Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

For

Synthesis, characterization and photophysical studies of dual emissive base-modified fluorescent nucleosides

Aditi Arora,^a Sumit Kumar,^a Sandeep Kumar,^{a,b} Amita Dua^c and Brajendra K. Singh^{*,a}
^aBioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007
^bDepartment of Chemistry, Ramjas College, University of Delhi, Delhi-110007
^cDepartment of Chemistry, Dyal Singh College, University of Delhi, Delhi-110007

*Corresponding Author: Brajendra K Singh, Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India; E-mail:

singhbk@chemistry.du.ac.in.

Experimental Part and NMR Spectra

Table of Contents

Experimental Details	4
General method for the synthesis of compounds 6a-f	4-5
General method for the synthesis of compounds 12a-f and 13a-f	8-9
General method for the synthesis of compounds 14a-f and 15a-f	20-21
¹ H and ¹³ C NMR Spectra of compound 6a	33
¹ H- ¹ H COSY and ¹ H- ¹³ C HETCOR NMR Spectra of compound 6a	34
DEPT-135 NMR Spectra of compound 6a and ¹ H NMR Spectra of compound 6b	35
¹³ C NMR Spectra of compound 6b and ¹ H NMR Spectra of compound 6c	36
¹³ C NMR Spectra of compound 6c and ¹ H NMR Spectra of compound 6d	37
¹³ C NMR Spectra of compound 6d and ¹ H NMR Spectra of compound 6e	38
¹³ C NMR Spectra of compound 6e and ¹ H NMR Spectra of compound 6f	39
¹³ C NMR Spectra of compound 6f and ¹ H NMR Spectra of compound 12a	40
¹³ C and ¹ H- ¹ H COSY NMR Spectra of compound 12a	41
¹ H- ¹³ C HETCOR and DEPT-135 NMR Spectra of compound 12a	42
¹ H and ¹³ C NMR Spectra of compound 12b	43
¹ H and ¹³ C NMR Spectra of compound 12c	44
¹ H and ¹³ C NMR Spectra of compound 12d	45
¹ H and ¹³ C NMR Spectra of compound 12e	46
¹ H and ¹³ C NMR Spectra of compound 12f	47
¹ H and ¹³ C NMR Spectra of compound 13a	48
¹ H and ¹³ C NMR Spectra of compound 13b	49
¹ H and ¹³ C NMR Spectra of compound 13c	50
¹ H and ¹³ C NMR Spectra of compound 13d	51
¹ H and ¹³ C NMR Spectra of compound 13e	52
¹ H- ¹ H COSY and ¹ H- ¹³ C HETCOR NMR Spectra of compound 13e	53
DEPT-135 NMR Spectra of compound 13e and ¹ H NMR Spectra of compound 13f	54
¹³ C NMR Spectra of compound 13f and ¹ H NMR Spectra of compound 14a	55
¹³ C NMR Spectra of compound 14a and ¹ H NMR Spectra of compound 14b	56
¹³ C and ¹ H- ¹ H COSY NMR Spectra of compound 14b	57
¹ H- ¹³ C HETCOR and D ₂ O Exchange NMR Spectra of compound 14b	58
¹ H and ¹³ C NMR Spectra of compound 14c	59
¹ H and ¹³ C NMR Spectra of compound 14d	60

61
62
63
64
65
66
67
68
69
70
70
71
71-76
76-77
77

1. Experimental

All chemicals and solvents were purchased from Alfa-Aesar by Thermo Fischer Scientific, India Pvt. Limited, Sigma-Aldrich Chemicals Pvt. Limited India and from local commercial sources, and were used without any further purification unless otherwise specified. Solvents for column chromatography were dried and distilled prior to use. Solvents were removed under reduced pressure using rotary evaporator, followed by further removal of the residual solvent under high vacuum. Column chromatography was performed on silica gel (100-200 mesh). Melting points were determined on Buchi M-560 instrument and are uncorrected. HRMS analysis was carried out using Agilent G6530AA LC Q-TOF mass spectrometer using ESI method. The IR spectra of compounds were recorded on Perkin-Elmer model 2000 FT-IR spectrometer and are expressed as wavenumber (cm⁻¹). R_f values of compounds are reported from analytical TLC study using the specified solvents and 0.25 mm silica gel 60 F₂₅₄ plates that were visualized by UV irradiation or by charring with 5% alcoholic sulfuric acid solution. The ¹H- and the ¹³C- and other 2D NMR spectra were recorded on JEOL alpha-400 and Bruker-Avance Neo 400 FT-NMR spectrometers by using tetramethylsilane (TMS) as internal standard. The chemical shift values are on δ scale and the coupling constant (J) are in Hz. Absorption spectra were recorded between 200 nm and 600 nm using a Perkin-Elmer UV/Vis spectrometer Lambda 45 at scan speed 240 nm/min. All measurements were carried out in PEUV/ Vis Spectroscopy cells (1 cm). HPLC grade solvents were used for all solution preparation.

1.1. General method for the synthesis of 4-(azidomethyl)-N⁹-(4'-aryl)-9,10-dihydro-2H,8Hchromeno[8,7-e][1,3]oxazin-2-one (6a-f)

A solution of primary amine **5a-f** (1.1 mmol) in dioxane (5 mL) was treated with formalin solution (2.5 mmol). The resulting mixture was stirred at room temperature for 3-5 h. Subsequently, 7-hydroxy-4-azidomethylcoumarin **4** (1 mmol) and a catalytic amount of DMAP was added to the reaction mixture. The reaction was then stirred at 100°C until the complete consumption of the reactant (the progress of the reaction was examined by thin layer chromatography). After completion of the reaction, the solvent was evaporated under reduced pressure and the crude product was purified by using silica gel column chromatography using ethyl acetate and hexane as the solvent system to attain the desired compounds **6a-f** in 72-86% yields.

1.1.1 4-(azidomethyl)- N^9 -(4'-methoxyphenyl)-9,10-dihydro-2H,8H-chromeno[8,7e][1,3]oxazin-2-one (6a)

It was obtained as a yellow solid. Yield: 0.28 g (78%). R_f = 0.48 (30% ethyl acetate in petroleum ether); Melting Point = 140-142 °C; IR (KBr, cm⁻¹): 2116, 1732, 1517, 1412, 1298, 1143, 1057, 926, 781, 719; ¹H NMR (CDCl₃, 400MHz): δ 7.29 (d, J = 8.8 Hz, 1H, ArH), 7.10-7.07 (m, 2H, ArH), 6.82-6.79 (m, 3H, ArH), 6.33 (s, 1H, C-3H), 5.38 (s, 2H, CH₂), 4.73 (s, 2H, CH₂), 4.47 (d, J = 1.0 Hz, 2H, CH₂N₃), 3.74 (s, 3H, OCH₃); ¹³C NMR (CDCl₃, 100MHz): δ 160.5 (C=O), 158.0 (ArC), 155.4 (ArC), 151.6 (ArC), 149.2 (ArC), 141.7 (ArC), 122.8 (ArC), 120.8 (ArC), 114.6 (ArC), 114.1 (ArC), 111.1 (ArC), 110.5 (C-3), 109.3 (ArC), 81.1 (CH₂), 55.6 (OCH₃), 50.8 (CH₂N₃), 46.9 (CH₂); HRMS (ESI): m/z calculated for C₁₉H₁₇N₄O₄⁺ [M+H]⁺ : 365.1250, found: 365.1255.

1.1.2. 4-(azidomethyl)-N⁹-(4'-chlorophenyl)-9,10-dihydro-2H,8H-chromeno[8,7e][1,3]oxazin-2-one (6b)

It was obtained as a yellow solid. Yield: 0.28 g (75%). $R_f = 0.52$ (30% ethyl acetate in petroleum ether); Melting Point = 134-136 °C; IR (KBr, cm⁻¹): 2100, 1715, 1591, 1488, 1360, 1307, 1248, 1157, 1091, 916, 796, 713; ¹H NMR (CDCl₃, 400MHz): δ 7.31 (d, J = 8.8 Hz, 1H, ArH), 7.22

(d, J = 8.7 Hz, 2H, ArH), 7.06 (d, J = 8.7 Hz, 2H, ArH), 6.79 (d, J = 8.8 Hz, 1H, ArH), 6.35 (s, 1H, C-3H), 5.40 (s, 2H, CH₂), 4.78 (s, 2H, CH₂), 4.48 (d, J = 1.0 Hz, 2H, CH₂N₃); ¹³C NMR (CDCl₃, 100MHz): δ 160.2 (C=O), 157.7 (ArC), 151.5 (ArC), 149.0 (ArC), 146.4 (ArC), 129.3 (ArC), 127.3 (ArC), 123.0 (ArC), 119.9 (ArC), 114.0 (ArC), 111.3 (ArC), 110.7 (C-3), 109.0 (ArC), 79.8 (CH₂), 50.8 (CH₂N₃), 46.5 (CH₂); HRMS (ESI): m/z calculated for C₁₈H₁₄ClN₄O-⁺ [M+H]⁺ : 369.0754, found: 369.0772.

1.1.3. 4-(azidomethyl)-N⁹-(4'-fluorophenyl)-9,10-dihydro-2H,8H-chromeno[8,7e][1,3]oxazin-2-one (6c)

It was obtained as a yellow solid. Yield: 0.25 g (72%). R_f = 0.53 (30% ethyl acetate in petroleum ether); Melting Point = 124 °C; IR (KBr, cm⁻¹): 2118, 1711, 1556, 1414, 1336, 1222, 1154, 1071, 879, 743;¹H NMR (CDCl₃, 400MHz): δ 7.30 (d, J = 8.8 Hz, 1H, ArH), 7.08 (dd, J = 9.1 Hz, 4.6 Hz, 2H, ArH), 6.94-6.79 (m, 2H, ArH), 6.78 (d, J = 8.8 Hz, 1H, ArH), 6.33 (s, 1H, C-3H), 5.36 (s, 2H, CH₂), 4.74 (s, 2H, CH₂), 4.47 (s, 2H, CH₂N₃); ¹³C NMR (CDCl₃, 100MHz): δ 160.4 (C=O), 159.7 (ArC), 157.9 (ArC), 157.3 (ArC), 151.5 (ArC), 149.2 (ArC), 144.3 (ArC), 144.3 (ArC), 123.0 (ArC), 120.7 (ArC), 120.6 (ArC), 116.1 (ArC), 115.9 (ArC), 114.1 (ArC), 111.3 (ArC), 110.7 (C-3), 109.1 (ArC), 80.6 (CH₂), 50.8 (CH₂N₃), 46.9 (CH₂); HRMS (ESI): m/z calculated for C₁₈H₁₄FN₄O₃⁺ [M+H]⁺ : 353.1050, found: 353.1059.

