1 Contents

2 GENERAL .. 2

3 SYNTHETIC PROCEDURES .. 3

4 NMR SPECTRA OF CHARACTERIZED COMPOUNDS 23

5 SOLUBILITY OF SELECTED ALKALI METAL HALIDES 67

6 NMR EXPERIMENTS TO STUDY THE “SILYL-FINKELSTEIN” REACTION MECHANISM ... 68

7 MONITORING REACTIONS BY NMR ... 72

8 REFERENCES ... 74
2 General

Unless otherwise noted all solvents and chemicals were used as received. Solvents used for synthesis were HPLC grade. Anhydrous solvents were taken from an Innovative Technology (IT) apparatus (model PS-MD-05). Sodium iodide was dried by moderate heating under reduced pressure. The 2,6-lutidine used was stored over 3Å molecular sieves for at least 24 hours prior to use. For all reactions in which anhydrous solvents were used the glassware was flame dried prior to use and were carried out under N₂ atmosphere unless stated otherwise.

TLC was carried out on aluminium plates pre-coated with Silicagel 60 with fluorescence indicator, visualized by irradiation with UV light (254 nm) and/or H₂SO₄ stain (10% in EtOH) stain. Flash Column Chromatography was carried out using silica gel 60 (40-63 μm) as solid phase. Automated column chromatography was carried out on a Büchi Pure C-815 Flash instrument using Büchi FlashPure columns, loading was done by liquid injection with CH₂Cl₂, eluent gradients were calculated using the instrument Navigator function by inputting TLC data and column size.

¹H NMR and ¹³C NMR spectra were recorded on a 500 MHz Bruker instrument with a non-inverse cryoprobe at 298 K unless notes otherwise. Chemical shifts are reported in ppm and coupling constants (J) are reported in Hz. Residual protonated solvent signals were used as internal standards for referencing ¹H and ¹³C NMR spectra (¹H: δ(CHCl₃) = 7.26 ppm (singlet), δ(HDO) = 4.79 ppm (singlet), δ(CHD₂CN) = 1.94 ppm (pentet), and ¹³C: δ(CDCl₃) = 77.16 ppm (triplet), δ(CD₃CN) = 1.32 ppm (septet)). ¹H and ¹³C NMR assignments were based on 2D ¹H-¹H COSY and 2D ¹H-¹³C HSQC NMR experiments, aromatic carbon atoms were not assigned. The colors in ¹H-¹³C HSQC spectra indicate even (blue) and odd (red) numbers of hydrogen atoms attached to a carbon atom. Tetramethylsilane was used as internal standard for referencing ²⁹Si NMR spectra (²⁹Si: δ(Me₄Si) = 0 ppm).

HR-MS (MALDI-TOF) was run on a SolariX ESI/MALDI FTMS spectrometer using dithranol as matrix.
3 Synthetic procedures

Phenyl β-α-thioglucopyranoside (S3)

β-α-glucopyranose pentaacetate S1 (14.98 g, 38.37 mmol, 1 equiv) was dissolved in anhydrous CH₂Cl₂ (40 ml) to which PhSH (4.80 ml, 46.6 mmol, 1.2 equiv) was added while stirring at 0 °C (ice bath). Then BF₃•OEt₂ (5.70 ml, 46.2 mmol, 1.2 equiv) was added in small portions over the course of 15 minutes followed by stirring at rt for 3.5 hours. Then the reaction was quenched by addition of sat. aqueous NaHCO₃ (30 ml). The organic phase was washed with H₂O (2 x 30 ml) and brine (1 x 30 ml) and afterwards dried over Na₂SO₄, filtered and concentrated in vacuo. The mixture was dissolved in PhMe and CH₂Cl₂ and loaded onto a silica plug. The plug was flushed with PhMe until no more PhSH eluted, then pure EtOAc was used to elute the acetylated thioglucopyranoside S2. After concentrating in vacuo, the sticky white solid was suspended in MeOH (150 ml) and NaOMe (25% in MeOH, 0.50 ml) was added, and the reaction was stirred at rt for 2 hours. The reaction was quenched upon the addition of solid phase acid resin (Amberlite IRC120 H⁺ form). The mixture was filtered and concentrated in vacuo to yield S3 as a white foam (9.236 g, 33.9 mmol, 88% over 2 steps).

NMR is in accordance with the literature.²

¹H NMR (500 MHz, D₂O) δ 7.47 – 7.44 (2H, m, arom.), 7.31 – 7.26 (3H, m, arom.), 4.68 (1H, d, J = 9.9 Hz), 3.77 (1H, dd, J = 12.5, 2.4 Hz), 3.59 (1H, dd, J = 12.5, 5.6 Hz), 3.42 – 3.34 (2H, m), 3.30 – 3.21 (2H, m) ppm. O-H peaks not observed by ¹H NMR due to exchange with the D₂O solvent.

¹³C NMR (126 MHz, D₂O) δ 131.8, 131.4, 129.1, 127.9, 87.1, 79.7, 77.0, 71.5, 69.1, 60.5 ppm.

OH peaks not observed by ¹H NMR due to exchange with the D₂O solvent.
Phenyl 4,6-O-benzylidene-β-D-thioglucopyranoside (S4)

To a solution of S3 (9.084 g, 33.36 mmol, 1 equiv) in anhydrous DMF (40 ml) was added a small amount of solid phase acid resin (Amberlite IR 120 H+ form). Then Benzaldehyde dimethyl acetal (5.70 ml, 37.8 mmol, 1.1 equiv) was added at rt and the reaction was stirred for 23 hours after which TLC analysis showed presence of starting material. Then more benzaldehyde dimethyl acetal (5.0 ml, 33 mmol, 1 equiv) and solid phase acid resin was added, and the reaction stirred at rt for another 24 hours. TLC analysis still showed low conversion so more benzaldehyde dimethyl acetal (3.0 ml, 20 mmol, 0.6 equiv) was added. After 2.5 days solid phase acid resin (Amberlite IR 120 H+ form, freshly acidified by washing with 1M HCl followed by washing with MeOH) was added and the reaction was stirred at rt. After a total of 4 days the reaction was quenched by the addition of Et$_3$N (1 ml, 7 mmol) until pH > 7 and the mixture was filtered to remove resin beads. The mixture was diluted with H$_2$O (100 ml) and extracted with EtOAc (4 x 50 ml). The combined organic phases were washed with H$_2$O (3 x 40 ml), aqueous HCl (1M, 1 x 40 ml) and brine (2 x 40 ml). The organic phase was dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The crude mixture was suspended on Celite filter aid and purified by flash column chromatography (1:1 EtOAc/heptane) and further purification of the product-containing fractions by trituration in EtOAc (200 ml) with petroleum ether (700 ml) yielded S4 as a white powdery solid (1.723 g, 4.78 mmol, 14%).

$R_F = 0.16$ (1:1 EtOAc/heptane)

NMR is in accordance with the literature.3

1H NMR (500 MHz, CDCl$_3$) δ 7.56 – 7.54 (2H, m, arom.), 7.49 – 7.47 (2H, m, arom.), 7.38 – 7.34 (6H, m, arom.), 5.54 (1H, s, PhCH-Ô,Ô), 4.65 (1H, d, $J = 9.7$ Hz, H1), 4.39 (1H, dd, $J = 11.0$, 4.1 Hz, H6), 3.87 (1H, app. t, $J = 8.6$ Hz, H3), 3.81 – 3.77 (1H, m, H6), 3.55 – 3.53 (2H, m, H4, H5), 3.48 (1H, app. t, $J = 9.7$, 8.6 Hz, H2), 2.69 (1H, s, OH), 2.60 (1H, s, OH) ppm.

13C NMR (126 MHz, CDCl$_3$) δ 137.0, 133.3, 131.3, 129.5, 129.3, 128.7, 128.5, 126.4, 102.1 (PhCH-Ô,Ô), 88.8 (C1), 80.4 (C4/5), 74.7 (C3), 72.7 (C2), 70.7, 68.7 (C6) ppm.
To a solution of benzylidene S4 (992 mg, 2.75 mmol, 1 equiv) in anhydrous DMF (10 ml) was added NaH (60% in mineral oil, 252.6 mg, 6.32 mmol, 2.3 equiv) at 0 °C (ice bath) while stirring. After 15 minutes BnBr (0.90 ml, 7.6 mmol, 2.8 equiv) was added slowly over the course of 3 minutes followed by stirring the reaction at 0 °C for 1.5 hours. Then the ice bath was removed, and the reaction stirred for another 2 hours at rt. TLC analysis showed starting material present, so NaH (60% in mineral oil, 122.8 mg, 3.07 mmol, 1.1 equiv) and BnBr (0.90 ml, 7.6 mmol, 2.8 equiv) was added at 0 °C (ice bath) followed by stirring the reaction for 7 days with the temperature naturally reaching rt. Then the reaction was quenched by addition of MeOH (1 ml, 24 mmol) and the mixture was stirred at rt for 20 minutes before it was diluted with EtOAc (20 ml). The mixture was washed with H$_2$O (4 x 20 ml) and brine (1 x 20). The organic phase was dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The combined aqueous phases were extracted with EtOAc (3 x 30 ml) and then the combined organic phases from this extraction were washed with brine (2 x 30 ml) followed by being dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The combined concentrates were purified by flash column chromatography (1:6 EtOAc/heptane then 1:3 EtOAc/heptane) to yield S5 as a white powdery solid (1.271 g, 2.35 mmol, 85%).

$R_F = 0.69$ (1:1 EtOAc/heptane)

NMR is in accordance with the literature.3

1H NMR (500 MHz, CDCl$_3$) δ 7.55 – 7.52 (2H, m, arom.), 7.49 – 7.47 (2H, m, arom.), 7.40 – 7.27 (16H, m, arom.), 5.59 (1H, s, PhCH-O,O), 4.94 (1H, d, $J = 11.1$ Hz, CH$_2$Ph), 4.84 (2H, app. q, $J = 14.3$, 10.2 Hz, CH$_2$Ph), 4.77 (2H, app. t, $J = 11.9$ Hz, CH$_2$Ph, H1), 4.39 (1H, dd, $J = 10.5$, 5.0 Hz, H6), 3.86 – 3.78 (2H, m, H3, H6), 3.71 (1H, app. t, $J = 9.4$ Hz, H4), 3.53 – 3.45 (2H, m, H2, H5) ppm.

