1.3 Hz), 128.6, 127.6, 127.5, 127.2, 118.2, 42.8.

N-Phenethyl-2-phenylacrylamide (3as)³

¹**H NMR** (400 MHz, DMSO- d_6) δ 10.27 (s, 1H), 7.72 (d, J = 7.7 Hz, 2H), 7.51 – 7.47 (m, 2H), 7.41 – 7.30 (m, 5H), 7.10 – 7.06 (m, 1H), 5.94 (s, 1H), 5.72 (s, 1H). ¹³**C NMR** (100 MHz, DMSO- d_6) δ 168.6, 145.9, 139.9, 137.1, 129.2, 129.0, 128.74 (d, J = 3.8 Hz), 128.5, 127.5, 126.5, 117.6, 40.8, 35.4.

2-phenyl-N-(4-(trifluoromethyl) benzyl) acrylamide (3at)

¹**H NMR** (400 MHz, DMSO- d_6) δ 8.86 (t, J = 6.0 Hz, 1H), 7.72 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.48 – 7.42 (m, 2H), 7.42 – 7.31 (m, 5H), 5.82 (s, 1H), 5.74 (s, 1H), 4.49 (d, J = 6.0 Hz, 2H). ¹³**C NMR** (100 MHz, DMSO- d_6) δ 168.8, 145.5, 145.0, 137.1, 128.8, 128.6, 128.3, 128.0 (q, J = 32.0 Hz), 127.6, 125.2 (q, J = 3.9 Hz), 124.8 (q, J = 273.10 Hz), 118.6, 42.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₇H₁₄F₃NO: 306.1100; Found: 306.1117.

N-(furan-2-ylmethyl)-2-phenylacrylamide (3au)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.69 (t, J = 5.9 Hz, 1H), 7.59 (dd, J = 1.9, 0.9 Hz, 1H), 7.53 – 7.17 (m, 5H), 6.41 (dd, J = 3.2, 1.9 Hz, 1H), 6.28 (dd, J = 3.2, 0.9 Hz, 1H), 5.78 (s, 1H), 5.65 (s, 1H), 4.41 (dd, J = 5.8, 0.9 Hz, 2H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.7, 152.8, 145.4, 142.5, 137.1, 128.8, 128.6, 127.5, 118.2, 111.0, 107.1, 36.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₄H₁₄NO₂: 228.1019; Found: 228.1018.

N-(cyclohexylmethyl)-2-phenylacrylamide (3av)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.15 (s, 1H), 7.68 – 7.12 (m, 5H), 5.73 (s, 1H), 5.56 (s, 1H), 3.02 (t, *J* = 6.4 Hz, 2H), 1.77 – 1.40 (m, 6H), 1.28 – 1.07 (m, 3H), 1.07 – 0.78 (m, 2H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.8, 146.0, 137.3, 128.8, 128.5, 127.4, 117.4, 45.5, 37.9, 31.0, 26.6, 25.9. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₆H₂₂NO: 244.1696; Found: 244.1693.

2-Phenyl-1-(piperidin-1-yl) prop-2-en-1-one (3aw)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.62 – 7.25 (m, 5H), 5.78 (s, 1H), 5.23 (s, 1H), 3.58 – 3.52 (m, 2H), 3.28 – 3.21 (m, 2H), 1.54 (ddd, *J* = 15.5, 9.3, 2.9 Hz, 4H), 1.34 – 1.25 (m, 2H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.3, 145.0, 136.0, 129.3, 129.0, 128.4, 125.9, 113.4, 47.7, 42.0, 26.4, 25.7, 24.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₄H₁₇NO: 216.1383; Found: 216.1385.

2-Phenylacrylamide (3ax)⁸

¹**H** NMR (400 MHz, DMSO- d_6) δ 7.59 – 7.19 (m, 1H), 5.73 (s, 1H), 5.68 (s, 1H). ¹³**C** NMR (100 MHz, DMSO- d_6) δ 170.5, 145.6, 137.4, 132.0 – 125.3 (m), 118.3 (s).