1.1.4. 4-(azidomethyl)-N⁹-phenyl-9,10-dihydro-2H,8H-chromeno[8,7-e][1,3]oxazin-2-one (6d)

It was obtained as a yellow solid in. Yield: 0.27 g (82%). $R_f = 0.56$ (30% ethyl acetate in petroleum ether); Melting Point = 129 °C; IR (KBr, cm⁻¹): 2110, 1709, 1595, 1495, 1388, 1296, 1242, 1205, 1158, 1037, 894, 840, 753, 685; ¹H NMR (CDCl₃, 400MHz): δ 7.30-7.26 (m, 3H, ArH), 7.15-7.12 (m, 2H, ArH), 6.98-6.94 (m, 1.0 Hz, 1H, ArH), 6.78 (d, J = 8.8 Hz, 1H, ArH), 6.34 (d, J = 1.0 Hz, 1H, C-3H), 5.44 (s, 2H, CH₂), 4.82 (s, 2H, CH₂), 4.47 (s, 2H, CH₂N₃); ¹³C NMR (CDCl₃, 100MHz): δ 160.5 (C=O), 158.5 (ArC), 151.5 (ArC), 149.2 (ArC), 147.9 (ArC), 129.5 (ArC), 122.9 (ArC), 122.2 (ArC), 118.6 (ArC), 117.7 (ArC), 114.1 (ArC), 111.2 (C-3), 109.4 (ArC), 80.0 (CH₂), 50.8 (CH₂N₃), 46.4 (CH₂); HRMS (ESI): m/z calculated for C₁₈H₁₅N₄O₃⁺ [M+H]⁺ : 335.1144, found: 335.1151.

1.1.5. $4-(azidomethyl)-N^{9}-(4'-bromophenyl)-9,10-dihydro-2H,8H-chromeno[8,7-e][1,3]oxazin-2-one (6e)$

It was obtained as a yellow solid. Yield: 0.36 g (86%). $R_f = 0.54$ (30% ethyl acetate in petroleum ether); Melting Point = 131-132 °C; IR (KBr, cm⁻¹): 2106, 1732, 1464, 1341, 1224, 1138, 1057, 923, 787, 707;¹H NMR (CDCl₃, 400MHz): δ 7.37-7.36 (m, 1H, ArH), 7.35-7.34 (m, 1H, ArH), 7.31 (d, J = 8.9 Hz, 1H, ArH), 7.02-7.01 (m, 1H, ArH), 7.00-6.99 (m, 1H, ArH), 6.78 (d, J = 8.8 Hz, 1H, ArH), 6.34 (s, 1H,C-3H), 5.39 (s, 2H, CH₂), 4.78 (s, 2H, CH₂), 4.47 (d, J = 0.9 Hz,

2H, CH₂N₃); ¹³C NMR (CDCl₃, 100MHz): δ 160.3 (C=O), 157.8 (ArC), 151.5 (ArC), 149.1 (ArC), 147.0 (ArC), 132.4 (ArC), 123.0 (ArC), 120.3 (ArC), 114.8 (ArC), 114.1 (ArC), 111.4 (ArC), 110.7 (C-3), 109.1 (ArC), 79.7 (CH₂), 50.9 (CH₂N₃), 46.5 (CH₂); HRMS (ESI): m/z calculated for C₁₈H₁₄BrN₄O₃⁺ [M+H]⁺ : 413.0249, found: 413.0266.

1.1.6. 4-(azidomethyl)-N⁹-(4'-methylphenyl)-9,10-dihydro-2H,8H-chromeno[8,7e][1,3]oxazin-2-one (6f)

It was obtained as a yellow solid. Yield: 0.28 g (79%). R_f = 0.63 (30% ethyl acetate in petroleum ether); Melting Point = 118-120 °C; IR (KBr, cm⁻¹): 2103, 1726, 1550, 1478, 1336, 1317, 1231, 1129, 1064, 921, 771, 725; ¹H NMR (CDCl₃, 400MHz): δ 7.20 (d, *J* = 8.8 Hz, 1H, ArH), 6.99-6.97 (m, 4H, ArH), 6.70 (d, *J* = 8.8 Hz, 1H, ArH), 6.25 (s, 1H, C-3H), 5.33 (s, 2H, CH₂), 4.70 (s, 2H, CH₂), 4.39 (d, *J* = 0.8 Hz, 2H, CH₂N₃), 2.18 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 100MHz): δ 160.2 (C=O), 157.7 (ArC), 151.5 (ArC), 149.0 (ArC), 146.4 (ArC), 129.3 (ArC), 127.3 (ArC), 123.0 (ArC), 119.9 (ArC), 114.0 (ArC), 111.3 (ArC), 110.7 (C-3), 109.0 (ArC), 79.8 (CH₂), 50.8 (CH₂N₃), 46.5 (CH₂), 20.6 (CH₃); HRMS (ESI): m/z calculated for C₁₉H₁₆N₄NaO₃⁺ [M+Na]⁺: 371.1120, found: 371.1104.

1.2. General procedure for the synthesis of N^1 -(9'''-(4''''-substituted)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''-methyl)-C⁴-(2',3',5'-tri-Oacetyl/3',5'-di-O-acetyl- β -D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3triazole conjugates (12a-f and 13a-f)

A mixture of freshly synthesized dihydro[1,3]oxazines **6a-f** (1.2 mmol) and 5-ethynyl-2',3',5'tri-*O*-acetyl/3',5'-di-*O*-acetyl-2'-deoxyuridine **11a-b** (1.0 mmol) was stirred at 80°C in 'BuOH (20 ml). Subsequently, a solution of sodium ascorbate (0.40 mmol) in H₂O was added followed by addition of CuSO₄.5H₂O (0.20 mmol) solution in H₂O. The progress of the reaction was monitored by TLC examination. After completion of the reaction (as observed by TLC), the solvent was evaporated under reduced pressure and the crude product was purified by using silica gel column chromatography using methanol in chloroform as the solvent system to attain the desired compounds **12a-f** and **13a-f** in 92-95% yields.

1.2.1. $N^{1}-(9'''-(4''''-methoxy)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^{4}-(2',3',5'-tri-O-acetyl-\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (12a)$

It was obtained as a bright yellow solid. Yield: 0.72 g (95%). $R_f = 0.32$ (5% methanol in chloroform); Melting Point = 252 °C; IR (KBr, cm⁻¹): 3318, 3074, 2937, 2840, 1680, 1602, 1514, 1465, 1377, 1217, 1102, 1043, 895, 826, 593; ¹H NMR (DMSO- d_6 , 400MHz): δ 11.88 (s, 1H, N-3"H), 8.58 (s, 1H, C-5H), 8.47 (s, 1H, C-6"H), 7.66-7.63 (m, 1H, ArH), 7.11-7.06 (m, 2H, ArH), 6.86-6.79 (m, 3H, ArH), 6.11-6.08 (d, J = 5.3 Hz, 1H, C-1'H), 5.98 (s, 2H, CH₂), 5.68 (s, 1H, ArH), 5.52-5.49 (m, 1H, C-2'H), 5.49-5.48 (m, 2H, CH₂), 5.41-5.37 (m, 1H, C-3'H), 4.67 (s, 2H, CH₂), 4.39-4.36 (m, 1H, C-4'H), 4.32-4.29 (m, 2H, C-5'H), 3.66 (s, 3H, OCH₃), 2.14 (s, 3H, OCOCH₃), 2.11 (s, 3H, OCOCH₃), 2.06 (s, 3H, OCOCH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 170.0 (C=O), 170.0 (C=O), 169.9 (C=O), 161.6 (ArC), 160.0 (ArC), 158.1 (ArC), 154.9 (ArC), 151.5 (ArC), 151.3 (ArC), 150.1 (ArC), 141.6 (ArC), 139.5 (C-4), 137.0 (C-6"), 124.2 (C-5), 124.2 (ArC), 120.4 (ArC), 115.0 (ArC), 113.8 (ArC), 110.6 (ArC), 110.5 (ArC), 109.2 (ArC), 106.2 (ArC), 88.2 (C-1'), 81.2 (CH₂), 80.0 (C-4'), 72.9 (C-2'), 70.5 (C-3'), 63.6 (C-5'), 55.7 (OCH₃), 49.7 (CH₂), 45.6 (CH₂), 21.1 (OCOCH₃), 20.9 (OCOCH₃),

20.8 (OCOCH₃); HRMS (ESI): m/z calculated for $C_{36}H_{34}N_6O_{13}^+$ [M]⁺ : 758.2184, found: 758.2140.

1.2.2. $N^{1}-(9'''-(4''''-chloro)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^{4}-(2',3',5'-tri-O-acetyl-\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (12b)$

It was obtained as a yellowish white solid. Yield: 0.71 g (93%). $R_f = 0.36$ (5% methanol in chloroform); Melting Point = 214 °C; IR (KBr, cm⁻¹): 3037, 2833, 1747, 1711, 1692, 1604, 1496, 1363, 1267, 1225, 1218, 1100, 1059, 1047, 876, 817, 581; ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.83 (s, 1H, N-3"H), 8.54 (s, 1H, C-5H), 8.43 (s, 1H, C-6"H), 7.63-7.59 (m, 1H, ArH), 7.25-7.21 (m, 2H, ArH), 7.17-7.13 (m, 2H, ArH), 6.83-6.79 (m, 1H, ArH), 6.07-6.04 (m, 1H, C-1'H), 5.93 (s, 2H, CH₂), 5.66 (s, 1H, ArH), 5.52 (s, 2H, CH₂), 5.48-5.44 (m, 1H, C-2'H), 5.37-5.33 (m, 1H, C-3'H), 4.71 (s, 2H, CH₂), 4.35-4.32 (m, 1H, C-4'H), 4.28-4.24 (m, 2H, C-5'H), 2.09 (s, 3H, OCOCH₃), 2.06 (s, 3H, OCOCH₃), 2.02 (s, 3H, OCOCH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 170.7 (C=O), 170.0 (C=O), 170.0 (C=O), 161.6 (ArC), 160.0 (ArC), 157.9 (ArC), 151.2 (ArC), 151.2 (ArC), 150.1 (ArC), 146.9 (ArC), 139.5 (C-4), 137.0 (C-6"), 129.5 (C-5), 125.6 (ArC), 124.3 (ArC), 124.2 (ArC), 120.1 (ArC), 113.9 (ArC), 110.8 (ArC), 110.7 (ArC), 109.2 (ArC), 106.2 (ArC), 88.2 (C-1'), 80.0 (CH₂), 79.9 (C-4'), 72.9 (C-2'), 70.5 (C-3'), 63.6 (C-5'), 49.7 (CH₂), 45.1 (CH₂), 21.1 (OCOCH₃), 20.9 (OCOCH₃), 20.8 (OCOCH₃); HRMS (ESI): m/z calculated for C₃₅H₃₂ClN₆O₁₂⁺ [M+H]⁺ : 763.1761, found: 763.1760.