13C NMR (126 MHz, CDCl$_3$) δ 138.4, 138.2, 137.4, 133.2, 132.5, 129.2, 129.1, 128.6, 128.5, 128.4, 128.4, 128.3, 128.0, 128.0, 127.9, 126.1, 101.3 (PhCH-O,O), 88.4 (C1), 83.2 (C3), 81.6 (C4), 80.6 (C2), 76.1 (CH$_2$Ph), 75.5 (CH$_2$Ph), 70.4 (C5), 68.9 (C6) ppm.
Phenyl 2,3-di-O-benzyl-β-o-thioglucopyranoside (1)

Benzylidene S5 (772 mg, 1.43 mmol) was suspended in AcOH (80% in H2O, 20 ml) and the reaction mixture was heated to 60 ºC (oil bath) for 21 hours followed by 80 ºC for 4 hours. Then the reaction was allowed to cool to rt and was then diluted with EtOAc (25 ml) and a mixture of solid NaHCO3 and NaOH was added until the aqueous phase had pH > 7. The organic phase was washed with H2O (3 x 25 ml) and brine (2 x 25 ml), dried over Na2SO4, filtered, and concentrated in vacuo. The residue, containing a mixture of diol 1 and acetylated mono-ol, was suspended in MeOH (30 ml) and then NaOMe (25% in MeOH, 0.30 ml, 1.3 mmol) was added and the reaction was stirred at rt for 24 hours. Then the reaction was quenched by addition of solid phase acid resin (Amberlite IR-120 H⁺ form) until the mixture was acidic. The mixture was then filtered and concentrated in vacuo. The crude mixture was purified by automated column chromatography (12g silica column, 0 – 100 % EtOAc/heptane) to yield 1 as a white powdery solid (481 mg, 1.062 mmol, 74%).

Rf = 0.26 (1:1 EtOAc/heptane)

NMR is in accordance with the literature.1

1H NMR (500 MHz, CDCl3) δ 7.53 – 7.51 (2H, m, arom.), 7.43 – 7.41 (2H, m, arom.), 7.37 – 7.28 (11H, m, arom.), 4.96 (2H, app. d, J = 11.0 Hz, CH2Ph), 4.77 – 4.70 (3H, m, CH2Ph, H1), 3.88 (1H, dd, J = 11.9, 3.5 Hz, H6), 3.75 (1H, dd, J = 11.9, 5.4 Hz, H6), 3.58 (1H, t, J = 9.2 Hz, H4), 3.54 – 3.47 (2H, m, H2, H3), 3.36 (1H, ddd, J = 9.2, 5.4, 3.5 Hz, H5) ppm.

13C NMR (126 MHz, CDCl3) δ 138.4, 137.9, 133.6, 131.9, 129.2, 128.9, 128.6, 128.4, 128.3, 128.2, 128.1, 127.9, 87.9 (C1), 86.2 (C3), 81.1 (C2), 79.3 (C5), 75.6 (CH2Ph), 75.6 (CH2Ph), 70.6 (C4), 63.0 (C6) ppm.
Phenyl 2,3-di-O-benzyl-4,6-O-di-tert-butyldisilylene-β-D-thioglucopyranoside (2)

To a solution of 1 (97 mg, 0.215 mmol, 1 equiv) and NaI (108 mg, 0.718 mmol, 3 equiv) in anhydrous MeCN (2 ml) was added 2,6-lutidine (0.08 ml, 0.7 mmol, 3 equiv) while stirring at rt. Then after 10 minutes of stirring at rt tBu2SiCl2 (0.05 ml, 0.24 mmol, 1.05 equiv) was added and the reaction was stirred at 50 °C (aluminium block) for 24 hours. Then tBu2SiCl2 (0.02 ml, 0.09 mmol, 0.4 equiv) was added as TLC analysis showed almost no conversion of the diol 1, and the reaction was stirred at 50 °C for another 6 days. The temperature was then increased to 80 °C as TLC analysis showed very little conversion of the diol 1, and the reaction was stirred for 4 weeks. The reaction was then cooled to rt and quenched by addition of MeOH (2 ml) and diluted with EtOAc (10 ml). The mixture was washed with H2O (1 x 10 ml), Na2S2O3 (10% aqueous solution, 2 x 10 ml), H2O (2 x 10 ml), and brine (2 x 10 ml). The organic phase was dried over Na2SO4, filtered, and concentrated in vacuo. Purification by flash column chromatography (1:4 EtOAc/heptane) yielded 2 as a colorless syrup (92 mg, 0.155 mmol, 72%).

Rf = 0.91 (1:1 EtOAc/heptane)

NMR is in accordance with the literature.5

1H NMR (500 MHz, CDCl3) δ 7.53 – 7.50 (2H, m, arom.), 7.43 – 7.27 (13H, m, arom.), 5.03 (1H, d, J = 10.9 Hz, CH2Ph), 4.86 – 4.79 (3H, m, CH2Ph), 4.71 (1H, d, J = 9.9 Hz, H1), 4.22 (1H, dd, J = 10.3, 5.0 Hz, H6), 3.98 – 3.93 (2H, m, H3/4, H6), 3.64 (1H, app. t, J = 8.7 Hz), 3.47 – 3.42 (2H, m, H2, H5), 1.11 (9H, s, (CH3)3Si), 1.01 (9H, s, (CH3)3Si) ppm.

13C NMR (126 MHz, CDCl3) δ 138.7, 138.3, 133.4, 132.4, 129.1, 128.5, 128.5, 128.4, 128.3, 127.9, 127.9, 88.4 (C1), 86.4 (C3/4), 80.1 (C2/5), 78.0 (C3/4), 75.9 (CH2Ph), 75.9 (CH2Ph), 74.6 (C2/5), 66.4 (C6), 27.6 [(CH3)3Si], 27.1 [(CH3)3Si], 22.8 [(SiC(CH3)3], 20.1 [(SiC(CH3)3] ppm. One aromatic carbon signal not observed due to overlapping signals.

HRMS (MALDI+): calculated for C34H42O5Si5 ([M+H]+) m/z: 593.27515, found: 593.27693.
To a solution of 1 (401 mg, 0.885 mmol, 1 equiv) and NaI (417 mg, 2.78 mmol, 3 equiv) in anhydrous MeCN (8 ml) was added 2,6-lutidine (0.31 ml, 2.8 mmol, 3 equiv) while stirring at rt, followed by addition of \(^{1}\text{Pr}_2\text{SiCl}_2\) (0.17 ml, 0.94 mmol, 1.05 equiv). The flask was then fitted with a reflux condenser and the reaction was stirred at 50 °C (oil bath) for 16 hours. The heating was terminated and once the reaction had cooled to rt it was quenched by the addition of MeOH (1 ml). The mixture was then diluted with EtOAc (15 ml), and the organic phase was washed with H₂O (1 x 15 ml), Na₂S₂O₃ (10% aqueous solution, 1 x 15 ml), H₂O (2 x 15 ml), and brine (1 x 15 ml). The organic phase was dried over Na₂SO₄, filtered, and concentrated in vacuo. The mixture was purified by flash column chromatography (1:3 EtOAc/heptane) to yield 3 as a colorless syrup (440 mg, 0.780 mmol, 88%).

\(R_f = 0.84 \) (1:1 EtOAc/heptane)

\[[\alpha]^{24}_D -10 \] (c 0.758 in CHCl₃)

\(^1\text{H} \) NMR (500 MHz, CDCl₃) δ 7.51-7.49 (2H, m, arom.), 7.41–7.39 (2H, m, arom.), 7.37–7.27 (11H, m, arom.), 4.98 (1H, d, \(J = 11.0 \) Hz, \(\text{CH}_2\text{Ph} \)), 4.84 – 4.77 (3H, m, \(\text{CH}_2\text{Ph} \)), 4.70 (1H, d, \(J = 9.8 \) Hz, \(\text{H}1 \)), 4.19 (1H, dd, \(J = 10.3, 5.0 \) Hz, \(\text{H}6 \)), 3.92 – 3.86 (2H, m, \(\text{H}4, \text{H}6 \)), 3.62 (1H, t, \(J = 8.7 \) Hz, \(\text{H}3 \)), 3.44 – 3.35 (2H, m, \(\text{H}2, \text{H}5 \)), 1.10 (7H, br. s, Si-\(^{1}\text{Pr} \)), 1.00 – 0.98 (7H, m, Si-\(^{1}\text{Pr} \)) ppm.

\(^{13}\text{C} \) NMR (126 MHz, CDCl₃) δ 138.8, 138.3, 133.5, 132.4, 129.1, 128.5, 128.5, 128.4, 128.3, 127.9, 127.9, 127.9, 88.3 (\(\text{C}1 \)), 86.1 (\(\text{C}3 \)), 80.1 (\(\text{C}2 \)), 77.6 (\(\text{C}4 \)), 75.9 (\(\text{CH}_2\text{Ph} \)), 75.8 (\(\text{CH}_2\text{Ph} \)), 75.0 (\(\text{C}5 \)), 66.1 (\(\text{C}6 \)), 17.2 (\((\text{CH}_3)_2\text{CHSi} \)), 17.1 (\((\text{CH}_3)_2\text{CHSi} \)), 16.7 (\((\text{CH}_3)_2\text{CHSi} \)), 16.7 (\((\text{CH}_3)_2\text{CHSi} \)), 13.1 (\(\text{SiCH(CH}_3)_2 \)), 11.9 (\(\text{SiCH(CH}_3)_2 \)) ppm.

HRMS (ESP⁺): calculated for \(\text{C}_{32}\text{H}_{41}\text{O}_5\text{Si}^+ \) ([M+H]⁺) \(m/z: 565.24385 \), found: 565.24455.
Methyl 4,6-O-di-tert-butylsilylene-α-D-glucopyranoside (S7)

To a stirred solution of methyl α-D-glucopyranoside (1.078 g, 5.552 mmol, 1.01 equiv) in anhydrous DMF (50 ml) was added 2,6-lutidine (1.80 ml, 15.5 mmol, 3 equiv) while cooling the flask to 0 °C with an ice bath. Then DTBS(OTf)$_2$ (1.80 ml, 5.52 mmol, 1 equiv) was added dropwise. The reaction was stirred at 0 °C for 45 minutes after which it was quenched with MeOH (1 ml, 24 mmol) and allowed to reach rt. The mixture was diluted with EtOAc (80 ml) and washed with H$_2$O (5 x 75 ml) and brine (1 x 75 ml), dried over MgSO$_4$, filtered, and concentrated *in vacuo*. Purification by flash column chromatography (1:2 EtOAc/heptane) yielded S7 (1.2745 g, 3.81 mmol, 69%) as a white foam.

