Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Chloroformate-Mediated Ring Cleavage of Indole Alkaloids Leads to Re-engineered Antiplasmodial Agents

Daniel C. Schultz^{†[a]}, Alejandra Chávez-Riveros^{†[a]}, Michael G. Goertzen II^[a], Beau R. Brummel^[a], Raphaella A. Paes^[b], Natalia M. Santos ^[b], Srinivasarao Tenneti^[a], Khalil A. Abboud^[c], James R. Rocca^[a,d], Gustavo Seabra^[a], Chenglong Li^[a], Debopam Chakrabarti^[b], Robert W. Huigens III^{*[a]}

^[a]Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, FL.; ^[b]Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL.; ^[c]Department of Chemistry, University of Florida, Gainesville, FL; ^[d]McKnight Brain Institute, J H Miller Health Center, University of Florida, Gainesville, FL.

[†] These authors contributed equally to this work.

* Corresponding Author: rhuigens@cop.ufl.edu

Supporting Information

Table of Contents

1.) General Information
2.) Supplementary Table 1. Diagnostic ¹ H NMR Signals of Yohimbine Products
3.) Supplementary Table 2. Yohimbine Ring Cleavage Experimental Findings
4.) Supplementary Table 3. Apovincamine Ring Cleavage Experimental Findings
5.) Supplementary Figure 1. Yohimbine Ring-Cleaved Compounds Synthesized
6.) Supplementary Figure 2. Vincamine- and Reserpine-Derived Compounds Synthesized
7.) Supplementary Figure 3. Effects of Temperature on 23 and 24 ¹ H NMR Spectra
8.) Supplementary Figure 4. Characteristic NMR signals in Select Compounds
9.) Supplementary Figure 5. Diversification of Yohimbine Ring-Cleaved Products
10.) Supplementary Figure 6. Relative Free Energy Diagram for 45 and 46 S12
11.) Supplementary Figure 7. DFT Solvent Model Comparison for Cationic Intermediates
12.) Supplementary Figure 8. Yohimbine Cationic Intermediate Geometries
13.) Supplementary Figure 9. Relative Free Energy Diagram for 27 S15
14.) Procedures and Characterization Data
15.) X-Ray Data S47
16.) Computational Analysis General Information
17.) DFT Optimized Structures and Sample Input File
18.) Antiplasmodial Methods and Results
19.) References S108
20.) NMR Spectra

1.) General Information.

All chemical reactions were carried out under an atmosphere of argon unless otherwise specified. Chemical reagents were purchased from commercial sources and used without further purification. Yohimbine hydrochloride was purchased from Acros Organics at \geq 99% purity. Vincamine was purchased from AK Scientific at \geq 98% purity. Reserpine was purchased from Thermo Scientific at 99% purity. Apovincamine and vinburnine were synthesized according to our published procedures.¹ Anhydrous solvents were transferred via syringe to flame-dried glassware, which was cooled under a stream of dry argon. All microwave reactions were carried out in microwave vessels in an Anton Paar Monowave 300 Microwave Synthesis Reactor and a constant power was applied during these reactions to ensure reproducibility. Temperature control was automated via IR sensor and all indicated temperatures correspond to the maximal temperature reached during each experiment. Analytical thin layer chromatography (TLC) was performed using 250 µm Silica Gel 60 F254 pre-coated plates (EMD Chemicals Inc.). Flash column chromatography was performed using 230-400 Mesh 60Å Silica Gel (Sorbent Technologies). Melting points were obtained on a Mel-Temp II capillary melting point apparatus and were uncorrected.

NMR experiments were recorded on the following instruments: Bruker Avance III HD and Avance Neo spectrometers (600 MHz and 400 MHz for ¹H NMR; 151 MHz and 101 MHz for ¹³C NMR), and Agilent Systems VNMRS spectrometer (500 MHz for ¹H NMR; 126 MHz for ¹³C NMR). All spectra are presented using MestReNova (Mnova) software and are displayed without the use of the signal suppression function. Spectra were obtained in the following solvents (reference peaks included for ¹H and ¹³C NMRs): CDCl₃ (¹H NMR: 7.26 ppm; ¹³C NMR: 77.23 ppm), DMSO-*d6* (¹H NMR: 2.50 ppm; ¹³C NMR: 39.52 ppm), MeOD-*d4* (¹H NMR: 3.31 ppm; ¹³C NMR: 49.00 ppm), and Tetrachloroethane-*d2* (TCE) (¹H NMR: 6.00 ppm; ¹³C NMR: 73.78 ppm). Chemical shift values (δ) are reported in parts per million (ppm) for all ¹H NMR and ¹³C NMR spectra. ¹H NMR multiplicities are reported as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br. = broad, appt. = apparent.

Variable temperature (VT) NMR at 100 °C was required for the majority of the ring cleavage compounds reported herein. We believe the ¹H and ¹³C spectra at room temperature for C-N cleavage compounds exhibited broadened signals due to the conformational flexibility of the medium sized rings. Acquiring spectra at 100 °C produced sufficiently sharpened signals for analysis in most cases, though some ¹H and ¹³C signals remained broad even at elevated temperatures or were occasionally not visible in both 1D and 2D spectra. This phenomenon has been reported for medium-size rings in previous literature.^{2–5} Proton signals for methoxy groups are singlets, but occasionally some of those resonances and other sharp signals have the appearance of splitting due to slight inhomogeneities of the magnetic field at high temperature. Notes are made at the end of the proton tabulated data when these instances occur.

S3

2.) Supplementary Table 1. Diagnostic ¹H NMR Signals of Yohimbine Products.

CNBr	Nucleophile	Cyanamides*			
E+	Nuc:	Inversion Product (42)	Retention Product (43)		
CNBr	Methanol	4.25 ppm			
CNBr	Ethanol	4.39 ppm			
CNBr	Isopropanol	4.46 ppm	4.95 ppm		
CNBr	Propargyl-OH	4.66 ppm	5.13 ppm		
CNBr	Butanol	4.33 ppm	4.79 ppm		
CNBr	Phenol	5.23 ppm	5.68 ppm		
CNBr	4-Methoxyphenyl-OH	5.06 ppm	5.58 ppm		
CNBr	Benzyl-OH	4.31 ppm	4.91 ppm		
CNBr	4-Bromobenzyl-OH	4.39 ppm	4.90 ppm		
CNBr	2-lodobenzyl-OH	4.50 ppm	5.01 ppm		
Chloroformate	Nucleophile	Carbamates**			
E+	Nuc:	Inversion Product (42)	Retention Product (43)		
Methyl	Methanol	4.27 ppm	4.57 ppm		
Methyl	2-lodobenzyl-OH	4.51 ppm	4.88 ppm		
Ethyl	Methanol	4.28 ppm	4.58 ppm		
Ethyl	2-lodobenzyl-OH	4.51 ppm	4.89 ppm		
Trichloroethyl	Methanol	4.27 ppm	4.62 ppm		
Phenyl	Methanol	4.34 ppm	4.66 ppm		
Phenyl	tert-Butanol	4.75 ppm	5.03 ppm		
Phenyl	2-lodobenzyl-OH	4.54 ppm	4.96 ppm		
Phenyl	2-Butyn-1-ol	4.69 ppm	5.09 ppm		
Methyl	Ethyl mercaptan	3.93 ppm	4.27 ppm		
Methyl	Benzyl mercaptan	4.17 ppm [†]	3.97 ppm [†]		
Phenyl	Benzyl mercaptan	3.84 ppm	4.02 ppm		
Allyl	Methanol	4.27 ppm	4.59 ppm		
Propargyl	Methanol	4.28 ppm	4.59 ppm		

^{*} ¹H NMR data of cyanamide compounds in CDCl₃ reproduced for reference from previous literature.⁶

^{** 1}H NMR spectra of carbamate compounds were obtained in C₂D₂Cl₄.

^{† 1}H NMR conducted in DMSO-*d*₆ for these compounds as better results were obtained compared to C₂D₂Cl₄.

Note: When forming cyanamide products upon reaction with yohimbine and cyanamide bromide / alcohol from our previous work⁶, the inversion product for each diastereomeric pair always had a ¹H NMR chemical shift upfield (4.25 - 5.23 ppm) compared to the retention product (4.79 - 5.68 ppm). In all but one instance when reacting yohimbine with carbamates / alcohol (or thiol), the inversion products had ¹H NMR chemical shifts that are upfield (3.93 - 4.82 ppm) compared to the retention diastereomer (3.97 - 5.09 ppm). The lone exception in this study was using benzyl mercaptan with methyl chloroformate; however, NMRs were taken in DMSO-*d6*.

3.) Supplementary Table 2. Yohimbine Ring Cleavage Experimental Findings.

Yohimbine 7

Inversion Product (A, 11)

Retention Product (B, 12)

Chloroformate (R)	Nucleophile (R₂XH)	Conditions	Scale (mg)	Time	Combined % Yield (Ratio of 11 / 12)	d.r.
Methyl	MeOH	CHCl₃, RT	201	4.5 h	78% (30 / 48)	1:1.6
	MeOH	CHCl ₃ , 60 °C, Oil Bath	202	1 h	90% (39/51)	1:1.3
	2-I-BnOH	CHCl₃, 60 °C, Oil Bath	500	20 h	45% (17 / 28)	1:1.6
	BnSH	CHCl₃, 60 °C, Oil Bath	1005	3 h	50% (23 / 27)	1:1.2
	EtSH	CHCl ₃ , RT	500	18 h	44% (11 / 33)	1:3.0
Ethyl	MeOH	CHCl₃, RT	53	51 h	41% (22 / 19)	1.2:1
	MeOH	CHCl₃, 60 °C, Oil Bath	200	3 h	81% (41 / 40)	1.0:1
	MeOH	CHCl ₃ , 60 °C, Microwave	200	15 min	81% (39 / 42)	1:1.1
	MeOH	CHCl ₃ , 100 °C, Microwave	200	5 min	75% (35 / 40)	1:1.1
	MeOH	CHCl ₃ , 100 °C, Microwave	200	1 min	62% (25 / 37)	1:1.5
	MeOH	CHCl ₃ , 200 °C, Microwave	200	1 min	53% (30 / 23)	1.3:1
	2-I-Bn-OH	CHCl ₃ , 60 °C, Microwave	203	15 min	49% (18/31)	1:1.7
-CH₂CCH	MeOH	CHCl ₃ , RT	500	5 h	52% (18 / 34)	1:1.9
-CH ₂ CHCH ₂	MeOH	CHCl₃, RT	150	4 h	60% (29/31)	1:1.1
	MeOH	CHCl₃, RT	52	51 h	71% (30 / 41)	1:1.4
-CH2CCI3	MeOH	CHCl ₃ , 60 °C, Oil Bath	250	3 h	87% (38 / 49)	1:1.6
	MeOH	CHCl ₃ , 60 °C, Microwave	250	15 min	59% (25 / 34)	1:1.4
	MeOH	CH ₂ Cl ₂ , RT	460	3 h	85% (33 / 52)	1:1.6
Phenyl	MeOH	CHCl ₃ , RT	50	51 h	58% (27/31)	1:1.1
	MeOH	CHCl₃, 60 °C, Oil Bath	100	3 h	96% (53 / 43)	1.2:1
	MeOH	CHCl ₃ , 60 °C, Oil Bath	600	3 h	66% (34 / 32)	1.1:1
	MeOH	CHCl ₃ , 60 °C, Oil Bath	203	2 h	64% (30 / 34)	1:1.1
	MeOH	CHCl ₃ , 60 °C, Microwave	200	15 min	66% (31 / 35)	1:1.1
	^t BuOH	CHCl ₃ , 60 °C, Oil Bath	201	3 h	33% (13 / 20)	1:1.5
	2-Butyn-1-ol	CH ₂ Cl ₂ , RT	500	3 h	89% (27 / 62)	1:2.3
	2-I-Bn-OH	CHCl ₃ , 60 °C, Microwave	202	15 min	75% (21 / 54)	1:2.6
	BnSH	CHCl₃, RT	203	9 h	67% (32/35)	1:1.1
	BnSH	CH ₂ Cl ₂ , RT	201	6 h	90% (27 / 63)	1:2.3

Notes: All yield data are from isolated materials following purification via column chromatography. RT = room temperature. d.r. = diasteromeric ratio.

4.) Supplementary Table 3. Apovincamine Ring Cleavage Experimental Findings.

Chloroformate (R)	Nucleophile (R₂XH)	Conditions	Scale (mg)	Time	Yield (%)	Recovered SM
Methyl	МеОН	CHCl ₃ , 100 °C, Microwave	229	30 min	15%	n.d.
	MeOH	CHCl ₃ , 100 °C, Microwave	211	1 h	24%	n.d.
	MeOH	CH ₂ Cl ₂ , 100 °C, Microwave	211	1 h	35%	n.d.
	MeOH	CH ₂ Cl ₂ , 65 °C, Sealed Tube	202	44 h	25%	n.d.
	MeOH	CH ₂ Cl ₂ , 100 °C, Sealed Tube	1002	71 h	33%	n.d.
	EtOH	CHCl ₃ , 100 °C, Microwave	195	1 h	30%	n.d.
	Propargyl-OH	CHCl ₃ , 100 °C, Microwave	277	1 h	16%	n.d.
	2-Butyn-1-ol	CH ₂ Cl ₂ , 100 °C, Microwave	206	1 h	17%	68%
	Allyl-OH	CH ₂ Cl ₂ , 100 °C, Microwave	202	1 h	51%	39%
	Benzyl-OH	CH ₂ Cl ₂ , 100 °C, Microwave	200	1 h	24%	31%
	EtSH	CH ₂ Cl ₂ , 100 °C, Microwave	200	1 h	25%	n.d.
Ethyl	MeOH	CHCl ₃ , 100 °C, Microwave	216	1 h	26%	n.d.
	MeOH	CH ₂ Cl ₂ , 100 °C, Sealed Tube	207	68 h	67%	n.d.
-CH ₂ CCI ₃	MeOH	CHCl ₃ , 100 °C, Microwave	273	1 h	20%	n.d.
	MeOH	CH ₂ Cl ₂ , 100 °C, Sealed Tube	399	71 h	19%	76%
Phenyl	МеОН	CHCl ₃ , 100 °C, Microwave	242	1 h	6%	n.d.
Allyl	МеОН	CHCl ₃ , 100 °C, Microwave	218	1 h	10%	n.d.

Notes: "Recovered SM" refers to the percent of starting material recovered following the reaction. n.d. = not determined.

5.) Supplementary Figure 1. Yohimbine Ring-Cleaved Compounds Synthesized.

6.) Supplementary Figure 2. Vincamine- and Reserpine-Derived Compounds Synthesized.

7.) Supplementary Figure 3. Effects of Temperature on 23 and 24 ¹H NMR Spectra.

Note: ¹H NMR in DMSO-d6. Peak shapes and shifts are altered as a function of temperature.

8.) Supplementary Figure 4. Characteristic NMR signals in Select Compounds.

The stereochemistry at C3 has a profound effect on the peak shape and chemical shift of C22 methylene protons in the yohimbine ring cleavage series synthesized during these studies. Inversion products exhibit sharp, clearly-defined C22 diastereotopic proton signals, whereas retention products exhibit broader, weaker signals upfield of their inversion product counterparts. Troc-protected derivative **48** displays a particularly peculiar phenomenon wherein the H22' signal of this retention product was completely absent from the ¹H spectrum, with no correlations observed in 2-D NMR experiments. Similar broadening and upfield shift of the C22 singlet of methyl carbamate retention products are observed as well (see spectra).

9.) Supplementary Figure 5. Diversification of Yohimbine Ring-Cleaved Products.

10.) Supplementary Figure 6. Relative Free Energy Diagram for 45 and 46.

Relative free energy diagram for yohimbine ring cleavage using ethyl chloroformate and methanol. Optimized structure of **Int-2B** shown in top right. Yohimbine proceeds through a quaternary nitrogen intermediate, which then undergoes indole-promoted ring cleavage to form **Int-2B**. **Int-2C** does not form due to a lack of favorable orbital overlap. Nucleophilic attack affords products **A** (45) and **B** (46).

11.) Supplementary Figure 7. DFT Solvent Model Comparison for Cationic Intermediates.

Note: Energies shown relative to that of the starting materials using the PCM or SMD solvent model.

12.) Supplementary Figure 8. Yohimbine Cationic Intermediate Geometries.

Top Row: Indole-stabilized carbocation intermediates for yohimbine the ring cleavage reaction using ethyl chloroformate and their energies relative to the starting materials.

Middle Row: Geometry optimized structures of each carbocationic intermediate.

Bottom Row: Preferred products upon nucleophilic attack based on the shielding of the top or bottom face in the carbocationic intermediate along with their energies relative to the starting materials.

13.) Supplementary Figure 9. Relative Free Energy Diagram for 27.

Relative free energy diagram for apovincamine ring cleavage using methyl chloroformate and methanol. Reaction proceeds through quaternary nitrogen intermediate **V-Int-1D**, which undergoes indole-promoted ring cleavage to form **V-Int-2B** (likely exist in equilibrium). Nucleophilic attack affords the sole product **27**. Optimized structure of **V-Int-2B** shown in top right. 14.) Procedures and Characterization Data.

Procedure. Commercially available yohimbine hydrochloride (2.03 g, 5.20 mmol) was added to an Erlenmeyer flask and was dissolved in 200 mL of ethyl acetate. Then, 200 mL of a saturated solution of sodium bicarbonate was added and the resulting mixture was stirred for 10 minutes at room temperature. The reaction mixture was then extracted with ethyl acetate, and dried with sodium sulfate, filtered, and concentrated under reduced pressure to afford pure vohimbine 7 as a free base (1.81 g, 98%, white solid). Note: The tabulated data, NMR spectra, and key signals figure below are reproduced with permission from Chem. Eur. J. 2017, 23, 4327-4335. This was used as an internal standard for this study.

¹**H NMR:** (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.47 (dd, J = 7.5, 1.4 Hz, 1H), 7.30 (d, J = 7.9 Hz, 1H), 7.13 (appt. td, J = 7.2, 1.4 Hz, 1H), 7.08 (appt. td, J = 7.4, 1.2 Hz, 1H), 4.23 (m, 1H), 3.81 (s, 3H), 3.32 (dd, J = 11.4, 2.3 Hz, 1H), 3.08 (ddd, J = 11.1, 5.9, 1.3 Hz, 1H), 3.04 - 2.90 (m, 2H), 2.71 (dd, J = 15.2, 4.0 Hz, 1H), 2.62 (appt. td, J = 11.1, 4.3 Hz, 1H), 2.35 (dd, J = 11.5, 2.1 Hz, 1H), 2.24 (appt. t, J = 10.5 Hz, 1H), 2.09 - 1.94 (m, 3H), 1.64 -1.49 (m, 3H), 1.42 (m, 1H), 1.36 (appt. q, *J* = 11.9 Hz, 1H).

¹³C NMR: (101 MHz, CDCl₃) δ 175.8, 136.2, 134.7, 127.6, 121.6, 119.6, 118.3, 110.9, 108.5, 67.2, 61.5, 60.1, 53.1, 52.6, 52.2, 41.0, 36.9, 34.5, 31.7, 23.5, 21.9.

