## SUPPLEMENTARY INFORMATION

# Water-Assisted Cascade Synthesis of CF<sub>3</sub>-tethered Nevirapine Analogues: *In vitro* and *In silico* Antibacterial Studies

Shivangi Jaiswal<sup>a</sup>, Dharma Kishore<sup>a</sup>, Annu Bhardwaj<sup>a</sup>, Khushboo Bhardwaj<sup>a</sup>, Shruti Richa<sup>b</sup>, Smita Jain<sup>c</sup>, Jaya Dwivedi <sup>a\*</sup> and Swapnil Sharma <sup>b\*</sup>

<sup>a</sup>Department of Chemistry, Banasthali Vidyapith, Banasthali, India <sup>b</sup>Department of Pharmacy, Banasthali Vidyapith, Banasthali, India <sup>c</sup>Department of Pharmacy, Central University of Rajasthan, India

### Contents

- 1. Spectral graph of synthesized compounds in accordance
  - IR

<sup>1</sup>H-NMR

<sup>13</sup>C-NMR

<sup>19</sup>F-NMR

Mass spectrum

- 2. Plausible mechanism
- 3. Green metrics calculation
- 4. Molecular Docking
- 5. SAR



1. Spectral graph of synthesized compounds (5a-5k)

S1: IR spectrum of 5a



**S2:** <sup>1</sup>H NMR of **5a** 



**S3:** <sup>13</sup>C NMR of **5a** 



**S4:** <sup>19</sup>F NMR of **5a** 



S5: Mass spectrum of 5a



S6: IR spectrum of 5b



**S7:** <sup>1</sup>H NMR of **5b** 



**S8:** <sup>13</sup>C NMR of **5b** 



**S9:** <sup>19</sup>F NMR of **5b** 



**S10:** Mass spectrum of **5b** 



S11: IR spectrum of 5c



**S12:** <sup>1</sup>H NMR spectrum of **5**c



**S13:** <sup>13</sup>C NMR spectrum of **5c** 



**S14:** <sup>19</sup>F NMR of **5**c



**S15:** Mass spectrum of **5c** 



S16: IR spectrum of 5d



**S17:** 1H NMR of **5d** 



**S18:** <sup>13</sup>C NMR of **5d** 



**S19:** <sup>19</sup>F NMR of **5d** 



S20: Mass spectrum of 5d



S21: IR spectrum of 5e



**S22:** <sup>1</sup>H NMR of **5e** 



**S23:** <sup>13</sup>C NMR of **5e** 



**S24:** <sup>19</sup>F NMR of **5e** 



S25: Mass spectrum of 5e



S26: IR spectrum of 5f



**S27:** <sup>1</sup>H NMR of **5**f



**S28:** <sup>13</sup>C NMR of **5**f



**S29:** <sup>19</sup>F NMR of **5**f



**S30:** Mass spectrum of **5f** 



S31: IR spectrum of 5g



**S32:** <sup>1</sup>H NMR of **5g** 



**S33:** <sup>13</sup>C NMR of **5g** 



**S34:** <sup>19</sup>F NMR of **5g** 



S35: Mass spectrum of 5g



S36: IR spectrum of 5h



**S37:** <sup>1</sup>H NMR of **5h** 



**S38:** <sup>13</sup>C NMR of **5h** 



**S39:** <sup>19</sup>F NMR of **5h** 



**S40:** Mass spectrum of **5h** 



S41: IR spectrum of 5i

![](_page_42_Figure_0.jpeg)

**S42:** <sup>1</sup>H NMR of **5**i

![](_page_43_Figure_0.jpeg)

**S43:** <sup>13</sup>C NMR of **5i** 

![](_page_44_Figure_0.jpeg)

**S44:** <sup>19</sup>F NMR of **5i** 

![](_page_45_Figure_0.jpeg)

S45: Mass spectrum of 5i

![](_page_46_Figure_0.jpeg)

S46: IR spectrum of 5j

![](_page_47_Figure_0.jpeg)

**S47**: <sup>1</sup>H NMR of **5**j

![](_page_48_Figure_0.jpeg)

**S48:** <sup>13</sup>C NMR of **5**j

![](_page_49_Figure_0.jpeg)

**S49:** <sup>19</sup>F NMR of **5**j

![](_page_50_Figure_0.jpeg)

S50: Mass spectrum of 5j

![](_page_51_Figure_0.jpeg)

S51: IR spectrum of 5k

![](_page_52_Figure_0.jpeg)

**S52:** <sup>1</sup>H NMR of **5**k

![](_page_53_Figure_0.jpeg)

**S53:** <sup>13</sup>C NMR of **5**k

![](_page_54_Figure_0.jpeg)

**S54:** <sup>19</sup>F NMR of **5**k

![](_page_55_Figure_0.jpeg)