$R_F = 0.15$ (1:1 EtOAc/heptane)

NMR is in accordance with litterature.

1H NMR (500 MHz, CDCl$_3$) δ 4.73 (1H, d, $J = 4.0$ Hz, H1), 4.11 (1H, dd, $J = 10.0$, 4.8 Hz, H6), 3.87 (1H, t, $J = 10.0$ Hz, H6), 3.73 - 3.57 (4H, m, H2-5), 3.45 (3H, s, CH$_3$O), 2.70 (1H, d, $J = 1.5$ Hz, C3-OH), 2.19 (1H, d, $J = 8.9$ Hz, C2-OH), 1.06 (9H, s, (CH$_3$)$_3$Si), 1.00 (9H, s, (CH$_3$)$_3$Si) ppm.

13C NMR (126 MHz, CDCl$_3$) δ 99.6 (C1), 77.3, 74.8, 72.3, 66.7 (C6), 66.2, 55.9 (CH$_3$O), 27.6 ((CH$_3$)$_3$Si), 27.1 ((CH$_3$)$_3$Si), 22.9 (SiC(CH$_3$)$_3$), 20.1 (SiC(CH$_3$)$_3$) ppm.

HRMS (ESP$^+$): calculated for C$_{15}$H$_{31}$O$_6$Si$^+$ ([M+H]$^+$) m/z: 335.18844, found: 335.18902.
Methyl 2,3-di-O-benzyl-4,6-O-di-tert-butylsilylene-α-D-glucopyranoside (S8)

To a solution of DTBS acetal S7 (202 mg, 0.604 mmol, 1 equiv) in anhydrous DMF (5 ml) was added powdered 3Å molecular sieves after which BnBr (0.25 ml, 2.1 mmol, 3.5 equiv) was added at rt. Then NaH (60% in mineral oil, 3 x 20 mg, 1.5 mmol, 2.5 equiv) was added in portions in 20-minute intervals while stirring at rt. After 30 minutes BnBr (0.15 ml, 1.3 mmol, 2.2 equiv) was added and NaH (60% in mineral oil, 2 x 30 mg, 1.5 mmol, 2.5 equiv) was added in portions in 20-minute intervals. The reaction was stirred at rt for 30 minutes after which it was quenched with Et₃N (0.50 ml, 3.6 mmol). The mixture was filtered through a Celite plug and the plug was flushed (60 ml, 2:1 EtOAc/heptane). The mixture was then washed with H₂O (5 x 50 ml) and brine (1 x 50 ml), dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification by flash column chromatography (1:8 EtOAc/heptane) yielded S8 as a colorless syrup (166.4 mg, 0.323 mmol, 54%).

Rₓ = 0.21 (1:8 EtOAc/heptane)

[α]²⁴D -4.1 (c 0.292 in CHCl₃)

¹H NMR (500 MHz, CDCl₃) δ 7.43 – 7.41 (2H, m, arom.), 7.36 – 7.27 (8H, m, arom.), 4.97 (1H, d, J = 11.0 Hz, CH₂Phₐ), 4.84 (2H, 2x d, Jₐ = 11.0 Hz, Jₐ = 12.1 Hz, CH₂Phₐ,b), 4.66 (1H, d, J = 12.1 Hz, CH₂Ph₂), 4.54 (1H, d, J = 3.8 Hz, H1), 4.08 (1H, dd, J = 9.9, 4.8 Hz, H6), 3.86 – 3.80 (3H, m, H3, H4, H6), 3.73 (1H, ddd, J = 13.3, 8.5, 4.8 Hz, H5), 3.47 – 3.44 (1H, m, H2), 3.39 (3H, s, CH₃O), 1.08 (9H, s, (CH₃)₃CₐSi), 1.01 (9H, s, (CH₃)₃CₐSi) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 139.2, 138.5, 128.5, 128.4, 128.3, 128.1, 127.9, 127.7, 99.1 (C1), 82.0, 78.8 (C2), 78.5, 75.9 (CH₂Phₐ), 73.9 (CH₂Phₐ,b), 67.0 (C6), 66.3 (C5), 55.6 (CH₃O), 27.6 ((CH₃)₃CₐSi), 27.2 ((CH₃)₃CₐSi), 22.8 (SiC(CH₃)₃), 20.1 (SiC(CH₃)₃) ppm.

HRMS (MALDI⁺): calculated for C₂₉H₄₂O₆SiNa⁺ ([M+Na]⁺) m/z: 537.26429, found: 537.26469.
Methyl 4,6-O-di-isopropylsilylene-α-d-glucopyranoside (5) / Methyl 3-O-hydroxy-di-isopropylsilyl-4,6-O-di-isopropylsilylene-α-d-glucopyranoside (6)

Methyl α-d-glucopyranoside (129 mg, 0.663 mmol, 1.2 equiv) and NaI (449 mg, 3.00 mmol, 5.4 equiv) were suspended in anhydrous MeCN (5 ml). Then 2,6-lutidine (0.17 ml, 1.5 mmol, 2.5 equiv) was added while stirring at rt, followed by addition of 1Pr2SiCl2 (0.10 ml, 0.55 mmol, 1 equiv). The flask was fitted with a reflux condenser and stirred while heating to 50 °C (oil bath) for 24 hours. Then the heating was terminated, and the reaction allowed to cool to rt after which the reaction was quenched by addition of MeOH (1 ml, 24 mmol). The mixture was diluted with EtOAc (10 ml), washed with sat. aqueous NaHCO3 (1 x 10 ml), aqueous Na2S2O3 (10% solution, 1 x 10 ml), H2O (1 x 10 ml) and brine (1 x 10 ml). The organic phase was dried over Na2SO4, filtered and concentrated in vacuo. Purification by flash column chromatography (1:3 EtOAc/heptane then 1:1 EtOAc/heptane) yielded 5 as a white powdery solid (97 mg, 0.32 mmol, 58%) and 6 as a colorless syrup (13 mg, 30 μmol, 5%).

Rf\(5) = 0.91 (65:35 CHCl3/MeOH), Rf\(6) = 0.98 (65:35 CHCl3/MeOH)

[α]\(^24\)D(5) 83.9 (c 0.412 in CHCl3)

\(^1\)H NMR (5) (500 MHz, CDCl3) δ 4.73 (1H, d, J = 3.9 Hz, H1), 4.11 – 4.08 (1H, m, H6), 3.87 – 3.83 (1H, m, H6), 3.72 (1H, app. br. t, J = 8.3 Hz, H3), 3.66 – 3.55 (3H, m, H2, H4, H5), 3.45 (3H, s, CH3O), 2.70 (1H, d, J = 1.7 Hz, C3-OH), 2.19 (1H, d, J = 9.1 Hz, C2-OH), 1.09 – 1.06 (7H, m, Si-iPr), 1.02 – 0.99 (7H, m, Si-iPr) ppm.

\(^13\)C NMR (5) (126 MHz, CDCl3) δ 99.6 (C1), 74.7 (C3), 72.3 (C2/4/5), 66.8, 66.3 (C6), 55.8 (CH3O), 17.2 ((CH3)2CHSi), 16.7 ((CH3)2CHSi), 16.6 ((CH3)2CHSi), 13.2 (SiCH(CH3)2), 11.9 (SiCH(CH3)2) ppm. One C missing due to overlap with solvent peak.

\(^1\)H NMR (6) (500 MHz, CDCl3) δ 4.74 (1H, d, J = 3.9 Hz, H1), 4.12 – 4.09 (1H, m, H6), 3.95 – 3.92 (1H, m, H3), 3.86 – 3.82 (1H, m, H6), 3.66 – 3.63 (2H, m, H4, H5), 3.54 (1H, ddd, J = 9.0, 7.5, 3.9 Hz, H2), 3.44 (3H, s, CH3O), 2.37 (1H, d, J = 7.5 Hz, C2-OH), 1.09 – 1.04 (20H, m, Si-iPr), 1.03 – 1.01 (8H, m, Si-iPr) ppm. Si-OH proton peak not observed.

\(^13\)C NMR (6) (126 MHz, CDCl3) δ 99.6 (C1), 77.5 (C4/5), 75.2 (C3), 73.1 (C2), 66.8, 66.5 (C6), 55.7 (CH3O), 17.3 ((CH3)2CHSi), 17.2 ((CH3)2CHSi), 17.1 ((CH3)2CHSi), 17.1 ((CH3)2CHSi), 16.6 ((CH3)2CHSi), 16.6 ((CH3)2CHSi), 13.1 (SiCH(CH3)2), 12.8 (SiCH(CH3)2), 12.6 (SiCH(CH3)2), 11.9 (SiCH(CH3)2) ppm.

HRMS (5) (ESP\(^+\)): calculated for C\(_{13}\)H\(_{27}\)O\(_6\)Si\(^+\) ([M+H\(^+\)]) \(m/z\): 307.15714, found: 307.15727.
HRMS (6) (ESP\(^{+}\)): calculated for C\(_{19}\)H\(_{41}\)O\(_3\)Si\(_2\)Na\(^{+}\) ([M+Na]\(^{+}\)) m/z: 459.22048, found: 459.22129.

Phenyl 2,3-di-O-benzyl-4,6-O-di-isopropylsilylene-β-D-thiogalactopyranoside (8) / **Phenyl 2,3-di-O-benzyl-4,6-O-(1,1,3,3-tetra-isopropyl-1,3-disiloxane-1,3-diyl)-β-D-thiogalactopyranoside (9)**

To a solution of S\(_9\) (202 mg, 0.446 mmol, 1 equiv) and NaI (219 mg, 1.46 mmol, 3 equiv) in anhydrous MeCN (4 ml) was added 2,6-lutidine (0.16 ml, 1.4 mmol, 3 equiv) while stirring at rt, followed by addition of \(^1\)Pr\(_2\)SiCl\(_2\) (0.09 ml, 0.5 mmol, 1.05 equiv). The reaction was stirred at 50 °C (oil bath) for 19 hours. The heating was terminated and once the reaction had cooled to rt it was quenched by addition of MeOH (1 ml). The mixture was then diluted with EtOAc (15 ml), and the organic phase was washed with H\(_2\)O (1 x 15 ml), Na\(_2\)S\(_2\)O\(_3\) (10% aqueous solution, 1 x 15 ml), H\(_2\)O (2 x 15 ml), and brine (1 x 15 ml). The organic phase was dried over Na\(_2\)SO\(_4\), filtered, and concentrated in vacuo. The mixture was purified by automated column chromatography (12g silica, 8-100% EtOAc/heptane) to yield 8 as a colorless syrup (182.8 mg, 0.324 mmol, 73%) and 9 as a colorless syrup (31.9 mg, 45.9 μmol, 10%).