1.2.3. $N^{1}-(9'''-(4''''-fluoro)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^{4}-(2',3',5'-tri-O-acetyl-\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (12c)$

It was obtained as a yellow solid. Yield: 0.69 g (92%). $R_f = 0.34$ (5% methanol in chloroform); Melting Point = 222-226 °C; IR (KBr, cm⁻¹): 2982, 2918, 1693, 1596, 1504, 1454, 1368, 1221, 1045, 879, 811, 757, 581; ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.89 (s, 1H, N-3"H), 8.60-8.58 (m, 1H, C-5H), 8.49-8.47 (m, 1H, C-6"H), 7.70-7.64 (m, 1H, ArH), 7.20-7.17 (m, 1H, ArH), 7.11-7.05 (m, 2H, ArH), 6.95-6.91 (m, 1H, ArH), 6.89-6.84 (m, 1H, ArH), 6.11-6.08 (m, 1H, C-1'H), 5.98 (s, 2H, CH₂), 5.70-5.65 (m, 1H, ArH), 5.55-5.51 (m, 2H, CH₂), 5.51-5.48 (m, 1H, C-2'H), 5.42-5.38 (m, 1H, C-3'H), 4.73 (s, 1H, C-4'H), 4.39-4.34 (m, 2H, CH₂), 4.33-4.29 (m, 2H, C-5'H), 2.14 (s, 3H, OCOCH₃), 2.11 (s, 3H, OCOCH₃), 2.06 (s, 3H, OCOCH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 170.7 (C=O), 170.0 (C=O), 170.0 (C=O), 161.6 (ArC), 160.0 (ArC), 158.0 (ArC), 151.5 (ArC), 151.2 (ArC), 150.1 (ArC), 144.6 (ArC), 139.4 (C-4), 137.0 (C-6"), 124.3 (C-5), 124.2 (ArC), 120.5 (ArC), 120.4 (ArC), 116.3 (ArC), 116.1 (ArC), 113.8 (ArC), 110.7 (ArC), 110.6 (ArC), 109.1 (ArC), 106.2 (ArC), 88.2 (C-1'), 80.7 (CH₂), 80.0 (C-4'), 72.9 (C-2'), 70.5 (C-3'), 63.6 (C-5'), 49.7 (CH₂), 45.5 (CH₂), 21.1 (OCOCH₃), 20.9 (OCOCH₃), 20.8 (OCOCH₃); HRMS (ESI): m/z calculated for C₃₅H₃₂FN₆O₁₂⁺ [M+H]⁺ : 747.2057, found: 747.2054.

1.2.4. N¹-(9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''methyl)-C⁴-(2',3',5'-tri-O-acetyl-β-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''dihydropyrimidin))-1,2,3-triazole (12d)

It was obtained as a yellow solid. Yield: 0.68 g (94%). R_f = 0.36 (5% methanol in chloroform); Melting Point = 238-240 °C; IR (KBr, cm⁻¹): 3082, 1686, 1598, 1506, 1447, 1364, 1214, 1103, 1049, 894, 820, 748, 691; ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.84 (s, 1H, N-3"H), 8.54 (s, 1H, C-5H), 8.43 (s, 1H, C-6"H), 7.63-7.58 (m, 1H, ArH), 7.23-7.18 (m, 2H, ArH), 7.14-7.10 (m, 2H, ArH), 6.88-6.83 (m, 1H, ArH), 6.83-6.79 (m, 1H, ArH), 6.07-6.04 (m, 1H, C-1'H), 5.93 (s, 2H, CH₂), 5.64 (s, 1H, ArH), 5.53 (s, 2H, CH₂), 5.48-5.43 (m, 1H, C-2'H), 5.37-5.33 (m, 1H, C-3'H), 4.72 (s, 2H, CH₂), 4.35-4.31 (m, 1H, C-4'H), 4.28-4.24 (m, 2H, C-5'H), 2.09 (s, 3H, OCOCH₃), 2.06 (s, 3H, OCOCH₃), 2.02 (s, 3H, OCOCH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 170.7 (C=O), 170.0 (C=O), 170.0 (C=O), 161.6 (ArC), 160.0 (ArC), 158.1 (ArC), 151.5 (ArC), 151.3 (ArC), 150.1 (ArC), 147.9 (ArC), 139.5 (C-4), 137.0 (C-6"), 129.8 (ArC), 124.2 (C-5, ArC), 121.8 (ArC), 118.4 (ArC), 113.9 (ArC), 110.7 (ArC), 110.5 (ArC), 109.3 (ArC), 106.2 (ArC), 88.2 (C-1'), 80.2 (CH₂), 80.0 (C-4'), 72.9 (C-2'), 70.5 (C-3'), 63.6 (C-5'), 49.7 (CH₂), 45.0 (CH₂), 21.1 (OCOCH₃), 20.9 (OCOCH₃), 20.8 (OCOCH₃); HRMS (ESI): m/z calculated for C₃₅H₃₃N₆O₁₂⁺ [M+H]⁺ : 729.2151, found: 729.2129.

1.2.5. $N^1 - (9''' - (4'''' - bromo) - 9''', 10''' - dihydro - 2'''H, 8'''H - chromeno[8''', 7''' -<math>e][1''', 3''']oxazin - 2''' - one - 4''' - methyl) - C^4 - (2', 3', 5' - tri - O - acetyl - \beta - D - ribofuranos - 1' - (2'', 4'' -dioxo - 3'', 4'' - dihydropyrimidin)) - 1, 2, 3 - triazole (12e)$

It was obtained as a yellowish white solid. Yield: 0.77 g (95%). $R_f = 0.35$ (5% methanol in chloroform); Melting Point = 275 °C; IR (KBr, cm⁻¹): 3156, 2993, 2829, 1692, 1603, 1479, 1454, 1366, 1215, 1103, 1058, 1006, 887, 812, 581; ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.86 (s, 1H, N-3"H), 8.59-8.58 (m, 1H, C-5H), 8.49-8.46 (m, 1H, C-6"H), 7.69-7.64 (m, 1H, ArH), 7.42-7.37 (m, 2H, ArH), 7.17-7.13 (m, 2H, ArH), 6.89-6.84 (m, 1H, ArH), 6.12-6.08 (m, 1H, C-1'H), 5.98 (s, 2H, CH₂), 5.73-5.70 (m, 1H, ArH), 5.56 (s, 2H, CH₂), 5.53-5.49 (m, 1H, C-2'H), 5.42-5.38 (m, 1H, C-3'H), 4.76 (s, 2H, CH₂), 4.39-4.36 (m, 1H, C-4'H), 4.33-4.29 (m, 2H, C-5'H), 2.15-2.14 (m, 3H, OCOCH₃), 2.12-2.10 (m, 3H, OCOCH₃), 2.08-2.06 (m, 3H, OCOCH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 170.7 (C=O), 170.0 (C=O), 169.9 (C=O), 161.6 (ArC), 160.0 (ArC), 157.9 (ArC), 151.5 (ArC), 151.2 (ArC), 150.1 (ArC), 147.3 (ArC), 139.5 (C-4), 137.0 (C-6"), 132.4 (ArC), 129.3 (C-5), 124.2 (ArC), 120.5 (ArC), 113.9 (ArC), 113.4 (ArC), 110.8 (ArC), 109.2 (ArC), 106.2 (ArC), 88.2 (C-1'), 80.0 (CH₂), 79.8 (C-4'), 72.9 (C-2'), 70.5 (C-3'), 63.6 (C-5'), 49.7 (CH₂), 45.1 (CH₂), 21.1 (OCOCH₃), 20.9 (OCOCH₃), 20.8 (OCOCH₃); HRMS (ESI): m/z calculated for C₃₅H₃₂BrN₆O₁₂⁺ [M+H]⁺ : 807.1256, found: 807.1265.

1.2.6. $N^{1}-(9'''-(4''''-methyl)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^{4}-(2',3',5'-tri-O-acetyl-\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (12f)$

It was obtained as a yellow solid. Yield: 0.69 (93%). $R_f = 0.38$ (5% methanol in chloroform); Melting Point = 198 °C; IR (KBr, cm⁻¹): 3302, 2921, 1693, 1602, 1506, 1435, 1371, 1223, 1092, 1039, 878, 814, 760, 711; ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.87 (brs, 1H, N-3"H), 8.58 (s, 1H, C-5H), 8.47 (s, 1H, C-6"H), 7.66-7.63 (m, 1H, ArH), 7.05-7.04 (m, 4H, ArH), 6.85-6.82 (m, 1H, ArH), 6.11-6.08 (m, 1H, C-1'H), 5.97 (s, 2H, CH₂), 5.69-5.68 (m, 1H, ArH), 5.53-5.51 (m, 2H, CH₂), 5.51-5.49 (m, 1H, C-2'H), 5.41-5.38 (m, 1H, C-3'H), 4.71 (s, 2H, CH₂), 4.39-4.36 (m, 1H, C-4'H), 4.33-4.29 (m, 2H, C-5'H), 2.18 (s, 3H, OCOCH₃), 2.14 (s, 3H, OCOCH₃), 2.11 (s, 3H, CH₃), 2.06 (m, 3H, OCOCH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 170.7 (C=O), 170.0 (C=O), 169.9 (C=O), 161.6 (ArC), 160.0 (ArC), 158.1 (ArC), 151.5 (ArC), 151.2 (ArC), 150.1 (ArC), 145.6 (ArC), 113.4 (ArC), 110.6 (ArC), 109.3 (ArC), 106.2 (ArC), 88.2 (C-1'), 80.6 (CH₂), 80.0 (C-4'), 72.9 (C-2'), 70.5 (C-3'), 63.6 (C-5'), 49.7 (CH₂), 45.2 (CH₂), 21.1 (OCOCH₃), 20.9 (OCOCH₃), 20.8 (OCOCH₃), 20.6 (CH₃); HRMS (ESI): m/z calculated for C₃₆H₃₅N₆O₁₂⁺ [M+H]⁺: 743.2307, found: 743.2295.