N-phenyl-2-(p-tolyl) acrylamide (3ba)⁶

¹**H** NMR (400 MHz, DMSO- d_6) δ 10.22 (s, 1H), 7.72 (d, J = 7.7 Hz, 2H), 7.44 – 7.26 (m, 4H), 7.19 (d, J = 7.9 Hz, 2H), 7.10 – 7.03 (m, 1H), 5.88 (s, 1H), 5.65 (s, 1H), 2.31 (s, 3H). ¹³**C** NMR (100 MHz, DMSO- d_6) δ 168.0, 145.6, 139.6, 138.2, 133.9, 129.5, 129.1, 127.2, 124.1, 120.4, 117.0, 21.2.

2-(4-methoxyphenyl)-N-phenylacrylamide (3ca)⁶

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.20 (s, 1H), 7.71 (d, *J* = 7.7 Hz, 2H), 7.51 – 7.39 (m, 2H), 7.38 – 7.24 (m, 2H), 7.16 – 7.02 (m, 1H), 7.01 – 6.83 (m, 2H), 5.82 (s, 1H), 5.59 (s, 1H), 3.76 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.1, 159.8, 145.2, 139.6, 129.1, 128.6, 124.1, 120.4, 116.0, 114.3, 55.6.

2-(4-(tert-butyl) phenyl)-N-phenylacrylamide (3da)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.22 (s, 1H), 7.73 (d, *J* = 7.8 Hz, 2H), 7.40 (dd, *J* = 9.4, 0.9 Hz, 4H), 7.32 (t, *J* = 7.9 Hz, 2H), 7.08 (t, *J* = 7.4 Hz, 1H), 5.88 (s, 1H), 5.68 (s, 1H), 1.28 (s, 10H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 167.9, 151.2, 145.6, 139.6, 134.0, 129.1, 127.1, 125.7, 124.1, 120.4, 117.4, 117.3, 34.8, 31.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₉H₂₁NO: 280.1696; Found: 280.1698.

2-(4-ethylphenyl)-N-phenylacrylamide (3ea)⁶

¹**H NMR** (400 MHz, DMSO- d_6) δ 10.24 (s, 1H), 7.74 (d, J = 7.7 Hz, 2H), 7.47 – 7.39 (m, 2H), 7.34 (d, J = 10.8, 5.1 Hz, 2H), 7.24 (d, J = 8.3 Hz, 2H), 7.12 – 7.04 (m, 1H), 5.90 (s, 1H), 5.68 (s, 1H), 2.62 (q, J = 7.6 Hz, 2H), 1.19 (t, J = 7.6 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO- d_6) δ 168.0, 145.7, 144.5, 139.6, 134.2, 129.1, 128.3, 127.3, 124.1, 120.4, 117.2, 28.4, 16.0.

N-phenyl-2-(4-propylphenyl) acrylamide (3fa)⁶

¹**H NMR** (400 MHz, DMSO- d_6) δ 10.23 (s, 1H), 7.90 – 7.62 (m, 2H), 7.44 – 7.29 (m, 4H), 7.24 – 7.16 (m, 2H), 7.11 – 7.06 (m, 1H), 5.89 (s, 1H), 5.66 (s, 1H), 2.58 (t, *J* = 7.7 Hz, 2H), 1.55 (ddt, *J* = 8.9, 7.6, 3.5 Hz, 2H), 1.30 (q, *J* = 7.4 Hz, 2H), 0.89 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO- d_6) δ 168.0, 145.7, 142.9, 139.7, 134.2, 129.1, 128.94, 128.90, 127.2, 124.1, 120.4, 117.1, 37.4, 24.5, 14.1.

2-(4-butylphenyl)-N-phenylacrylamide (3ga)

¹**H NMR** (400 MHz, DMSO- d_6) δ 10.23 (s, 1H), 7.90 – 7.62 (m, 2H), 7.44 – 7.29 (m, 4H), 7.24 – 7.16 (m, 2H), 7.11 – 7.06 (m, 1H), 5.89 (s, 1H), 5.66 (s, 1H), 2.58 (t, *J* = 7.7 Hz, 2H), 1.55 (ddt, *J* = 8.9, 7.6, 3.5 Hz, 2H), 1.30 (q, *J* = 7.4 Hz, 2H), 0.89 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO- d_6) δ 168.0, 145.7, 143.6, 139.6, 134.1, 129.1, 128.9, 127.2, 124.1, 120.4, 117.1, 35.0, 33.5, 22.2, 14.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₉H₂₁NO: 280.1696; Found: 280.1697.