Procedure. Yohimbine **7** (201 mg, 0.56 mmol) was added to a round bottom flask which was then dissolved with the addition of 12 mL of chloroform. Sodium carbonate (474.6 mg, 4.48 mmol), and methyl chloroformate (0.20 mL, 2.52 mmol) were then added to the solution and the mixture stirred at room temperature for 10 minutes before the addition of methanol (0.16 mL, 3.96 mmol). The reaction was then stirred at room temperature for 4.5 hours (reaction progress was monitored by thin layer chromatography, or TLC, analysis). After yohimbine was consumed (based on TLC analysis), the reaction mixture was filtered and concentrated under reduced pressure. The resulting crude product was purified via column chromatography by using 100:0 to 2:3 hexanes:ethyl acetate to afford compound **13** (73 mg, 30%) as a white solid and compound **14** (120 mg, 48%) as a white solid. Note: This procedure was adapted from the literature⁷ and successfully applied to a diversity of chloroformates in combination with alcohol / thiol nucleophiles to give two diastereomeric products from yohimbine.

Picture Taken By Dr. Alejandra Chávez-Riveros

Yield: 30%; 73 mg of 13; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 8.24 (s, 1H), 7.53 (d, *J* = 7.9 Hz, 1H), 7.42 (dd, *J* = 8.0, 0.5 Hz, 1H), 7.23 (m, 1H), 7.16 (m, 1H), 4.27 (dd, *J* = 9.6, 5.1 Hz, 1H), 4.05 (m, 1H), 3.88 (s, 3H), 3.78 (s, 3H), 3.75 (m, 1H), 3.50 (dd, *J* = 13.9, 9.5 Hz, 1H), 3.30 (dd, *J* = 15.4, 9.6 Hz, 1H), 3.26 (s, 3H), 3.00 (dd, *J* = 15.2, 7.1 Hz, 1H), 2.90 (dd, *J* = 13.9, 1.0 Hz, 1H), 2.76 (m, 1H), 2.58 - 2.51 (m, 3H), 2.04 (ddd, ddd), Δ

J = 14.5, 5.2, 5.2 Hz, 1H), 1.81 - 1.73 (m, 2H), 1.60 (m, 1H), 1.42 (m, 1H), 1.19 (appt. dq, J = 13.6, 4.4 Hz, 1H), 1.08 (m, 1H). Note: The appearance of the methoxy 3 H signals (3) are due to slight inhomogeneities of the magnetic field at higher temperature. These are singlets despite their appearance.

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 176.2, 157.5, 135.4, 135.3, 128.5, 121.8, 119.4, 118.0, 111.2, 111.1, 77.4, 66.6, 57.6, 56.5, 53.8, 52.3, 51.7, 51.4, 39.1, 36.6, 34.9, 30.5, 24.6, 24.1.

HRMS (ESI): calc. for C₂₄H₃₂N₂O₆Na [M+Na]⁺: 467.2153, found: 467.2157.

Melting point: 178 - 180 °C.

Key Signals for 13

Yield: 48%; 120 mg of 14; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 8.19 (s, 1H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.38 (dd, *J* = 8.0, 0.6 Hz, 1H), 7.20 (m, 1H), 7.15 (m, 1H), 4.57 (dd, *J* = 5.1, 5.1 Hz, 1H), 4.15 (m, 1H), 3.82 (m, 1H, buried), 3.81 (s, 3H), 3.48 (m, 1H), 3.37 (m, 1H), 3.28 (s, 3H), 3.25 (br. s, 3H), 3.17 (ddd, *J* = 15.1, 3.6, 3.6 Hz, 1H), 3.01 (ddd, *J* = 14.9, 10.7, 4.1 Hz, 1H), 2.91 (dd, *J* = 14.6, 1.4 Hz, 1H), 2.58 (br. s, 1H), 2.54

(dd, *J* = 11.4, 1.9 Hz, 1H), 2.18 (ddd, *J* = 15.6, 4.2, 4.2 Hz, 1H), 2.13 (ddd, *J* = 15.6, 5.1, 5.1 Hz, 1H), 2.03 (m, 1H), 1.90 (appt. dq, *J* = 13.7, 3.7 Hz, 1H), 1.79 (m, 1H), 1.55 (m, 1H), 1.47 - 1.36 (m, 2H). Note: The appearance

of the methoxy 3 H signals (3) are due to slight inhomogeneities of the magnetic field at higher temperature. These are singlets despite their appearance.

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 174.9, 157.2, 136.4, 135.4, 128.7, 121.5, 119.2, 118.0, 110.8, 109.8, 74.1, 66.7, 57.4, 56.8, 52.0, 51.8, 51.4, 50.2, 38.2, 37.8, 35.6, 30.9, 24.9, 24.8.

HRMS (ESI): calc. for C₂₄H₃₂N₂O₆Na [M+Na]⁺: 467.2153, found: 467.2154.

Melting point: 164 - 166 °C.

Picture Taken By Dr. Alejandra Chávez-Riveros

Yield: 17%; 154 mg of 19; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 8.37 (s, 1H), 7.86 (d, *J* = 7.9 Hz, 1H), 7.57 (d, *J* = 7.9 Hz, 1H), 7.44 (d, *J* = 8.1 Hz, 1H), 7.42 - 7.35 (m, 2H), 7.25 (m, 1H), 7.18 (m, 1H), 7.01 (m, 1H), 4.51 (dd, *J* = 9.9, 5.2 Hz, 1H), 4.46 (d, *J* = 12.7 Hz, 1H), 4.41 (d, *J* = 12.7 Hz, 1H), 4.05 (m, 1H), 3.87 (m, 1H), 3.79 (s, 3H), 3.76 (s, 3H), 3.51 - 3.38 (m, 2H), 3.05 (dd, *J* = 14.8, 6.5 Hz, 1H), 2.96 (d, *J* = 13.9 Hz, 1H), 2.75 - 2.61 (m, 3H), 2.55 (dd, *J* = 10.8, 1.0 Hz, 1H), 2.13 (ddd, *J* = 14.5, 5.2, 5.2 Hz,

1H), 1.82 - 1.64 (m, 3H), 1.43 (m, 1H), 1.22 (m, 1H), 1.09 (m, 1H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 176.3, 157.5, 140.6, 139.1, 135.5, 135.0, 129.0, 129.0, 128.5, 128.0 121.9, 119.4, 118.1, 111.5, 111.2, 97.8, 75.5, 74.7, 66.5, 57.7, 54.0, 52.3, 51.8, 51.4, 39.6, 36.8, 34.8, 30.5, 24.7, 24.1.

HRMS (ESI): calc. for C₃₀H₃₅IN₂O₆Na [M+Na]⁺: 669.1432, found: 669.1425.

Melting point: 93 - 95 °C.

Yield: 28%; 257 mg of 20; tan solid.

1H), 2.89 (dd, *J* = 14.5, 1.8 Hz, 1H), 2.59 (dd, *J* = 11.5, 2.4 Hz, 1H), 2.53 (br. s, 1H), 2.29 (ddd, *J* = 15.6, 4.7, 4.0 Hz, 1H), 2.22 (ddd, *J* = 15.6, 5.3, 5.3 Hz, 1H), 2.10 (m, 1H), 1.88 (appt. dq, *J* = 13.3, 3.7 Hz, 1H), 1.72 (m, 1H), 1.54 - 1.33 (m, 3H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 174.7, 157.2, 140.5, 139.1, 135.9, 135.6, 129.2, 129.0, 128.7, 127.9, 121.6, 119.2, 118.1, 110.9, 110.5, 97.9, 75.0, 72.2, 66.6, 57.4, 51.8, 51.6, 51.4, 50.3, 38.1, 37.6, 35.6, 30.9, 24.9, 24.6.

HRMS (ESI): calc. for C₃₀H₃₅IN₂O₆Na [M+Na]⁺: 669.1432, found: 669.1427.

Melting point: 76 - 78 °C.

TLC image in 1:1 Hexanes:Ethyl Acetate

Picture Taken By Dr. Alejandra Chávez-Riveros

Yield: 39%; 100 mg of 45; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 8.26 (s, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.42 (d, J = 8.1 Hz, 1H), 7.23 (m, 1H), 7.16 (m, 1H), 4.28 (dd, J = 9.5, 5.1 Hz, 1H), 4.26 - 4.19 (m, 2H), 4.06 (m, 1H), 3.88 (s, 3H), 3.75 (m, 1H), 3.51 (dd, J = 13.7, 9.3 Hz, 1H), 3.29 (ddd, J = 15.3, 9.2, 1.4 Hz, 1H), 3.25 (s, 3H), 3.00 (ddd, J = 15.2, 7.3, 0.9 Hz, 1H), 2.89 (dd, J = 14.1, 1.4 Hz, 1H), 2.79 (m, 1H), 2.59 (br. s, 1H), 2.57 - 2.50 (m, 2H),

2.05 (ddd, *J* = 14.5, 5.2, 5.2 Hz, 1H), 1.82 - 1.73 (m, 2H), 1.60 (m, 1H), 1.41 (m, 1H), 1.33 (appt. t, *J* = 7.1 Hz, 3H), 1.19 (appt. dq, *J* = 13.6, 4.4 Hz, 1H), 1.08 (m, 1H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 176.1, 157.1, 135.4, 135.3, 128.5, 121.7, 119.3, 118.0, 111.2, 111.1, 77.4, 66.6, 61.0, 57.4, 56.5, 53.8, 51.6, 51.3, 39.1, 36.7, 34.9, 30.5, 24.5, 24.0, 14.5.

HRMS (ESI): calc. for C₂₅H₃₅N₂O₆ [M+H]⁺: 459.2490, found: 459.2500.

Melting point: 83 - 85 °C.

Yield: 42%; 107 mg of 46; white solid.

2.1 Hz, 1H), 2.20 (ddd, *J* = 15.6, 4.1, 4.1 Hz, 1H), 2.13 (ddd, *J* = 15.6, 5.1, 5.1 Hz, 1H), 2.04 (m, 1H), 1.90 (appt. dq, *J* = 13.7, 3.7 Hz, 1H), 1.82 (m, 1H), 1.53 (m, 1H), 1.47 - 1.36 (m, 2H), 0.95 (br. m, 3H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 174.9, 156.9, 136.4, 135.4, 128.7, 121.5, 119.2, 118.0, 110.8, 109.9, 74.2, 66.6, 60.9, 57.5, 56.8, 52.0, 51.4, 50.5, 38.3, 37.9, 35.5, 30.9, 24.9, 24.7, 14.0.

HRMS (ESI): calc. for C₂₅H₃₅N₂O₆ [M+H]⁺: 459.2490, found: 459.2498.

Melting point: 72 - 74 °C.

Yield: 18%; 67 mg of 17; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 8.31 (s, 1H), 7.86 (m, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.44 (d, J = 8.1 Hz, 1H), 7.41 (dd, J = 7.6, 1.4 Hz, 1H), 7.37 (ddd, J = 7.4, 7.4, 0.9 Hz, 1H), 7.25 (m, 1H), 7.18 (m, 1H), 7.01 (ddd, J = 7.6, 7.6, 1.6 Hz, 1H), 4.51 (dd, J = 9.9, 5.3 Hz, 1H), 4.46 (d, J = 12.6 Hz, 1H), 4.41 (d, J = 12.6 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 4.06 (m, 1H), 3.85 (m, 1H), 3.77 (s, 3H), 3.52 - 3.37 (m, 2H), 3.05 (dd, J = 14.4, 6.4 Hz, 1H), 2.96 (d, J = 14.0 Hz, 1H), 2.79 - 2.66 (m, 2H), 2.63 (br. s, 1H),

2.54 (dd, *J* = 10.9, 1.8 Hz, 1H), 2.14 (ddd, *J* = 14.5, 5.2, 5.2 Hz, 1H), 1.83 - 1.67 (m, 3H), 1.43 (m, 1H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.22 (m, 1H), 1.10 (m, 1H).

¹³**C NMR**: (151 MHz, TCE, 100 °C) δ 176.3, 157.1, 140.6, 139.1, 135.5, 135.0, 129.0, 128.9, 128.6, 128.0, 121.9, 119.4, 118.1, 111.7, 111.2, 97.8, 75.5, 74.6, 66.5, 61.0, 57.7, 54.0, 51.8, 51.4, 39.6, 36.8, 34.8, 30.5, 24.7, 24.1, 14.5.

HRMS (ESI): calc. for C₃₁H₃₈IN₂O₆[M+H]⁺: 661.1769, found: 661.1765.

Melting point: 85 - 87 °C.

Yield: 31%; 115 mg of 18; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 8.24 (s, 1H), 7.86 (d, *J* = 7.9 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.41 - 7.37 (m, 2H), 7.21 (m, 1H), 7.15 (m, 1H), 7.02 (dd, *J* = 7.6, 7.6 Hz, 1H), 4.89 (dd, *J* = 5.5, 5.5 Hz, 1H), 4.48 (d, *J* = 12.4 Hz, 1H), 4.41 (d, *J* = 12.4 Hz, 1H), 4.12 (m, 1H), 3.96 - 3.83 (m, 2H), 3.75 (m, 1H), 3.64 (s, 3H), 3.51 - 3.41 (m, 2H), 3.22 (ddd, *J* = 15.3, 3.6, 3.6 Hz, 1H), 3.06 (ddd, *J* = 15.1, 10.5, 3.5 Hz, 1H), 2.89 (d, *J* = 14.4 Hz, 1H), 2.57 (dd, *J* = 11.6, 1.6 Hz, 1H), 2.49 (br. s, 1H),

2.30 (ddd, *J* = 15.5, 4.3, 4.3 Hz, 1H), 2.20 (ddd, *J* = 15.5, 5.2, 5.2 Hz, 1H), 2.10 (m, 1H), 1.88 (m, 1H), 1.74 (m, 1H), 1.51 - 1.33 (m, 3H), 0.96 (br. m, 3H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 174.9, 156.9, 140.5, 139.1, 135.9, 135.6, 129.3, 129.0, 128.7, 127.9, 121.7, 119.3, 118.1, 110.9, 110.6, 97.9, 75.0, 72.3, 66.6, 60.9, 57.4, 51.7, 51.4, 50.7, 38.3, 37.7, 35.6, 30.8, 24.9, 24.5, 14.0.

HRMS (ESI): calc. for C₃₁H₃₈IN₂O₆[M+H]⁺: 661.1769, found: 661.1766.

Melting point: 95 - 97 °C.

TLC image in 1:1 Hexanes:Ethyl Acetate

Picture Taken By Dr. Alejandra Chávez-Riveros

Yield: 38%; 149 mg of 47; tan solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 8.27 (s, 1H), 7.55 (d, *J* = 7.9 Hz, 1H), 7.43 (dd, *J* = 8.1, 0.5 Hz, 1H), 7.24 (m, 1H), 7.17 (m, 1H), 4.95 (d, *J* = 12.0 Hz, 1H), 4.77 (d, *J* = 12.0 Hz, 1H), 4.27 (dd, *J* = 9.6, 5.1 Hz, 1H), 4.05 (m, 1H), 3.94 (m, 1H), 3.88 (s, 3H), 3.54 (m, 1H), 3.40 (dd, *J* = 15.4, 9.6 Hz, 1H), 3.25 (s, 3H), 3.08 (dd, *J* = 15.4, 7.0 Hz, 1H), 3.04 (d, *J* = 13.8 Hz, 1H), 2.76 (m, 1H), 2.60 - 2.49 (m, 3H), 2.05 (ddd, *J* = 14.6, 4.9, 4.9 Hz, 1H), 1.84 - 1.71 (m, 3H), 1.41 (m, 1H), 1.22 (m, 1H), 1.11 (m, 1H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 176.2, 155.1, 135.4, 135.4, 128.5, 121.8, 119.5, 118.0, 111.2, 110.8, 95.7, 77.5, 75.2, 66.5, 57.9, 56.5, 54.0, 51.8, 51.7, 39.4, 36.7, 34.9, 30.5, 24.3, 24.1.

HRMS (ESI): calc. for C₂₅H₃₂Cl₃N₂O₆[M+H]⁺: 561.1320, found: 561.1317.

Melting point: 85 - 87 °C.

ŌMeO

н

48

ЮH

`ОМе

Yield: 49%; 191 mg of 48; tan solid.

¹**H NMR**: (600 MHz, TCE, 100 °C) δ 8.26 (s, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.22 (m, 1H), 7.15 (dd, J = 7.6, 7.3 Hz, 1H), 4.75 (d, J = 11.9 Hz, 1H), 4.62 (dd, J = 5.4, 5.4 Hz, 1H), 4.12 (m, 1H), 3.82 (s, 3H), 3.78 - 3.68 (m, 2H), 3.30 (s, 3H), 3.24 (ddd, J = 15.3, 4.0, 4.0 Hz, 1H), 3.18 (m, 1H), 3.12 - 3.04 (m, 2H), 2.61 (br. s, 1H), 2.52 (dd, J = 11.4, 2.0 Hz, 1H), 2.21 (ddd, J = 15.6, 5.1, 5.1 Hz, 1H), 2.17 (ddd, J = 15.6, 4.4, 4.4 Hz, 1H), 1.99 (m, 1H), 1.91 - 1.82 (m, 2H),

1.49 (m, 1H), 1.45 - 1.36 (m, 2H). Note: While one proton of the Troc group is a sharp doublet (4.75 ppm), the other proton signal does not appear as a clearly discernable peak in either 1D or 2D NMR experiments. It is possible the peak is a broad multiplet hidden in the baseline given the behavior of diastereotopic methylene protons at this position in other yohimbine-derived retention products (i.e., compound **46**). Straightforward NMR theory, however, is insufficient in explaining the general absence of this peak compared to the sharp, clear peak of its geminal proton. Interestingly, all other protons in this compound are characterized similar to other retention products synthesized from yohimbine.

¹³C NMR: (151 MHz, TCE, 100 °C) δ 175.1, 154.9, 136.0, 135.4, 128.4, 121.7, 119.4, 118.0, 110.9, 109.9, 95.7, 74.8, 74.6, 66.4, 58.2, 56.9, 52.3, 51.5, 51.4, 38.7, 37.8, 35.3, 30.6, 24.6 (2C; confirmed by HSQC).

HRMS (ESI): calc. for C₂₅H₃₂Cl₃N₂O₆ [M+H]⁺: 561.1320, found: 561.1306.

Melting point: 87 - 89 °C.