1.2.7. $N^{1}-(9'''-(4''''-methoxy)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^{4}-(3',5'-di-O-acetyl-\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (13a)$

It was obtained as a yellow solid. Yield: 0.65 g (93%). R_f = 0.30 (5% methanol in chloroform); Melting Point = 226 °C; IR (KBr, cm⁻¹): 3414, 2927, 1683, 1586, 1511, 1414, 1226, 1097, 1034, 825, 760, 647; ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.82 (brs, 1H, N-3"H), 8.61-8.56 (m, 1H, C-5H), 8.46-8.43 (m, 1H, C-6"H), 7.66-7.52 (m, 2H, ArH), 7.11-7.06 (m, 2H, ArH), 6.85-6.80 (m, 2H, ArH), 6.29-6.25 (m, 1H, C-1'H), 5.97 (s, 2H, CH₂), 5.68-5.63 (m, 1H, ArH), 5.49-5.47 (m, 1H, C-3'H), 5.27-5.24 (m, 1H, C-4'H), 4.67 (s, 2H, CH₂), 4.33-4.24 (m, 4H, CH₂, ArH), 3.66 (s, 3H, CH₃), 2.51-2.44 (m, 1H, C-2'H), 2.44-2.40 (m, 1H, C-2'H), 2.14 (s, 3H, OCOCH₃), 2.09 (s, 3H, OCOCH₃); ¹³C NMR (DMSO- d_6 ,100 MHz) δ 170.9 (C=O), 170.6 (C=O), 161.6 (ArC), 160.0 (ArC), 158.1 (ArC), 154.9 (ArC), 151.5 (ArC), 151.3 (ArC), 150.1 (ArC), 115.0 (ArC), 113.8 (ArC), 110.6 (ArC), 109.2 (ArC), 105.9 (ArC), 85.5 (C-1'), 82.2 (C-4'), 81.8 (CH₂), 74.7 (C-3'), 64.3 (C-5'), 55.7 (OCH₃), 49.7 (CH₂), 45.6 (CH₂), 37.3 (C-2'), 21.3 (OCOCH₃), 21.1 (OCOCH₃); HRMS (ESI): m/z calculated for C₃₄H₃₃N₆O₁₁⁺ [M+H]⁺ : 701.2202, found: 701.2187.

1.2.8. $N^{1}-(9'''-(4''''-chloro)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^{4}-(3',5'-di-O-acetyl-\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (13b)$

It was obtained as a yellowish white solid. Yield: 0.65 g (92%). $R_f = 0.33$ (5% methanol in chloroform); Melting Point = 210 °C; IR (KBr, cm⁻¹): 3350, 2933, 1611, 1571, 1441, 1360, 1232, 1108, 1049, 873, 754, 717; ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.80 (brs, 1H, N-3"H), 8.61-8.55 (m, 1H, C-5H), 8.48-8.42 (m, 1H, C-6"H), 7.68-7.62 (m, 1H, ArH), 7.42-7.36 (m, 2H, ArH), 7.17-7.11 (m, 2H, ArH), 6.89-6.83 (m, 1H, ArH), 6.31-6.23 (m, 1H, C-1'H), 6.00-5.95 (s, 2H, CH₂), 5.71-5.66 (m, 1H, ArH), 5.55 (m, 2H, CH₂), 5.27-5.22 (m, 1H, C-3'H), 4.75 (s, 2H, CH₂), 4.32-4.28 (m, 1H, C-4'H), 4.28-4.23 (m, 2H, C-5'H), 2.46-2.37 (m, 2H, C-2'H), 2.13 (s, 3H, OCOCH₃), 2.08 (s, 3H, OCOCH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 170.9 (C=O), 170.6 (C=O), 161.6 (ArC), 160.0 (ArC), 157.9 (ArC), 151.5 (ArC), 151.3 (ArC), 150.1 (ArC), 147.2 (ArC), 139.7 (C-4), 136.1 (C-6"), 132.4 (ArC), 124.3 (C-5), 124.0 (ArC), 120.5 (ArC), 113.9 (ArC), 113.4 (ArC), 110.6 (ArC), 109.2 (ArC), 105.9 (ArC), 85.5 (C-1'), 82.2 (C-4'), 79.8 (CH₂), 74.7 (C-3'), 64.3 (C-5'), 49.7 (CH₂), 45.0 (CH₂), 37.3 (C-2'), 21.3 (OCOCH₃); HRMS (ESI): m/z calculated for C₃₃H₃₀ClN₆O₁₀⁺ [M+H]⁺ : 705.1706, found: 705.1728.

1.2.9. $N^{1}-(9'''-(4''''-fluoro)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^{4}-(3',5'-di-O-acetyl-\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (13c)$

It was obtained as a yellowish brown solid. Yield: 0.63 g (92%). $R_f = 0.32$ (5% methanol in chloroform); Melting Point = 194-196 °C; IR (KBr, cm⁻¹): 3288, 1687, 1597, 1512, 1453, 1382, 1228, 1096, 1039, 817, 608, 552; ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.82 (brs, 1H, N-3"H), 8.57-8.56 (m, 1H, C-5H), 8.44-8.43 (m, 1H, C-6"H), 7.67-7.64 (m, 1H, ArH), 7.21-7.16 (m, 2H, ArH), 7.10-7.05 (m, 2H, ArH), 6.87-6.84 (m, 1H, ArH), 6.28-6.25 (m, 1H, C-1'H), 5.97 (s, 2H, CH₂), 5.69-5.67 (m, 1H, ArH), 5.53 (m, 2H, CH₂), 5.26-5.24 (m, 1H, C-3'H), 4.73 (s, 2H, CH₂), 4.31-4.29 (m, 1H, C-4'H), 4.28-4.25 (m, 2H, C-5'H), 2.46-2.44 (m, 1H, C-2'H), 2.43-2.40 (m, 1H, C-2'H), 2.14 (s, 3H, OCOCH₃), 2.09 (s, 3H, OCOCH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 170.9 (C=O), 170.6 (C=O), 161.6 (ArC), 160.0 (ArC), 158.0 (ArC), 151.5 (ArC), 151.3 (ArC), 150.1 (ArC), 144.6 (ArC), 139.7 (C-4), 136.1 (C-6"), 124.3 (C-5), 124.0 (ArC), 120.5 (ArC), 120.4 (ArC), 116.3 (ArC), 116.1 (ArC), 113.9 (ArC), 110.7 (ArC), 110.5 (ArC), 109.1 (ArC), 105.9 (ArC), 85.5 (C-1'), 82.2 (C-4'), 80.7 (CH₂), 74.7 (C-3'), 64.3 (C-5'), 49.7 (CH₂), 45.5 (CH₂), 37.3 (C-2'), 21.3 (OCOCH₃), 21.1 (OCOCH₃); HRMS (ESI): m/z calculated for C₃₃H₃₀FN₆O₁₀⁺ [M+H]⁺ : 689.2002, found: 689.2041.

1.2.10. $N^{1}-(9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''$ $methyl)-C^{4}-(3',5'-di-O-acetyl-\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-$ 1,2,3-triazole (13d)

It was obtained as a yellow solid. Yield: 0.63 g (94%). R_f = 0.34 (5% methanol in chloroform); Melting Point = 246 °C; IR (KBr, cm⁻¹): 2889, 2106, 1720, 1585, 1495, 1359, 1302, 1251, 1162, 1097, 914, 797, 713; ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.81 (brs, 1H, N-3"H), 8.57-8.55 (m, 1H, C-5H), 8.44-8.43 (m, 1H, C-6"H), 7.66-7.62 (m, 1H, ArH), 7.27-7.22 (m, 2H, ArH), 7.17-7.14 (m, 2H, ArH), 6.92-6.89 (m, 1H, ArH), 6.86-6.82 (m, 1H, ArH), 6.28-6.24 (m, 1H, C-1'H), 5.96 (s, 2H, CH₂), 5.67-5.64 (m, 1H, ArH), 5.57 (m, 2H, CH₂), 5.26-5.23 (m, 1H, C-3'H), 4.76 (s, 2H, CH₂), 4.30-4.29 (m, 1H, C-4'H), 4.27-4.25 (m, 2H, C-5'H), 2.46-2.43 (m, 1H, C-2'H), 2.43-2.41 (m, 1H, C-2'H), 2.13 (s, 3H, OCOCH₃), 2.08 (s, 3H, OCOCH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 170.9 (C=O), 170.6 (C=O), 161.6 (ArC), 160.0 (ArC), 158.0 (ArC), 151.5 (ArC), 151.3 (ArC), 150.1 (ArC), 144.6 (ArC), 139.7 (C-4), 136.1 (C-6"), 124.3 (C-5), 124.0 (ArC), 120.5 (ArC), 120.4 (ArC), 116.3 (ArC), 116.1 (ArC), 113.9 (ArC), 110.7 (ArC), 110.5 (ArC), 109.1 (ArC), 105.9 (ArC), 85.5 (C-1'), 82.2 (C-4'), 80.7 (CH₂), 74.7 (C-3'), 64.3 (C-5'), 49.7 (CH₂), 45.5 (CH₂), 37.3 (C-2'), 21.3 (OCOCH₃), 21.1 (OCOCH₃); HRMS (ESI): m/z calculated for C₃₃H₃₁N₆O₁₀⁺ [M+H]⁺ : 671.2096, found: 671.2111.

1.2.11. $N^{1}-(9'''-(4''''-bromo)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^{4}-(3',5'-di-O-acetyl-\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (13e)$

It was obtained as a yellowish brown solid. Yield: 0.69 g (93%). $R_f = 0.33$ (5% methanol in chloroform); Melting Point = 249 °C; IR (KBr, cm⁻¹): 3054, 2811, 1707, 1687, 1599, 1492, 1228, 1052, 817, 602, 554; ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.76 (brs, 1H, N-3"H), 8.57-8.50 (m, 1H, C-5H), 8.45-8.38 (m, 1H, C-6"H), 7.64-7.59 (m, 1H, ArH), 7.38-7.32 (m, 2H, ArH), 7.13-7.07 (m, 2H, ArH), 6.85-6.79 (m, 1H, ArH), 6.28-6.19 (m, 1H, C-1'H), 5.98-5.90 (m, 2H, CH₂), 5.69-5.63 (m, 1H, ArH), 5.52 (m, 2H, CH₂), 5.24-5.18 (m, 1H, C-3'H), 4.71 (s, 2H, CH₂), 4.28-4.24 (m, 1H, C-4'H), 4.23-4.19 (m, 2H, C-5'H), 2.43-2.40 (m, 1H, C-2'H), 2.39-2.36 (m, 1H, C-2'H), 2.10 (s, 3H, OCOCH₃), 2.04 (s, 3H, OCOCH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 170.9 (C=O), 170.6 (C=O), 161.6 (ArC), 160.0 (ArC), 157.9 (ArC), 151.5 (ArC), 151.3 (ArC), 150.1 (ArC), 147.2 (ArC), 139.7 (C-4), 136.1 (C-6"), 132.4 (ArC), 124.3 (C-5), 124.0 (ArC), 120.5 (ArC), 113.9 (ArC), 110.8 (ArC), 110.6 (ArC), 109.2 (ArC), 105.9 (ArC), 85.5 (C-1'), 82.2 (C-4'), 79.8 (CH₂), 74.7 (C-3'), 64.3 (C-5'), 49.7 (CH₂), 45.0 (CH₂), 37.3 (C-2'), 21.3 (OCOCH₃), 21.1 (OCOCH₃); HRMS (ESI): m/z calculated for C₃₃H₃₀BrN₆O₁₀⁺ [M+H]⁺ : 749.1201, found: 749.1179.

