Supporting Information

The Dermacozines and Light: A Novel Phenazine Semiquinone Radical based Photocatalytic System from the Deepest Oceanic Trench of the Earth

Bertalan Juhasz 1, Angel Cuesta 3, Russel F. Howe 3, *Marcel Jaspars 1

1 Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
2 Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
3 Centre for Energy Transition, University of Aberdeen, Aberdeen AB24 3FX, Scotland, UK

* Corresponding author: m.jaspars@abdn.ac.uk; angel.cuestaciscar@abdn.ac.uk.

Table of Contents

S1. Dermacozines isolated to date. [Ref.2,3,4,5] ..3
S2. Dermacozines, isolation (stationary phase: silica, mobile phase: 90% CH3Cl1-10% CH2OH). ..4
S3. UV-Vis measured Longest AMs of dermacozines (solvent: C2H5OH) in the visible EM radiation in [nm] [Ref.2,3,4,5], [m], [Hz], [J] and [eV]. ..5
S4. Longest AMs of dermacozines in the visible EM (solvent: C2H5OH) [2,3,4,5] [eV]. ..5
S5. Dermacozine B Cyclic Voltammetry measurements (0.1 M NaClO in CH2CN). ...6
S6. Dermacozine E Cyclic Voltammetry measurements (0.1 M NaClO4 in CH2CN). ...6
S7. Dermacozine F Cyclic Voltammetry measurements (0.1 M NaClO4 in CH2CN). ...7
S8. Dermacozine O Cyclic Voltammetry measurements (0.1 M NaClO4 in CH2CN). ...7
S9. PCA Cyclic Voltammetry measurements (0.1 M NaClO4 in CH2CN). ...8
S10. Dermacozine P Cyclic Voltammetry measurements (0.1 M NaClO4 in CH2CN). ...8
S11. Measured anodic and cathodic potentials of dermacozines in 0.1 M NaClO4 in CH2CN±Standard Errors (SE), and calculated anodic and cathodic values±Mean Errors (ME) based on 13.a. linear regression (calculated anodic potentials) and arithmetic mean of measured cathodic potentials [µ±ME] ...9
S12.a. Dermacozine B, E, F, O and PCA’s experimental optical (Solvent: C2H5OH) and experimental electric HOMO-LUMO energy gaps (solvent: CH2CN) correlation. ...10
S12.b. Dermacozine B, E, F, O and PCA’s experimental optical [eV] (Solvent: C2H5OH) and experimental electric HOMO-LUMO energy gaps [V] (solvent: CH2CN) multiple regression ..10
S13.a. Linear correlation between the experimental anodic potentials of dermacozine B, E, F and PCA [V] with Cyclic Voltammetry (solvent: CH2CN) and the experimental optical HOMO-LUMO gaps measured with UV-Vis Spectroscopy (solvent C2H5OH) [eV]. ...11
S13.b. Multiple Regression between the experimental anodic potentials of dermacozine B, E, F and PCA [V] measured with Cyclic Voltammetry (solvent: CH2CN) and the experimental optical HOMO-LUMO gaps measured with UV-Vis Spectroscopy (solvent C2H5OH) [eV]. ...11
S14.a. Linear correlation between the cathodic potentials of dermacozine B, E, F and PCA [V] measured with Cyclic Voltammetry (solvent: CH2CN) and the experimental optical HOMO-LUMO gaps measured with UV-Vis Spectroscopy (solvent C2H5OH) [eV]. ...12
S14.b. Multiple regression between the experimental cathodic potentials of dermacozine B, E, F, O and PCA [V] measured with Cyclic Voltammetry (solvent: CH$_3$CN) and the experimental optical HOMO-LUMO gaps measured with UV-Vis Spectroscopy (solvent C$_2$H$_5$OH) [eV]. ... 12

S15. Dermacozine O semiquinone radical’s reaction with water, EPR Spectroscopy, He atmosphere, 298 K, 550±50 nm filter in CHCl$_3$... 13

S16. Dermacozine E neutral semiquinone radical EPR (a) in chloroform (red line, experimental 550±50 nm filter, blue dashed line modelled EPR spectrum) and (b) UV Vis Spectrum before and after the the dermacozine E semiquinone radical formed in chloroform (inlet: confirmed dermacozine E radical structure) ... 14

S17. Dermacozine O neutral semiquinone radical EPR (a) in chloroform (red line, experimental 550±50 nm filter, blue dashed line modelled EPR spectrum) and (b) UV Vis Spectrum before and after the the dermacozine O semiquinone radical formed in chloroform (inlet: confirmed dermacozine O radical structure). ... 14