2-(4-fluorophenyl)-N-phenylacrylamide (3ha)⁶

¹**H NMR** (400 MHz, DMSO- d_6) δ 10.27 (s, 1H), 7.79 – 7.69 (m, 2H), 7.57 – 7.52 (m, 2H), 7.37 – 7.29 (m, 2H), 7.26 – 7.19 (m, 2H), 7.12 – 7.04 (m, 1H), 5.94 (s, 1H), 5.77 (s, 1H). ¹³**C NMR** (100 MHz, DMSO- d_6) δ 167.6, 162.53 (d, J = 245.4 Hz), 144.6, 139.5, 133.30 (d, J = 3.3 Hz), 129.56 (d, J = 8.3 Hz), 129.1, 124.2, 120.5, 118.5, 115.76 (d, J = 21.6 Hz).

N-Phenyl-2-(4-(trifluoromethyl) phenyl) acrylamide (3ia)

¹**H NMR** (400 MHz, DMSO- d_6) δ 10.34 (s, 1H), 7.77 – 7.69 (m, 6H), 7.34 (dd, J = 8.5, 7.4 Hz, 2H), 7.15 – 7.06 (m, 1H), 6.11 (s, 1H), 5.94 (s, 1H). ¹³**C NMR** (100 MHz, DMSO- d_6) δ 167.1, 144.4, 141.0,

139.4, 128.5 (q, J = 31.7 Hz), 125.8 (q, J = 3.9 Hz), 125.0 (q, J = 173.2 Hz), 124.3, 121.0, 120.5, 119.6, 112.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₆H₁₂F₃NO: 292.0944; Found: 292.0941.

2-(4-chlorophenyl)-N-phenylacrylamide (3ja)⁶

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.29 (s, 1H), 7.81 – 7.64 (m, 2H), 7.55 – 7.50 (m, 2H), 7.47 – 7.42 (m, 2H), 7.34 (dd, *J* = 8.5, 7.3 Hz, 2H), 7.13 – 7.02 (m, 1H), 5.99 (s, 1H), 5.81 (s, 1H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 167.3, 144.5, 139.4, 136.0, 132.5, 131.9, 130.0, 129.5, 129.3, 129.1, 124.2, 122.0, 120.5, 119.2.

2-(4-bromophenyl)-N-phenylacrylamide (3ka)

¹**H NMR** (400 MHz, DMSO- d_6) δ 10.29 (s, 1H), 7.78 – 7.68 (m, 2H), 7.62 – 7.55 (m, 2H), 7.50 – 7.41 (m, 2H), 7.33 (dd, J = 8.5, 7.3 Hz, 2H), 7.15 – 6.99 (m, 1H), 5.99 (s, 1H), 5.81 (s, 1H). ¹³**C NMR** (100 MHz, DMSO- d_6) δ 167.3, 144.5, 139.4, 136.0, 132.5, 131.7, 130.1, 129.6, 129.3, 129.1, 124.2, 122.0, 120.5, 119.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₅H₁₂BrNO: 392.0175; Found: 392.0166.

Ethyl 4-(3-oxo-3-(phenylamino) prop-1-en-2-yl) benzoate (3la)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.34 (s, 1H), 8.06 – 7.91 (m, 2H), 7.87 – 7.53 (m, 4H), 7.48 – 7.27 (m, 2H), 7.23 – 7.01 (m, 1H), 6.11 (s, 1H), 5.90 (s, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 167.2, 165.9, 144.8, 141.3, 139.4, 129.9, 129.8, 129.1, 127.7, 124.2, 120.4, 61.3, 14.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₈H₁₇NO₃:296.1281; Found: 296.1281.

N-Phenyl-2-(o-tolyl) acrylamide (3ma)⁶

¹**H** NMR (400 MHz, DMSO- d_6) δ 10.07 (s, 1H), 7.71 (d, J = 7.6 Hz, 2H), 7.32 (t, J = 7.9 Hz, 3H), 7.23 (tt, J = 15.2, 5.1 Hz, 4H), 7.08 (t, J = 7.4 Hz, 1H), 6.10 (s, 1H), 5.67 (s, 1H), 2.23 (s, 3H). ¹³**C** NMR (100 MHz, DMSO- d_6) δ 167.0, 146.6, 139.6, 138.4, 136.0, 130.28 (d, J = 13.5 Hz), 129.0, 128.5, 126.3, 124.1, 122.8, 120.6, 20.1.