TLC image in 1:1 Hexanes:Ethyl Acetate

Picture Taken By Dr. Alejandra Chávez-Riveros

Yield: 34%; 288 mg of 49; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 8.32 (s, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.45 (d, J = 8.1 Hz, 1H), 7.44 - 7.40 (m, 2H), 7.28 - 7.24 (m, 2H), 7.23 - 7.16 (m, 3H), 4.34 (dd, J = 9.5, 5.2 Hz, 1H), 4.07 (m, 1H), 3.97 (m, 1H), 3.88 (s, 3H), 3.63 (dd, J = 13.1, 9.7 Hz, 1H), 3.45 (dd, J = 15.2, 9.7 Hz, 1H), 3.29 (s, 3H), 3.14 - 3.06 (m, 2H), 2.86 (m, 1H), 2.65 (ddd, J = 14.7, 9.6, 2.4 Hz, 1H), 2.56 (dd, J = 10.8, 1.5 Hz, 1H), 2.51 (br. s,

⁴⁹ 1H), 2.15 (ddd, *J* = 14.3, 5.2, 4.9 Hz, 1H), 1.88 - 1.72 (m, 3H), 1.42 (m, 1H), 1.23 (appt. dq, *J* = 13.6, 4.1 Hz, 1H), 1.14 (m, 1H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 176.2, 155.1, 151.5, 135.4, 129.0, 128.5, 124.9, 121.8, 121.6, 119.5, 118.0, 111.2, 110.8, 77.6, 66.5, 58.0, 56.6, 54.0, 51.8, 51.7, 39.3, 36.6, 35.1, 30.5, 24.4, 24.2. Note: This spectra is missing one carbon signal in the aromatic region likely due to overlap.

HRMS (ESI): calc. for C₂₉H₃₅N₂O₆ [M+H]⁺: 507.2490, found: 507.2497.

Melting point: 105 - 107 °C.

Yield: 32%; 274 mg of 50; white solid.

¹**H NMR**: (600 MHz, TCE, 100 °C) δ 8.27 (s, 1H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.40 (d, *J* = 8.1 Hz, 1H), 7.26 (dd, *J* = 7.5, 7.5 Hz, 2H), 7.19 (dd, *J* = 7.6, 7.5 Hz, 1H), 7.14 (dd, *J* = 7.3, 7.3 Hz, 1H), 7.10 (dd, *J* = 7.5, 7.3 Hz, 1H), 6.83 - 6.57 (m, 2H), 4.66 (dd, *J* = 5.3, 5.3 Hz, 1H), 4.16 (m, 1H), 4.01 (m, 1H), 3.81 (s, 3H), 3.67 (m, 1H), 3.49 (m, 1H), 3.33 (s, 3H), 3.28 (ddd, *J* = 15.2, 4.0, 3.7 Hz, 1H), 3.13 (ddd, *J* = 15.3, 10.7, 3.6 Hz,

1H), 3.07 (d, *J* = 14.3 Hz, 1H), 2.57 (dd, *J* = 11.2, 2.1 Hz, 1H), 2.57 (br. s, 1H, buried), 2.29 (ddd, *J* = 15.6, 3.8, 3.8 Hz, 1H), 2.23 (ddd, *J* = 15.6, 5.0, 5.0 Hz, 1H), 2.10 (m, 1H), 1.95 - 1.86 (m, 2H), 1.53 (m, 1H), 1.50 - 1.40 (m, 2H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 174.8, 155.0, 151.2, 136.4, 135.4, 128.7, 128.6, 124.6, 121.6, 121.2, 119.4, 118.0, 110.9, 109.6, 74.3, 66.6, 57.8, 56.9, 52.0, 51.5, 51.0, 38.5, 37.8, 35.6, 30.8, 24.9, 24.8.

HRMS (ESI): calc. for C₂₉H₃₅N₂O₆ [M+H]⁺: 507.2490, found: 507.2498.

Melting point: 118 - 120 °C.

0

51

¹H NMR: (600 MHz, TCE, 100 °C) δ 8.36 (s, 1H), 7.55 (d, J = 7.8 Hz, 1H), 7.48 -7.41 (m, 3H), 7.27 (dd, J = 7.4, 7.4 Hz, 1H), 7.26 - 7.21 (m, 3H), 7.17 (dd, J = 7.4, 7.4 Hz, 1H), 4.75 (m, 1H), 4.09 (m, 1H), 3.88 (s, 3H), 3.85 - 3.71 (br. m, 2H), 3.51 (br. m, 1H), 3.09 (dd, J = 15.2, 8.6 Hz, 1H), 3.05 - 2.88 (br. m, 2H), 2.67 (d, J = 10.5Hz, 1H), 2.55 (br. m, 1H), 2.31 (br. s, 1H), 2.16 (br. m, 1H), 1.90 (br. m, 1H), 1.76 (appt. dq, J = 13.8, 3.7 Hz, 1H), 1.52 (br. m, 1H), 1.34 (m, 1H), 1.20 (s, 9H), 1.17 -1.07 (m, 2H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 175.9, 155.0, 151.6, 138.4, 135.1, 129.0, 128.7, 124.9, 121.6, 121.4, 119.2, 117.8, 111.0, 109.4, 74.2, 67.4, 66.8, 57.8, 53.7, 51.8, 51.6, 41.1, 36.1, 35.2, 30.7, 28.0, 24.4, 24.2.

HRMS (ESI): calc. for C₃₂H₄₁N₂O₆ [M+H]⁺: 549.2959, found: 549.2951.

Melting point: 93 - 95 °C.

Yield: 20%; 60 mg of **52**; white solid.

¹**H NMR**: (600 MHz, TCE, 100 °C) δ 8.21 (s, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.40 (d, J = 8.1 Hz, 1H), 7.30 (dd, J = 7.3, 7.3 Hz, 2H), 7.21 - 7.13 (m, 2H), 7.09 (dd, J = 7.4, 7.4 Hz, 1H), 6.99 - 6.70 (br. m, 2H), 5.03 (dd, J = 5.3, 5.3 Hz 1H), 4.11 (m, 1H), 3.97 (br. m, 1H), 3.78 (s, 3H), 3.69 (br. m, 1H), 3.50 (br. m, 1H), 3.37 (m, 1H), 3.13 (ddd, J = 15.3, 9.8, 2.8 Hz, 1H), 3.08 (br. m, 1H, partially buried), 2.69 (dd, J = 10.7, 1.7 Hz, 1H), 2.58 (br. s, 1H), 2.24 - 2.12 (br. m, 2H), 2.08 (br. m, 1H), 1.88 (br. m, 1H),

1.53 - 1.39 (m, 3H), 1.20 (s, 9H). Note: This spectrum shows many broad signals. The C20 proton does not appear in ¹H NMR spectrum and has no observable correlations in 2D NMR experiments (COSY and HSQC).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 174.8, 155.1, 151.4, 139.2, 135.3, 128.7, 124.6, 121.4, 121.3, 119.2, 118.0, 110.7, 74.5, 66.6, 64.6, 57.4, 51.8, 51.5, 51.2, 40.6, 37.5, 35.5, 30.5, 28.2, 24.8, 24.5. Note: Two aromatic ¹³C signals are missing in this spectrum.

HRMS (ESI): calc. for C₃₂H₄₀N₂O₆Na [M+Na]⁺: 571.2779, found: 571.2775.

Melting point: 116 - 118 °C.

Yield: 21%; 70 mg of 21; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 8.32 (s, 1H), 7.86 (d, *J* = 7.9 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.47 (d, *J* = 8.1 Hz, 1H), 7.44 - 7.39 (m, 3H), 7.36 (dd, *J* = 7.5, 7.5 Hz, 1H), 7.30 - 7.23 (m, 2H), 7.22 - 7.18 (m, 3H), 7.01 (m, 1H), 4.54 (dd, *J* = 9.9, 5.4 Hz, 1H), 4.50 (d, *J* = 12.6 Hz, 1H), 4.44 (d, *J* = 12.6 Hz, 1H), 4.12 - 4.02 (m, 2H), 3.76 (s, 3H), 3.62 - 3.50 (m, 2H), 3.21 - 3.09 (m, 2H), 2.84 - 2.67 (m, 2H), 2.54 (dd, *J* = 11.1, 1.0 Hz, 1H), 2.52 (br. s, 1H, partially buried), 2.21 (ddd, *J* = 14.5, 5.7, 5.3 Hz, 1H), 1.88 (br. m, 1H), 1.83 - 1.73 (m, 2H), 1.43 (m, 1H), 1.25 (appt. dq, *J* = 13.6, 4.0 Hz,

1H), 1.13 (m, 1H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 176.5, 155.1, 151.5, 140.6, 139.2, 135.5, 135.2, 129.0, 129.0, 129.0 (buried; observed by HSQC), 128.6, 128.0, 124.9, 122.0, 121.6, 119.6, 118.1, 111.3, 111.3, 97.8, 75.6, 74.7, 66.4, 58.3, 54.2, 52.0, 51.9, 39.9, 36.7, 34.9, 30.5, 24.6, 24.2.

HRMS (ESI): calc. for C₃₅H₃₈IN₂O₆[M+H]⁺: 709.1769, found: 709.1766.

Melting point: 95 - 97 °C.

Yield: 54%; 181 mg of 22; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 8.28 (s, 1H), 7.88 (d, *J* = 7.9 Hz, 1H), 7.58 (d, *J* = 7.9 Hz, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.41 (d, *J* = 8.2 Hz, 1H), 7.38 (dd, *J* = 7.5, 7.5 Hz, 1H, partially buried), 7.26 (dd, *J* = 7.3, 7.3 Hz, 2H), 7.20 (dd, *J* = 7.7, 7.3 Hz, 1H), 7.14 (dd, *J* = 7.4, 7.4 Hz, 1H), 7.12 (dd, *J* = 7.3, 7.3 Hz, 1H, partially buried), 7.03 (dd, *J* = 7.6, 7.5 Hz, 1H), 6.89 - 6.57 (m, 2H), 4.96 (dd, *J* = 5.7, 5.7 Hz, 1H), 4.53 (d, *J* = 12.4 Hz, 1H), 4.45 (d, *J* = 12.4 Hz, 1H), 4.13 (m, 1H), 4.07 (m, 1H), 3.64 (s, 3H), 3.63 - 3.53 (m, 2H), 3.35 (ddd, *J* = 15.2, 4.7, 3.3 Hz, 1H), 3.17 (ddd, *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.13 (m, 2H), 4.14 (ddd, *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd, *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.15 (dddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.15 (dddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.15 (dddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.15 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.15 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.15 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.15 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.15 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.15 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4 Hz, 1H), 4.14 (ddd), *J* = 15.2, 10.3, 3.4

1H), 3.03 (d, *J* = 14.3 Hz, 1H), 2.60 (dd, *J* = 11.4, 2.2 Hz, 1H), 2.48 (br. s, 1H), 2.40 (dd, *J* = 15.2, 4.0, 4.0 Hz, 1H), 2.30 (ddd, *J* = 15.5, 5.3, 5.3 Hz, 1H), 2.16 (m, 1H), 1.89 (m, 1H), 1.80 (m, 1H), 1.51 - 1.38 (m, 3H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 174.8, 155.0, 151.3, 140.4, 139.2, 135.9, 135.6, 129.3, 129.1, 128.7, 128.6, 128.0, 124.6, 121.9, 121.3, 119.5, 118.1, 111.0, 110.5, 98.0, 75.1, 72.4, 66.6, 57.8, 51.7, 51.5, 51.1, 38.4, 37.5, 35.7, 30.7, 24.9, 24.6.

HRMS (ESI): calc. for C₃₅H₃₈IN₂O₆[M+H]⁺: 709.1769, found: 709.1759.

Melting point: 182 - 184 °C.

N H N H H O O OMe 53 Me Yield: 27%; 210 mg of 53; tan solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 8.29 (s, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.46 (d, J = 8.1 Hz, 1H), 7.44 - 7.40 (m, 2H), 7.29 - 7.24 (m, 2H), 7.24 - 7.20 (m, 2H), 7.19 (m, 1H), 4.69 (dd, J = 10.0, 5.2 Hz, 1H), 4.13 (dq, J = 15.5, 2.1 Hz, 1H), 4.06 (m, 1H), 4.03 (m, 1H), 3.94 (dq, J = 15.5, 2.1 Hz, 1H), 3.91 (s, 3H), 3.57 (m, 1H), 3.46 (dd, J = 15.4, 9.9 Hz, 1H), 3.19 - 3.07 (m, 2H), 2.78 (m, 1H), 2.70 (m, 1H), 2.61 (br. s, 1H), 2.54 (m, 1H), 2.14 (ddd, J = 14.4, 5.1, 5.1 Hz, 1H), 1.87 (dd, J = 2.1, 2.1 Hz, 3H), 1.87 - 1.75 (m, 3H, partially buried), 1.43 (m, 1H), 1.24 (appt. dq, J = 13.5, 4.0 Hz, 1H), 1.14 (m, 1H).

¹³C NMR: (151 MHz, TCE, 100 °C) δ 176.5, 155.1, 151.5, 135.5, 134.9, 129.0, 128.5, 124.9, 122.0, 121.6, 119.5, 118.0, 111.3, 111.2, 82.4, 75.4, 73.8 (observed by HSQC, buried in TCE), 66.4, 58.2, 56.2, 54.0, 52.0, 51.8, 39.5, 36.7, 35.0, 30.4, 24.4, 24.2, 3.2.

HRMS (ESI): calc. for C₃₂H₃₆N₂O₆Na [M+Na]⁺: 567.2466, found: 567.2454.

Melting point: 89 - 91 °C.

Yield: 62%; 479 mg of 54; tan solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 8.25 (s, 1H), 7.56 (d, *J* = 7.9 Hz, 1H), 7.39 (d, *J* = 8.1 Hz, 1H), 7.26 (dd, *J* = 7.3, 7.3 Hz, 2H), 7.19 (dd, *J* = 7.6, 7.6 Hz, 1H), 7.14 (dd, *J* = 7.3, 7.3 Hz, 1H), 7.10 (dd, *J* = 7.5, 7.5 Hz, 1H), 6.92 - 6.41 (m, 2H), 5.09 (dd, *J* = 5.5, 5.5 Hz, 1H), 4.18 (m, 1H), 4.14 (dq, *J* = 15.4, 2.1 Hz, 1H), 4.02 (m, 1H), 3.97 (dq, *J* = 15.4, 2.1 Hz, 1H), 3.17 (ddd, *J* = 15.4, 10.3, 3.6 Hz, 1H), 3.06 (d, *J* = 14.2 Hz, 1H), 2.73 (dd, *J* = 11.4, 2.0 Hz, 1H), 2.52 (br. s, 1H), 2.31 (ddd, *J* = 15.5, 3.9, 3.9 Hz, 1H),

2.23 (ddd, J = 15.5, 5.2, 5.2 Hz, 1H), 2.14 (m, 1H), 1.96 - 1.88 (m, 2H), 1.87 (dd, J =

2.1, 2.1 Hz, 3H), 1.56 - 1.42 (m, 3H).

¹³C NMR: (151 MHz, TCE, 100 °C) δ 174.8, 155.1, 151.2, 135.9, 135.6, 128.6, 128.6, 124.6, 121.8, 121.3, 119.5, 118.0, 110.9, 110.3, 82.6, 75.3, 70.5, 66.7, 57.8, 56.7, 51.7, 51.5, 51.1, 38.1, 37.9, 35.9, 31.0, 24.8 (2 C; one signal is buried, but observed by HSQC), 3.2.

HRMS (ESI): calc. for C₃₂H₃₆N₂O₆Na [M+Na]⁺: 567.2466, found: 567.2457.

Melting point: 105 - 106 °C.

.OMe

0

55

Yield: 11%; 70 mg of 55; tan solid.

¹H NMR: (600 MHz, TCE, 100 °C) δ 8.18 (s, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.39 (d, J'OH = 8.0 Hz, 1H), 7.22 (m, 1H), 7.15 (dd, J = 7.5, 7.5 Hz, 1H), 4.03 (m, 1H), 3.93 (dd, JOMe = 12.0, 4.0 Hz, 1H), 3.92 (m, 1H, buried), 3.89 (s, 3H), 3.79 (s, 3H), 3.47 - 3.35 (m, 2H), 3.03 (dd, J = 15.0, 7.1 Hz, 1H), 3.00 (d, J = 14.3 Hz, 1H), 2.82 (br. s, 1H), 2.71 -

2.57 (m, 2H), 2.47 - 2.40 (m, 2H), 2.36 (dq, *J* = 12.7, 7.4 Hz, 1H), 1.91 (ddd, *J* = 14.4, 4.6, 4.6 Hz, 1H), 1.86 - 1.76 (m, 3H), 1.49 (m, 1H), 1.29 (m, 1H), 1.21 (dd, *J* = 7.4, 7.4 Hz, 3H), 1.11 (m, 1H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 176.6, 157.6, 135.7, 135.3, 128.8, 121.7, 119.4, 117.8, 111.5, 111.0, 66.4, 57.7, 54.0, 52.3, 51.8, 51.6, 41.7, 40.3, 36.9, 30.2, 25.7, 25.1, 24.0, 14.4. Note: Missing one carbon signal in the aliphatic region of this spectrum.

HRMS (ESI): calc. for C₂₅H₃₅N₂O₅S [M+H]⁺: 475.2261, found: 475.2260.

Melting point: 81 - 83 °C.

Yield: 33%; 222 mg of 56; tan solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 8.21 (s, 1H), 7.53 (d, *J* = 7.8 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.19 (m, 1H), 7.14 (m, 1H), 4.27 (dd, *J* = 8.0, 6.0 Hz, 1H), 4.18 (m, 1H), 3.96 (m, 1H), 3.79 (s, 3H), 3.64 (m, 1H), 3.39 - 3.27 (m, 4H), 3.24 (m, 1H), 3.04 (ddd, *J* = 15.1, 9.7, 3.6 Hz, 1H), 2.84 (dd, *J* = 14.6, 2.2 Hz, 1H), 2.68 (dd, *J* = 11.1, 2.6 Hz, 1H), 2.45 (br. s, 1H), 2.40 (dq, *J* = 12.9, 7.4 Hz, 1H), 2.32 (dq, *J* = 12.9, 7.4

Hz, 1H), 2.27 (ddd, *J* = 15.1, 8.3, 2.6 Hz, 1H), 2.14 (m, 1H), 2.00 (ddd, *J* = 15.1, 6.0, 6.0 Hz, 1H), 1.85 (m, 1H), 1.68 (m, 1H), 1.54 - 1.43 (m, 2H), 1.37 (m, 1H), 1.20 (dd, *J* = 7.4, 7.4 Hz, 3H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 174.5, 157.2, 136.0, 135.4, 128.8, 121.6, 119.2, 118.1, 111.1, 110.6, 66.8, 56.9, 51.9, 51.5, 51.0, 50.1, 37.4, 37.1, 36.6, 36.4, 30.4, 25.7, 24.8, 24.3, 14.3.

HRMS (ESI): calc. for C₂₅H₃₅N₂O₅S [M+H]⁺:475.2261, found: 475.2259.

S29

Yield: 23%; 350 mg of 23; light yellow-white solid.