\(R_f\) (8) = 0.23 (1:5 EtOAc/heptane), \(R_f\) (9) = 0.48 (1:5 EtOAc/heptane)

\([\alpha]^{24}_D\) (8) -8.6 (c 0.375 in CHCl\(_3\))

\(^1\)H NMR (8) (500 MHz, CDCl\(_3\)) \(\delta\) 7.57 – 7.54 (2H, m, arom.), 7.45 – 7.43 (2H, m, arom.), 7.41 – 7.39 (2H, m, arom.), 7.37 – 7.22 (9H, m, arom.), 4.89 (2H, s, CH\(_2\)Ph\(_a\)), 4.75 (2H, app. d, CH\(_2\)Ph\(_b\)), 4.64 (1H, d, J = 9.9 Hz, H1), 4.39 (1H, d, J = 2.9 Hz, H4), 4.20 (1H, dd, J = 12.3, 1.7 Hz, H6), 4.13 (1H, dd, J = 12.3, 2.3 Hz, H6), 3.85 (1H, app. t, J = 9.4 Hz, H2), 3.48 (1H, dd, J = 9.0, 2.9 Hz, H3), 3.30 (1H, app. br. t, J = 2.3 Hz, H5), 1.16 – 1.15 (3H, m, Si-SiPr), 1.11 – 1.09 (11H, m, Si-SiPr) ppm.

\(^{13}\)C NMR (8) (126 MHz, CDCl\(_3\)) \(\delta\) 138.6, 138.4, 134.5, 132.5, 128.9, 128.6, 128.5, 128.0, 127.9, 127.9, 127.5, 88.6 (C1), 83.0 (C3), 77.2 (C2), 76.1 (CH\(_2\)Ph\(_a\)), 75.1 (C5), 71.7 (CH\(_2\)Ph\(_b\)), 70.1 (C4), 67.0 (C6), 17.4 ((CH\(_3\))\(_2\)CHSi), 17.3 ((CH\(_3\))\(_2\)CHSi), 17.2 ((CH\(_3\))\(_2\)CHSi), 17.0 ((CH\(_3\))\(_2\)CHSi), 14.0 (SiCH(CH\(_3\))\(_2\)), 12.7 (SiCH(CH\(_3\))\(_2\)) ppm.

\(^1\)H NMR (9) (500 MHz, CDCl\(_3\)) \(\delta\) 7.56 – 7.54 (2H, m, arom.), 7.40 – 7.38 (2H, m, arom.), 7.34 – 7.21 (11H, m, arom.), 4.73 (1H, s, CH\(_2\)Ph), 4.72 (1H, s, CH\(_2\)Ph), 4.70 (2H, s, CH\(_2\)Ph),
4.59 (1H, d, \(J = 9.6 \text{ Hz}, \text{H}1 \)), 4.27 (1H, d, \(J = 2.8 \text{ Hz}, \text{H}4 \)), 3.88 – 3.82 (3H, m, \(\text{H}2, \text{H}6 \)), 3.58 – 3.49 (2H, m, \(\text{H}3, \text{H}5 \)), 1.14 – 0.97 (28H, m, \(\text{PrSi} \)) ppm.

\[^{13} \text{C NMR} (9) (126 \text{ MHz, CDCl}_3 \delta 138.5, 138.3, 134.1, 131.6, 129.0, 128.5, 128.4, 128.2, 127.8, 127.7, 127.2, 87.6 (C1), 82.9 (C3/5), 77.9, 76.5 (C2), 75.4 (CH\text{2Ph}), 73.3 (CH\text{2Ph}), 66.6 (C4), 59.4 (C6), 17.3 ((CH\text{3})\text{2CHSi}), 17.2 ((CH\text{3})\text{2CHSi}), 14.2 (SiCH(CH\text{3})\text{2}), 13.4 (SiCH(CH\text{3})\text{2}), 12.9 (SiCH(CH\text{3})\text{2}), 12.6 (SiCH(CH\text{3})\text{2}) \text{ ppm.} \]

HRMS (8) (ESP+): calculated for C\text{32}H\text{41}O\text{5}SSi+ ([M+H]+) \text{m/z}: 565.24385, found: 565.24624.

HRM (9) (MALDI+): calculated for C\text{38}H\text{55}O\text{6}SSi2+ ([M+H]+) \text{m/z}: 695.32524, found: 695.32684.

1,2-O-isopropylidene-3,5-O-di-isopropylsilylene-\(\alpha \)-D-glucofuranose (13)

![Reaction Scheme]

1,2-O-isopropylidene-\(\alpha \)-D-glucofuranose (397 mg, 1.80 mmol, 1 equiv), NaI (812 mg, 5.41 mmol, 3 equiv), and 3Å molecular sieves were suspended in anhydrous MeCN (8 ml). Then 2,6-lutidine (0.64 ml, 5.5 mmol, 3 equiv) was added while stirring at rt followed by addition of \(\text{Pr}_2\text{SiCl}_2 \) (0.34 ml, 1.9 mmol, 1.05 equiv). The reaction was stirred at 50 °C (oil bath) for 3 days. The heating was terminated and once the reaction had cooled to rt it was quenched by addition of MeOH (1 ml). The mixture was then diluted with EtOAc (15 ml) and filtered through a Celite plug and flushed with EtOAc. The organic phase was washed with H\text{2}O (1 x 25 ml), Na\text{2}S\text{2}O\text{3} (10%, 2 x 20 ml), H\text{2}O (2 x 20 ml), and brine (2 x 20 ml). The organic phase was dried over Na\text{2}SO\text{4}, filtered, and concentrated \textit{in vacuo}. Purification by automated column chromatography (12g silica, 22-100% EtOAc/heptane) yielded 13 as a colorless syrup (169 mg, 0.508 mmol, 28%).

\(R_f = 0.61 \) (1:1 EtOAc/heptane)

\([\alpha]^{24}_D = 22.3 \text{ (c 0.826 in CHCl}_3)\]

\(^1\text{H NMR} (500 \text{ MHz, CDCl}_3 \delta 5.91 (1H, d, \(J = 3.8 \text{ Hz}, \text{H}1 \)), 4.54 (1H, d, \(J = 3.8 \text{ Hz}, \text{H}2 \)), 4.43 (1H, d, \(J = 2.7 \text{ Hz}, \text{H}3 \)), 4.32 (1H, ddd, \(J = 7.0, 4.2, 2.3 \text{ Hz}, \text{H}5 \)), 4.08 (1H, app. t, \(J = 2.5 \text{ Hz}, \text{H}4 \)), 3.76 (1H, ddd, \(J = 11.3, 7.9, 4.2 \text{ Hz}, \text{H}6 \)), 3.67 (1H, ddd, \(J = 11.3, 7.0, 4.5 \text{ Hz}, \text{H}6 \)), 2.02 (1H, ddd, \(J = 7.9, 4.5 \text{ Hz}, \text{C6-OH} \)), 1.48 (3H, s, C(CH\text{3})\text{2,a}), 1.32 (3H, s, C(CH\text{3})\text{2,b}), 1.03 – 1.01 (14H, m, Si-\text{Pr}) \text{ ppm.} \)
\[^{13}\text{C NMR} \ (126 \text{ MHz}, \text{CDCl}_3) \ \delta \ 111.8 \ (\text{C}(\text{CH}_3)_2), \ 104.4 \ (\text{C}1), \ 86.0 \ (\text{C}2), \ 77.9 \ (\text{C}4), \ 76.1 \ (\text{C}3), \ 73.3 \ (\text{C}5), \ 26.8 \ ((\text{CH}_3)_2\text{C}_\alpha), \ 26.3 \ ((\text{CH}_3)_2\text{C}_\beta), \ 17.0 \ ((\text{CH}_3)_2\text{CHSI}), \ 17.0 \ ((\text{CH}_3)_2\text{CHSI}), \ 16.9 \ ((\text{CH}_3)_2\text{CHSI}), \ 16.8 \ ((\text{CH}_3)_2\text{CHSI}), \ 13.3 \ (\text{SiCH(CH}_3)_2), \ 13.2 \ (\text{SiCH(CH}_3)_2) \ \text{ppm}. \]

\[\text{HRMS (MALDI}^+\text{): calculated for } \text{C}_{15}\text{H}_{28}\text{O}_6\text{SiNa}^+ ([\text{M}+\text{Na}]^+) \text{ m/z: } 355.15474, \text{ found: } 355.15536. \]

Phenyl 2,3-di-O-benzyl-4,6-O-di-isopropylsilylene-\(\alpha\)-d-thiomannopyranoside (11)

![Chemical structure of Phenyl 2,3-di-O-benzyl-4,6-O-di-isopropylsilylene-\(\alpha\)-d-thiomannopyranoside (11)](image)