2-(2-methoxyphenyl)-N-phenylacrylamide (3na)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.93 (s, 1H), 7.70 (d, *J* = 7.6 Hz, 2H), 7.41 – 7.23 (m, 4H), 7.14 – 6.89 (m, 3H), 5.84 (s, 1H), 5.71 (s, 1H), 3.67 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 167.5, 157.1, 144.7, 140.0, 130.8, 130.3, 129.0, 127.8, 123.7, 121.1, 121.0, 120.4, 112.0, 56.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₆H₁₅NO₂:254.1176; Found: 254.1179.

N-phenyl-2-(m-tolyl) acrylamide (30a)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.24 (s, 1H), 7.86 – 7.67 (m, 2H), 7.36 – 7.25 (m, 5H), 7.20 – 7.13 (m, 1H), 7.12 – 7.05 (m, 1H), 5.91 (s, 1H), 5.71 (s, 1H), 2.32 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 167.9, 145.9, 139.6, 138.0, 136.8, 129.4, 129.1, 128.8, 127.8, 124.5, 124.1, 120.4, 117.9, 21.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₆H₁₅NO:238.1226; Found: 238.1228.

2-(3-methoxyphenyl)-N-phenylacrylamide (3pa)⁶

¹**H** NMR (400 MHz, DMSO- d_6) δ 10.36 (s, 1H), 7.88 – 7.77 (m, 2H), 7.77 – 7.70 (m, 4H), 7.65 (t, J = 7.7 Hz, 1H), 7.35 (dd, J = 8.5, 7.4 Hz, 2H), 7.14 – 7.04 (m, 1H), 6.14 (s, 1H), 5.95 (s, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 167.7, 159.8, 145.6, 139.5, 138.2, 130.0, 129.1, 124.1, 120.4, 119.8, 118.5, 114.2, 113.0, 55.6.

N-phenyl-2-(3-(trifluoromethyl) phenyl) acrylamide (3qa)

¹**H** NMR (400 MHz, DMSO-*d*₆) δ 10.36 (s, 1H), 7.88 – 7.77 (m, 2H), 7.77 – 7.70 (m, 4H), 7.65 (t, *J* = 7.7 Hz, 1H), 7.35 (dd, *J* = 8.5, 7.4 Hz, 2H), 7.14 – 7.04 (m, 1H), 6.14 (s, 1H), 5.95 (s, 1H). ¹³**C** NMR (100 MHz, DMSO-*d*₆) δ 167.1, 144.0, 139.4, 138.0, 131.6, 130.0, 129.7 (q, *J* = 31.7 Hz), 129.1, 125.3 (q, *J* = 3.9 Hz), 124.3, 124.0 (q, *J* = 273.4 Hz), 121.0, 120.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₆H₁₂F₃NO:292.0944; Found: 292.0935.

2-(4-isobutylphenyl)-N-phenylacrylamide (3ra)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.24 (s, 1H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.44 – 7.38 (m, 2H), 7.33 (t, *J* = 7.9 Hz, 2H), 7.17 (d, *J* = 8.1 Hz, 2H), 7.11 – 7.03 (m, 1H), 5.90 (s, 1H), 5.66 (s, 1H), 2.45 (d, *J* = 7.2 Hz, 2H), 1.83 (dp, *J* = 13.4, 6.6 Hz, 1H), 0.87 (d, *J* = 6.6 Hz, 6H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.0, 145.7, 141.9, 139.6, 134.2, 129.5, 129.1, 127.0, 124.1, 120.4, 117.0, 44.74, 30.1, 22.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₉H₂₁NO:280.1696; Found: 280.1698.