¹**H NMR:** (600 MHz, DMSO-*d*₆, 100 °C) δ 10.38 (s, 1H), 7.42 (d, *J* = 7.8 Hz, 1H), 7.39 (d, *J* = 8.1 Hz, 1H), 7.27 - 7.23 (m, 2H), 7.21 - 7.17 (m, 3H), 7.07 (m, 1H), 6.98 (m, 1H), 4.17 (dd, *J* = 11.8, 3.5 Hz, 1H), 4.05 (br. s, 1H), 3.93 (m, 1H), 3.72 (m, 1H), 3.66 (s, 3H), 3.63 (s, 3H), 3.56 (d, *J* = 13.4 Hz, 1H), 3.52 (d, *J* = 13.4 Hz, 1H), 3.33 (dd, *J* = 13.0, 10.4 Hz, 1H), 3.22 (ddd, *J* = 15.1, 10.0, 0.9 Hz, 1H), 2.85 (dd, *J* = 15.1, 6.5 Hz, 1H), 3.93 (m, 1H), 3.93 (m, 1H), 3.94 (m, 1H), 3.94 (m, 1H), 3.95 (m,

1H), 2.76 - 2.64 (m, 2H), 2.54 (ddd, *J* = 14.4, 11.8, 3.4 Hz, 1H), 2.37 (dd, *J* = 9.7, 2.8 Hz, 1H), 1.80 - 1.69 (m, 2H), 1.61 (m, 1H), 1.51 (m, 1H), 1.43 (m, 1H), 1.15 (m, 1H), 1.01 (m, 1H).

¹³**C NMR**: (151 MHz, DMSO-*d*₆, 100 °C) δ 173.5, 156.8, 138.0, 135.3, 135.3, 128.0, 127.7, 127.7, 126.1, 120.5, 118.1, 117.2, 110.9, 110.1, 65.8, 55.9, 54.2, 51.6, 50.7, 50.3, 41.7, 40.2, 37.0, 36.2, 35.3, 30.3, 24.4, 24.0.

HRMS (ESI): calc. for C₃₀H₃₇N₂O₅S [M+H]⁺: 537.2418, found: 537.2408.

Melting point: 102 - 104 °C.

Yield: 27%; 408 mg of 24; white solid.

¹**H NMR**: (600 MHz, DMSO-*d*₆, 100 °C) δ 10.50 (s, 1H), 7.43 (d, *J* = 7.8 Hz, 1H), 7.34 (m, 1H), 7.30 - 7.25 (m, 2H), 7.21 (m, 1H), 7.19 - 7.15 (m, 2H), 7.04 (m, 1H), 6.98 (m, 1H), 4.11 (d, *J* = 4.7 Hz, 1H), 4.08 - 4.02 (m, 2H), 3.97 (dd, *J* = 9.1, 6.4 Hz, 1H), 3.65 (m, 1H, partially buried), 3.64 (s, 3H), 3.50 (d, *J* = 13.5 Hz, 1H), 3.44 (d, *J* = 13.5 Hz, 1H), 4.04 (d, *J* = 13.5 Hz, 1H), 3.44 (d, J = 13.5 Hz, 1H), 3.44 (d,

²⁴ 1H), 3.18 (br. s, 3H, buried), 3.17 (m, 1H), 3.00 (m, 1H, partially buried), 2.87 (ddd, J = 15.1, 8.5, 3.1 Hz, 1H), 2.58 (d, J = 11.7 Hz, 1H), 2.54 (dd, J = 14.4, 1.5 Hz, 1H), 2.28 (dd, J = 13.9, 8.5 Hz, 1H), 2.08 (m, 1H), 2.02 (ddd, J = 15.0, 5.1, 5.1 Hz, 1H), 1.58 (m, 1H), 1.22 (m, 1H), 1.12 (m, 1H), 1.08 - 0.91 (m, 2H).

¹³**C NMR**: (151 MHz, DMSO-*d*₆, 100 °C) δ 172.3, 155.8, 137.8, 136.1, 135.0, 128.3, 128.1, 127.6, 126.1, 120.1, 117.9, 117.2, 110.5, 109.1, 65.8, 56.0, 51.1, 50.3, 49.2, 36.6, 36.3, 35.3, 34.9, 34.3, 31.1, 24.0, 23.6. Note: This spectrum is missing one carbon signal in the aliphatic region.

HRMS (ESI): calc. for C₃₀H₃₇N₂O₅S [M+H]⁺: 537.2418, found: 537.2401.

Melting point: 189 - 190 °C.

TLC image in 1:1 Hexanes:Ethyl Acetate

Picture Taken By Dr. Alejandra Chávez-Riveros

Yield: 32%; 107 mg of 57; tan solid.

¹**H NMR**: (600 MHz, TCE, 100 °C) δ 8.08 (s, 1H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.46 - 7.40 (m, 3H), 7.34 - 7.29 (m, 2H), 7.29 - 7.23 (m, 5H), 7.23 - 7.16 (m, 3H), 4.19 (dd, *J* = 13.3, 4.4 Hz, 1H), 4.00 (m, 1H), 3.84 (dd, *J* = 12.3, 4.2 Hz, 1H), 3.68 (s, 3H), 3.67 (m, 1H, partially buried), 3.63 (d, *J* = 13.9 Hz, 1H), 3.56 (d, *J* = 13.9 Hz, 1H), 3.44 (dd, *J* = 12.1 Hz, 1H), 3.23 (d, *J* = 13.9 Hz, 1H), 3.10 (dd, *J* = 15.5, 6.2 Hz, 1H), 2.81 - 2.56 (m, 3H), 2.40 (m, 1H), 2.01 (m, 1H), 1.95 (ddd, *J* = 14.5, 5.2, 5.2 Hz, 1H), 1.84 - 1.73 (m, 2H), 1.45 (m, 1H), 1.29 (appt. dq, *J* = 13.6, 4.2 Hz, 1H), 1.14 (m, 1H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 176.6, 155.1, 151.5, 138.1, 135.4, 135.3, 129.0, 128.9, 128.5, 128.2, 126.7, 125.0, 121.9, 121.6, 119.6, 117.8, 111.4, 111.1, 66.3, 58.5, 54.2, 52.2, 51.8, 41.5, 40.2, 37.0, 36.8, 36.1, 30.2, 25.0, 24.1.

HRMS (ESI): calc. for C₃₅H₃₉N₂O₅S [M+H]⁺: 599.2574, found: 599.2568.

Melting point: 90 - 92 °C.

Yield: 35%; 117 mg of 58; light yellow-white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 8.25 (s, 1H), 7.56 (d, J = 7.9 Hz, 1H), 7.39 - 7.33 (m, 3H), 7.30 (m, 1H), 7.26 - 7.20 (m, 4H), 7.18 (dd, J = 7.7, 7.4 Hz, 1H; appt. t), 7.15 - 7.04 (m, 2H), 6.77 - 6.37 (br. m, 2H), 4.28 (m, 1H), 4.12 (m, 1H), 4.02 (dd, J = 6.0, 6.0 Hz, 1H), 3.85 (m, 1H), 3.76 (s, 3H), 3.61 (d, J = 13.8 Hz, 1H), 3.43 (d, J = 13.8 Hz, 1H), 3.39 - 3.30 (m, 2H), 2.99 (m, 1H), 2.87 (d, J = 13.7 Hz, 1H), 2.48 (dd, J = 11.3, 1.4 Hz, 1H), 2.36 (m, 1H), 2.25 (br. s, 1H), 2.20 (m, 1H), 2.04 (ddd, J = 15.5, 5.6, 5.6 Hz, 1H), 1.83 (appt. dq, J = 13.9, 3.9 Hz, 1H), 1.46 (m, 1H), 1.37 - 1.28 (m, 3H).

¹³C NMR: (151 MHz, TCE, 100 °C) δ 174.1, 154.9, 151.2, 137.8, 136.0, 135.5, 129.0, 128.8, 128.6, 128.1, 126.9, 124.5, 121.7, 121.2, 119.5, 118.1, 110.8, 66.9, 57.1, 51.5, 50.6, 50.3, 36.9, 36.4, 36.4, 36.2, 36.0, 30.7, 24.9, 24.4. Note: One carbon signal is missing from the aromatic region.

HRMS (ESI): calc. for C₃₅H₃₉N₂O₅S [M+H]⁺: 599.2574, found: 599.2573.

Melting point: 108 - 110 °C.

Yield: 29%; 58 mg of 44; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 8.26 (s, 1H), 7.54 (d, *J* = 7.9 Hz, 1H), 7.42 (d, *J* = 8.1 Hz, 1H), 7.23 (m, 1H), 7.16 (m, 1H), 6.03 (m, 1H, partially buried), 5.38 (m, 1H), 5.28 (m, 1H), 4.73 - 4.64 (m, 2H), 4.27 (dd, *J* = 9.4, 5.0 Hz, 1H), 4.05 (m, 1H), 3.88 (s, 3H), 3.80 (dd, *J* = 13.7, 7.2 Hz, 1H), 3.51 (dd, *J* = 13.4, 9.4 Hz, 1H), 3.32 (dd, *J* = 15.2, 9.3 Hz, 1H), 3.26 (s, 3H), 3.02 (dd, *J* = 15.3, 7.2 Hz, 1H), 2.93 (d, *J* = 15.2, 9.3 Hz, 1H), 3.26 (s, 3H), 3.02 (dd, *J* = 15.3, 7.2 Hz, 1H), 3.26 (s, 3H), 3.02 (dd, *J* = 15.3, 7.2 Hz, 1H), 3.93 (dd, *J* = 15.3, 7.2 Hz, 1H), 3.91 (dd, *J* = 15.3, 7.2 Hz, 1H), 3.91 (dd, *J* = 15.3, 7.2 Hz, 1H), 3.93 (dd, *J* = 15.3, 7.2 Hz, 1H), 3.91 (dd, J = 15.3, 7.2 Hz, 1H), 3.91 (ddd, J = 15.3) (dddd, J = 15.3) (dddd, J = 15.3)

13.9 Hz, 1H), 2.78 (m, 1H), 2.59 - 2.50 (m, 3H), 2.05 (ddd, J = 14.4, 5.1, 5.1 Hz, 1H), 1.81 - 1.73 (m, 2H), 1.64 (m, 1H), 1.41 (m, 1H), 1.19 (m, 1H), 1.09 (m, 1H). Note: The apparent splitting regarding the two methoxy 3H signals in this spectra are due to slight inhomogeneities of the magnetic field at the higher experimental temperature. Despite their appearance, these signals are reported as singlets.

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 176.2, 156.7, 135.4, 135.3, 133.2, 128.5, 121.8, 119.4, 118.0, 116.9, 111.1, 77.4, 66.6, 65.7, 57.6, 56.5, 53.9, 51.7, 51.4, 39.2, 36.6, 34.9, 30.5, 24.5, 24.1. Note: One carbon signal is missing from the aromatic region.

HRMS (ESI): calc. for C₂₆H₃₄N₂O₆Na [M + Na]⁺: 493.2309, found: 493.2306.

Melting point: 88 - 90 °C.

Yield: 31%; 62 mg of **15**; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 8.23 (s, 1H), 7.55 (d, *J* = 7.8 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.20 (m, 1H), 7.14 (m, 1H), 5.65 (m, 1H), 5.15 (d, *J* = 17.4 Hz, 1H), 5.11 (d, *J* = 10.4 Hz, 1H), 4.59 (dd, *J* = 5.2, 5.2 Hz, 1H), 4.40 (dd, *J* = 12.7, 4.3 Hz, 1H), 4.14 (m, 1H), 4.13 (m, 1H, buried), 3.81 (s, 3H), 3.80 (m, 1H, partially buried), 3.55 (m, 1H), 3.33 (m, 1H), 3.29 (s, 3H), 3.18 (ddd, *J* = 15.2, 3.7, 3.7 Hz, 1H), 3.02 (ddd, *J* = 15.1, 10.6, 3.6 Hz, 1H), 2.95 (d, *J* = 14.5 Hz, 1H), 2.59 (br. s, 1H), 3.29 (s, 3H), 3.20 (s, 3H), 3.29 (s, 3H), 3

1H), 2.53 (dd, *J* = 11.4, 1.8 Hz, 1H), 2.19 (ddd, *J* = 15.6, 4.2, 4.2 Hz, 1H), 2.15 (ddd, *J* = 15.6, 5.1, 5.1 Hz, 1H), 2.03 (m, 1H), 1.89 (appt. dq, *J* = 13.7, 3.7 Hz, 1H), 1.81 (m, 1H), 1.52 (m, 1H), 1.46 - 1.36 (m, 2H).

¹³C NMR: (151 MHz, TCE, 100 °C) δ 175.0, 156.6, 136.3, 135.4, 133.0, 128.6, 121.5, 119.2, 118.0, 116.8, 110.9, 109.9, 74.3, 66.6, 65.6, 57.6, 56.9, 52.1, 51.4, 50.7, 38.4, 37.9, 35.5, 30.9, 24.9, 24.7.

HRMS (ESI): calc. for C₂₆H₃₄N₂O₆Na [M + Na]⁺: 493.2309, found: 493.2308.

Melting point: 96 - 98 °C.

Yield: 18%; 122 mg of 59; white solid.

¹**H NMR**: (600 MHz, TCE, 100 °C) δ 8.31 (s, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.42 (d, J = 8.1 Hz, 1H), 7.23 (m, 1H), 7.16 (m, 1H), 4.84 (dd, J = 15.6, 1.5 Hz, 1H), 4.75 (dd, J = 15.6, 1.5 Hz, 1H), 4.28 (dd, J = 9.2, 5.0 Hz, 1H), 4.05 (m, 1H), 3.88 (s, 3H), 3.78 (m, 1H), 3.53 (dd, J = 13.5, 9.6 Hz, 1H), 3.32 (dd, J = 15.1, 9.4 Hz, 1H), 3.25 (s, 3H), 3.03 (dd, J = 15.3, 7.1 Hz, 1H), 2.91 (d, J = 14.1 Hz, 1H), 2.80 (m, 1H), 2.61 - 2.47 (m, 4H), 2.06 (ddd, J = 14.6, 4.8, 4.8 Hz, 1H), 1.82 - 1.73 (m, 2H), 1.63 (m, 1H, partially buried under water signal), 1.41 (m, 1H), 1.20 (m,

1H), 1.09 (m, 1H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 176.1, 156.0, 135.4, 135.3, 128.5, 121.8, 119.4, 118.0, 111.1, 111.0, 78.8, 77.4, 74.3, 66.6, 57.5, 56.5, 53.8, 52.7, 51.7, 51.4, 39.1, 36.7, 34.9, 30.5, 24.4, 24.1.

HRMS (ESI): calc. for C₂₆H₃₂N₂O₆Na [M + Na]⁺: 491.2153, found: 491.2160.

Melting point: 88 - 90 °C.

Yield: 34%; 225 mg of 60; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 8.28 (s, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.38 (d, J = 8.0 Hz, 1H), 7.20 (dd, J = 7.5, 7.5 Hz, 1H), 7.15 (m, 1H), 4.59 (dd, J = 5.2, 5.2 Hz, 1H), 4.49 (d, J = 15.6 Hz, 1H), 4.16 (br. m, 1H, buried), 4.14 (m, 1H), 3.81 (s, 3H), 3.76 (m, 1H), 3.58 (d, J = 13.8 Hz, 1H), 3.29 (s, 3H), 3.27 (m, 1H, partially buried), 3.19 (ddd, J = 15.3, 3.6, 3.6 Hz, 1H), 3.03 (ddd, J = 15.3, 10.4, 3.6 Hz, 1H), 2.97 (d, J = 14.4 Hz, 1H), 2.61 (br. s, 1H), 2.54 (dd, J = 11.3, 1.8 Hz, 1H), 2.42 (m, 1H), 2.19 - 2.11 (m, 2H), 2.01 (m, 1H), 1.89 (appt. dq, J = 15.3).

13.7, 3.6 Hz, 1H), 1.80 (m, 1H), 1.52 (m, 1H), 1.46 - 1.37 (m, 2H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 175.0, 155.8, 136.2, 135.4, 128.5, 121.6, 119.3, 118.0, 110.9, 109.8, 78.7, 74.3, 66.6, 57.7, 56.9, 52.3, 52.1, 51.5, 50.7, 38.4, 37.9, 35.5, 30.8, 24.7. **Note:** Two ¹³C signals are missing, likely due to overlap or signal broadening in the following spectral regions (70 - 80 ppm & 20 - 30 ppm regions).

HRMS (ESI): calc. for C₂₆H₃₂N₂O₆Na [M + Na]⁺: 491.2153, found: 491.2150.

Melting point: 85 - 87 °C.

Procedure. Compound **48** (500 mg, 0.89 mmol) was dissolved in ethyl acetate:acetic acid (17 mL ethyl acetate, 1.7 mL acetic acid), and zinc dust (4.4 g, 66.75 mmol) was then added to the reaction mixture. The resulting mixture was then allowed to stir at room temperature for five hours (the reaction was complete after this time based on TLC analysis), after which the reaction mixture was filtered and the filtrate was diluted with 50 mL ethyl acetate. The solution was then acidified to pH ~ 2 and the aqueous layer was extracted with ethyl acetate. The aqueous layer was then basified to pH ~ 12 and extracted with ethyl acetate. The resulting organic layer was then separated, dried over sodium sulfate, and concentrated to afford 278 milligrams of product **61** (81% yield) as a light tan solid. Note: In some instances, purification of the crude material was conducted via column chromatography using a 99:1 ethyl acetate:triethylamine solvent system instead of an acid-base extraction.

¹**H NMR:** (600 MHz, CDCl₃) δ 8.42 (s, 1H), 7.55 (d, *J* = 7.9 Hz, 1H), 7.44 (d, *J* = 8.1 Hz, 1H), 7.22 (ddd, *J* = 8.0, 7.2, 1.1 Hz, 1H), 7.12 (m, 1H), 4.83 (dd, *J* = 9.9, 7.3 Hz, 1H), 4.03 (appt. q, *J* = 2.6 Hz, 1H), 3.72 (s, 3H), 3.12 - 2.99 (m, 2H), 3.09 (s, 3H), 2.96 (m, 1H), 2.93 (dd, *J* = 11.7, 2.3 Hz, 1H), 2.81 (dd, *J* = 12.7, 5.0 Hz, 1H), 2.54

(dd, *J* = 11.7, 3.3 Hz, 1H), 2.31 (dd, *J* = 11.4, 2.7 Hz, 1H), 1.97 (ddd, *J* = 14.4, 10.1, 7.4 Hz, 1H), 1.84 (ddd, *J* = 14.3, 10.1, 0.8 Hz, 1H), 1.76 (appt. dq, *J* = 13.6, 3.4 Hz, 1H), 1.71 (dd, *J* = 13.1, 3.5 Hz, 1H), 1.66 (m, 1H), 1.41 - 1.24 (m, 3H).

¹³**C NMR:** (151 MHz, CDCl₃) δ 175.5, 137.0, 134.5, 127.0, 122.6, 119.4, 118.8, 111.8, 111.7, 74.4, 67.2, 56.2, 54.7, 52.1, 47.9, 44.6, 42.9, 41.9, 32.0, 30.6, 23.3, 21.3.

HRMS (ESI): calc. for C₂₂H₃₁N₂O₄ [M+H]⁺: 387.2278, found: 387.2266.

Melting point: 99 - 101 °C.