To a solution of the diol 10 (103 mg, 228 µmol, 1 equiv) and NaI (137 mg, 911 µmol, 4 equiv) in anhydrous MeCN (3 ml) was added 2,6-lutidine (79 µl, 239 µmol, 3 equiv) at rt, followed by addition of iPr\(_2\)SiCl\(_2\) (44 µl, 239 µmol, 1.05 equiv) and the reaction was heated to 50 °C (aluminum block) while stirring for 20 hours. The heating was terminated and once the reaction had cooled to rt it was quenched by the addition of MeOH (1 ml). The mixture was then diluted with EtOAc (15 ml), and the organic phase was washed with H\(_2\)O (1 x 15 ml), Na\(_2\)S\(_2\)O\(_3\) (10% aqueous solution, 1 x 15 ml), H\(_2\)O (2 x 15 ml), and brine (1 x 15 ml). The organic phase was dried over MgSO\(_4\), filtered, and concentrated in vacuo. Purification by flash column chromatography (0-100% EtOAc/heptane) yielded 11 as a colorless syrup (104 mg, 911 µmol, 81%)

\[R_f = 0.82 \text{ (1:1 EtOAc/heptane)} \]

\[^1\text{H NMR} \ (500 \text{ MHz, CDCl}_3) \ \delta \ 7.51 – 7.08 \ (15\text{H}, \text{ m, arom.}), \ 5.43 \ (1\text{H}, \text{ d, J = 1.7 Hz, H1}), \ 4.88 \ (1\text{H}, \text{ d, J = 12.3 Hz, CH}_2\text{Ph}), \ 4.77 – 4.65 \ (3\text{H}, \text{ m, CH}_2\text{Ph}), \ 4.39 \ (1\text{H}, \text{ td, J = 9.4, 1.5 Hz, H4}), \ 4.10 \ (1\text{H}, \text{ td, J = 9.7, 4.5 Hz, H5}), \ 4.07 – 4.00 \ (1\text{H}, \text{ m, H6}), \ 3.99 – 3.97 \ (2\text{H}, \text{ m, H2, H6}), \ 3.69 \ (1\text{H}, \text{ dd, J = 9.4, 3.1 Hz, H3}), \ 1.15 – 0.95 \ (14\text{H}, \text{ m, Si}^2\text{-Pr}) \ \text{ppm}. \]

\[^{13}\text{C NMR} \ (126 \text{ MHz, CDCl}_3) \ \delta \ 139.0, \ 138.1, \ 134.3, \ 131.4, \ 129.3, \ 128.5, \ 128.4, \ 128.2, \ 127.9, \ 127.7, \ 127.6, \ 127.6, \ 87.0 \ (\text{C}1), \ 78.8 \ (\text{C}3), \ 78.0 \ (\text{C}2), \ 75.0 \ (\text{C}4), \ 73.4 \ (\text{CH}_2\text{Ph}), \ 72.9 \ (\text{CH}_2\text{Ph}), \ 69.7 \ (\text{C}5), \ 66.2(\text{C}6), \ 17.2 \ ((\text{CH}_3)_2\text{CHSI}), \ 17.2((\text{CH}_3)_2\text{CHSI}), \ 16.9 \ ((\text{CH}_3)_2\text{CHSI}), \ 16.8 \ ((\text{CH}_3)_2\text{CHSI}), \ 13.2 \ (\text{SiCH(CH}_3)_2), \ 12.1 \ (\text{SiCH(CH}_3)_2) \ \text{ppm}. \]

\[\text{HRMS (MALDI}^+\text{): calculated for } \text{C}_{32}\text{H}_{40}\text{O}_5\text{Si}^+ ([\text{M}+\text{H}]^+) \text{ m/z: } 565.24385, \text{ found: } 565.24139. \]
Phenyl 2,3-di-O-benzyl-4-O-ethyl-di-isopropylsilyl-β-D-thioglycopyranoside (15)

![Chemical Structure]

To a solution of 3 (99 mg, 0.175 mmol, 1 equiv) in anhydrous THF (0.4 ml) under an Ar atmosphere was added EtMgBr (1 M in THF, 0.90 ml, 0.90 mmol, 5 equiv) and the reaction was stirred for 5 minutes. Then the solvent was evaporated by a stream of dry N₂ gas followed by addition of anhydrous PhMe (1.0 ml), and the reaction was stirred at 80 °C (aluminium block) for 20 hours after which the heating was terminated. Once the reaction had cooled to rt it was quenched by addition of saturated NH₄Cl (aq) (1 ml). The mixture was diluted with PhMe (5 ml) and the organic phase washed with H₂O (2 x 5 ml) and brine (2 x 5 ml), dried over Na₂SO₄, filtered and concentrated in vacuo. Purification by automated column chromatography (4g silica, 0-100% EtOAc/heptane) yielded 15 as a colorless syrup (22 mg, 37 μmol, 21%).

Rᵥ = 0.39 (1:1 EtOAc/heptane)

¹H NMR (500 MHz, CDCl₃) δ 7.51 – 7.49 (2H, m, arom.), 7.34 – 7.27 (13H, m, arom.), 5.06 (1H, d, J = 11.7 Hz, CH₂Pha), 4.91 (1H, d, J = 10.1 Hz, CH₂Phb), 4.81 – 4.77 (1H, m, H1), 4.72 (1H, d, J = 11.7 Hz, CH₂Pha), 4.61 (1H, d, J = 10.1 Hz, CH₂Phb), 3.89 (1H, ddd, J = 11.8, 7.0, 2.8 Hz, H6), 3.77 – 3.69 (2H, m, H3/4, H6), 3.54 – 3.49 (2H, m, H2, H3/4), 3.37 (1H, ddd, J = 9.0, 6.0, 2.8 Hz, H5), 1.95 (1H, t, J = 7.0 Hz, C6-CH₃), 1.00 – 0.93 (17H, m, Si-Pr, CH₃CH₂Si), 0.63 (2H, q, J = 7.6, 7.4 Hz, SiCH₂CH₃) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 138.9, 137.8, 134.0, 131.6, 129.2, 128.5, 128.3, 128.3, 128.0, 127.7, 127.3, 126.7, 87.7 (C1), 86.7 (C2/3/4), 82.0, 81.0 (C5), 75.3 (CH₂Phb), 74.9 (CH₂Pha), 71.1, 62.6 (C6), 18.0 ((CH₃)₂CHSi), 18.0 ((CH₃)₂CHSi), 17.9 ((CH₃)₂CHSi), 17.9 ((CH₃)₂CHSi), 13.2 (SiCH(CH₃)₂), 12.8 (SiCH(CH₃)₂), 7.5 (CH₃CH₂Si), 3.5 (SiCH₃CH₃) ppm.

HRMS (MALDI⁺): calculated for C₃₄H₄₆O₅SSiNa⁺ ([M+Na]⁺) m/z: 617.27274, found: 617.27411.
Phenyl 2,3-di-O-benzyl-4-O-di-isopropylmethyldisilyl-β-D-thioglucopyranoside (17) / Phenyl 2,3-di-O-benzyl-6-O-di-isopropylmethyldisilyl-β-D-thioglucopyranoside (18)

To a solution of 3 (103 mg, 0.183 mmol, 1 equiv) in anhydrous THF (0.4 ml) under an Ar atmosphere was added MeMgBr (3.0 M in Et₂O, 0.3 ml, 0.9 mmol, 5 equiv) and the reaction stirred at rt for 10 minutes. Then the solvents were evaporated by a stream of dry N₂ gas followed by addition of anhydrous PhMe (1.0 ml), and the reaction was stirred at rt for 3 days after which it was quenched by addition of saturated NH₄Cl (aq) (1 ml). The mixture was diluted with PhMe (4 ml) and the organic phase was washed with H₂O (2 x 5 ml) and brine (2 x 5 ml), dried over Na₂SO₄, filtered and concentrated in vacuo. Purification by automated column chromatography (4g silica, 0-100% EtOAc/heptane) yielded a mixture of 17 and 18 as a colorless syrup (38 mg, 65.2 μmol, 36%) in a ratio ≥1:0.3 of 17 to 18.

Rᵢ = 0.44 (1:1 EtOAc/heptane)

¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.50 (2H, m, arom.), 7.42 – 7.40 (1H, m, arom.), 7.37 – 7.27 (12H, m, arom.), 5.02 (1H, d, J = 11.7 Hz, CH₂Ph₃), 4.96 (1H, d, J = 10.1 Hz, CH₂Ph*), 4.90 (1H, d, J = 10.1 Hz, CH₂Phb), 4.78 – 4.75 (2H, m, CH₂Pha, H1), 4.63 (1H, d, J = 10.1 Hz, CH₂Phb), 3.88 (1H, dd, J = 11.7, 2.7 Hz, H6), 3.74 – 3.68 (2H, m, H3/4, H6), 3.54 – 3.48 (2H, m, H2, H3/H4), 3.35 (1H, tt, J = 6.0, 2.7 Hz, H5), 0.97 (7H, app. d, J = 4.4 Hz, Si-iPr), 0.92 (7H, app. d, J = 3.9 Hz, Si-iPr), 0.01 (3H, s, SiCH₃)

¹³C NMR (126 MHz, CDCl₃) δ 138.9, 138.4, 137.9, 137.9, 133.9, 133.7, 131.9, 131.6, 129.2, 128.9, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 128.0, 127.8, 127.7, 127.3, 126.8, 87.9 (*), 87.7 (C1), 86.8 (C₂/₃/₄), 86.2 (*), 81.8, 81.0 (*), 80.9 (C₅), 79.3 (*), 75.6 (*), 75.4 (CH₂Ph), 75.2 CH₂Ph, 71.1, 70.6 (*), 62.9 (*), 62.5 (C₆), 17.9 ((CH₃)₂CHSi), 17.8 ((CH₃)₂CHSi), 17.7 ((CH₃)₂CHSi), 17.6 ((CH₃)₂CHSi), 13.7 (SiCH(CH₃)₂), 13.3 (SiCH(CH₃)₂), -7.0 (SiCH₃) ppm.

The * designates NMR signals resulting from the minor product, the 18 regioisomer.

HRMS (ESP⁺): calculated for C₃₃H₄₅O₅SSi⁺ [(M+H)⁺] m/z: 581.27515, found: 581.27917.
Phenyl 6-O-acetyl-2,3-di-O-benzyl-4-O-di-isopropylmethysilyl-β-D-thioglucopyranoside (S11) / Phenyl 4-O-acetyl-2,3-di-O-benzyl-6-O-di-isopropylmethysilyl-β-D-thioglucopyranoside (S12)

The mixture of 17 and 18 (38 mg, 65 μmol) was dissolved in CH₂Cl₂ (1 ml) and then Ac₂O (0.50 ml, 5.2 mmol) and pyridine (0.50 ml, 6.2 mmol) was added while stirring at rt. The reaction was stirred at rt for 18 hours after which it was co-evaporated multiple times with PhMe to remove reagents. Yield not calculated.