S18. Dermacozine O radical UV-Vis Spectrum in CHCl$_3$.. 14

S19. Dermacozine O UV-Vis Spectrum in CHCl$_3$. .. 15

S20. Dermacozine E UV-Vis Spectrum in CHCl$_3$ (solution is blue). .. 15

S21. Dermacozine E UV-Vis Spectrum, after EPR and with 550 nm filter irradiation, in CHCl$_3$ (solution is orange), near infrared band (arrow) appeared at ~1000 nm. .. 15

S22. Dermacozine E UV-Vis Spectrum, after EPR and with 550 nm filter irradiation, in CH$_3$OH (colour of the solution changed to blue from orange) .. 15

S23. Dermacozine E (LC)-HR-(ESI)-MSn after irradiation and EPR in CH$_3$OH .. 16

S24. Dermacozine E dimer (LC)-HR-(ESI)-MSn after irradiation dissociated in CH$_3$OH and dermacozine E is detectable again. .. 16

S25. Dermacozine O (LC)-HR-(ESI)-MSn after irradiation and EPR in CH$_3$OH .. 17

S26. LC MS Mass Spectrometry Chromatogram of Dermacozine B (Orbitrap). .. 17

S27. Dermacozine B 1D 1H NMR Spectrum in DMSO-d$_4$ 400 MHz .. 17

S28. LC MS Mass Spectrometry Chromatogram of Dermacozine E (Orbitrap). .. 18

S29. Dermacozine E 1D 1H NMR Spectrum in DMSO-d$_4$ 400 MHz .. 18

S30. LC MS Mass Spectrometry Chromatogram of Dermacozine F (qToF) .. 19

S31. Dermacozine F 1D 1H NMR Spectrum in DMSO-d$_4$ 400 MHz .. 19

S32. LC MS Mass Spectrometry Chromatogram of PCA (qToF) .. 20

S33. PCA 1D 1H NMR Spectrum in DMSO-d$_4$ 400 MHz .. 20

S34. Dermacozine O 1D 1H NMR Spectrum in DMSO-d$_4$ 400 MHz .. 21

S35. LC MS Mass Spectrometry Chromatogram of Dermacozine O (qToF) .. 21

S36. Dermacozine P 1D 1H NMR Spectrum in DMSO-d$_4$ 400 MHz .. 22

S37. LC MS Mass Spectrometry Chromatogram of Dermacozine P (Orbitrap) .. 22
S1. Dermacozines isolated to date. [Ref.2,3,4,5]
S2. Dermacozines, isolation (stationary phase: silica, mobile phase: 90% CH$_2$Cl$_2$ - 10% CH$_3$OH).
S3. UV-Vis measured Longest AMs of dermacozines (solvent: C₂H₅OH) in the visible EM radiation in [nm]^[Ref.2,3,4,5], [m], [Hz], [J] and [eV].

<table>
<thead>
<tr>
<th>Dermacozine</th>
<th>Longest absorption maximum in the visible [nm]</th>
<th>Longest absorption maximum in the visible [m]</th>
<th>Calculated frequency [Hz]</th>
<th>E<sub>optical gap, calc, Joules [J]</sub></th>
<th>E<sub>optical gap, calc ev[eV]</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermacozine A</td>
<td>398</td>
<td>3.98E-07</td>
<td>7.53247E+14</td>
<td>4.99107E-19</td>
<td>3.12</td>
</tr>
<tr>
<td>Dermacozine B</td>
<td>419</td>
<td>4.19E-07</td>
<td>7.15495E+14</td>
<td>4.74092E-19</td>
<td>2.96</td>
</tr>
<tr>
<td>Dermacozine C</td>
<td>460</td>
<td>4.60E-07</td>
<td>6.51723E+14</td>
<td>4.31836E-19</td>
<td>2.70</td>
</tr>
<tr>
<td>Dermacozine D</td>
<td>408</td>
<td>4.08E-07</td>
<td>7.34785E+14</td>
<td>4.86874E-19</td>
<td>3.04</td>
</tr>
<tr>
<td>Dermacozine E</td>
<td>576</td>
<td>5.76E-07</td>
<td>5.20473E+14</td>
<td>3.44869E-19</td>
<td>2.15</td>
</tr>
<tr>
<td>Dermacozine F</td>
<td>566</td>
<td>5.66E-07</td>
<td>5.29660E+14</td>
<td>3.50962E-19</td>
<td>2.19</td>
</tr>
<tr>
<td>Dermacozine G</td>
<td>580</td>
<td>5.80E-07</td>
<td>5.16884E+14</td>
<td>3.42941E-19</td>
<td>2.14</td>
</tr>
<tr>
<td>Dermacozine H</td>
<td>459</td>
<td>4.59E-07</td>
<td>6.53143E+14</td>
<td>4.32777E-19</td>
<td>2.70</td>
</tr>
<tr>
<td>Dermacozine I</td>
<td>516</td>
<td>5.16E-07</td>
<td>5.80993E+14</td>
<td>3.84970E-19</td>
<td>2.40</td>
</tr>
<tr>
<td>Dermacozine J</td>
<td>435</td>
<td>4.35E-07</td>
<td>6.89178E+14</td>
<td>4.56654E-19</td>
<td>2.85</td>
</tr>
<tr>
<td>Dermacozine M</td>
<td>590</td>
<td>5.90E-07</td>
<td>5.08123E+14</td>
<td>3.36686E-19</td>
<td>2.10</td>
</tr>
<tr>
<td>Dermacozine N</td>
<td>729</td>
<td>7.29E-07</td>
<td>4.11238E+14</td>
<td>2.72489E-19</td>
<td>1.70</td>
</tr>
<tr>
<td>Dermacozine O</td>
<td>644</td>
<td>6.44E-07</td>
<td>4.65516E+14</td>
<td>3.08454E-19</td>
<td>1.93</td>
</tr>
<tr>
<td>Dermacozine P</td>
<td>465</td>
<td>4.65E-07</td>
<td>6.44715E+14</td>
<td>4.27193E-19</td>
<td>2.67</td>
</tr>
<tr>
<td>PCA</td>
<td>364</td>
<td>3.64E-07</td>
<td>8.23606E+14</td>
<td>5.45727E-19</td>
<td>3.41</td>
</tr>
</tbody>
</table>