Procedure. Compound **15** (170 mg, 0.36 mmol) was added to a round-bottom flask and was dissolved in 36 mL of dichloromethane. Tetrakis(triphenylphosphine)palladium(0) (41.8 mg, 0.036 mmol) and phenylsilane (0.27 mL, 2.17 mmol) were then added to the reaction mixture, which then stirred at room temperature for 8.5 hours. Upon completion, the reaction was quenched with a saturated solution of sodium bicarbonate. The reaction mixture was then transferred to a separatory funnel and extracted with dichloromethane. The resulting organic layer was then dried with sodium sulfate, filtered, and concentrated under reduced pressure. The crude product was then purified via column chromatography using a gradient of 99:0:1 to 0:99:1 hexanes:ethyl acetate:triethylamine to afford **61** (47 mg, 33%).

Procedure. Compound **61** (150 mg, 0.39 mmol) was dissolved in dichloromethane (3.3 mL). Triethylamine (0.11 mL, 0.78 mmol) was then added to the reaction mixture. The resulting mixture was then cooled to 0 °C before the sequential addition of 2-furoyl chloride (0.077 mL, 0.78 mmol) and 4-dimethylaminopyridine (one crystal). The resulting reaction mixture was then stirred for 25 hours while being allowed to slowly warm to room

temperature. Upon completion, the reaction was quenched with brine and extracted with dichloromethane. The organic layer was separated, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The crude material was then purified via column chromatography using a solvent system of 7:3 hexanes:ethyl acetate to afford **62** (98 mg, 53%) as a white solid and **63** (64 mg, 29%) as a tan solid. Note: When 1 equivalent of 2-furoyl chloride was employed in this reaction, we obtained a 90% yield of **62** and a 4% yield of **63**.

Yield: 90%; 169 mg of **62**; white solid. Yield from using 1 equivalent of 2-furoyl chloride using the acylation procedure.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 8.39 (s, 1H), 7.51 (d, *J* = 7.9 Hz, 1H), 7.46 - 7.42 (m, 2H), 7.22 (m, 1H), 7.15 (m, 1H), 6.95 (m, 1H), 6.47 (m, 1H), 4.72 (dd, *J* = 4.8, 4.8 Hz, 1H), 4.05 (m, 1H), 4.00 (ddd, *J* = 14.7, 3.4, 3.4 Hz, 1H), 3.82 (s, 3H), 3.67 (ddd, *J* = 14.5, 10.3, 2.4 Hz, 1H), 3.36 (s, 3H), 3.29 (d, *J* = 14.0 Hz, 1H), 3.28

- 3.19 (m, 2H), 2.94 (br. s, 1H), 2.80 (m, 1H), 2.40 (dd, *J* = 10.9, 1.7 Hz, 1H), 2.35 (ddd, *J* = 15.5, 4.9, 3.1 Hz, 1H), 2.19 (ddd, *J* = 15.6, 3.5, 3.5 Hz, 1H), 1.91 - 1.80 (m, 3H), 1.48 - 1.39 (m, 2H), 1.33 (m, 1H).

¹³C NMR: (151 MHz, TCE, 100 °C) δ 175.7, 162.3, 148.8, 143.4, 135.9, 135.3, 128.2, 121.6, 119.4, 117.7, 115.5, 111.2, 111.0, 109.1, 75.6, 66.2, 58.1, 57.4, 53.3, 52.1, 51.5, 39.2, 37.9, 35.2, 30.6, 25.4, 24.7.

HRMS (ESI): calc. for C₂₇H₃₃N₂O₆ [M+H]⁺: 481.2333, found: 481.2313.

Melting point: 120 - 122 °C.

Yield: 29%; 64 mg of **63**; tan solid. Yield from using 2 equivalents of 2-furoyl chloride using the acylation procedure.

¹**H NMR:** (600 MHz, CDCl₃, 50 °C) δ 8.71 (s, 1H), 7.53 (m, 1H), 7.51 (d, *J* = 7.9 Hz, 1H), 7.35 (m, 1H), 7.34 (d, *J* = 8.2 Hz, 1H), 7.19 (m, 1H), 7.12 (dd, *J* = 7.4, 7.4 Hz, 1H), 6.96 (d, *J* = 3.4 Hz, 1H), 6.90 (d, *J* = 3.4 Hz, 1H), 6.46 (dd, *J* = 3.4, 1.7 Hz, 1H), 6.40 (dd, *J* = 3.2, 1.6 Hz, 1H), 5.48 (appt. q, *J* = 2.7 Hz, 1H), 4.75 (dd, *J* = 4.7, 4.7 Hz, 1H), 4.00 (d, *J* = 14.1 Hz, 1H),

3.68 (s, 3H), 3.65 (m, 1H, partially buried), 3.31 (d, *J* = 13.8 Hz, 1H), 3.28 (m, 1H, partially buried), 3.24 (s, 3H), 3.23 (m, 1H, partially buried), 2.86 (m, 1H), 2.52 (dd, *J* = 11.5, 2.2 Hz, 1H), 2.31 (ddd, *J* = 15.6, 6.1, 4.9 Hz, 1H), 2.08 (m, 1H), 1.98 - 1.88 (m, 2H), 1.63 - 1.49 (m, 2H), 1.28 - 1.18 (m, 2H).

¹³**C NMR:** (151 MHz, CDCl₃, 50 °C) δ 172.9, 163.1, 157.8, 149.0, 146.6, 144.9, 143.9, 136.7, 135.8, 128.4, 121.9, 119.6, 118.2, 118.1, 116.6, 111.9, 111.6, 111.6, 109.6, 75.0, 69.9, 59.2, 57.4, 52.9, 52.2, 52.1, 40.2, 38.2, 36.4, 29.4, 25.7. Note: One carbon signal is missing from the aliphatic region.
Melting point: 151 - 153 °C.

Procedure. Compound **22** (210 mg, 0.30 mmol) was added to a flame-dried microwave vial and was dissolved in anhydrous acetonitrile (4.0 mL). Potassium carbonate (61.4 mg, 0.44 mmol), *N*,*N*'-dimethylethylenediamine (22 μ L, 0.21 mmol), and copper(I) iodide (20 mg, 0.10 mmol) were then added to the solution, and the resulting reaction mixture was subjected to microwave irradiation for 39 minutes at 165 °C. After this time, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and washed with brine. The organic layer was dried with sodium sulfate, filtered, and concentrated under reduced pressure. The crude product was purified via column chromatography using a gradient of 100% hexanes to 1:4 hexanes:ethyl acetate to afford **16** (104 mg, 60%) as a white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 7.74 (d, *J* = 8.0 Hz, 1H), 7.69 - 7.64 (m, 2H), 7.56 (m, 1H), 7.43 (m, 1H), 7.34 (dd, *J* = 7.4, 7.4 Hz, 1H), 7.28 - 7.20 (m, 3H), 7.17 (dd, *J* = 7.2, 7.2 Hz, 1H), 7.13 (dd, *J* = 7.3, 7.3 Hz, 1H), 6.74 - 6.50 (m, 2H), 5.63 (m, 1H), 4.75 (d, *J* = 12.2 Hz, 1H), 4.44 (d, *J* = 12.2 Hz, 1H), 4.09 (m, 1H), 4.03 (m, 1H), 3.78 - 3.64 (m, 2H), 3.62 (s, 3H), 3.40 (m, 1H), 3.25 (ddd, *J* = 15.2, 10.0, 4.6 Hz, 1H), 3.13 (d, *J* = 9.4 Hz, 1H), 2.67 (d, *J* = 10.4 Hz, 1H), 2.39 (br. s, 1H), 2.09 (m, 1H), 2.03 (m, 1H), 1.92 (m, 1H), 1.82 (m, 1H), 1.73 - 1.58 (m, 4H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 174.4, 155.0, 151.1, 138.8, 137.0, 135.9, 132.3, 129.8, 129.1, 128.9, 128.6, 125.7, 124.5, 122.7, 122.4, 121.0, 120.7, 119.1, 112.3, 110.4, 68.7, 67.0, 66.8, 57.1, 51.4, 51.2, 50.6, 38.2, 37.8, 35.8, 30.6, 25.0, 24.9.

HRMS (ESI): calc. for C₃₅H₃₇N₂O₆ [M + H]⁺: 581.2646, found: 581.2651.

Melting point: 120 - 122 °C.

Procedure. Tetrahydrofuran (2 mL) was added to a round-bottom flask followed by sodium hydride (29.8 mg, 0.74 mmol, 60 wt.% dispersion in mineral oil) and the mixture was cooled to 0 °C. Next, a solution of **18** (150 mg, 0.23 mmol) in 0.5 mL of tetrahydrofuran was added to the reaction mixture, which was allowed to stir for 30 minutes at room temperature. Then, the reaction was cooled to 0 °C and methyl iodide (57 μ L, 0.92 mmol) was added. The resulting reaction mixture was slowly warmed to room temperature and stirred for 5 hours. Upon completion, the reaction was quenched via brine and extracted with ethyl acetate. The organic layers were collected, dried with sodium sulfate, filtered, and concentrated. The crude mixture was purified via column chromatography using a gradient of 100% hexanes to 7:3 hexanes:ethyl acetate to afford **64** (86 mg, 55%) as a white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 7.86 (d, *J* = 7.8 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.42 (d, *J* = 7.4 Hz, 1H), 7.37 (dd, *J* = 7.4, 7.4 Hz, 1H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.24 (m, 1H), 7.15 (dd, *J* = 7.3, 7.3 Hz, 1H), 7.01 (dd, *J* = 7.4, 7.4 Hz, 1H), 5.05 (m, 1H), 4.42 (d, *J* = 12.6 Hz, 1H), 4.37 (d, *J* = 12.6 Hz, 1H), 3.99 (m, 1H), 3.83 (s, 3H), 3.83 - 3.72 (m, 4H), 3.67 (s, 3H), 3.42 - 3.23 (m, 2H), 3.28 (s, 3H), 3.09 (ddd, *J* = 14.6, 10.4, 3.7 Hz, 1H), 2.84 (d, *J* = 8.8 Hz, 1H), 2.62 (d, *J* = 9.7 Hz, 1H), 2.52 (m, 1H), 2.42 - 2.22 (m, 2H), 2.08 (d, *J* = 11.4 Hz, 1H), 1.81 (br. m, 1H), 1.54 - 1.30 (m, 3H), 0.82 (br. s, 3H, methyl group). Note: Broad multiplet at 1.81 ppm aligns with the C20 proton signal observed in compounds **18** (synthetic precursor) and **46**.

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 172.5, 156.6, 140.6, 139.0, 137.8, 136.8, 129.0, 128.9, 128.0, 127.8, 121.3, 118.8, 118.2, 111.2, 108.8, 97.8, 77.0, 74.5, 71.1, 60.7, 56.8, 56.4, 50.8, 50.5, 50.1, 38.3, 36.5, 35.6, 30.5, 27.5, 25.3, 25.1, 13.8.

HRMS (ESI): calc. for C₃₃H₄₂IN₂O₆ [M + H]⁺: 689.2082, found: 689.2082.

Melting point: 134 - 136 °C.

Procedure. Apovincamine **25** (211 mg, 0.63 mmol) was added to a microwave flask and dissolved in 12.1 mL dichloromethane. Sodium carbonate (532 mg, 5.02 mmol), methyl chloroformate (0.22 mL, 2.82 mmol), and methanol (0.20 mL, 5.02 mmol) were then added to the mixture sequentially. The resulting reaction mixture was then subjected to microwave irradiation for one hour at 100 °C. After completion, the reaction mixture was then filtered to remove excess sodium carbonate and concentrated under reduced pressure. The crude product was then purified via column chromatography using a gradient of 100:0 to 3:1 hexanes:ethyl acetate to afford **27** (92.8 mg, 35%) as a white solid. Notes: We have an X-ray of **27** (see later section for details). During the course of these studies, this procedure was applied to a diversity of alcohol and thiol nucleophiles with chloroformate electrophiles to give ring cleaved products as a single diastereomer.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 7.57 (d, *J* = 7.7 Hz, 1H), 7.33 (m, 1H), 7.26 (m, 1H), 7.21 (m, 1H), 6.22 (s, 1H), 4.24 (s, 1H), 4.11 (m, 1H), 3.99 (s, 3H), 3.80 (s, 3H), 3.72 (ddd, *J* = 14.0, 9.7, 2.0 Hz, 1H), 3.31 (ddd, *J* = 14.6, 11.7, 2.0 Hz, 1H, partially buried), 3.29 (s, 3H), 3.07 (ddd, *J* = 15.1, 3.8, 1.8 Hz, 1H), 2.80 (dd, *J* = 12.5, 12.5 Hz, 1H), 2.28 (ddd, *J* = 14.2, 5.9, 3.2 Hz, 1H), 1.87 - 1.75 (m, 3H), 1.52 (m, 1H), 1.03 (dd, *J* = 7.4, 7.4 Hz, 3H), 0.97 (m, 1H), 0.69 (m, 1H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 163.9, 157.7, 135.7, 133.1, 129.8, 129.1, 128.2, 123.1, 120.4, 118.3, 116.7, 112.6, 74.6, 55.6, 53.2, 52.9, 52.2, 51.9, 43.3, 31.4, 27.0, 23.4, 22.0, 7.5.

HRMS (ESI): calc. for C₂₄H₃₁N₂O₅ [M+H]⁺: 427.2227, found: 427.2241.

Melting point: 164 - 166 °C.

Key Signals for 27 (have X-ray)

Yield: 67%; 182 mg of 65; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 7.57 (d, *J* = 7.7 Hz, 1H), 7.34 (d, *J* = 8.4 Hz, 1H), 7.26 (m, 1H), 7.22 (m, 1H), 6.22 (d, *J* = 1.2 Hz, 1H), 4.32 - 4.18 (m, 2H, partially buried), 4.26 (d, *J* = 1.2 Hz, 1H), 4.13 (m, 1H), 3.99 (s, 3H), 3.75 (ddd, *J* = 14.1, 9.6, 2.5 Hz, 1H), 3.33 (ddd, *J* = 15.0, 11.7, 2.6 Hz, 1H), 3.30 (s, 3H), 3.07 (ddd, *J* = 15.0, 4.0, 1.9 Hz, 1H), 2.78 (m, 1H), 2.26 (ddd, *J* = 14.3, 5.8, 3.1 Hz, 1H), 1.87 - 1.78 (m, 1H), 3.80 (m, 1H), 3.8

3H), 1.55 (m, 1H), 1.37 (appt. t, *J* = 7.1 Hz, 3H), 1.04 (dd, *J* = 7.5, 7.5 Hz, 3H), 0.99 (m, 1H), 0.69 (m, 1H).

¹³C NMR: (151 MHz, TCE, 100 °C) δ 163.9, 157.3, 135.7, 133.1, 129.7, 129.1, 128.2, 123.1, 120.4, 118.3, 116.8, 112.6, 74.8, 61.1, 55.6, 53.2, 53.0, 51.9, 43.3, 31.4, 27.0, 23.5, 22.1, 14.6, 7.6.

HRMS (ESI): calc. for C₂₅H₃₃N₂O₅ [M+H]⁺: 441.2384, found: 441.2395.

Melting point: 79 - 80 °C.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 7.57 (d, J = 7.7 Hz, 1H), 7.35 (d, J = 8.3 Hz, 1H), 7.27 (m, 1H), 7.23 (m, 1H), 6.25 (s, 1H), 4.95 (br. m, 1H), 4.79 (br. m, 1H), 4.30 (m, 1H), 4.24 (ddd, J = 14.0, 3.6, 2.5 Hz, 1H), 4.00 (s, 3H), 3.83 (ddd, J = 14.0, 9.6, 2.3 Hz, 1H), 3.39 (m, 1H), 3.28 (s, 3H), 3.15 (ddd, J = 15.2, 4.1, 1.6 Hz, 1H), 2.89 (m, 1H), 2.34 (d, J = 11.1 Hz, 1H), 1.91 - 1.75 (m, 3H), 1.61 (br. m, 1H), 1.02 (dd, J = 7.5, 7.5 Hz, 3H), 0.97 (m, 1H), 0.82 (m, 1H).

¹³C NMR: (151 MHz, TCE, 100 °C) δ 163.8, 155.4, 135.8, 133.0, 129.6, 129.2, 128.1, 123.2, 120.6, 118.3, 116.5, 112.6, 95.7, 75.2, 74.7, 55.6, 53.8, 53.2, 52.0, 43.5, 31.5, 26.7, 23.5, 21.9, 7.7.

HRMS (ESI): calc. for C₂₅H₂₉Cl₃N₂O₅Na [M+Na]⁺: 565.1034, found: 565.1056.

Melting point: 68 - 69 °C.

Yield: 10%; 29.4 mg of 67; white solid.

¹**H NMR**: (600 MHz, TCE, 100 °C) δ 7.57 (d, J = 7.7 Hz, 1H), 7.34 (d, J = 8.3 Hz, 1H), 7.26 (m, 1H), 7.22 (m, 1H), 6.22 (s, 1H), 6.05 (dddd, J = 16.4, 10.8, 5.6, 5.6 Hz, 1H), 5.41 (m, 1H), 5.30 (m, 1H), 4.74 (dd, J = 13.2, 5.3 Hz, 1H), 4.66 (dd, J = 13.2, 5.6 Hz, 1H), 4.25 (s, 1H), 4.16 (ddd, J = 13.9, 3.0, 3.0 Hz, 1H), 3.99 (s, 3H), 3.77 (ddd, J = 14.1, 9.7, 2.4 Hz, 1H), 3.34 (ddd, J = 14.9, 11.7, 2.3 Hz, 1H), 3.29 (s,

S40

3H), 3.08 (m, 1H), 2.81 (dd, *J* = 12.6, 12.6 Hz, 1H), 2.28 (ddd, *J* = 14.2, 5.6, 3.1 Hz, 1H), 1.87 - 1.77 (m, 3H), 1.55 (m, 1H), 1.03 (dd, *J* = 7.5, 7.5 Hz, 3H), 0.99 (m, 1H), 0.70 (m, 1H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 163.9, 156.9, 135.7, 133.1, 133.1, 129.7, 129.1, 128.2, 123.1, 120.5, 118.3, 117.5, 116.7, 112.6, 74.7, 65.8, 55.6, 53.3, 53.0, 51.9, 43.3, 31.4, 27.0, 23.5, 22.1, 7.6.

HRMS (ESI): calc. for C₂₆H₃₂N₂O₅Na [M+Na]⁺: 475.2203, found: 475.2213.

Melting point: 48 - 50 °C.

Yield: 6%; 41.2 mg of **68**; white residue.