Rᵥ = 0.52 (1:1 EtOAc/heptane)

¹H NMR (500 MHz, CDCl₃) δ 7.56 – 7.53 (2H, m, arom.), 7.40 – 7.39 (1H, m, arom.), 7.35 – 7.24 (12H, m, arom.), 5.05 – 5.01 (1H, m, CH₂Phₐ), 4.91 (1H, d, J = 10.0 Hz, CH₂Phₐ), 4.82 (1H, d, J = 11.4 Hz, CH₂Ph*), 4.75 – 4.70 (2H, m, CH₂Phₐ, H1), 4.66 (1H, d, J = 9.8 Hz, CH₂Ph*), 4.61 (1H, d, J = 10.0 Hz, CH₂Phₐ), 4.46 (1H, dd, J = 11.8, 2.2 Hz, H6), 4.14 (1H, dd, J = 11.8, 6.2 Hz, H6), 3.76 – 3.72 (1H, m, H3/4), 3.52 – 3.47 (3H, m, H2, H5), 2.08 (3H, s, CH₃C=O), 2.07 (3H, s, CH₃C=O*), 0.98 – 0.95 (7H, m, Si-iPr), 0.91 (7H, br. s, Si-i′Pr), -0.01 (3H, s, SiCH₃) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 170.8 (C(=O)CH₃), 169.7 (C(=O)CH₃*), 138.8, 138.1 (*), 137.9 (*), 137.9, 134.2, 133.3 (*), 132.4 (*), 131.8, 131.0 (*), 129.2 (*), 129.1 (*), 129.0, 128.6 (*), 128.5, 128.4 (*), 128.3, 128.3, 128.1 (*), 128.0, 128.0 (*), 127.9 (*), 127.6, 127.3, 126.8, 125.4 (*), 87.8 (C1), 87.7 (*), 86.7 (C2/3/4/5), 84.0 (*), 81.7, 80.7 (*), 78.6, 76.0 (*), 75.7 (*), 75.6 (*), 75.3 (CH₂Ph), 75.1 (CH₂Ph), 71.3, 69.9 (*), 63.8 (C6), 62.8 (*), 21.0 (CH₃C=O), 17.9 ((CH₃)₂CHSi), 17.7 ((CH₃)₂CHSi), 17.7 ((CH₃)₂CHSi), 17.6 ((CH₃)₂CHSi), 13.7 ((SiCH(CH₃)₂), 13.3 ((SiCH(CH₃)₂), -7.0 (SiCH₃) ppm. One too many aromatic signals observed from the minor product.

The * designates NMR signals resulting from the minor product, the S12 regioisomer.

HRMS (MALDI†): calculated for C₃₅H₄₆O₆SSiNa⁺ ([M+Na]⁺) m/z: 645.26766, found: 645.26992.
Phenyl 2,3-di-O-benzyl-4-O-di-isopropylmethysilyl-β-D-thiogalactopyranoside (19) / Phenyl 2,3-di-O-benzyl-6-O-di-isopropylmethysilyl-β-D-thiogalactopyranoside (20)

To a solution of 8 (26 mg, 46 μmol, 1 equiv) in anhydrous THF (0.2 ml) under an Ar atmosphere was added MeMgBr (3.0 M in Et2O, 0.08 ml, 0.24 mmol, 5 equiv) and the reaction was stirred at rt for 5 minutes. Then the solvents were evaporated by a stream of dry N2 gas followed by addition of anhydrous PhMe (0.25 ml). The reaction was stirred at rt for 4 hours after which it was quenched by addition of saturated NH4Cl (aq) (0.5 ml). The mixture was diluted with EtOAc (5 ml), and the organic phase was washed with H2O (3 x 5 ml) and brine (1 x 5 ml), dried over Na2SO4, filtered, and concentrated in vacuo. Purification by flash column chromatography (1:3 EtOAc/heptane, then 100% EtOAc) yielded 19 as a colorless syrup (3.5 mg, 6.0 μmol, 13%) and 20 as a colorless syrup (7.6 mg, 13 μmol, 29%).

Rf(19) = 0.53 (1:3 EtOAc/heptane), Rf(20) = 0.91 (1:3 EtOAc/heptane)

1H NMR (19) (500 MHz, CDCl3) δ 7.59 – 7.57 (2H, m, arom.), 7.38 – 7.36 (2H, m, arom.), 7.33 – 7.22 (11H, m, arom.), 4.74 – 4.67 (4H, m, CH2Ph), 4.62 (1H, d, J = 9.5 Hz, H1), 4.09 (1H, d, J = 2.6 Hz, H4), 3.94 (1H, dd, J = 11.2, 7.9 Hz, H6), 3.87 (1H, app. t, J = 9.4 Hz, H2), 3.64 (1H, br. dd, J = 11.2, 4.3 Hz, H6), 3.50 (1H, dd, J = 7.9, 4.3 Hz, H5), 3.45 (1H, dd, J = 9.2 Hz, 2.6 Hz, H3), 1.84 (1H, br. s, C6-OH), 1.00 – 0.96 (7H, m, Si-iPr), 0.93 (7H, app. t, J = 6.2 Hz, Si-iPr), 0.00 (3H, s, SiCH3) ppm. Signal missing from C2 due to overlap with solvent signal. One aromatic carbon signal not observed due to overlapping signals.

13C NMR (19) (126 MHz, CDCl3) δ 138.3, 138.1, 133.9, 131.6, 129.0, 128.5, 128.4, 128.1, 127.9, 127.8, 127.3, 87.4 (C1), 83.7 (C3), 80.2 (C5), 75.5 (CH2Ph), 73.8 (CH2Ph), 69.7 (C4), 63.1 (C6), 18.0 ((CH3)2CHSi), 17.9 ((CH3)2CHSi), 17.9 ((CH3)2CHSi), 17.8 ((CH3)2CHSi), 14.0 (Si(CH(CH3)2), -6.7 (SiCH3) ppm.

1H NMR (20) (500 MHz, CDCl3) δ 7.58 – 7.56 (2H, m, arom.), 7.42 – 7.40 (2H, m, arom.), 7.36 – 7.22 (11H, m, arom.), 4.82 (1H, d, J = 10.4 Hz, CH2Ph), 4.76 – 4.72 (3H, m, CH2Ph), 4.63 (1H, d, J = 9.8 Hz, H1), 4.12 (1H, d, J = 3.2 Hz, H4), 3.95 (1H, dd, J = 10.3, 6.2 Hz, H6), 3.88 (1H, dd, J = 10.3, 5.2 Hz, H6), 3.78 (1H, app. t, J = 9.4 Hz, H2), 3.56 (1H, dd, J = 8.9, 3.2 Hz, H3), 3.42 (1H, app. t, J = 5.7 Hz, H5), 2.72 (1H, br. s, C4-OH), 1.02 – 0.96 (14H, m, Si-iPr), 0.05 (3H, s, SiCH3) ppm.

13C NMR (20) (126 MHz, CDCl3) δ 138.4, 138.0, 134.2, 131.9, 129.0, 128.7, 128.5, 128.4, 128.1, 128.0, 127.9, 127.4, 88.0 (C1), 82.9 (C3), 78.2 (C5), 75.9 (CH2Ph), 72.2 (CH2Ph),
66.9 (C4), 63.0 (C6), 17.5 ((CH₃)₂CHSi), 17.5 ((CH₃)₂CHSi), 17.5 ((CH₃)₂CHSi), 13.0 (SiCH(CH₃)₂), 17.5 (SiCH(CH₃)₂), -8.5 (SiCH₃) ppm. Signal missing from C2 due to overlap with solvent signal.

HRMS (19) (MALDI⁺): calculated for C₃₃H₄₄O₅SiNa⁺ ([M+Na]⁺) m/z: 603.25709, found: 603.25813.

HRMS (20) (MALDI⁺): calculated for C₃₃H₄₅O₅Si⁺ ([M+H]⁺) m/z: 581.27515, found: 581.27624.

Phenyl 2,3-di-O-benzyl-4-O-di-isopropylmethylysilyl-α-D-thiomannopyranoside (21) / Phenyl 2,3-di-O-benzyl-6-O-di-isopropylmethylysilyl-α-D-thiomannopyranoside (22)

To a solution of 11 (97 mg, 172 μmol mmol, 1 equiv) in anhydrous THF (0.50 ml) under a N₂ atmosphere was added MeMgBr (3.0 M in Et₂O, 0.30 ml, 0.90 mmol, 5.2 equiv) and the reaction stirred at rt for 5 minutes. Then the solvents were evaporated by a stream of dry N₂ gas followed by addition of anhydrous PhMe (1.0 ml), and the reaction was stirred at rt for 1 hour. The reaction was then quenched by addition of sat. aq. NH₄Cl (2 ml), and then diluted with EtOAc (10 ml). The organic phase was washed with H₂O (3 x 10 ml) and brine (1 x 10 ml), dried over Na₂SO₄, filtered, and concentrated in vacuo.

Purification first by flash column chromatography (1:5 EtOAc/heptane) then product containing fractions purified again by flash column chromatography (1:8 EtOAc/heptane) yielded 22 as a colorless syrup (34.1 mg, 58.7 μmol, 34%) and 21 as a colorless syrup (8.5 mg, 14.6 μmol, 8%).

\[R_f(22) = 0.61 \ (1:3 \text{ EtOAc/heptane}) \]

\[R_f(21) = 0.53 \ (1:3 \text{ EtOAc/heptane}) \]

¹H NMR (22) (500 MHz, CDCl₃) δ 7.45 (2H, dt, J = 5.8, 1.7 Hz, arom.), 7.36 – 7.25 (13H, m, arom.), 5.57 (1H, d, J = 1.6 Hz, H1), 4.67 (1H, d, J = 12.2 Hz, CH₂Ph), 4.61 (1H, d, J = 11.9 Hz, CH₂Ph), 4.58 (1H, d, J = 11.9 Hz, CH₂Ph), 4.55 (1H, d, J = 12.2 Hz, CH₂Ph), 4.13 – 4.08 (2H, m, H4, H5), 3.98 (1H, dd, J = 3.0, 1.6 Hz, H2), 3.95 – 3.89 (2H, m, H6), 3.69 (1H, dd, J = 9.0, 3.0 Hz, H3), 2.84 (1H, s, C4-OH), 1.02 – 0.95 (14H, m, Si-Pr), 0.04 (3H, s, SiCH₃) ppm.
13C NMR (22) (126 MHz, CDCl$_3$) δ 138.2, 138.0, 134.7, 131.6, 129.1, 128.7, 128.5, 128.1, 128.0, 127.8, 127.5, 86.0 (C1), 79.7 (C3), 76.0 (C2), 73.3 (C4/5), 72.1 (CH$_2$Ph), 72.1 (CH$_2$Ph), 68.9, 64.4 (C6), 17.5 ((CH$_3$)$_2$CHSi), 17.5 ((CH$_3$)$_2$CHSi), 13.0 (SiCH(CH$_3$)$_2$)), -8.5 (SiCH$_3$) ppm.