1.2.12. $N^{1}-(9'''-(4''''-methyl)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^{4}-(3',5'-di-O-acetyl-\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (13f)$

It was obtained as a yellow solid. Yield: 0.63 g (92%). R_f = 0.35 (5% methanol in chloroform); Melting Point = 217 °C; IR (KBr, cm⁻¹): 1689, 1597, 1509, 1444, 1361, 1226, 1103, 1045, 814; ¹H NMR (DMSO-*d*₆, 400 MHz) δ 11.81 (brs, 1H, N-3″H), 8.59-8.55 (m, 1H, C-5H), 8.46-8.42 (m, 1H, C-6″H), 7.66-7.62 (m, 1H, ArH), 7.07-7.02 (m, 4H, ArH), 6.85-6.82 (m, 1H, ArH), 6.29-6.24 (m, 1H, C-1′H), 5.97 (m, 2H, CH₂), 5.67-5.61 (m, 1H, ArH), 5.53 (s, 2H, CH₂), 5.27-5.23 (m, 1H, C-3′H), 4.71 (s, 2H, CH₂), 4.33-4.29 (m, 1H, C-4′H), 4.27-4.25 (m, 2H, C-5′H), 2.48-2.39 (m, 2H, C-2′H), 2.18 (s, 3H, CH₃), 2.15 (s, 3H, OCOCH₃), 2.09 (s, 3H, OCOCH₃); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 170.9 (C=O), 170.6 (C=O), 161.6 (ArC), 160.0 (ArC), 158.1 (ArC), 151.5 (ArC), 151.3 (ArC), 150.1 (ArC), 145.6 (ArC), 139.7 (C-4), 136.1 (C-6″), 130.2 (ArC), 124.2 (C-5), 124.0 (ArC), 118.6 (ArC), 113.8 (ArC), 113.0 (ArC), 110.6 (ArC), 110.4 (ArC), 109.3 (ArC), 105.9 (ArC), 85.5 (C-1′), 82.2 (C-4′), 80.5 (CH₂), 74.7 (C-3′), 64.3 (C-5′), 49.7 (CH₂), 45.2 (CH₂), 37.3 (C-2′), 21.3 (OCOCH₃), 21.1 (OCOCH₃), 20.6 (CH₃); HRMS (ESI): m/z calculated for C₃₄H₃₃N₆O₁₀⁺ [M+H]⁺: 685.2253, found: 685.2280.

1.3. General procedure for the synthesis of N^1 -(9'''-(4''''-substituted)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''-methyl)-C⁴-(β -D-ribofuranos-/2'-deoxy- β -D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole conjugates (14a-f and 15a-f)

To a solution of N¹-(9^{'''}-(4^{'''}-substituted)-9^{'''},10^{'''}-dihydro-2^{'''}H,8^{'''}H-chromeno[8^{'''},7^{'''}-e][1^{'''},3^{'''}]oxazin-2^{'''}-one-4^{'''}-methyl)-C⁴-(2',3',5'-tri-O-acetyl/3',5'-di-O-acetyl-β-D-ribofuranos-1'-(2^{''},4^{''}-dioxo-3^{''},4^{''}-dihydropyrimidin))-1,2,3-triazole conjugates (**12a-f/13a-f**,

1.0 mmol) in methanol, NaOMe (2.2 mmol) was added. The reaction mixture was allowed to stir at 25°C for 10-15 minutes. After completion of the reaction (as monitored by TLC), the reaction was neutralized with seralite (H⁺) resin. The solution was filtered through a cotton plug and the solvent was evaporated under vaccum. The crude product thus obtained was purified by silica gel column chromatography using methanol in chloroform as the solvent system to afford the desired products **14a-f** and **15a-f** in quantitative yields.

1.3.1. $N^{1}-(9'''-(4''''-methoxy)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^{4}-(\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (14a)$

It was obtained as a yellow solid. Yield: 0.61 g (97%). R_f = 0.24 (10% methanol in chloroform); Melting Point = 258 °C; IR (KBr, cm⁻¹): 3393, 1683, 1586, 1500, 1495, 1452, 1377, 1232, 1039, 818; ¹H NMR (DMSO- d_6 ,400 MHz) δ 11.75 (brs, 1H, N-3″H), 9.25-9.21 (m, 1H, C-6″H), 8.69-8.66 (m, 1H, C-5H), 8.60-8.55 (m, 1H, ArH), 7.94-7.87 (m, 1H, ArH), 7.57-7.52 (m, 2H, ArH), 7.08-7.03 (m, 2H, ArH), 6.99-6.95 (m, 1H, ArH), 6.04-6.00 (m, 1H, C-1′H), 5.93-5.88 (m, 2H, CH₂), 5.70 (brs, 1H, OH), 5.44 (brs, 1H, OH), 5.19-5.14 (m, 2H, CH₂), 4.18-4.14 (m, 1H, C-2′H), 4.04-4.00 (m, 1H, C-3′H), 3.93-3.89 (m, 1H, C-4′H), 3.81 (s, 3H, CH₃), 3.66-3.61 (m, 2H, C-5′H), 3.51 (m, 2H, CH₂); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 166.9 (ArC), 161.6 (ArC), 159.6 (ArC), 159.5 (ArC), 154.7 (ArC), 151.6 (ArC), 150.5 (ArC), 139.7 (C-4), 137.1 (C-6″), 129.9 (ArC), 124.3 (C-5), 124.0 (ArC) 123.2 (ArC), 115.3 (ArC) 109.6 (ArC), 108.6 (ArC), 106.8 (ArC), 105.6 (ArC), 88.4 (C-1′), 85.6 (C-4′), 74.3 (CH₂), 70.7 (C-3′), 70.2 (C-2'), 61.5 (C-5'), 55.9 (CH₃), 49.7 (CH₂), 45.1 (CH₂); HRMS (ESI): m/z calculated for $C_{30}H_{29}N_6O_{10}^+$ [M+H]⁺: 633.1940, found: 633.1944.

1.3.2. N^1 -(9'''-(4''''-chloro)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''- $e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^4$ -(β -D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (14b)

It was obtained as a yellow solid. Yield: 0.62 g (98%). R_f = 0.26 (10% methanol in chloroform); Melting Point = 262-264 °C; IR (KBr, cm⁻¹): 3307, 3153, 2928, 1686, 1591, 1495, 1459, 1400, 1317, 1257, 1044, 818; ¹H NMR (DMSO-*d*₆, 400 MHz) δ 11.75 (brs, 1H, N-3''H), 8.69-8.67 (m, 1H, C-6''H), 8.58-8.55 (m, 1H, C-5H), 7.73-7.66 (m, 1H, ArH), 7.30-7.26 (m, 1H, ArH), 7.21-7.18 (m, 1H, ArH), 7.10-7.05 (m, 1H, ArH), 6.96-6.85 (m, 1H, ArH), 6.75-6.65 (m, 1H, ArH), 5.98-5.94 (m, 2H, CH₂), 5.93-5.90 (m, 1H, C-1'H), 5.74-5.69 (m, 1H, ArH), 5.62-5.48 (m, 2H, CH₂), 5.48-5.40 (brs, 1H, OH), 5.15 (brs, 2H, OH), 4.84-4.68 (m, 2H, CH₂), 4.18-4.14 (m, 1H, C-2'H), 4.03-4.01 (m, 1H, C-3'H), 3.93-3.91 (m, 1H, C-4'H), 3.66-3.59 (m, 2H, C-5'H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 161.6 (ArC), 159.9 (ArC), 157.8 (ArC), 154.1 (ArC), 151.5 (ArC), 150.5 (ArC), 148.2 (ArC), 146.8 (ArC), 139.7 (C-4), 137.1 (C-6''), 129.5 (ArC), 128.9 (ArC), 125.5 (ArC), 124.0 (C-5), 120.0 (ArC), 113.8 (ArC), 112.9 (ArC), 110.8 (ArC), 109.1 (ArC), 105.6 (ArC), 88.4 (C-1'), 85.6 (C-4'), 79.9 (CH₂), 74.3 (C-2'), 70.7 (C-3'), 61.5 (C-5'), 49.6 (CH₂), 45.1 (CH₂); HRMS (ESI): m/z calculated for C₂₉H₂₆CIN₆O₉⁺ [M+H]⁺ : 637.1444, found: 637.1425. 1.3.3. N^1 -(9'''-(4''''-fluoro)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''- $e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^4$ -(β -D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (14c)

It was obtained as a yellow solid. Yield: 0.60 g (97%). R_f = 0.26 (10% methanol in chloroform); Melting Point = 241-243 °C; IR (KBr, cm⁻¹): 3314, 2718, 1684, 1596, 1512, 1455, 1396, 1338, 1269, 1211, 1103, 1054, 830, 644, 517; ¹H NMR (DMSO-*d*₆, 400 MHz) δ 11.74 (brs, 1H, N-3"H), 8.69-8.66 (m, 1H, C-6"H), 8.58-8.55 (m, 1H, C-5H), 7.72-7.67 (m, 1H, ArH), 7.22-7.05 (m, 2H, ArH), 7.02-6.98 (m, 1H, ArH), 6.94-6.88 (m, 2H, ArH), 6.71-6.66 (m, 1H, ArH), 5.99-5.94 (m, 2H, CH₂), 5.93-5.89 (m, 1H, C-1'H), 5.73-5.66 (m, 1H, CH₂), 5.54-5.46 (m, 1H, CH₂), 5.16 (brs, 2H, OH), 4.25 (brs, 1H, OH), 4.18-4.14 (m, 1H, C-2'H), 4.04-4.01 (m, 1H, C-3'H), 3.93-3.90 (m, 1H, C-4'H), 3.67-3.58 (m, 4H, C-5'H, CH₂); ¹³C NMR (DMSO-*d*₆,100 MHz) δ 161.6 (ArC), 160.7 (ArC), 160.4 (ArC), 154.0 (ArC), 153.7 (ArC), 151.4 (ArC), 150.5 (ArC), 146.0 (ArC), 139.7 (C-4), 137.1 (C-6"), 125.1 (ArC), 113.4 (ArC), 113.3 (ArC), 113.1 (ArC), 113.0 (ArC), 109.8 (ArC), 109.6 (ArC), 105.6 (ArC), 88.5 (C-1'), 85.6 (C-4'), 74.3 (CH₂), 70.7 (C-3', C-2'), 61.5 (C-5'), 49.7 (CH₂), 36.4 (CH₂); HRMS (ESI): m/z calculated for C₂₉H₂₆FN₆O₉⁺ [M+H]⁺: 621.1740, found: 621.1716.