¹**H NMR**: (600 MHz, TCE, 100 °C) δ 7.60 (d, J = 7.8 Hz, 1H), 7.46 - 7.40 (m, 2H), 7.38 (d, J = 8.3 Hz, 1H), 7.31 - 7.25 (m, 2H), 7.24 (m, 1H), 7.18 - 7.14 (m, 2H), 6.27 (d, J = 0.9 Hz, 1H), 4.40 (d, J = 0.9 Hz, 1H), 4.27 (ddd, J = 13.9, 3.2, 3.2 Hz, 1H), 4.01 (s, 3H), 3.86 (ddd, J = 14.2, 9.4, 2.5 Hz, 1H), 3.44 (ddd, J = 15.1, 11.8, 2.1 Hz, 1H), 3.35 (s, 3H), 3.19 (ddd, J = 15.2, 3.8, 1.9 Hz, 1H), 3.02 (dd, J = 12.4, 12.4 Hz, 1H), 2.46 (m, 1H), 1.94 - 1.80 (m, 3H), 1.66 (m, 1H), 1.06 (dd, J = 7.5, 7.5 Hz, 3H), 1.02 (m, 1H), 0.87 (m, 1H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 163.8, 155.4, 151.4, 135.8, 133.1, 129.6, 129.2, 129.0, 128.2, 125.0, 123.2, 121.4, 120.6, 118.4, 116.5, 112.6, 75.0, 55.8, 53.5, 53.1, 52.0, 43.5, 31.3, 26.8, 23.4, 21.9, 7.7.

HRMS (ESI): calc. for C₂₉H₃₃N₂O₅ [M+H]⁺: 489.2384, found: 489.2392.

Melting point: 62 - 64 °C.

Yield: 30%; 76.7 mg of 69; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 7.55 (d, J = 7.7 Hz, 1H), 7.33 (m, 1H), 7.25 (m, 1H), 7.20 (m, 1H), 6.23 (m, 1H), 4.36 (m, 1H), 4.11 (m, 1H), 3.99 (s, 3H), 3.79 (s, 3H), 3.72 (m, 1H), 3.55 (m, 1H), 3.42 (m, 1H), 3.29 (dd, J = 13.1, 13.1 Hz, 1H), 3.05 (m, 1H), 2.80 (dd, J = 12.5, 12.5 Hz, 1H), 2.28 (m, 1H), 1.87 - 1.77 (m, 3H), 1.54 (m, 1H), 1.15 (m, 3H), 1.03 (m, 3H), 0.95 (m, 1H), 0.73 (m, 1H). Note: Most signals

exhibit additional splitting due to inadequate shimming prior to the acquisition of spectral data (e.g., the 3H signals at 1.15 and 1.03 ppm should appear as "dd" or "appt. t" signals).

¹³**C NMR:** (101 MHz, TCE, 100 °C) δ 163.9, 157.7, 135.6, 134.0, 130.1, 129.0, 128.2, 123.0, 120.4, 118.2, 116.1, 112.5, 72.4, 63.1, 53.4, 53.0, 52.2, 51.9, 43.3, 31.3, 26.9, 23.5, 22.0, 14.8, 7.6.

HRMS (ESI): calc. for C₂₅H₃₂N₂O₅Na [M+Na]⁺: 463.2206, found: 463.2206.

Melting point: 53 - 55 °C.

Yield: 16%; 60.6 mg of **70**; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 7.57 (d, *J* = 7.7 Hz, 1H), 7.34 (d, *J* = 8.3 Hz, 1H), 7.27 (m, 1H), 7.22 (m, 1H), 6.22 (s, 1H), 4.72 (s, 1H), 4.17 (dd, *J* = 16.2, 2.2 Hz, 1H), 4.12 (m, 1H), 4.05 (dd, *J* = 16.2, 2.1 Hz, 1H), 3.99 (s, 3H), 3.77 (s, 3H), 3.73 (ddd, *J* = 12.9, 9.7, 1.8 Hz, 1H), 3.43 (ddd, *J* = 14.2, 11.3, 1.8 Hz, 1H), 3.08 (ddd, *J* = 15.1, 3.9, 1.6 Hz, 1H), 2.79 (dd, *J* = 12.4, 12.4 Hz, 1H), 2.50 (m, 1H), 2.30 (ddd, *J* = 14.2, 5.4, 3.3 Hz, 1H), 1.92 - 1.74 (m, 3H), 1.50 (m, 1H), 1.07 (dd, *J* = 7.4, 1.50 (m, 1H), 1.50 (m, 1H),

7.4 Hz, 3H), 1.01 (m, 1H), 0.67 (m, 1H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 163.8, 157.7, 135.9, 132.0, 129.7, 129.1, 128.2, 123.4, 120.6, 118.4, 117.8, 112.6, 80.4, 74.2, 70.9, 54.3, 53.1, 52.8, 52.2, 52.0, 43.2, 31.3, 27.1, 23.5, 22.1, 7.5.

HRMS (DART): calc. for C₂₆H₃₁N₂O₅[M+H]⁺: 451.2227, found: 451.2232.

Melting point: 156 - 158 °C.

Yield: 17%; 47.3 mg of **71**; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 7.56 (d, J = 7.7 Hz, 1H), 7.34 (m, 1H), 7.26 (ddd, J = 8.3, 7.2, 1.3 Hz, 1H), 7.21 (ddd, J = 7.9, 7.0, 1.0 Hz, 1H), 6.21 (d, J = 1.0 Hz, 1H), 4.67 (d, J = 1.0 Hz, 1H), 4.14 (m, 1H), 4.11 (dq, J = 15.6, 2.3 Hz, 1H), 3.99 (s, 3H), 3.98 (dq, J = 15.6, 2.3 Hz, 1H, partially buried), 3.78 (s, 3H), 3.71 (ddd, J = 14.2, 10.1, 2.7 Hz, 1H), 3.41 (m, 1H), 3.08 (ddd, J = 15.1, 4.3, 2.0 Hz, 1H), 2.80 (dd, J = 12.2, 12.2 Hz, 1H), 2.30 (ddd, J = 14.3, 5.3, 3.4 Hz, 1H), 1.94 (dd, J = 2.3, 2.3 Hz, 3H), 1.89 - 1.82 (m, 2H), 1.78 (dq, J = 14.7, 7.4 Hz, 1H), 1.46 (m, 1H), 1.06

(dd, J = 7.5, 7.5 Hz, 3H), 1.02 (m, 1H), 0.64 (m, 1H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 163.9, 157.7, 135.9, 132.6, 129.9, 129.2, 128.2, 123.2, 120.5, 118.4, 117.6, 112.6, 82.3, 75.7, 70.5, 55.0, 52.9, 52.7 (br.), 52.2, 52.0, 43.2, 31.3, 27.3, 23.4, 22.1, 7.4, 3.2.

HRMS (ESI): calc. for C₂₇H₃₂N₂O₅Na [M+Na]⁺: 487.2203, found: 487.2215.

Melting point: 161 - 163 °C.

Yield: 51%; 138 mg of 72; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 7.56 (m, 1H), 7.34 (m, 1H), 7.26 (ddd, J = 8.2, 7.1, 1.3 Hz, 1H), 7.21 (ddd, J = 7.9, 6.9, 1.0 Hz, 1H), 6.26 (d, J = 1.2 Hz, 1H), 5.90 (dddd, J = 17.3, 10.7, 6.0, 4.9 Hz, 1H), 5.27 (dddd, J = 17.3, 1.6, 1.6, 1.6 Hz, 1H; appt. dq), 5.17 (dddd, J = 10.5, 1.4, 1.4, 1.4 Hz, 1H; appt. dq), 4.44 (d, J = 1.2 Hz, 1H), 4.10 (m, 1H), 4.05 (dddd, J = 13.2, 4.8, 1.6, 1.6 Hz, 1H), 3.99 (s, 3H), 3.90

(dddd, *J* = 13.2, 6.1, 1.4, 1.4 Hz, 1H), 3.78 (s, 3H), 3.71 (ddd, *J* = 14.1, 9.4, 2.5 Hz, 1H), 3.28 (ddd, *J* = 14.9, 11.4, 2.4 Hz, 1H), 3.07 (ddd, *J* = 15.1, 4.2, 2.0 Hz, 1H), 2.81 (m, 1H), 2.29 (ddd, *J* = 14.2, 6.2, 3.2 Hz, 1H), 1.92 - 1.78 (m, 3H), 1.53 (m, 1H), 1.05 (dd, *J* = 7.4, 7.4 Hz, 3H), 0.95 (ddd, *J* = 14.8, 9.3, 2.7 Hz, 1H), 0.74 (m, 1H).

¹³C NMR: (151 MHz, TCE, 100 °C) δ 163.8, 157.6, 135.7, 135.1, 133.4, 129.9, 129.1, 128.2, 123.1, 120.4, 118.3, 116.5, 116.1, 112.5, 72.2, 68.4, 53.3, 52.8, 52.2, 51.9, 43.5, 31.3, 26.9, 23.5, 22.0, 7.6.

HRMS (ESI): calc. for C₂₆H₃₂N₂O₅Na [M+Na]⁺: 475.2203, found: 475.2203.

Melting point: 141 - 143 °C.

Yield: 24%; 70.2 mg of **73**; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 7.57 (d, J = 7.7 Hz, 1H), 7.38 - 7.32 (m, 3H), 7.32 - 7.25 (m, 4H), 7.23 (dd, J = 7.4, 7.4 Hz, 1H), 6.28 (s, 1H), 4.58 (d, J = 12.0 Hz, 1H), 4.48 (s, 1H), 4.40 (d, J = 12.0 Hz, 1H), 4.06 (m, 1H), 4.00 (s, 3H), 3.70 (s, 3H), 3.68 (m, 1H, partially buried), 3.19 (dd, J = 12.6, 12.6 Hz, 1H), 3.06 (ddd, J = 15.1, 3.9, 1.9 Hz, 1H), 2.80 (m, 1H), 2.28 (ddd, J = 14.2, 5.9, 3.1 Hz, 1H), 1.96 - 1.78 (m, 3H), 1.49 (m, 1H), 1.04 (dd, J = 7.4, 7.4 Hz, 3H), 0.96 (m, 1H), 0.73 (m, 1H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 163.9, 157.6, 138.6, 135.8, 133.2, 129.9, 129.2, 128.2, 128.0, 127.4, 127.1, 123.2, 120.5, 118.4, 116.9, 112.6, 72.5, 69.4, 53.2, 52.7, 52.3, 52.0, 43.6, 31.2, 26.9, 23.6, 22.0, 7.6.

HRMS (ESI): calc. for C₃₀H₃₄N₂O₅Na [M+Na]⁺: 525.2360, found: 525.2334.

Melting point: 176 - 178 °C.

Yield: 25%; 69.0 mg of 74; white solid.

¹**H NMR:** (600 MHz, TCE, 100 °C) δ 7.51 (m, 1H), 7.27 (m, 1H), 7.25 - 7.18 (m, 2H), 6.23 (d, J = 1.2 Hz, 1H), 4.23 (d, J = 1.2 Hz, 1H), 4.08 (m, 1H), 4.00 (s, 3H), 3.77 (s, 3H), 3.73 (ddd, J = 14.0, 8.6, 2.6 Hz, 1H), 3.22 (ddd, J = 15.2, 11.3, 2.6 Hz, 1H), 3.03 (ddd, J = 15.2, 4.3, 2.1 Hz, 1H), 2.85 (m, 1H), 2.54 (dg, J = 12.6, 7.4 Hz, 1H), 2.46 (dg,

J = 12.6, 7.4 Hz, 1H), 2.34 (ddd, *J* = 14.2, 6.9, 2.8 Hz, 1H), 1.93 (dq, *J* = 14.7, 7.3 Hz, 1H), 1.86 (ddd, *J* = 15.7, 9.3, 3.9 Hz, 1H), 1.78 (dq, *J* = 14.6, 7.3 Hz, 1H), 1.62 (m, 1H), 1.25 (dd, *J* = 7.4, 7.4 Hz, 3H), 1.06 (dd, *J* = 7.3, 7.3 Hz, 3H), 1.04 - 0.96 (m, 2H).

¹³**C NMR:** (151 MHz, TCE, 100 °C) δ 163.6, 157.6, 135.2, 135.2, 129.5, 129.3, 128.3, 122.6, 120.5, 118.0, 113.7, 112.2, 53.7, 52.8, 52.2, 52.0, 44.8, 42.9, 32.5, 28.0, 24.7, 23.7, 22.1, 14.6, 7.8.

HRMS (ESI): calc. for C₂₅H₃₃N₂O₄S [M+H]⁺: 457.2156, found: 457.2167.

Melting point: 111 - 113 °C.

Procedure. Vinburnine **28** (200 mg, 0.68 mmol) was added to a round bottom flask and dissolved in chloroform (13 mL, 0.05 M). Sodium carbonate (576 mg, 5.43 mmol) and methyl chloroformate (23.6 µL, 3.06 mmol) were added, and the resulting mixture was stirred at room temperature for 10 minutes. After this time, methanol (0.22 mL, 5.43 mmol) was added and the reaction was stirred at 60 °C for 36 hours. Upon completion, the reaction mixture was cooled and diluted with dichloromethane before being filtered. The resulting solvent was then evaporated via rotovap, and the crude material was purified via column chromatography using a gradient of 100% hexanes to 9:2 hexanes:ethyl acetate to afford **29** (10 mg, 4% yield) as a clear-yellow residue.

¹**H NMR:** (600 MHz, CDCl₃, 50 °C) δ 8.46 (m, 1H), 7.49 (d, *J* = 7.7 Hz, 1H), 7.38 (ddd, *J* = 8.1, 7.4, 1.2 Hz, 1H), 7.31 (ddd, *J* = 8.1, 7.7, 0.9 Hz, 1H), 4.29 (s, 1H), 4.07 (br. m, 1H), 3.76 (s, 3H), 3.71 (dd, *J* = 13.2, 6.7 Hz, 1H), 3.24 (s, 3H), 3.19 (m, 1H), 3.01 (d, *J* = 17.3 Hz, 1H), 3.00 (ddd, *J* = 14.9, 4.3, 1.7 Hz, 1H), 2.72 (dd, *J* = 11.2, 11.2 Hz, 1H), 2.39 (dd, *J* = 17.3, 0.7 Hz, 1H), 2.18 (dd, *J* = 13.7, 8.6 Hz, 1H), 1.91 (dq, *J* = 15.1, 7.6 Hz, 1H), 1.78 (ddd, *J* = 15.5, 10.7, 1.8 Hz, 1H), 1.66 - 1.47 (m, 3H), 0.87 (dd, *J* = 7.6, 7.6 Hz, 3H), 0.82 (m, 1H, partially buried).

¹³**C NMR**: (151 MHz, CDCl₃, 50 °C) δ 169.6, 158.2, 135.5, 133.5, 129.4, 125.8, 124.0, 119.6 (br.), 118.4, 117.2, 75.6, 56.5, 55.7 (br.), 53.0 (br.), 52.8, 43.5, 41.1, 33.6, 26.8, 24.1, 22.3 (br.), 7.9. Note: This spectrum contained several broad ¹³C signals, which are indicated in the tabulated data.

HRMS (ESI): calc. for C₂₂H₂₉N₂O₄ [M+H]⁺: 385.2122, found: 385.2134.

Procedure. Reserpine (500 mg, 0.82 mmol) was added to a round-bottom flask and dissolved in methylene chloride (17.6 mL). Then, sodium carbonate (695 mg, 6.56 mmol), 2-iodobenzyl alcohol (1.6 g, 6.56 mmol) and phenyl chloroformate (0.46 mL, 3.69 mmol) were added to the round-bottom flask sequentially and the resulting mixture stirred at room temperature for 2 hours until complete (monitored by TLC). Upon completion of the reaction, the contents of the mixture were filtered and the resulting solvent was evaporated under reduced pressure to give crude materials which were purified via column chromatography using 100% methylene chloride and slowing ramping to a 99.3:0.7 mixture of methylene chloride:methanol to elute pure diastereomers **40** (38.4 mg, 5%) as a cream-colored solid and **41** (387 mg, 49%) as a white solid.

Yield: 5%; 40 mg of 40; cream-colored solid.

¹**H NMR**: (600 MHz, CDCl₃) δ 8.01 (br. s, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.43 (d, J = 8.6 Hz, 1H), 7.39 (m, 1H), 7.36 (m, 1H), 7.34 - 7.29 (m, 4H), 7.17 (dd, J = 7.4, 7.4 Hz, 1H), 7.02 (ddd, J = 7.8, 7.8, 1.8 Hz, 1H), 6.97 - 6.84 (br. m, 2H), 6.82 (s, 1H), 6.77 (dd, J = 8.6, 2.2 Hz, 1H), 5.02 (dd, J = 7.2, 7.2 Hz, 1H), 4.93 (m, 1H), 4.49 (d, J = 12.3 Hz, 1H), 4.44 (d, J = 12.3 Hz, 1H), 4.33 (m, 1H), 3.92 (s, 6H), 3.91 (s, 3H), 3.85 (s, 3H), 3.79 (dd, J = 11.3, 9.3 Hz, 1H), 3.66 - 3.50 (m, 5H), 3.47 (s, 3H), 3.23

(ddd, *J* = 14.6, 9.5, 3.8 Hz, 1H), 2.95 (ddd, *J* = 16.6, 4.4, 4.4 Hz, 1H), 2.80 - 2.65 (m, 2H), 2.46 (dd, *J* = 11.7, 1.8 Hz, 1H), 2.31 - 2.20 (m, 2H), 2.01 (m, 1H), 1.92 (m, 1H), 1.50 (m, 1H).

¹**H NMR:** (600 MHz, MeOD-*d4*) δ 7.83 (dd, *J* = 7.9, 0.9 Hz, 1H), 7.51 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.40 - 7.37 (m, 3H), 7.36 (d, *J* = 8.7 Hz, 1H), 7.29 - 7.20 (br. m, 2H), 7.14 (m, 1H), 7.01 (ddd, *J* = 7.7, 7.7, 1.6 Hz, 1H), 6.91 (d, *J* = 1.0 Hz, 1H), 6.67 - 6.57 (br. m, 3H), 5.02 (dd, *J* = 10.2, 5.4 Hz, 1H), 4.91 (ddd, *J* = 10.9, 9.3, 5.9 Hz, 1H), 4.48 (d, *J* = 12.9 Hz, 1H), 4.45 (d, *J* = 12.9 Hz, 1H), 4.35 (br. m, 1H), 3.91 (m, 1H, partially buried), 3.89 (s, 6H),

3.84 (s, 3H), 3.81 (s, 3H), 3.70 (br. s, 3H), 3.49 (s, 3H), 3.47 - 3.36 (br. m, 2H), 3.22 (m, 1H), 3.04 - 2.77 (m, 3H), 2.43 (dd, J = 11.3, 3.9 Hz, 1H), 2.36 (ddd, J = 14.1, 11.1, 5.6 Hz, 1H), 2.13 (dd, J = 12.6, 12.6 Hz, 1H), 1.96 - 1.79 (m, 2H), 1.68 (ddd, J = 12.1, 12.1, 12.1 Hz, 1H; "appt. q"). Note: We faced challenges reporting this spectral data due to significant signal broadening. The HSQC for this compound can be found in the spectra section of this document and was critical in the characterization of the following signals: 6.67 - 6.57 (br. m, 3H), 4.35 (br. m, 1H), and 3.47 - 3.36 (br. m, 2H).