1H NMR (21) (500 MHz, CDCl$_3$) δ 7.44 – 7.42 (2H, m, arom.), 7.37 – 7.25 (13H, m, arom.), 5.50 (1H, d, J = 2.5 Hz, H1), 4.61 – 4.54 (4H, m, CH$_2$Ph), 4.16 (1H, t, J = 8.8 Hz, H4), 4.05 (1H, ddd, J = 8.8, 5.3, 2.8 Hz, H5), 3.96 (1H, t, J = 2.5 Hz, H2), 3.83 (1H, dd, J = 11.5, 2.8 Hz, H6), 3.77 (1H, dd, J = 11.5, 5.3 Hz, H6), 3.64 (1H, dd, J = 8.8, 2.5 Hz, H3), 1.80 (1H, s, C6-OH), 1.00 – 0.97 (7H, m, Si-iPr), 0.95 – 0.93 (7H, m, Si-iPr), 0.03 (3H, s, SiCH$_3$) ppm.

13C NMR (21) (126 MHz, CDCl$_3$) δ 138.3, 138.2, 134.2, 132.1, 129.3, 128.3, 128.4, 127.8, 127.8, 127.7, 86.3 (C1), 80.7 (C3), 76.3 (C2), 75.0 (C5), 72.6 (CH$_2$Ph), 71.9 (CH$_2$Ph), 68.3 (C4), 62.5 (C6), 17.9 ((CH$_3$)$_2$CHSi), 17.8 ((CH$_3$)$_2$CHSi), 17.7 ((CH$_3$)$_2$CHSi), 17.7 ((CH$_3$)$_2$CHSi), 13.8 (SiCH(CH$_3$)$_2$)), 13.4 (SiCH(CH$_3$)$_2$)), -7.0 (SiCH$_3$) ppm.

HRMS (22) (ESP$^+$): calculated for C$_{33}$H$_{44}$O$_5$SiNa$^+$ ([M+Na]$^+$) m/z: 603.25709, found: 603.25667.

HRMS (21) (ESP$^+$): calculated for C$_{33}$H$_{44}$O$_5$SiNa$^+$ ([M+Na]$^+$) m/z: 603.25709, found: 603.25642.
To a solution of 11 (116 mg, 206 μmol mmol, 1 equiv) in anhydrous THF (0.50 ml) under a N₂ atmosphere was added EtMgBr (1.0 m in THF, 1.0 ml, 1.0 mmol, 4.9 equiv) and the reaction stirred at rt for 5 minutes. Then the solvents were evaporated by a stream of dry N₂ gas followed by addition of anhydrous PhMe (1.0 ml), and the reaction was stirred at rt for 40 minutes. The reaction was then quenched by addition of sat. aq. NH₄Cl (2 ml), and then diluted with EtOAc (10 ml). The organic phase was washed with H₂O (3 x 10 ml) and brine (1 x 10 ml), dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification by flash column chromatography (1:8 EtOAc/heptane) yielded 24 as a colorless syrup (24.2 mg, 40.7 μmol, 20%) and 23 as a colorless syrup (21.6 mg, 36.3 μmol, 18%).

Rᵣ(24) = 0.71 (1:3 EtOAc/heptane)

Rᵣ(23) = 0.66 (1:3 EtOAc/heptane)

¹H NMR (24) (500 MHz, CDCl₃) δ 7.46 – 7.44 (2H, m, arom.), 7.36 – 7.25 (13H, m, arom.), 5.56 (t, H, J = 1.6 Hz, H1), 4.67 (t, H, d, J = 12.2 Hz, CH₂Ph), 4.61 (2H, s, CH₂Ph), 4.56 (t, H, d, J = 12.2 Hz, CH₂Ph), 4.13 – 4.11 (2H, m, H4, H5), 3.98 (t, H, dd, J = 3.0, 1.6 Hz, H2), 3.96 – 3.91 (2H, m, H6), 3.72 – 3.69 (t, H, m, H3), 2.94 (t, H, d, J = 12.2 Hz, CH₂Ph), 2.2 (t, H, dd, J = 3.0, 1.6 Hz, CH₂Ph), 1.04 – 0.99 (17H, m, Si-iPr, CH₃CH₂Si), 0.68 (2H, q, J = 8.0 Hz, SiCH₂CH₃) ppm.

¹³C NMR (24) (126 MHz, CDCl₃) δ 138.2, 138.0, 134.7, 131.7, 129.1, 128.6, 128.5, 128.1, 128.0, 128.0, 127.8, 127.5, 86.1 (C1), 79.6 (C3), 76.1 (C2), 73.2 (C4/s), 72.2 (CH₂Ph), 72.2 (CH₂Ph), 69.3, 64.8 (C6), 17.8 ([CH₃]₂CHSi), 12.4 ([SiCH(CH₃)]₂), 12.3 ([SiCH(CH₃)]₂), 7.3 (CH₃CH₂Si), 2.2 (SiCH₂CH₃) ppm.

¹H NMR (23) (500 MHz, CDCl₃) δ 7.45 – 7.43 (2H, m, arom.), 7.36 – 7.25 (13H, m, arom.), 5.52 (t, H, d, J = 2.5 Hz, H1), 4.60 (t, H, d, J = 12.0 Hz, CH₂Ph), 4.59 (t, H, d, J = 11.7 Hz, CH₂Ph), 4.54 (t, H, d, J = 12.0 Hz, CH₂Ph), 4.53 (t, H, d, J = 11.7 Hz, CH₂Ph), 4.20 (t, H, t, J = 8.7 Hz, H4), 4.06 (t, H, dd, J = 8.7, 5.3, 2.7 Hz, H5), 3.99 (t, H, t, J = 2.5 Hz, H2), 3.85 (t, H, dd, J = 11.7, 2.7 Hz, H6), 3.80 (t, H, dd, J = 11.7, 5.3 Hz, H6), 3.65 (t, H, dd, J = 8.7, 2.5 Hz, H3), 1.82 (t, H, s, C6-OH), 1.04 – 0.95 (17H, m, Si-iPr, CH₃CH₂Si), 0.69 – 0.59 (2H, m consisting of two dq, J = 11.6, 8.1, 7.6 Hz, SiCH₂CH₃) ppm.

¹³C NMR (23) (126 MHz, CDCl₃) δ 138.3, 138.2, 134.2, 132.1, 129.3, 128.5, 128.4, 127.8, 127.8, 127.7, 127.7, 86.2 (C1), 80.8 (C3), 76.1 (C2), 75.1 (C5), 72.5 (CH₂Ph), 71.7
(CH$_2$Ph), 68.4 (C4), 62.5 (C6), 18.1 ((CH$_3$)$_2$CHSi), 18.0 ((CH$_3$)$_2$CHSi), 18.0 ((CH$_3$)$_2$CHSi), 17.9 ((CH$_3$)$_2$CHSi), 13.1 (SiCH(CH$_3$)$_2$), 12.8 (SiCH(CH$_3$)$_2$), 7.5 (CH$_3$CH$_2$Si), 3.4 (SiCH$_2$CH$_3$) ppm.

HRMS (24) (ESP$^+$): calculated for C$_{34}$H$_{46}$O$_5$SSiNa$^+$ ([M+Na]$^+$) m/z: 617.27274, found: 617.27224.

HRMS (23) (ESP$^+$): calculated for C$_{34}$H$_{46}$O$_5$SSiNa$^+$ ([M+Na]$^+$) m/z: 617.27274, found: 617.27215.
4 NMR Spectra of Characterized Compounds

NMR spectra of 1

\(^1H \) NMR spectrum (500 MHz, CDCl\(_3\), 298K) of 1.

\(^13C \) NMR spectrum (126 MHz, CDCl\(_3\), 298K) of 1.
NMR spectra of S3

1H NMR spectrum (500 MHz, D$_2$O, 298K) of S3.

13C NMR spectrum (126 MHz, D$_2$O, 298K) of S3.
NMR spectra of S4

1H NMR spectrum (500 MHz, CDCl$_3$, 298K) of S4.

13C NMR spectrum (126 MHz, CDCl$_3$, 298K) of S4.
NMR spectra of S5

1H NMR spectrum (500 MHz, CDCl$_3$, 298K) of S5.

13C NMR spectrum (126 MHz, CDCl$_3$, 298K) of S5.
NMR spectra of S8

1H NMR spectrum (500 MHz, CDCl$_3$, 298K) of S8.

13C NMR spectrum (126 MHz, CDCl$_3$, 298K) of S8.
1H–1H COSY spectrum (500 MHz, CDCl$_3$, 298K) of S8.

1H–13C HSQC spectrum (500 / 126 MHz, CDCl$_3$, 298K) of S8.
NMR spectra of S7

\[^1H \text{ NMR spectrum (500 MHz, CDCl}_3, 298K) \text{ of S7.} \]

\[^13C \text{ NMR spectrum (126 MHz, CDCl}_3, 298K) \text{ of S7.} \]
NMR spectra of 5

1H NMR spectrum (500 MHz, CDCl₃, 298K) of 5.

13C NMR spectrum (126 MHz, CDCl₃, 298K) of 5.
1H1H COSY spectrum (500 MHz, CDCl$_3$, 298K) of 5.

1H13C HSQC spectrum (500 / 126 MHz, CDCl$_3$, 298K) of 5.
NMR spectra of 6

1H NMR spectrum (500 MHz, CDCl$_3$, 298K) of 6.

13C NMR spectrum (126 MHz, CDCl$_3$, 298K) of 6.
$^{1}\text{H} - ^{1}\text{H}$ COSY spectrum (500 MHz, CDCl$_3$, 298K) of 6.

$^{1}\text{H} - ^{13}\text{C}$ HSQC spectrum (500 / 126 MHz, CDCl$_3$, 298K) of 6.
NMR spectra of 2

1H NMR spectrum (500 MHz, CDCl$_3$, 298K) of 2.

13C NMR spectrum (126 MHz, CDCl$_3$, 298K) of 2.
NMR spectra of 3

1H NMR spectrum (500 MHz, CDCl$_3$, 298K) of 3.

13C NMR spectrum (126 MHz, CDCl$_3$, 298K) of 3.
1H–1H COSY spectrum (500 MHz, CDCl$_3$, 298K) of 3.

1H–13C HSQC spectrum (500 / 126 MHz, CDCl$_3$, 298K) of 3.
NMR spectra of 8

1H NMR spectrum (500 MHz, CDCl$_3$, 298K) of 8.

13C NMR spectrum (126 MHz, CDCl$_3$, 298K) of 8.
1H-1H COSY spectrum (500 MHz, CDCl$_3$, 298K) of 8.

1H-13C HSQC spectrum (500 / 126 MHz, CDCl$_3$, 298K) of 8.
NMR spectra of 9

1H NMR spectrum (500 MHz, CDCl$_3$, 298K) of 9.

13C NMR spectrum (126 MHz, CDCl$_3$, 298K) of 9.
1H-1H COSY spectrum (500 MHz, CDCl$_3$, 298K) of 9.