1.3.4. N¹-(9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''methyl)-C⁴-(β-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (14d)

It was obtained as a yellow solid. Yield: 0.58 g (96%). R_f = 0.27 (10% methanol in chloroform); Melting Point = 216-220 °C; IR (KBr, cm⁻¹): 1686, 1591, 1511, 1451, 1359, 1226, 1104, 1045, 807; ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.74 (brs, 1H, N-3"H), 8.69-8.65 (m, 1H, C-6"H), 8.57-8.53 (m, 1H, C-5H), 7.70-7.64 (m, 1H, ArH), 7.29-7.19 (m, 2H, ArH), 7.18-7.14 (m, 1H, ArH), 7.09-7.00 (m, 1H, ArH), 6.96-6.84 (m, 2H, ArH), 6.70-6.50 (m, 1H, ArH), 5.96 (m, 2H, CH₂), 5.92-5.88 (m, 1H, C-1'H), 5.72-5.66 (m, 1H, CH₂), 5.59-5.56 (m, 1H, CH₂), 5.14 (brs, 1H, OH), 4.76 (brs, 1H, OH), 4.28 (brs, 1H, OH), 4.17-4.13 (m, 1H, C-2'H), 4.03-3.99 (m, 1H, C-3'H), 3.93-3.89 (m, 1H, C-4'H), 3.69-3.54 (m, 4H, C-5'H, CH₂); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 161.6 (ArC), 160.0 (ArC), 158.0 (ArC), 151.5 (ArC), 151.2 (ArC), 150.5 (ArC), 149.3 (ArC), 147.9 (ArC), 139.7 (C-4), 137.1 (C-6"), 129.7 (ArC), 129.3 (ArC), 124.0 (C-5), 121.8 (ArC), 118.4 (ArC), 113.8 (ArC), 112.6 (ArC), 110.7 (ArC), 109.3 (ArC), 105.6 (ArC), 88.4 (C-1'), 85.6 (C-4'), 80.1 (CH₂), 74.3 (C-3'), 70.7 (C-2'), 61.5 (C-5'), 49.6 (CH₂), 45.0 (CH₂); HRMS (ESI): m/z calculated for C₂₉H₂₇N₆O₉+ [M+H]⁺ : 603.1834, found: 603.1859.

1.3.5. N^1 -(9'''-(4''''-bromo)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''- $e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^4-(\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (14e)$

It was obtained as a yellow solid. Yield: 0.67 g (98%). R_f = 0.28 (10% methanol in chloroform); Melting Point = 254 °C; IR (KBr, cm⁻¹): 3324, 2741, 1644, 1531, 1415, 1367, 1332, 1258, 1123, 1035, 826, 643, 509; ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.74 (brs, 1H, N-3"H), 8.67-8.66 (m, 1H, C-6"H), 8.56-8.54 (m, 1H, C-5H), 7.70-7.66 (m, 1H, ArH), 7.40-7.38 (m, 1H, ArH), 7.19-7.17 (m, 1H, ArH), 7.15-7.13 (m, 1H, ArH), 6.93-6.85 (m, 1H, ArH), 6.66-6.64 (m, 1H, ArH), 5.96-5.89 (m, 4H, CH₂, C-1'H, ArH), 5.72-5.66 (m, 1H, CH₂), 5.56-5.45 (m, 1H, CH₂), 5.13 (brs, 1H, OH), 4.75 (brs, 1H, OH), 4.24 (brs, 1H, OH), 4.16-4.13 (m, 1H, C-2'H), 4.01-3.99 (m, 1H, C-3'H), 3.91-3.89 (m, 1H, C-4'H), 3.66-3.56 (m, 4H, C-5'H, CH₂); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 161.6 (ArC), 160.4 (ArC), 154.1 (ArC), 150.5 (ArC), 148.6 (ArC), 147.2 (ArC), 139.7 (C-4), 137.1 (C-6"), 132.4 (ArC), 131.7 (ArC), 124.0 (C-5), 114.5 (ArC), 110.8 (ArC), 109.1 (ArC), 106.7 (ArC), 105.6 (ArC), 88.4 (C-1'), 85.6 (C-4'), 74.3 (CH₂), 70.7 (C-2', C-3'), 61.5 (C-5'), 60.2 (CH₂), 49.6 (CH₂); HRMS (ESI): m/z calculated for C₂₉H₂₆BrN₆O₉+ [M+H]⁺: 681.0939, found: 681.1012.

1.3.6. $N^1-(9'''-(4''''-methyl)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-<math>e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^4-(\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (14f)$

It was obtained as a yellow solid. Yield: 0.60 g (98%). R_f = 0.29 (10% methanol in chloroform); Melting Point = 235-237 °C; IR (KBr, cm⁻¹): 3309, 2722, 1676, 1545, 1501, 1452, 1337, 1242, 1112, 1067, 805, 663, 503;¹H NMR (DMSO- d_6 , 400 MHz) δ 11.71 (brs, 1H, N-3"H), 8.67-8.64 (m, 1H, C-6"H), 8.56-8.53 (m, 1H, C-5H), 7.68-7.63 (m, 1H, ArH), 7.40-7.33 (m, 1H, ArH), 7.04 (brs, 2H, ArH), 6.94-6.82 (m, 2H, ArH), 5.97-5.93 (m, 2H, CH₂), 5.91-5.88 (m, 1H, C-1'H), 5.73-5.70 (m, 1H, ArH), 5.56-5.50 (m, 2H, CH₂), 5.14 (brs, 2H, OH), 4.71 (brs, 1H, OH), 4.18-4.13 (m, 1H, C-2'H), 4.02-3.99 (m, 1H, C-3'H), 3.92-3.89 (m, 1H, C-4'H), 3.68-3.63 (m, 2H, C-5'H), 3.61-3.56 (m, 2H, CH₂), 2.18 (s, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 161.6 (ArC), 160.0 (ArC), 158.0 (ArC), 154.0 (ArC), 151.5 (ArC), 150.5 (ArC), 147.0 (ArC), 145.5 (ArC), 139.7 (C-4), 137.1 (C-6"), 130.1 (ArC), 129.7 (ArC), 124.0 (C-5), 118.6 (ArC), 112.9 (ArC), 109.9 (ArC), 109.6 (ArC), 109.2 (ArC), 105.6 (ArC), 88.4 (C-1'), 85.6 (C-4'), 74.3 (CH₂), 70.7 (C-2', C-3'), 61.5 (C-5'), 49.7 (CH₂), 45.1 (CH₂), 20.5 (CH₃) ; HRMS (ESI): m/z calculated for C₃₀H₂₉N₆O₉⁺ [M+H]⁺ : 617.1991, found: 617.1997.

1.3.7. $N^{1}-(9'''-(4''''-methoxy)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^{4}-(2'-deoxy-\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (15a)$

It was obtained as a yellow solid. Yield: 0.59 g (96%). R_f = 0.25 (10% methanol in chloroform); Melting Point = 266 °C; IR (KBr, cm⁻¹): 3275, 3071, 1672, 1586, 1489, 1446, 1254, 1174, 1040, 818; ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.72 (brs, 1H, N-3'H), 8.66-8.60 (m, 1H, C-6''H), 8.60-8.52 (m, 1H, C-5H), 7.66-7.54 (m, 1H, ArH), 7.12-6.62 (m, 5H, ArH), 6.28-6.21 (m, 1H, C-1'H), 6.03-5.89 (m, 2H, CH₂), 5.75-5.43 (m, 2H, CH₂), 5.32 (brs, 1H, OH), 5.10-5.02 (m, 1H, ArH), 4.67-4.50 (m, 1H, C-3'H), 4.32-4.25 (m, 1H, C-4'H), 3.90-3.78 (m, 2H, CH₂), 3.70-3.55 (m, 5H, C-5'H, CH₃), 2.23-2.16 (m, 2H,C-2'H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 161.6 (ArC), 160.0 (ArC), 159.6 (ArC), 158.0 (ArC), 154.8 (ArC), 151.5 (ArC), 150.1 (ArC), 141.6 (ArC), 139.8 (C-4), 136.8 (C-6''), 123.2 (ArC), 120.3 (ArC), 115.3 (ArC), 114.9 (ArC), 113.8 (ArC), 110.6 (C-5), 109.1 (ArC), 105.4 (ArC), 88.1 (C-4'), 85.2 (C-1'), 55.9 (CH₂), 71.1 (C-3'), 61.8 (C-5'), 55.6 (CH₃), 55.6 (CH₂), 49.6 (CH₂), 45.6 (C-2'), 40.5 (CH₂); HRMS (ESI): m/z calculated for C₃₀H₂₉N₆O₉+ [M+H]⁺: 617.1991, found: 617.1981.