S4. Longest AMs of dermacozines in the visible EM (solvent: C₂H₅OH)^[Ref.2,3,4,5] [eV].
S5. Dermacozine B Cyclic Voltammetry measurements (0.1 M NaClO₄ in CH₃CN).

S6. Dermacozine E Cyclic Voltammetry measurements (0.1 M NaClO₄ in CH₃CN).
S7. Dermacozine F Cyclic Voltammetry measurements (0.1 M NaClO₄ in CH₃CN).

S8. Dermacozine O Cyclic Voltammetry measurements (0.1 M NaClO₄ in CH₃CN).
S9. PCA Cyclic Voltammetry measurements (0.1 M NaClO₄ in CH₃CN).

S10. Dermacozine P Cyclic Voltammetry measurements (0.1 M NaClO₄ in CH₃CN).
S11. Measured anodic and cathodic potentials of dermacozines in 0.1 M NaClO₄ in CH₃CN±Standard Errors (SE) and calculated anodic and cathodic values±Mean Errors (ME) based on 13.a. linear regression (calculated anodic potentials) and arithmetic mean of measured cathodic potentials (µ)±ME. *Dermacozine P excluded from calculations as the cathodic and anodic current overlaps too much with the solvent decomposition.

NB: Since the errors of the AMs in Ethanol are not known, no standard propagation of error but mean error (ME) was given for calculated values. Whereas the measured potentials expressed as ± standard error (SE).
S12.a. Dermacozine B, E, F, O and PCA’s experimental optical (Solvent: C$_2$H$_5$OH) and experimental electric HOMO-LUMO energy gaps (solvent: CH$_3$CN) correlation.

S12.b. Dermacozine B, E, F, O and PCA’s experimental optical [eV] (Solvent: C$_2$H$_5$OH) and experimental electric HOMO-LUMO energy gaps [V] (solvent: CH$_3$CN) multiple regression (Microsoft Excel).
S13.a. Linear correlation between the experimental anodic potentials of dermacozine B, E, F, O and PCA [V] with Cyclic Voltammetry (solvent: CH$_3$CN) and the experimental optical HOMO-LUMO gaps measured with UV-Vis Spectroscopy (solvent C$_2$H$_5$OH) [eV].

<table>
<thead>
<tr>
<th>Dermacozine</th>
<th>(x) Electric HOMO [V]</th>
<th>(y) ΔE Optical [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>1.3</td>
<td>3.4</td>
</tr>
<tr>
<td>B</td>
<td>1.2</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>F</td>
<td>1.1</td>
<td>2.2</td>
</tr>
<tr>
<td>O</td>
<td>0.8</td>
<td>1.9</td>
</tr>
</tbody>
</table>

S13.b. Multiple Regression (Microsoft Excel) between the experimental anodic potentials of dermacozine B, E, F, O and PCA [V] measured with Cyclic Voltammetry (solvent: CH$_3$CN) and the experimental optical HOMO-LUMO gaps measured with UV-Vis Spectroscopy (solvent C$_2$H$_5$OH) [eV].
S14.a. Linear correlation between the cathodic potentials of dermacozine B, E, F, O and PCA [V] measured with Cyclic Voltammetry (solvent: CH$_2$CN) and the experimental optical HOMO-LUMO gaps measured with UV-Vis Spectroscopy (solvent C$_2$H$_5$OH) [eV].