2-(3-benzoylphenyl)-N-phenylacrylamide (3sa)

¹**H** NMR (400 MHz, DMSO- d_6) δ 10.33 (s, 1H), 7.89 – 7.82 (m, 2H), 7.81 – 7.49 (m, 9H), 7.42 – 7.30 (m, 2H), 7.20 – 7.03 (m, 1H), 6.06 (s, 1H), 5.90 (s, 1H).¹³**C** NMR (100 MHz, DMSO- d_6) δ 196.0, 167.3, 144.8, 139.4, 137.7, 137.27 (d, J = 4.2 Hz), 133.3, 131.6, 130.2, 130.0, 129.3, 129.09 (d, J = 7.0 Hz), 128.5, 124.2, 120.5, 120.1. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₂H₁₇NO₂:328.1332; Found: 328.1329.

N-(4-hydroxyphenyl)-2-(4-isobutylphenyl) acrylamide (3ta)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.99 (s, 1H), 9.24 (s, 1H), 7.50 (d, *J* = 8.9 Hz, 2H), 7.40 (d, *J* = 8.2 Hz, 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 6.73 (d, *J* = 8.9 Hz, 1H), 5.85 (s, 1H), 5.61 (s, 1H), 2.45 (d, *J* = 7.1 Hz, 2H), 1.82 (dq, *J* = 13.5, 6.8 Hz, 1H), 0.86 (d, *J* = 6.6 Hz, 6H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 167.4, 154.1, 145.8, 141.8, 134.3, 131.2, 129.5, 127.0, 122.1, 116.6, 115.4, 44.7, 30.1, 22.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₉H₂₁NO₂:296.1645; Found: 296.1648.

References

- 1 H. Chen, S. Sun, Y. A. Liu and X. Liao, ACS Catal., 2020, 10, 1397–1405.
- 2 D. Liu, T. Ru, Z. Deng, L. Zhang, Y. Ning and F.-E. Chen, ACS Catal., 2023, 13, 12868–12876.
- 3 D.-L. Wang, W.-D. Guo, L. Liu, Q. Zhou, W.-Y. Liang, Y. Lu and Y. Liu, *Catal. Sci. Technol.*, 2019, **9**, 1334–1337.
- 4 H. Wang, H. Yuan, X. Wang, J. Zhao, D. Wei and F. Shi, *Advanced Synthesis & Catalysis*, 2020, **362**, 2348–2353.
- 5 B. El Ali and J. Tijani, *Applied Organom Chemis*, 2003, **17**, 921–931.
- 6 X. Zhou, Z. Wang, B. Yu, S. Kuang, W. Sun and Y. Yang, *Green Chem.*, 2022, 24, 4463–4469.
- 7 B. El Ali and J. Tijani, Applied Organometallic Chemistry, 2003, 17, 921–931.
- 8 D. Wang, W. Guo, Q. Zhou, L. Liu, Y. Lu and Y. Liu, *ChemCatChem*, 2018, 10, 4264–4268.

S8. The NMR spectra relevant to elucidating CPP coordination behavior

Figure 2. (1), b

Figure 2. (1), c

142.64 133.52 133.52 133.34 133.96 133.90 122.71	
--	--

63.12 63.08 63.03 65.99 60.36 60.18 60.18 60.18 60.18

Figure 2. (2), a

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Figure 2. (2), b

Figure 2. (2), d

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

Figure 2. (3), b

S9. NMR spectra of substrates and products

¹³C NMR (100 MHz, CDCl₃) spectrum of 1ab

¹³C NMR (100 MHz, DMSO-d₆) spectrum of 3aa

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ab

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ac

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ad

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ae

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3af

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ag

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ah

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ai

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3aj

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ak

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3al

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3am

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3an

¹³C NMR (100 MHz, DMSO-d₆) spectrum of 3ao

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ap

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3aq

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ar

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3as

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3at

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3au

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3av

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3aw

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ax

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ba

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ca

¹³C NMR (100 MHz, DMSO-d₆) spectrum of 3da

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ea

¹³C NMR (100 MHz, DMSO-d₆) spectrum of 3fa

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ga

¹³C NMR (100 MHz, DMSO-d₆) spectrum of 3ha

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ia

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ja

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ka

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3la

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3ma

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3na

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 30a

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3pa

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 3qa

¹³C NMR (100 MHz, DMSO-d₆) spectrum of 3ra

¹³C NMR (100 MHz, DMSO-d₆) spectrum of 3sa

¹³C NMR (100 MHz, DMSO-d₆) spectrum of 3ta