**S55:** Mass spectrum of **5**k

#### 2. Plausible Mechanism

![](_page_56_Figure_1.jpeg)

Scheme S1: Plausible mechanism

#### 3. Documentation of calculation of green metrics of one representative Entry 5a

 $AE = \frac{Molecular weight of product}{Total molecular weight of reactant} x 100$ 

 $\frac{356.30802}{196.55+156.56+157.0100} \times 100 = 69.84\%$ 

 $RME = \frac{Mass of isolated product}{Total mass of reactant} x 100$  $= \frac{0.35}{0.6} x 100 = 58.33\%$  $OE = \frac{RME}{AE} x 100 = \frac{58.33}{69.84} x 100 = 83.51\%$ 

E-factor =  $\frac{\text{Total mass of wastes}}{\text{Mass of product}} = \frac{0.35 \cdot 0.21}{0.21} = 0.6 \text{ (g/g)}$ 

| Compounds | MW     | %yield | AE     | RME    | OE     | E-factor |
|-----------|--------|--------|--------|--------|--------|----------|
| 5a        | 356.30 | 79%    | 69.84% | 58.33% | 83.51% | 0.7      |
| 5b        | 435.20 | 92%    | 73.32% | 63.54% | 86.66% | 0.4      |
| 5c        | 386.33 | 75%    | 71.54% | 61.23% | 85.58% | 0.5      |
| 5d        | 386.33 | 87%    | 71.33% | 61.24% | 85.85% | 0.4      |
| 5e        | 370.33 | 85%    | 70.22% | 60.21% | 85.74% | 0.3      |
| 5f        | 370.33 | 92%    | 70.88% | 60.56% | 85.44% | 0.4      |
| 5g        | 370.33 | 82%    | 70.54% | 60.44% | 85.68% | 0.5      |
| 5h        | 384.31 | 88%    | 71.23% | 61.24% | 85.97% | 0.6      |
| 5i        | 384.31 | 80%    | 71.65% | 61.25% | 85.48% | 0.6      |
| 5j        | 384.31 | 91%    | 71.25% | 61.45% | 86.24% | 0.6      |
| 5k        | 434.39 | 94%    | 79.80% | 69.81% | 87.48% | 0.5      |

Table S1: Calculated Green Metrics (AE, RME, OE and E-factor)

# 4. Molecular docking

![](_page_57_Figure_3.jpeg)

Fig. S1: Molecular interaction of compound 5a with peptide deformylase enzyme

![](_page_58_Figure_0.jpeg)

Fig. S2: Molecular interaction of compound 5b with peptide deformylase enzyme

![](_page_58_Figure_2.jpeg)

Fig. S3: Molecular interaction of compound 5c with peptide deformylase enzyme

![](_page_59_Figure_0.jpeg)

Fig. S4: Molecular interaction of compound 5d with peptide deformylase enzyme

![](_page_59_Figure_2.jpeg)

Fig. S5: Molecular interaction of compound 5e with peptide deformylase enzyme

![](_page_60_Figure_0.jpeg)

Fig. S6: Molecular interaction of compound 5f with peptide deformylase enzyme

![](_page_60_Figure_2.jpeg)

Fig. S7: Molecular interaction of compound 5g with peptide deformylase enzyme

![](_page_61_Figure_0.jpeg)

Fig. S8: Molecular interaction of compound 5h with peptide deformylase enzyme

![](_page_61_Figure_2.jpeg)

Fig. S9: Molecular interaction of compound 5j with peptide deformylase enzyme

![](_page_62_Figure_0.jpeg)

Fig. S10: Molecular interaction of compound 5k with peptide deformylase enzyme 5. SAR

SAR of synthesized compound was proposed on the basis of in vitro, in silico and molecular modelling results **Fig. S11**. The eleven derivatives of dipyridodiazepinone were synthesized and examined for inhibitory effect against peptide deformylase enzyme. SAR analysis inferred that *m*-substituted carbonyl bearing benzene ring showed highest activity compared to other derivatives and involve in H-bond interaction, pi-interaction, and hydrophobic interaction. Interestingly, *para*-substituted bromo and methyl group is preferred and retain the activity whereas *meta*-methoxy (**5d**) and *meta*-methyl substituent (**5f**) showed lower activity. Hence, the finding of docking and in vitro results revealed that electron donating substituent at *para*-position of benzene ring showed higher activity in comparison to *meta*-substituted electron donating group. Interestingly, electron withdrawing group at *meta*-position (CO) group in compound **5i** was responsible to retain the highest activity and found to very active compared to the *p*ara-carbonyl in compound **5h**. Molecular docking studies also inferred that CF<sub>3</sub> and carbonyl group involve in the hydrogen bond interaction and pyridine ring involve in the hydrophobic interaction.

![](_page_63_Figure_0.jpeg)

Fig. S11. SAR of dipyridodiazepinone derivatives.