¹³**C NMR:** (151 MHz, MeOD-*d4*) δ 173.9, 166.8, 158.0, 157.7 (br.), 154.5, 152.4, 143.8, 142.1, 140.5, 139.0, 130.4, 130.4, 130.1 (br.), 129.4, 126.6, 126.3 (br.), 124.1 (br.), 122.8, 122.6, 120.2, 111.9, 109.8, 108.0, 98.8, 95.6, 80.0, 79.5, 75.2, 73.6, 61.2, 61.2, 56.8, 56.1, 55.0, 54.2, 52.4, 49.6, 38.1 (br., observed by HSQC), 34.6, 31.4, 30.4, 24.1 (br.). Note: Signal reported at 38.1 ppm had low intensity and was very broad in our acquired ¹³C spectrum; however, this signal was observed in the HSQC that can be viewed in the spectra section.

HRMS (ESI): calc. for C₄₇H₅₁IN₂O₁₂Na [M+Na]⁺: 985.2379, found: 985.2359.

Melting Point: 143 - 145 °C.

Yield: 38%; 300 mg of 41; white solid.

¹**H NMR:** (600 MHz, CDCl₃) δ 7.82 (d, *J* = 7.9 Hz, 1H), 7.70 (s, 1H), 7.50 (d, *J* = 8.7 Hz, 1H), 7.35 - 7.33 (m, 2H), 7.31 (s, 2H), 7.19 - 7.08 (m, 2H), 7.05 (m, 1H), 6.98 (ddd, *J* = 7.9, 4.5, 4.5 Hz, 1H), 6.89 (s, 1H), 6.69 (d, *J* = 6.7 Hz, 1H), 6.36 - 6.11 (br. m, 2H), 4.93 (m, 1H), 4.70 (ddd, *J* = 13.1, 13.1, 3.1 Hz, 1H), 4.31 (d, *J* = 12.1 Hz, 1H), 4.28 (d, *J* = 12.1 Hz, 1H), 4.25 (br. m, 1H), 3.97 (dd, *J* = 10.1, 10.1 Hz, 1H), 3.91 (s, 6H), 3.91 (s, 3H, buried), 3.83 (s, 3H), 3.75 (s, 3H), 3.51 (s, 3H), 3.46 (dd, *J*

= 13.6, 4.6 Hz, 1H), 3.42 (m, 1H), 3.14 (m, 1H), 3.01 (m, 1H), 2.91 (br. m, 1H), 2.74 (dd, *J* = 12.6, 12.6 Hz, 1H), 2.56 (dd, *J* = 11.1, 4.2 Hz, 1H), 2.33 (m, 1H), 2.24 (m, 1H), 2.07 (br. m, 1H), 1.86 (dd, *J* = 11.1, 3.5 Hz, 1H), 1.27 (ddd, *J* = 12.0, 12.0, 12.0 Hz, 1H; "appt q").

¹³**C NMR**: (151 MHz, CDCl₃) δ 173.8, 165.3, 156.9, 155.7 (br.), 153.2, 150.8, 142.5, 140.4, 139.6, 136.4, 132.2 (br.), 129.7, 129.7, 128.9 (br.), 128.5, 125.5, 125.1 (br.), 124.0 (br.), 121.7, 120.5 (br.), 110.7 (br.), 110.0, 107.0, 98.8, 95.0, 79.2, 77.6, 76.4, 74.6, 61.1, 60.7, 56.5, 56.0, 52.1, 51.6 (br.), 51.1 (br.), 48.7 (br.), 36.3 (br.), 33.3 (br.), 30.0, 29.7 (br.), 23.6.

HRMS (ESI): calc. for C₄₇H₅₂IN₂O₁₂ [M+H]⁺: 963.2559, found: 963.2536.

Melting Point: 125 - 127 °C.

Overview of X-Ray Structures

X-Ray Analysis of 14. X-Ray Intensity data were collected at 100 K on a Bruker Dual micro source D8 Venture diffractometer and PHOTON III detector running APEX3 software package of programs and using MoK α radiation ($\lambda = 0.71073$ Å). The data frames were integrated and multi-scan scaling was applied in APEX3. Intrinsic phasing structure solution provided all of the non-H atoms. The structure was refined using full-matrix least-squares refinement (SHELXL^{8,9}). The non-H atoms were refined with anisotropic displacement parameters and all of the H atoms were calculated in idealized positions and refined riding on their parent atoms. In the final cycle of refinement, 7501 reflections (of which 6384 are observed with I > 2 σ (I)) were used to refine 297 parameters and the resulting R₁, wR₂ and S (goodness of fit) were 4.11%, 9.50% and 1.073, respectively. The refinement was carried out by minimizing the wR₂ function using F² rather than F values. R₁ is calculated to provide a reference to the conventional R value but its function is not minimized.

X-Ray Crystallographic Data for 14. Crystallographic data for **14** has been deposited with the Cambridge Crystallographic Data Centre (submission number Y-14; CCDC deposition number 2337941). Copies of the data can be obtained, free of charge at by visiting <u>http://www.ccdc.cam.ac.uk/</u>.

Crystal data and structure refinement for 14.

Identification code	Y-14 (deposition no.	Y-14 (deposition no. 2337941)		
Empirical formula	C24 H32 N2 O6			
Formula weight	444.51			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Orthorhombic			
Space group	P212121			
Unit cell dimensions	a = 12.0273(3) Å	$\alpha = 90^{\circ}$.		
	b = 13.1402(4) Å	$\beta = 90^{\circ}.$		
	c = 14.3337(4) Å	$\gamma = 90^{\circ}.$		
Volume	2265.31(11) Å ³			
Z	4			
Density (calculated)	1.303 Mg/m ³			
Absorption coefficient	0.094 mm ⁻¹			
F(000)	952			
Crystal size	0.262 x 0.205 x 0.176	Տ mm³		
Theta range for data collection	2.103 to 32.798°.			
Index ranges	-18 ≤ h ≤ 17, -19 ≤ k ≤ 19, -21 ≤ l ≤ 2 ⁻			
Reflections collected	39670			
Independent reflections	7501 [R(int) = 0.0539]		
Completeness to theta = 25.242°	99.7 %			
Absorption correction	multi-scan			
Refinement method	Full-matrix least-squa	ares on F ²		
Data / restraints / parameters	7501 / 0 / 297			
Goodness-of-fit on F ²	1.073			
Final R indices [I>2sigma(I)]	R1 = 0.0411, $wR2 = 0$	0.0950 [6384]		
R indices (all data)	R1 = 0.0525, wR2 = 0	0.1010		
Absolute structure parameter	0.1(3)			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.285 and -0.226 e.Å	-3		

X-Ray Analysis of 18. X-Ray Intensity data were collected at 173 K on a Bruker DUO diffractometer using CuKa radiation ($\lambda = 1.54178$ Å), from an ImuS power source, and an APEXII CCD area detector. Raw data frames were read by program SAINT and integrated using 3D profiling algorithms. The resulting data were reduced to produce hkl reflections and their intensities and estimated standard deviations. The data were corrected for Lorentz and polarization effects and numerical absorption corrections were applied based on indexed and measured faces. The structure was solved and refined in SHELXTL2014⁸⁻¹¹, using full-matrix least-squares refinement. The non-H atoms were refined with anisotropic thermal parameters and all of the H atoms were calculated in idealized positions and refined riding on their parent atoms. In the final cycle of refinement, 4534 reflections (of which 4485 are observed with I > 2 σ (I)) were used to refine 365 parameters and the resulting R₁, wR₂ and S (goodness of fit) were 2.42%, 6.38% and 1.046, respectively. The refinement was carried out by minimizing the wR₂ function using F² rather than F values. R₁ is calculated to provide a reference to the conventional R value but its function is not minimized.

X-Ray Crystallographic Data for 18. Crystallographic data for **18** has been deposited with the Cambridge Crystallographic Data Centre (submission number Y-18; CCDC deposition number 2338890). Copies of the data can be obtained, free of charge at by visiting <u>http://www.ccdc.cam.ac.uk/</u>.

Crystal data and structure refinement for 18.

Identification code	Y-18 (deposition no.	Y-18 (deposition no. 2338890)		
Empirical formula	C31 H37 I N2 O6	C31 H37 I N2 O6		
Formula weight	660.52			
Temperature	173(2) K	173(2) K		
Wavelength	1.54178 Å			
Crystal system	Monoclinic			
Space group	P21			
Unit cell dimensions	a = 12.2862(2) Å	α = 90°.		
	b = 9.7856(2) Å	$\beta = 111.0549(7)^{\circ}.$		
	c = 13.1560(3) Å	γ = 90°.		
Volume	1476.12(5) Å ³			
Z	2			
Density (calculated)	1.486 Mg/m ³			
Absorption coefficient	8.899 mm ⁻¹			
F(000)	676			
Crystal size	0.310 x 0.191 x 0.044	4 mm ³		
Theta range for data collection	3.600 to 71.083°.			
Index ranges	-15 ≤ h ≤ 14, -10 ≤ k :	≤ 11, -15 ≤ l ≤ 16		
Reflections collected	18451			
Independent reflections	4534 [R(int) = 0.0248	3]		
Completeness to theta = 25.000°	99.3 %			
Absorption correction	Multi			
Refinement method	Full-matrix least-squa	ares on F ²		
Data / restraints / parameters	4534 / 1 / 365			
Goodness-of-fit on F ²	1.046			
Final R indices [I>2sigma(I)]	R1 = 0.0242, wR2 = 0	0.0638 [4485]		
R indices (all data)	R1 = 0.0243, wR2 =	0.0639		
Absolute structure parameter	0.056(4)			
Largest diff. peak and hole	0.904 and -0.803 e.Å	0.904 and -0.803 e.Å ⁻³		

X-Ray Analysis of 20. X-Ray Intensity data were collected at 100 K on a Bruker D8 Venture diffractometer using MoK α radiation ($\lambda = 0.71073$ Å) and a Photon III area detector. Raw data frames were read by program SAINT and integrated using 3D profiling algorithms. The resulting data were reduced to produce hkl reflections and their intensities and estimated standard deviations. The data were corrected for Lorentz and polarization effects and numerical absorption corrections were applied based on indexed and measured faces. The structure was solved and refined in SHELXTL2014⁸⁻¹¹, using full-matrix least-squares refinement. The non-H atoms were refined with anisotropic thermal parameters and all of the H atoms were calculated in idealized positions and refined riding on their parent atoms. The hydroxyl and amino protons were obtained from a difference Fourier map and refined freely. The molecules also exhibit a network of hydrogen bonding involving bot of the protons. The reported structure and stereochemistry reported here are supported by the value of the Flack x parameter of -0.017(2). In the final cycle of refinement, 9830 reflections (of which 9642 are observed with I > 2 σ (I)) were used to refine 362 parameters and the resulting R₁, wR₂ and S (goodness of fit) were 1.98%, 4.77% and 1.039, respectively. The refinement was carried out by minimizing the wR₂ function using F² rather than F values. R₁ is calculated to provide a reference to the conventional R value but its function is not minimized.

X-Ray Crystallographic Data for 20. Crystallographic data for **20** has been deposited with the Cambridge Crystallographic Data Centre (submission number Y-20; CCDC deposition number 2338892). Copies of the data can be obtained, free of charge at by visiting <u>http://www.ccdc.cam.ac.uk/</u>.

Crystal data and structure refinement for 20.

Identification code	Y-20 (deposition no.	Y-20 (deposition no. 2338892)		
Empirical formula	C30 H35 I N2 O6	C30 H35 I N2 O6		
Formula weight	646.50	646.50		
Temperature	173(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 21			
Unit cell dimensions	a = 12.0831(6) Å	α = 90°.		
	b = 9.8234(5) Å	β = 111.9770(10)°.		
	c = 13.0300(6) Å	γ = 90°.		
Volume	1434.24(12) Å ³			
Z	2			
Density (calculated)	1.497 Mg/m ³			
Absorption coefficient	1.162 mm ⁻¹			
F(000)	660			
Crystal size	0.256 x 0.173 x 0.058 mm ³			
Theta range for data collection	2.672 to 33.356°.	2.672 to 33.356°.		
Index ranges	-18 ≤ h ≤ 18, -15 ≤ k	≤ 14, -20 ≤ l ≤ 19		
Reflections collected	45405			
Independent reflections	9830 [R(int) = 0.0194]		
Completeness to theta = 25.000°	98.3 %			
Absorption correction	None			
Refinement method	Full-matrix least-squa	ares on F ²		
Data / restraints / parameters	9830 / 1 / 362			
Goodness-of-fit on F ²	1.039			
Final R indices [I>2sigma(I)]	R1 = 0.0198, wR2 =	0.0477 [9642]		
R indices (all data)	R1 = 0.0206, wR2 =	0.0481		
Absolute structure parameter	-0.017(2)			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.734 and -0.987 e.Å	0.734 and -0.987 e.Å ⁻³		

X-Ray Analysis of 22. X-Ray Intensity data were collected at 100 K on a Bruker DUO diffractometer using MoKa radiation ($\lambda = 0.71073$ Å) and an APEXII CCD area detector. Raw data frames were read by program SAINT and integrated using 3D profiling algorithms. The resulting data were reduced to produce hkl reflections and their intensities and estimated standard deviations. The data were corrected for Lorentz and polarization effects and numerical absorption corrections were applied based on indexed and measured faces. The structure was solved and refined in SHELXTL2014⁸⁻¹¹, using full-matrix least-squares refinement. The non-H atoms were refined with anisotropic thermal parameters and all of the H atoms were calculated in idealized positions and refined riding on their parent atoms. The asymmetric unit consists of the molecule and two chloroform solvent molecules. Both solvents have their chlorine atoms disordered and refined in three parts for one and two parts for the second. The correct stereochemistry is refined using this anomalous dispersion method as can be seen from the Flack x parameter of 0.008(6). In the final cycle of refinement, 9134 reflections (of which 8258 are observed with I > $2\sigma(I)$) were used to refine 559 parameters and the resulting R₁, wR₂ and S (goodness of fit) were 2.72%, 5.13% and 1.035, respectively. The refinement was carried out by minimizing the wR₂ function using F² rather than F values. R₁ is calculated to provide a reference to the conventional R value but its function is not minimized.

X-Ray Crystallographic Data for 22. Crystallographic data for **22** has been deposited with the Cambridge Crystallographic Data Centre (submission number Y-22; CCDC deposition number 2338891). Copies of the data can be obtained, free of charge at by visiting <u>http://www.ccdc.cam.ac.uk/</u>.

Crystal data and structure refinement for 22.

Identification code	Y-22 (deposition no. 2338891)		
Empirical formula	C37 H39 Cl6 I N2 O6 (2 CHCl₃ not shown)		
Formula weight	947.30		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P21		
Unit cell dimensions	a = 12.0982(7) Å	α = 90°.	
	b = 9.7700(6) Å	$\beta = 98.2052(11)^{\circ}.$	
	c = 16.9810(10) Å	γ = 90°.	
Volume	1986.6(2) ų		
Z	2		
Density (calculated)	1.584 Mg/m ³		
Absorption coefficient	1.257 mm ⁻¹		
F(000)	956		
Crystal size	0.334 x 0.239 x 0.097 mm ³		
Theta range for data collection	1.212 to 27.500°.		
Index ranges	-15 ≤ h ≤ 13, -12 ≤ k ≤ 12, -18 ≤ l ≤ 22		
Reflections collected	38673		
Independent reflections	9134 [R(int) = 0.0374]		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	0.9202 and 0.7697		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	9134 / 2 / 559		
Goodness-of-fit on F ²	1.035		
Final R indices [I>2sigma(I)]	R1 = 0.0272, wR2 = 0.05	13 [8258]	
R indices (all data)	R1 = 0.0346, wR2 = 0.05	32	
Absolute structure parameter	0.008(6)		
Largest diff. peak and hole	0.688 and -0.470 e.Å ⁻³		

X-Ray Analysis of 24. X-Ray Intensity data were collected at 100 K on a Bruker Dual micro source D8 Venture diffractometer and PHOTON III detector running apex3 software package of programs and using MoK α radiation ($\lambda = 0.71073$ Å). Raw data frames were read by program SAINT and integrated using 3D profiling algorithms. The resulting data were reduced to produce hkl reflections and their intensities and estimated standard deviations. The data were corrected for Lorentz and polarization effects and numerical absorption corrections were applied based on indexed and measured faces. The structure was solved and refined in SHELXTL2014⁸⁻¹¹, using full-matrix least-squares refinement. The non-H atoms were refined with anisotropic thermal parameters and all of the H atoms were calculated in idealized positions and refined riding on their parent atoms. In the final cycle of refinement, 9474 reflections (of which 8697 are observed with I > 2 σ (I)) were used to refine 353 parameters and the resulting R₁, wR₂ and S (goodness of fit) were 3.22%, 7.63% and 1.035, respectively. The refinement was carried out by minimizing the wR₂ function using F² rather than F values. R₁ is calculated to provide a reference to the conventional R value but its function is not minimized.

X-Ray Crystallographic Data for 24. Crystallographic data for **24** has been deposited with the Cambridge Crystallographic Data Centre (submission number Y-24; CCDC deposition number 2338909). Copies of the data can be obtained, free of charge at by visiting <u>http://www.ccdc.cam.ac.uk/</u>.

Crystal data and structure refinement for 24.

Identification code	Y-24 (deposition no. 2338	3909)	
Empirical formula	C30 H36 N2 O5 S		
Formula weight	536.67		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P212121		
Unit cell dimensions	a = 9.7448(3) Å	α = 90°.	
	b = 14.0034(5) Å	$\beta = 90^{\circ}$.	
	c = 19.6580(6) Å	$\gamma = 90^{\circ}$.	
Volume	2682.54(15) Å ³		
Z	4		
Density (calculated)	1.329 Mg/m ³		
Absorption coefficient	0.164 mm ⁻¹		
F(000)	1144		
Crystal size	0.187 x 0.119 x 0.046 mm ³		
Theta range for data collection	2.072 to 33.272°.		
Index ranges	-14 ≤ h ≤ 14, -21 ≤ k ≤ 19, -30 ≤ l ≤ 30		
Reflections collected	64890		
Independent reflections	9474 [R(int) = 0.0435]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Semi-empirical from equiv	valents	
Max. and min. transmission	0.9948 and 0.9780		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	9474 / 0 / 353		
Goodness-of-fit on F ²	1.035		
Final R indices [I>2sigma(I)]	R1 = 0.0322, wR2 = 0.07	63 [8697]	
R indices (all data)	R1 = 0.0372, wR2 = 0.07	98	
Absolute structure parameter	0.013(16)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.300 and -0.255 e.Å ⁻³		

X-Ray Analysis of 27. X-Ray Intensity data were collected at 100 K on a Bruker Dual micro source D8 Venture diffractometer and PHOTON III detector running APEX3 software package of programs and using CuKα radiation ($\lambda = 1.54178$ Å). The data frames were integrated and multi-scan scaling was applied in APEX3. Intrinsic phasing structure solution provided the all of the non-H atoms. The structure was refined using full-matrix least-squares refinement (SHELXL⁸⁻¹¹). The non-H atoms were refined with anisotropic displacement parameters and all of the H atoms were calculated in idealized positions and refined riding on their parent atoms. The absolute configuration is established by anomalous dispersion giving a value of 0.13(14) for the Flack x parameter. In the final cycle of refinement, 3872 reflections (of which 3861 are observed with I > 2 σ (I)) were used to refine 284 parameters and the resulting R₁, wR₂ and S (goodness of fit) were 3.03%, 8.55% and 1.084, respectively. The refinement was carried out by minimizing the wR₂ function using F² rather than F values. R₁ is calculated to provide a reference to the conventional R value but its function is not minimized.