1H-13C HSQC spectrum (500 / 126 MHz, CDCl$_3$, 298K) of 9.
NMR spectra of 11

1H NMR spectrum (500 MHz, CDCl$_3$, 298K) of 11.

13C NMR spectrum (126 MHz, CDCl$_3$, 298K) of 11.
$^1\text{H} - ^1\text{H}$ COSY spectrum (500 MHz, CDCl$_3$, 298K) of 11.

$^1\text{H} - ^{13}\text{C}$ HSQC spectrum (500/126 MHz, CDCl$_3$, 298K) of 11.
NMR spectra of 13

1H NMR spectrum (500 MHz, CDCl₃, 298K) of 13.

13C NMR spectrum (126 MHz, CDCl₃, 298K) of 13.
1H−1H COSY spectrum (500 MHz, CDCl$_3$, 298K) of 13.

1H−13C HSQC spectrum (500 / 126 MHz, CDCl$_3$, 298K) of 13.
NMR spectra of 15

1H NMR spectrum (500 MHz, CDCl$_3$, 298K) of 15.

13C NMR spectrum (126 MHz, CDCl$_3$, 298K) of 15.
1H-1H COSY spectrum (500 MHz, CDCl$_3$, 298K) of 15.

1H-13C HSQC spectrum (500 / 126 MHz, CDCl$_3$, 298K) of 15.
NMR spectra of 17 & 18 (15 being the major component)

1H NMR spectrum (500 MHz, CDCl$_3$, 298K) of 17 & 18.

13C NMR spectrum (126 MHz, CDCl$_3$, 298K) of 17 & 18.
1H-1H COSY spectrum (500 MHz, CDCl$_3$, 298K) of 17 & 18.

1H-13C HSQC spectrum (500 / 126 MHz, CDCl$_3$, 298K) of 17 & 18.
NMR spectra of S11 & S12 (S11 being the major component)

\[1^1H\text{ NMR spectrum (500 MHz, CDCl}_3, 298K)\text{ of S11 & S12.}\]

\[1^3C\text{ NMR spectrum (126 MHz, CDCl}_3, 298K)\text{ of S11 & S12.}\]
1H-1H COSY spectrum (500 MHz, CDCl$_3$, 298K) of S11 & S12.

1H-13C HSQC spectrum (500 / 126 MHz, CDCl$_3$, 298K) of S11 & S12.
NMR spectra of 19

^1^H NMR spectrum (500 MHz, CDCl$_3$, 298K) of 19.

^1^C NMR spectrum (126 MHz, CDCl$_3$, 298K) of 19.
1H-1H COSY spectrum (500 MHz, CDCl$_3$, 298K) of 19.

1H-13C HSQC spectrum (500 / 126 MHz, CDCl$_3$, 298K) of 19.
NMR spectra of 20

1H NMR spectrum (500 MHz, CDCl$_3$, 298K) of 20.

13C NMR spectrum (126 MHz, CDCl$_3$, 298K) of 20.
1H-1H COSY spectrum (500 MHz, CDCl$_3$, 298K) of 20.

1H-13C HSQC spectrum (500 / 126 MHz, CDCl$_3$, 298K) of 20.
NMR spectra of 22

\(^1\)H NMR spectrum (500 MHz, CDCl\(_3\), 298K) of 22.
13C NMR spectrum (126 MHz, CDCl$_3$, 298K) of 22.

1H-1H COSY spectrum (500 MHz, CDCl$_3$, 298K) of 22.

1H-13C HSQC spectrum (500 / 126 MHz, CDCl$_3$, 298K) of 22.
1H-1H TOCSY spectrum (500 MHz, CDCl$_3$, 298K) of 22.
NMR spectra of 21

\[\text{H NMR spectrum (500 MHz, CDCl}_3, 298K) \text{ of 21.} \]

\[\text{C NMR spectrum (126 MHz, CDCl}_3, 298K) \text{ of 21.} \]
1H1H COSY spectrum (500 MHz, CDCl$_3$, 298K) of 21.

1H13C HSQC spectrum (500 / 126 MHz, CDCl$_3$, 298K) of 21.
1H-1H TOCSY spectrum (500 MHz, CDCl$_3$, 298K) of 21.
NMR spectra of 24

1H NMR spectrum (500 MHz, CDCl$_3$, 298K) of 24.

13C NMR spectrum (126 MHz, CDCl$_3$, 298K) of 24.
1H-1H COSY spectrum (500 MHz, CDCl$_3$, 298K) of 24.

1H-13C HSQC spectrum (500 / 126 MHz, CDCl$_3$, 298K) of 24.
1H-1H TOCSY spectrum (500 MHz, CDCl$_3$, 298K) of 24.
NMR spectra of 23

\[\text{H NMR spectrum (500 MHz, CDCl}_3, 298K) \text{ of 23.} \]

\[\text{C NMR spectrum (126 MHz, CDCl}_3, 298K) \text{ of 23.} \]
1H-1H COSY spectrum (500 MHz, CDCl$_3$, 298K) of 23.

1H-13C HSQC spectrum (500 / 126 MHz, CDCl$_3$, 298K) of 23.
1H-1H TOCSY spectrum (500 MHz, CDCl$_3$, 298K) of 23.
5 Solubility of selected alkali metal halides

Solubility of selected alkali metal halides in some common organic solvents. Values are grams of salt per 100 grams of solvent. Obtained from J. Burgess, *Metal Ions in Solution*, Ellis Horwood Limited, Chichester, 1978.

<table>
<thead>
<tr>
<th></th>
<th>Methanol</th>
<th>Sulfolane</th>
<th>Acetonitrile</th>
<th>Acetone</th>
<th>DMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiCl</td>
<td>21.0</td>
<td>1.5</td>
<td>0.14</td>
<td>0.83</td>
<td>11</td>
</tr>
<tr>
<td>NaCl</td>
<td>1.40</td>
<td>5.0·10⁻³</td>
<td>3.0·10⁻⁴</td>
<td>4.2·10⁻⁵</td>
<td>0.04</td>
</tr>
<tr>
<td>KCl</td>
<td>0.53</td>
<td>4.0·10⁻³</td>
<td>2.4·10⁻⁴</td>
<td>9.1·10⁻⁵</td>
<td>0.017</td>
</tr>
<tr>
<td>NaI</td>
<td>62.5</td>
<td>N/A</td>
<td>24.9</td>
<td>28.0</td>
<td>3.7</td>
</tr>
</tbody>
</table>
6 NMR experiments to study the “Silyl-Finkelstein” reaction mechanism

Zoom of stacked 29Si-DEPT NMR spectra (99 MHz, CD$_3$CN, 300K) with internal Me$_4$Si as reference. a) DIPSCl$_2$. b) DIPSCl$_2$ with NaI added. c) 0.2 M DIPSCl$_2$. d) 0.1 M DIPSCl$_2$. The peak at 14.9 ppm is from the reaction of DIPSCl$_2$ with water from the air.

Zoom of stacked 1H NMR spectra (500 MHz, CD$_3$CN) of a) 1,2-isopropylidene-α-D-glucofuranose with sequential addition of b) 2,6-lutidine, c) NaI, d) DIPSCl$_2$. e) purified 11. Spectra a, b, and e obtained at 298K, spectra c and d obtained at 300K. Signals assigned to H6 protons are circled in red.
1H-13C HSQC spectrum (500 / 126 MHz, CD$_3$CN, 300K) of mixture of 1,2-O-isopropylidene-β-glucofuranose, 2,6-lutidine, NaI, and DIPSCl$_2$ (d from above).
Zoom of stacked 1H NMR spectra (500 MHz, CD$_3$CN, 300K) of a) 2,6-lutidine, b) 2,6-lutidine and DIPSCI$_2$ right after addition of DIPSCI$_2$, c) 2,6-lutidine and DIPSCI$_2$ 18 hours after addition of DIPSCI$_2$, d) 2,6-lutidine and DIPSCI$_2$ 22 hours after addition of DIPSCI$_2$, e) 2,6-lutidine, DIPSCI$_2$, and NaI right after addition of NaI, f) 2,6-lutidine, DIPSCI$_2$, and NaI 18 hours after addition of NaI, g) 2,6-lutidine, DIPSCI$_2$, and NaI 22 hours after addition of NaI, h) 2,6-lutidine, DIPSCI$_2$, and NaI 42 hours after addition of NaI, i) 2,6-lutidine, DIPSCI$_2$, and NaI 72 hours after addition of NaI.
Zoom of stacked 13C NMR spectra (126 MHz, CD$_3$CN, 300K) of a) 2,6-lutidine, b) 2,6-lutidine and DIPSCI$_2$ right after addition of DIPSCI$_2$, c) 2,6-lutidine and DIPSCI$_2$ 18 hours after addition of DIPSCI$_2$, d) 2,6-lutidine and DIPSCI$_2$ 22 hours after addition of DIPSCI$_2$, e) 2,6-lutidine, DIPSCI$_2$, and NaI right after addition of NaI, f) 2,6-lutidine, DIPSCI$_2$, and NaI 18 hours after addition of NaI, g) 2,6-lutidine, DIPSCI$_2$, and NaI 22 hours after addition of NaI, h) 2,6-lutidine, DIPSCI$_2$, and NaI 42 hours after addition of NaI, i) 2,6-lutidine, DIPSCI$_2$, and NaI 72 hours after addition of NaI.
Zoom of stacked 1H NMR spectra (500 MHz, CD3CN, 298K) of a) diol 1, b) crude mixture of the “silyl Finkelstein” type reaction of diol 1 with dichlorodiphenylsilane, c) recovered impure diol 2 from flash column chromatography on aluminium oxide.
Zoom of stacked 1H-NMR spectra (500 MHz, CD$_3$CN) of a) 1,2-isopropylidene-α-D-glucofuranose, b) The reaction mixture for synthesis of 19 obtained directly after addition of DIPSCI$_2$, c) Reaction mixture after 110 minutes at rt, d) Reaction mixture heated at 50 °C for 45 minutes, e) Reaction mixture heated at 50 °C for 105 minutes, f) Reaction mixture heated at 50 °C overnight, g) Reaction mixture ultra-sonicated for 160 minutes while heating at 50 °C, h) Reaction mixture heated at 50 °C for another 4 days, i) Reaction mixture after being left at rt for another 9 days, j) purified 13. All spectra were obtained at 300K, except for spectra a and j which were obtained at 298K.
8 References