<table>
<thead>
<tr>
<th>Dermacozine</th>
<th>(x) Electric LUMO [V]</th>
<th>(y) Δ E Optical [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>-1</td>
<td>3,4</td>
</tr>
<tr>
<td>B</td>
<td>-0,9</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>-0,9</td>
<td>2,2</td>
</tr>
<tr>
<td>F</td>
<td>-0,9</td>
<td>2,2</td>
</tr>
<tr>
<td>O</td>
<td>-0,9</td>
<td>1,9</td>
</tr>
</tbody>
</table>

S14.b. Multiple regression (Microsoft Excel) between the experimental cathodic potentials of dermacozine B, E, F, O and PCA [V] measured with Cyclic Voltammetry (solvent: CH$_2$CN) and the experimental optical HOMO-LUMO gaps measured with UV-Vis Spectroscopy (solvent C$_2$H$_5$OH) [eV].
S15. Dermacozine O semiquinone radical’s reaction with water, EPR Spectroscopy, He atmosphere, 298 K, 550±50 nm filter in CHCl₃.

S16. Dermacozine E neutral semiquinone radical EPR (a) in chloroform (red line, experimental 550±50 nm filter, blue dashed line modelled EPR spectrum) and (b) UV Vis Spectrum before (blue) and after (red) the the dermacozine O semiquinone radical formed in chloroform (inlet: confirmed dermacozine E radical structure).
S17. Dermacozine O neutral semiquinone radical EPR (a) in chloroform (red line, experimental 550±50 nm filter, blue dashed line modelled EPR spectrum) and (b) UV Vis Spectrum before and after the the dermacozine O semiquinone radical formed in chloroform (inlet: confirmed dermacozine O radical structure).

S20. Dermacozine E UV-Vis Spectrum in CHCl₃ (solution is blue).

S21. Dermacozine E UV-Vis Spectrum, after EPR and with 550 nm filter irradiation, in CHCl₃ (solution is orange), a near infrared band (arrow) appeared at ~1000 nm, 298 K.
S22. Dermacozine E UV-Vis Spectrum, after EPR and with 550 nm filter irradiation, in CH$_3$OH (colour of the solution changed to blue from orange), 298 K.

S23. Dermacozine E (LC)-HR-(ESI)-MSn after irradiation and EPR in CH$_3$OH.

S24. Dermacozine E dimer (LC)-HR-(ESI)-MSn after irradiation dissociated in CH$_3$OH and dermacozine E is detectable again.
S25. Dermacozine O (LC)-HR-(ESI)-MSn after irradiation and EPR in CH$_3$OH.

S26. LC MS Mass Spectrometry Chromatogram of Dermacozine B (Orbitrap)

S27. Dermacozine B 1D 1H NMR Spectrum in DMSO-d_6 400 MHz (x: contaminant)
S28. LC MS Mass Spectrometry Chromatogram of Dermacozine E (Orbitrap)

S29. Dermacozine E 1D 1H NMR Spectrum in DMSO-d_6 400 MHz
S30. LC MS Mass Spectrometry Chromatogram of Dermacozine F (qToF)

S31. Dermacozine F 1D ¹H NMR Spectrum in DMSO-\textit{d}_6 400 MHz
S32. LC MS Mass Spectrometry Chromatogram of PCA (qToF)

S33. PCA 1D 1H NMR Spectrum in DMSO-d_6 400 MHz
S34. Dermacozine O 1D 1H NMR Spectrum in DMSO-d_6 400 MHz

† N.B. Identical spectral data of dermacozine O and P appearing in SI which have already been published in Reference [5]. However, for clarity and for completeness the authors present them in the SI with appropriate citation.

S35. LC MS Mass Spectrometry Chromatogram of Dermacozine O (qToF)

† N.B. Identical spectral data of dermacozine O and P appearing in SI which have already been published in Reference [5]. However, for clarity and for completeness the authors present them in the SI with appropriate citation.
S36. Dermacozine P 1D 1H NMR Spectrum in DMSO-d_6 400 MHz

(† N.B. Identical spectral data of dermacozine O and P appearing in SI which have already been published in Reference [5]. However, for clarity and for completeness the authors present them in the SI with appropriate citation).
S37. LC MS Mass Spectrometry Chromatogram of Dermacozine P (Orbitrap)

† N.B. Identical spectral data of dermacozine O and P appearing in SI which have already been published in Reference [5]. However, for clarity and for completeness the authors present them in the SI with appropriate citation.)