1.3.8. $N^{1}-(9'''-(4''''-chloro)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^{4}-(2'-deoxy-\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (15b)$

It was obtained as a yellow solid. Yield: 0.61 g (99%). R_f = 0.26 (10% methanol in chloroform); Melting Point = 259-260 °C; IR (KBr, cm⁻¹): 3186, 3004, 1659, 1581, 1440, 1387, 1257, 1048, 834; ¹H NMR (DMSO-*d*₆, 400 MHz) & 8.62-8.61 (m, 1H, C-6"H), 8.54-8.53 (m, 1H, C-5H), 7.67-7.61 (m, 1H, ArH), 7.40-7.38 (m, 1H, ArH), 7.17-7.15 (m, 1H, ArH), 7.14-7.12 (m, 1H, ArH), 6.88-6.84 (m, 1H, ArH), 6.67-6.64 (m, 1H, ArH), 6.25-6.22 (m, 1H, C-1'H), 5.96-5.94 (m, 1H, CH₂), 5.92-5.90 (m, 1H, CH₂), 5.56-5.53 (m, 2H, CH₂), 4.75-4.74 (m, 1H, ArH), 4.29-4.22 (m, 3H, C-3'H, CH₂), 3.86-3.84 (m, 1H, C-4'H), 3.60-3.59 (m, 2H, C-5'H), 2.20-2.17 (m, 2H, C-2'H); ¹³C NMR (DMSO-*d*₆, 100 MHz) & 161.2 (ArC), 160.2 (ArC), 159.5 (ArC), 157.4 (ArC), 151.0 (ArC), 150.7 (ArC), 149.7 (ArC), 146.7 (ArC), 139.4 (C-4), 136.4 (C-6"), 131.9 (ArC), 131.2 (ArC), 105.0 (ArC), 87.7 (C-4'), 84.8 (C-1'), 79.3 (CH₂), 70.7 (C-3'), 61.4 (C-5'), 49.1 (CH₂), 44.5 (C-2'), 35.6 (CH₂); HRMS (ESI): m/z calculated for C₂₉H₂₆ClN₆O₈⁺ [M+H]⁺ : 621.1495, found: 621.1491.

1.3.9. $N^1-(9'''-(4''''-fluoro)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-<math>e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^4-(2'-deoxy-\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (15c)$

It was obtained as a yellow solid. Yield: 0.59 g (98%). R_f = 0.26 (10% methanol in chloroform); Melting Point = 208-210 °C; IR (KBr, cm⁻¹): 3363, 3280, 2924, 1678, 1583, 1512, 1453, 1405, 1275, 1215, 1097, 1037, 824;¹H NMR (DMSO-*d*₆, 400 MHz) δ 11.71 (brs, 1H, NH), 8.63-8.62 (m, 1H, C-6″H), 8.56-8.54 (m, 1H, C-5H), 7.70-7.66 (m, 1H, ArH), 7.19-7.16 (m, 1H, ArH), 7.01-6.97 (m, 1H, ArH), 6.93-6.87 (m, 2H, ArH), 6.69-6.67 (m, 1H, ArH), 6.26-6.23 (m, 1H, C-1′H), 5.97-5.94 (m, 2H, CH₂), 5.72-5.66 (m, 1H, CH₂), 5.57-5.48 (m, 1H, CH₂), 5.34 (brs, 1H, OH), 5.07 (brs, 1H, OH), 4.76-4.69 (m, 1H, ArH), 4.30-4.28 (m, 1H, C-3′H), 4.26-4.22 (m, 2H, CH₂), 3.87-3.85 (m, 1H, C-4′H), 3.62-3.59 (m, 2H, C-5′H), 2.21-2.18 (m, 2H, C-2′H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 161.7 (ArC), 160.8 (ArC), 160.4 (ArC), 155.9 (ArC), 154.0 (ArC), 151.4 (ArC), 150.1 (ArC), 116.3 (ArC), 116.0 (ArC), 115.7 (ArC), 115.5 (ArC), 113.4 (ArC), 113.3 (ArC), 113.1 (ArC), 109.7 (C-5), 109.5 (ArC), 105.4 (CH₂); HRMS (ESI): m/z calculated for C₂₉H₂₆FN₆O₈⁺ [M+H]⁺: 605.1718, found: 605.1787.

1.3.10. $N^{1}-(9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''$ $methyl)-C^{4}-(2'-deoxy-\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3$ triazole (15d)

It was obtained as a yellow solid. Yield: 0.57 g (98%). R_f = 0.27 (10% methanol in chloroform); Melting Point = 242 °C; IR (KBr, cm⁻¹): 3276, 2946, 1648, 1565, 1417, 1405, 1266, 1043, 811, 524; ¹H NMR (DMSO- d_6 , 400 MHz) δ 8.64-8.62 (m, 1H, C-6"H), 8.56-8.55 (m, 1H, C-5H), 7.71-7.65 (m, 1H, ArH), 7.27-7.16 (m, 2H, ArH), 7.07-7.00 (m, 2H, ArH), 6.91-6.85 (m, 1H, ArH), 6.72-6.68 (m, 1H, ArH), 6.56-6.48 (m, 1H, C-1'H), 6.26-6.23 (m, 1H, CH₂), 5.97-5.93 (m, 2H, CH₂), 5.59-5.56 (m, 1H, CH₂), 4.80-4.73 (m, 1H, ArH), 4.32-4.23 (m, 3H, C-3'H, CH₂), 3.88-3.85 (m, 1H, C-4'H), 3.62-3.60 (m, 2H, C-5'H), 2.22-2.18 (m, 2H, C-2'H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 161.7 (ArC), 160.7 (ArC), 160.0 (ArC), 158.0 (ArC), 155.7 (ArC), 154.2 (ArC), 150.1 (ArC), 149.4 (ArC), 139.8 (C-4), 136.8 (C-6"), 129.7 (ArC), 129.2 (ArC), 123.9 (ArC), 118.4 (ArC), 116.1 (ArC), 113.1 (C-5), 113.2 (ArC), 112.7 (ArC), 105.4 (ArC), 88.1 (C-4'), 85.2 (C-1'), 80.1 (CH₂), 71.1 (C-3'), 61.8 (C-5'), 49.1 (C-2', CH₂), 36.0 (CH₂); HRMS (ESI): m/z calculated for C₂₉H₂₇N₆O₈⁺ [M+H]⁺: 587.1885, found: 587.1869.

1.3.11. $N^{1}-(9'''-(4''''-bromo)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^{4}-(2'-deoxy-\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (15e)$

It was obtained as a yellow solid. Yield: 0.64 g (97%). R_f = 0.27 (10% methanol in chloroform); Melting Point = 229 °C; IR (KBr, cm⁻¹): 3325, 3224, 2814, 1708, 1683, 1658, 1583, 1557, 1516, 1457, 1306, 1222, 1047, 820, 644, 517; ¹H NMR (DMSO- d_6 , 400 MHz) & 8.63-8.62 (m, 1H, C-6''H), 8.56-8.54 (m, 1H, C-5H), 7.69-7.61 (m, 1H, ArH), 7.42-7.38 (m, 1H, ArH), 7.19-7.15 (m, 1H, ArH), 7.15-7.13 (m, 1H, ArH), 6.89-6.85 (m, 1H, ArH), 6.68-6.65 (m, 1H, ArH), 6.26-6.23 (m, 1H, C-1'H), 5.97-5.95 (m, 1H, CH₂), 5.94-5.91 (m, 1H, CH₂), 5.59-5.52 (m, 2H, CH₂), 4.76-4.74 (m, 1H, ArH), 4.30-4.21 (m, 3H, C-3'H, CH₂), 3.87-3.85 (m, 1H, C-4'H), 3.62-3.59 (m, 2H, C-5'H), 2.21-2.18 (m, 2H, C-2'H); ¹³C NMR (DMSO- d_6 , 100 MHz) & 161.7 (ArC), 160.7 (ArC), 159.9 (ArC), 157.8 (ArC), 151.5 (ArC), 151.2 (ArC), 150.1 (ArC), 147.2 (ArC), 139.8 (C-4), 136.8 (C-6''), 132.3 (ArC), 131.7 (ArC), 123.9 (ArC), 120.4 (ArC), 114.5 (ArC), 113.3 (ArC), 110.8 (ArC), 109.1 (C-5), 106.6 (ArC), 105.4 (ArC), 88.1 (C-4'), 85.2 (C-1'), 79.7 (CH₂), 71.1 (C-3'), 61.8 (C-5'), 49.5 (CH₂), 45.0 (CH₂), 40.5 (C-2'), 36.0 (CH₂); HRMS (ESI): m/z calculated for C₂₉H₂₆BrN₆O₈⁺ [M+H]⁺: 665.0990, found: 665.1005.

1.3.12. $N^1-(9'''-(4''''-methyl)-9''',10'''-dihydro-2'''H,8'''H-chromeno[8''',7'''-<math>e][1''',3''']oxazin-2'''-one-4'''-methyl)-C^4-(2'-deoxy-\beta-D-ribofuranos-1'-(2'',4''-dioxo-3'',4''-dihydropyrimidin))-1,2,3-triazole (15f)$

It was obtained as a yellow solid. Yield: 0.58 g (97%). R_f = 0.28 (10% methanol in chloroform); Melting Point = 202 °C; IR (KBr, cm⁻¹): 3296, 2932, 1672, 1589, 1506, 1446, 1399, 1268, 1043, 817;¹H NMR (DMSO- d_6 , 400 MHz) δ 11.72 (brs, 1H, NH), 8.63-8.62 (m, 1H, C-6"H), 8.56-8.54 (m, 1H, C-5H), 7.70-7.62 (m, 1H, ArH), 7.05-7.02 (m, 2H, ArH), 6.93-6.83 (m, 2H, ArH), 6.64-6.56 (m, 1H, ArH), 6.26-6.23 (m, 1H, C-1'H), 5.97-5.92 (m, 2H, CH₂), 5.73-5.64 (m, 1H, CH₂), 5.55-5.52 (m, 1H, CH₂), 5.34-5.32 (m, 1H, ArH), 5.08-5.05 (m, 1H, C-3'H), 4.71 (brs, 1H, OH), 4.31-4.25 (m, 2H, CH₂), 3.88-3.85 (m, 1H, C-4'H), 3.63-3.59 (m, 2H, C-5'H), 2.22-2.17 (m, 4H, C-2'H, CH₃), 2.14-2.13 (m, 1H, C-2'H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 161.6 (ArC), 160.5 (ArC), 160.0 (ArC), 158.0 (ArC), 154.0 (ArC), 150.1 (ArC), 145.5 (ArC), 139.8 (C-4), 136.8 (C-6"), 130.8 (ArC), 130.1 (ArC), 129.7 (ArC), 123.9 (ArC), 118.6 (ArC), 112.9 (ArC), 110.6 (C-5), 109.2 (ArC), 105.4 (ArC), 88.1 (C-4'), 85.2 (C-1'), 80.5 (CH₂), 71.1 (C-3'), 61.8 (C-5'), 49.7 (CH₂), 45.1 (C-2'), 36.3 (CH₂), 20.5 (CH₃); HRMS (ESI): m/z calculated for C₃₀H₂₉N₆O₈⁺ [M+H]⁺ : 601.2041, found: 601.2064.

Figure S1: ¹H NMR spectrum of compound 6a (400 MHz, CDCl₃).

Figure S2: ¹³C NMR spectrum of compound 6a (100 MHz, CDCl₃).

Figure S3: ¹H-¹H COSY NMR spectrum of compound 6a (400 MHz, CDCl₃).

Figure S4: ¹H-¹³C HETCOR NMR spectrum of compound 6a (100 MHz, CDCl₃).

130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 f1 (ppm)

Figure S5: DEPT-135 NMR spectrum of compound 6a (100 MHz, CDCl₃).

Figure S6: ¹H NMR spectrum of compound 6b (400 MHz, CDCl₃).

Figure S8: ¹H NMR spectrum of compound 6c (400 MHz, CDCl₃).

Figure S9: ¹³C NMR spectrum of compound 6c (100 MHz, CDCl₃).

Figure S10: ¹H NMR spectrum of compound 6d (400 MHz, CDCl₃).

Figure S12: ¹H NMR spectrum of compound 6e (400 MHz, CDCl₃).

Figure S13: ¹³C NMR spectrum of compound 6e (100 MHz, CDCl₃).

Figure S14: ¹H NMR spectrum of compound 6f (400 MHz, CDCl₃).

Figure S15: ¹³C NMR spectrum of compound 6f (100 MHz, CDCl₃).

Figure S16: ¹H NMR spectrum of compound 12a (400 MHz, DMSO-*d*₆).

Figure S17: ¹³C NMR spectrum of compound 12a (100 MHz, DMSO-*d*₆).

Figure S18: ¹H-¹H COSY NMR spectrum of compound 12a (400 MHz, DMSO-*d*₆).

Figure S19: ¹H-¹³C HETCOR NMR spectrum of compound 12a (100 MHz, DMSO-*d*₆).

Figure S20: DEPT-135 NMR spectrum of compound 12a (100 MHz, DMSO-*d*₆).

Figure S21: ¹H NMR spectrum of compound 12b (400 MHz, DMSO-*d*₆).

Figure S22: ¹³C NMR spectrum of compound 12b (100 MHz, DMSO- d_6).

Figure S23: ¹H NMR spectrum of compound 12c (400 MHz, DMSO-*d*₆).

Figure S24: ¹³C NMR spectrum of compound 12c (100 MHz, DMSO-*d*₆).

Figure S25: ¹H NMR spectrum of compound 12d (400 MHz, DMSO-*d*₆).

Figure S26: ¹³C NMR spectrum of compound 12d (100 MHz, DMSO- d_6).

Figure S27: ¹H NMR spectrum of compound 12e (400 MHz, DMSO-*d*₆).

Figure S28: ¹³C NMR spectrum of compound 12e (100 MHz, DMSO- d_6).

Figure S29: ¹H NMR spectrum of compound 12f (400 MHz, DMSO-*d*₆).

Figure S30: ¹³C NMR spectrum of compound 12f (100 MHz, DMSO- d_6).

Figure S31: ¹H NMR spectrum of compound 13a (400 MHz, DMSO-*d*₆).

Figure S32: ¹³C NMR spectrum of compound 13a (100 MHz, DMSO-*d*₆).

Figure S33: ¹H NMR spectrum of compound 13b (400 MHz, DMSO-*d*₆).

Figure S34: ¹³C NMR spectrum of compound 13b (100 MHz, DMSO- d_6).

Figure S35: ¹H NMR spectrum of compound 13c (400 MHz, DMSO-*d*₆).

Figure S36: ¹³C NMR spectrum of compound 13c (100 MHz, DMSO- d_6).

Figure S37: ¹H NMR spectrum of compound 13d (400 MHz, DMSO-*d*₆).

Figure S38: ¹³C NMR spectrum of compound 13d (100 MHz, DMSO-*d*₆).

Figure S39: ¹H NMR spectrum of compound 13e (400 MHz, DMSO-*d*₆).

Figure S40: ¹³C NMR spectrum of compound 13e (100 MHz, DMSO- d_6).

Figure S41: ¹H-¹H COSY NMR spectrum of compound 13e (400 MHz, DMSO-*d*₆).

Figure S42: ¹H-¹³C HETCOR NMR spectrum of compound 13e (100 MHz, DMSO-*d*₆).

Figure S43: DEPT-135 NMR spectrum of compound 13e (100 MHz, DMSO-*d*₆).

Figure S44: ¹H NMR spectrum of compound 13f (400 MHz, DMSO-*d*₆).

Figure S45: ¹³C NMR spectrum of compound 13f (100 MHz, DMSO-*d*₆).

Figure S46: ¹H NMR spectrum of compound 14a (400 MHz, DMSO-*d*₆).

Figure S47: ¹³C NMR spectrum of compound 14a (100 MHz, DMSO-*d*₆).

Figure S48: ¹H NMR spectrum of compound 14b (400 MHz, DMSO-*d*₆).

Figure S50: ¹H-¹H COSY NMR spectrum of compound 14b (400 MHz, DMSO-*d*₆).

Figure S51: ¹H-¹³C HETCOR NMR spectrum of compound 14b (100 MHz, DMSO-*d*₆).

Figure S52: D_2O Exchange NMR spectrum of compound 14b (DMSO- d_6 + 2 drops of D_2O).

Figure S53: ¹H NMR spectrum of compound 14c (400 MHz, DMSO-*d*₆).

Figure S54: ¹³C NMR spectrum of compound 14c (100 MHz, DMSO- d_6).

Figure S55: ¹H NMR spectrum of compound 14d (400 MHz, DMSO-*d*₆).

Figure S56: ¹³C NMR spectrum of compound 14d (100 MHz, DMSO- d_6).

Figure S57: ¹H NMR spectrum of compound 14e (400 MHz, DMSO-*d*₆).

Figure S58: ¹³C NMR spectrum of compound 14e (100 MHz, DMSO- d_6).

Figure S59: ¹H NMR spectrum of compound 14f (400 MHz, DMSO-*d*₆).

Figure S60: ¹³C NMR spectrum of compound 14f (100 MHz, DMSO- d_6).

Figure S61: ¹H NMR spectrum of compound 15a (400 MHz, DMSO-*d*₆).

Figure S62: ¹³C NMR spectrum of compound 15a (100 MHz, DMSO-*d*₆).

Figure S63: ¹H NMR spectrum of compound 15b (400 MHz, DMSO-*d*₆).

Figure S64: ¹³C NMR spectrum of compound 15b (100 MHz, DMSO-*d*₆).

Figure S65: ¹H NMR spectrum of compound 15c (400 MHz, DMSO-*d*₆).

Figure S66: ¹³C NMR spectrum of compound 15c (100 MHz, DMSO-*d*₆).

Figure S67: ¹H NMR spectrum of compound 15d (400 MHz, DMSO-*d*₆).

Figure S68: ¹³C NMR spectrum of compound 15d (100 MHz, DMSO-*d*₆).

Figure S69: ¹H NMR spectrum of compound 15e (400 MHz, DMSO-*d*₆).

Figure S70: ¹³C NMR spectrum of compound 15e (100 MHz, DMSO- d_6).

Figure S71: ¹H-¹H COSY NMR spectrum of compound 15e (400 MHz, DMSO-*d*₆).

Figure S72: ¹H-¹³C HETCOR NMR spectrum of compound 15e (100 MHz, DMSO-*d*₆).

Figure S73: DEPT-135 NMR spectrum of compound 15e (100 MHz, DMSO-*d*₆).

Figure S74: ¹H NMR spectrum of compound 15f (400 MHz, DMSO-*d*₆).

Figure S75: ¹³C NMR spectrum of compound 15f (100 MHz, DMSO- d_6).

2. Absorption and Emission Spectra of Compounds 14a-f and 15a-f.

Figure S76: Absorption and Emission Spectra for compounds 14a-f.

Figure S77: Absorption and Emission Spectra for compounds 15a-f.

3. DFT Calculations

The quantum mechanical calculations of the synthesized molecules for better understanding of their electronic structures using the Gaussian 09 program.¹ The GaussView program² was used to visualize the molecular structures. The DFT computations employed the B3LYP functional with Becke's gradient-exchange correction³ along with the Lee-Yang-Parr correlation functional.⁴ The geometry optimizations utilized the B3LYP/6-311++G(d,p) basis set.⁵ The HOMO and LUMO for some of the compounds of series **14a-f** and **15a-f** are depicted in **Table S1**.

Table S1. HOMO-LUMO orbitals of compounds 14a-c, 14f, 15a-e.

Figure S78: UV-Visible absorption spectra of compound 14a.

4. Single crystal X-ray diffraction analysis of compound 6f

 Table S2: Single crystal X-ray diffraction analysis of compound 6f.

Identification code	AKP-A-6171_auto	
Empirical formula	$C_{18}H_{14}N_4O_3$	
Formula weight	334.33	
Temperature/K	293(2)	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /c	
Unit cell dimensions/Å	a = 13.1867(6)	a = 90°
	b = 14.9870(6)	$b = 98.777(4)^{\circ}$
	c = 8.0323(4)	$\gamma = 90$ °
Volume/Å ³	1568.83(12)	
Ζ	4	
Density (calculated)/g/cm ³	1.416	
Absorption coefficient/mm ⁻¹	0.100	
F(000)	696.0	
Crystal size/mm ³	0.2 x 0.1 x 0.1	
Theta range for data collection/°	6.272 to 62.092	
Index ranges	$-18 \le h \le 19, -19 \le k \le 21, -11 \le 1 \le 10$	
Reflections collected	18230	
Independent reflections	4134 [$R_{int} = 0.0372$, $R_{sigma} = 0.0321$]	
Max. and min. transmission	1.000 and 0.448	
Data /restraints /parameters	4134/0/226	
Goodness-of-fit on F ²	1.073	
Final R indices [I>=2σ (I)]	$R_1 = 0.0457, wR_2 = 0.1123$	
R indices (all data)	$R_1 = 0.0715, wR_2 = 0.1229$	
Largest diff. peak and hole/e.Å ⁻³	0.21/-0.21	

References

Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.;
 Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H. Gaussian
 Wallingford, CT: Gaussian Inc, 2009.

5. Daga, L.E.; Civalleri, B.; Maschio, L. J. Chem. Theory Comput. 2020, 16, 2192-2201.

^{2.} Dennington, R.; Keith, T.; Millam, J. Gauss View 5.0. Shawnee, KS: Semichem Inc, 2009.

^{3.} Becke, A.D. Phys. Rev. A, 1988, 38, 3098-3100.

^{4.} Lee, C.; Yang, W.; Parr, R.G. Phy. Rev. B Condens. Matter 1988, 37, 785-789.