X-Ray Crystallographic Data for 27. Crystallographic data for **27** has been deposited with the Cambridge Crystallographic Data Centre (submission number V-27; CCDC deposition number 2338889). Copies of the data can be obtained, free of charge at by visiting <u>http://www.ccdc.cam.ac.uk/</u>.

Crystal data and structure refinement for 27.

Identification code	V-27 (deposition no. 2	V-27 (deposition no. 2338889)		
Empirical formula	C24 H30 N2 O5			
Formula weight	426.50			
Temperature	100(2) K			
Wavelength	1.54178 Å			
Crystal system	Monoclinic			
Space group	P21			
Unit cell dimensions	a = 9.382(3) Å	α = 90°.		
	b = 7.3133(13) Å	$\beta = 104.69(2)^{\circ}.$		
	c = 16.086(6) Å	$\gamma = 90^{\circ}.$		
Volume	1067.6(6) Å ³			
Z	2			
Density (calculated)	1.327 Mg/m ³			
Absorption coefficient	0.728 mm ⁻¹			
F(000)	456			
Crystal size	0.418 x 0.100 x 0.066 mm ³			
Theta range for data collection	2.840 to 70.085°.			
Index ranges	-11 ≤ h ≤ 11, -8 ≤ k ≤	8, -19 ≤ l ≤ 19		
Reflections collected	36941			
Independent reflections	3872 [R(int) = 0.0239]		
Completeness to theta = 67.684°	97.7 %			
Absorption correction	Semi-empirical from	equivalents		
Max. and min. transmission	0.9567 and 0.8262			
Refinement method	Full-matrix least-squa	ares on F ²		
Data / restraints / parameters	3872 / 1 / 284			
Goodness-of-fit on F ²	1.084			
Final R indices [I>2sigma(I)]	R1 = 0.0303, wR2 = 0	0.0855 [3861]		
R indices (all data)	R1 = 0.0304, wR2 = 0	0.0856		
Absolute structure parameter	0.13(14)			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.283 and -0.222 e.Å	0.283 and -0.222 e.Å ⁻³		

16.) Computational Analysis General Information.

Conformational Search. Structures were drawn in ChemDraw, minimized (MM2¹²) in Chem3D, and then imported into Maestro (part of the Schrödinger Suite¹³). All starting materials, reagents, intermediates, and products were prepared using LigPrep¹³ (OPLS3e¹⁴⁻¹⁸ or OPLS4¹⁹, no change of ionization or protonation). Prepared structures were then subjected to a conformational search. For reagents and non-ring-opened starting materials and intermediates, a MacroModel Conformational Search¹³ was conducted (OPLS3e or OPLS4; Solvent: CHCl₃). The search was first conducted using the Truncated Newton Conjugate Gradient (TNCG) method²⁰, after which one to three lowest-energy conformers were used as the input for a second round of conformational searching using the Full Matrix Newton Raphson (FMNR) method. For ring-opened intermediates and products, the Macrocycle Conformational Sampling module¹³ was used (OPLS3e or OPLS4; GB/SA²¹ - water). For each structure, between one and three lowest-energy conformations from these methods were then converted into a Gaussian input file using Avogadro.^{22,23}

Geometry Optimization and Energy Calculations. Geometry optimization was performed for each of the saved conformers from the conformational search using Gaussian 09²⁴ or Gaussian 16.²⁵ Geometry optimizations were first conducted using the PM6 semi-empirical method²⁶ (Solvent Model: PCM^{27,28} or SMD²⁹; Solvent: CHCl₃). DFT optimization was then performed using the PM6 result with the M06-2X density functional³⁰ and the 6-311++(d,p) basis set.³¹⁻³⁴ For structures containing iodine, calculations were performed with a mixed basis set, using MIDI!³⁵ for iodine and 6-311++(d,p) for all other atoms. DFT optimization was performed using the SMD solvent model in CHCl₃ with an ultrafine integration grid. Frequency calculations were then conducted on the optimized geometries (same density functional, basis set, solvent, solvent model, and grid size). Results were checked to ensure that a stationary point was found, and all structures displayed zero imaginary frequencies (no transition states discussed here). Note: The location of the cation in the intermediates reflects its initial placement prior to the conformational search and does not indicate a full +1 charge at that location after DFT calculations. The relaxed potential energy scan of **Int-1A** was conducted using the Opt=Modredundant function with the same level of theory, basis sets, and solvent model as previous DFT calculations. All results were visualized using GaussView 6.³⁶

17.) DFT Optimized Structures and Sample Input File.

Optimized Structure for Yohimbine

Zero-poin Thermal of Thermal of Thermal of Sum of ele Sum of ele Sum of ele	t correction = correction to Ener correction to Enth correction to Gibb ectronic and zerc ectronic and ther ectronic and ther ectronic and ther	0 gy = alpy = o-point Energy mal Energies = mal Enthalpies mal Free Energ	.449304 (Hartre 0.471153 0.472097 = 0.39859 s = -1150 = -1150. gies = -1150	ee/Particle) 00 .531886 510037 509093 0.582600			
01							
С	-6.29745900	0.61970400	-0.33636900		7		
С	-5.84639800	1.91099300	-0.00266200		-	<i>Γ γ</i>	
С	-4.51429800	2.15371100	0.29276000				7 7
С	-3.63563700	1.06949300	0.24701600			7 3	
С	-4.06773100	-0.23963300	-0.08683500	T:		- ¢ ?	5 9-3
С	-5.42293100	-0.45363900	-0.38097200			- 7 0-0	
Ν	-2.28194200	1.01060000	0.48818000			¥	
С	-1.85435500	-0.28898200	0.31727100				 🥊
С	-2.90657500	-1.08602700	-0.02906200				
С	-0.44319400	-0.75300700	0.50405200			The second se	
Ν	-0.31325200	-2.07664700	-0.11892500				
С	-1.38015400	-2.98248200	0.31420300				
C	-2.73316600	-2.55514600	-0.25737500				
C	0.58756800	0.21233900	-0.08562500				
C	1.99995600	-0.33140100	0.12687900				
C	2.11054100	-1.75665000	-0.42910300				
	1.00879000	-2.63249400	0.15/18/00				
	3.08803700	0.54904100	-0.51691300				
	4.49400500	-0.01800200	-0.22588900				
	4.39470400	-1.44414900	-0.75521100				
	3.49991600	-2.33776000	-0.16706000				
U Ц	2 10500200	-0.00049900	1.10549000				
Н	-0 2/237500	-0.37174000	1.2007 1000				
H	1 94634000	-0.03777000	-1 51459900				
C	2 97352100	1 96965700	-0.02527800				
Õ	3 33479000	2 34634900	1 06961900				
Õ	2,40962800	2,78418300	-0.91436000				
Č	2.22342200	4.14429400	-0.49620100				
H	-7.34692400	0.46779800	-0.56119400				
Н	-6.55458100	2.73122200	0.02407900				
Н	-4.16628300	3.14773100	0.55072700				
Н	-5.77840200	-1.44531000	-0.64023400				
Н	-1.70058000	1.79462400	0.74351600				
Н	-1.12898700	-3.98779800	-0.02972800				
Н	-1.43757400	-3.01079700	1.41668300				
Н	-2.77354300	-2.79008700	-1.32644200				
Н	-3.52998700	-3.12462800	0.23052100				
Н	0.38476600	0.34455000	-1.15443000				
Н	0.48334900	1.19010400	0.39919400				
Н	1.06006600	-3.62989400	-0.28782300				
Н	1.17063800	-2.74585500	1.24614300				

Н	2.93849100	0.55662800	-1.60067900
Н	5.23557400	0.61444600	-0.73099300
Н	5.58542700	-1.83473300	-0.50691700
Н	4.51294200	-1.41827900	-1.84489200
Н	3.65201800	-2.43557700	0.91296700
Н	3.57039600	-3.34131900	-0.59732200
Н	4.54297800	0.79872500	1.54198900
Н	1.75508700	4.64821600	-1.33770500
Н	1.57607600	4.18342300	0.38060700
Н	3.18439100	4.60286700	-0.26300000

Optimized Structure for N-Inverted Yohimbine

Zero-po	pint correction =	0	.449883 (Hartr	ee/Particle)		
Therma	al correction to Ener	gy =	0.471423			
Therma	a correction to Entri	aipy =	0.472307	05		
Sum of	aloctronic and zero	s Flee Ellergy	= 0.4002	00		
Sum of	electronic and ther	mal Energies -	5 = -1150	506917		
Sum of	electronic and ther	mal Enthalnias	1150	.505873		
Sum of	electronic and ther	mal Ereo Enor	nies – 114	50 578035		
Ourn of				00.070000		
01						
С	6.24031400	0.46078600	0.54436700			
С	5.97063100	1.63805600	-0.17875400			
С	4.72259500	1.87122300	-0.73488800			I
С	3.74132700	0.89462300	-0.55187200	~		
С	3.99246100	-0.30073100	0.16993100		I	20
С	5.26512300	-0.50692900	0.72293500			-0-
Ν	2.43302700	0.85349900	-0.97857200	T'		55
С	1.86385100	-0.32964600	-0.55746200	Ö.		
С	2.77140800	-1.06122100	0.15261900		y b	
С	0.44585900	-0.72385900	-0.81791300		5	
Ν	0.30883200	-2.15204300	-0.49441000			
С	0.89373200	-2.51016000	0.80208800			
С	2.41862600	-2.38809000	0.75127500			
С	-0.54183900	0.18377600	-0.05457100			
С	-1.97990700	-0.29509200	-0.25642300			
С	-2.10206200	-1.77403500	0.13436000			
С	-1.07559100	-2.58762800	-0.66013600			
С	-3.00570800	0.53125300	0.54370900			
C	-4.44151000	0.03321000	0.27521500			
C	-4.55524900	-1.43953200	0.64938400			
C	-3.52275300	-2.28845300	-0.09485200			
0	-4.80007000	0.15160700	-1.09394800			
Н	-2.23325300	-0.20509600	-1.32177700			
	0.23030400	-0.02100000	-1.09000000			
	-1.00000000	1.00747000	0.20016700			
	-2.07403000	2 50636500	-0.20910700			
0	-2 22007700	2.68444500	1 14088200			
C	-2 00710400	4 07673900	0.86655300			
н	7 22818600	0.31299800	0.96530600			
H	6.75395800	2.37702100	-0.30286600			
Н	4.51455800	2.77802000	-1.29193700			
Н	5.48152300	-1.41268000	1.27952100			
Н	1.98335100	1.54962600	-1.55457700			
Н	0.51300000	-1.88057500	1.62093400			
Н	0.60554900	-3.54076100	1.02044500			
Н	2.82675900	-2.48307100	1.76195100			
Н	2.83527800	-3.20556000	0.15297600			
Н	-0.29377300	0.18379100	1.01316500			
Н	-0.41886900	1.21316200	-0.41085400			
Н	-1.13686100	-3.64513600	-0.38792400			
Н	-1.32633600	-2.51188600	-1.72634800			
Н	-2.79550700	0.41204200	1.61094000			
Н	-5.13477400	0.62382200	0.88825700			

Н	-5.56963400	-1.77710300	0.42202700
Н	-4.41088400	-1.53550500	1.73063500
Н	-3.74124800	-2.26534700	-1.16802500
Н	-3.59737200	-3.33150500	0.22725600
Н	-4.56901700	1.04424500	-1.38353500
Н	-2.96201600	4.59180700	0.76053600
Н	-1.45953900	4.46338500	1.72210800
Н	-1.42207200	4.19643600	-0.04585900

Optimized Structure for Yohimbine Int-1A (compound 30)

Zero-point correction =	0.	535747 (Hartre	e/Particle)				
Thermal correction to Energy	y =	0.563068	ŗ				
Thermal correction to Enthal	lpy =	0.564013					
Thermal correction to Gibbs	Free Energy	= 0.47877	3				
Sum of electronic and zero-r	point Energies	s = -1418.	040810				
Sum of electronic and therm	al Energies =	-1418.0	013488				
Sum of electronic and therm	al Enthalpies	= -1418	012544				
Sum of electronic and therm	al Free Enerc	11es = -141	8 097784				
			0.007707				
11							
C 6 02505400	1 18981100	-0.32287800					
C 5 49371700	2 44525500	0.03390400					
C 4 13045200	2 68286600	0.02195100					
C 3 20085200	1 62503800	-0.35705500					
C = 3.29903200	0.26022100	0.33703300		۵. ا	b		
C 5.01391000	0.30022100	-0.73031000		T	×	R	R
C 5.20079900	0.14699400	-0.70507800				Ç Ò-	GO- 3
N 1.92479400	1.55855800	-0.43105200			75	SA	57
C 1.57123300	0.30156000	-0.85519200			- C -	- C	- C
C 2.68369800 -	0.46658300	-1.05144800			ST	37	7
C 0.16654500 -	0.19372100	-0.98926800	9		3	9 -3	—
N 0.22215200 -	1.68875200	-0.64616900					a
C 1.17744700 -	2.35913000	-1.63443100				k., 🔴 .	
C 2.62336500 -	1.91922100	-1.41228300			3		
C -0.91558900	0.58115100	-0.24410700					
C -2.27897100 -	0.09814000	-0.39489800					
C -2.19846800 -	1.57206000	0.02729900					
C -1.15755100 -	2.29812800	-0.80855200					
C -3.37573700	0.60802700	0.42194700					
C -4.73902300 -	0.08496500	0.20917600					
C -4.64498400 -	1.54245600	0.64036000					
C -3.54919300 -	2 27638400	-0.13210400					
0 -5 12940000 -	-0.07578600	-1 15427800					
H -2 57159000 -	0.070700000	-1 45220900					
H -0.12497600 -	0.00002000	-2 04305000					
H _1 00860800 -	1 61667800	1 08600800					
C 0.72260600	2 02400200	0.74206500					
C = 0.72200000 - 0.72200000 - 0.722000000 - 0.722000000 - 0.722000000 - 0.722000000 - 0.722000000 - 0.722000000 - 0.7220000000000000000000000000000000000	2.02409200	0.74390300					
0 1.05044100 -	0.00010100	0.97631200					
0 0.69446600 -	0.99010100	1.52573300					
C 1.36393800 -	1.12687500	2.82329300					
2.84979600 -	0.93125900	2.63746900					
C -3.45858600	2.06840800	0.04419800					
0 -4.00101500	2.48193600	-0.95640300					
O -2.85563000	2.86560600	0.92181800					
C -2.88599500	4.27124800	0.62194200					
H 7.09859500	1.04494700	-0.29892700					
H 6.16806100	3.24209600	0.32492900					
H 3.72224900	3.64792900	0.29922000					
Н 5.61619200 -	0.81547700	-0.98330200					
H 1.29133700	2.31993700	-0.23289600					
Н 1.05434700 -	3.43288700	-1.50976800					
H 0.80737800 -	2.06136700	-2.61480400					
H 3.16870500 -	2.12707500	-2.33690900					
Н 3.08839800 -	2.52774200	-0.63057300					
H -0.94209300	1.57152500	-0.71123900					

Н	-0.66148700	0.71881000	0.80690300
Н	-1.38872000	-2.22518700	-1.87421500
Н	-1.06758600	-3.34936300	-0.53485900
Н	-3.12004500	0.54942700	1.48428600
Н	-5.49106400	0.43315600	0.81638100
Н	-4.44084500	-1.57998000	1.71502900
Н	-5.61177700	-2.02121900	0.47064100
Н	-3.81303400	-2.30637900	-1.19395800
Н	-3.47048300	-3.30909800	0.21725700
Н	-5.09326600	0.83740300	-1.46879400
Н	0.91283200	-0.34117000	3.42462500
Н	1.10905400	-2.10237600	3.23587700
Н	3.33545400	-0.96842300	3.61478900
Н	3.27898000	-1.71972800	2.01531200
Н	3.05738000	0.03927900	2.18112000
Н	-2.35638000	4.75661400	1.43732500
Н	-2.38791000	4.46410200	-0.32849800
Н	-3.91656300	4.62186300	0.57443400

Optimized Structure for Yohimbine Int-1B (compound 31)

Zero-point	correction =	0	.536126 (Hartr	ee/Particle)			
Thermal correction to Energy = 0.563285							
Thermal correction to Enthalpy = 0.564229							
Thermal c	orrection to Gibb	s Free Energy	= 0.4798	07			
Sum of ele	ectronic and zero	-point Energie	s = -1418	3.041410			
Sum of ele	ectronic and ther	mal Energies =	-1418	.014251			
Sum of ele	ectronic and ther	mal Enthalpies	= -1418	.013307			
Sum of ele	ectronic and ther	mal Free Energ	gies = -14 ⁻	18.097729			
4.4							
	E 42694200	2 60627600	0.94545000				
	5.43064300	2.00037000	0.01010000		2.0		
C	2 97520500	3.43402100	-0.20195500				
C	3.07539500	2 1 2 6 2 7 0 0	-0.94300000				
C	3.03934300	2.10000700	0.55340600				Γ
C	1 62658400	1.54301100	1 22896500			9-9	
N	1 8/1/2000	1.30430300	-1 00704800				- Q >
C	1 43513400	0.67523000	-0.26730300			p-q	1
C	2 35374400	0.38645300	0.69997600		2	1 >	Q
C	0 15764400	-0.06001100	-0 51127700			ar 1	9
N	0.34035400	-1 44709000	0.10413200		C		
C	0.80056600	-1 34115800	1 55475600		, Y	5 3	
Ċ	2,20343900	-0.75271600	1.65819800	_	.		
Č	-1.07055500	0.66136100	0.04950500)	
Č	-2.34268700	-0.16953900	-0.09548800			1	
Č	-2.15067600	-1.52234600	0.59770300			<u> </u>	
Ċ	-0.95737500	-2.24417300	-0.00451500		T		
C	-3.57970800	0.53334800	0.48982600		9		
C	-4.83594100	-0.34595200	0.30453100				
С	-4.63151200	-1.68825200	0.99546400				
С	-3.39317900	-2.40775000	0.45899100				
0	-5.09627700	-0.61483900	-1.06321900				
Н	-2.52872600	-0.35408600	-1.16118700				
Н	0.00827800	-0.24108300	-1.57744800				
Н	-1.97519100	-1.34620300	1.66667500				
С	1.34958600	-2.21808500	-0.72594000				
0	1.60610400	-1.90019600	-1.84060600				
0	1.76793600	-3.23984000	-0.03912400				
С	2.77991300	-4.08557000	-0.68321000				
С	4.14158800	-3.44420400	-0.56825500				
С	-3.77214900	1.88449700	-0.15814400				
0	-4.21778600	2.04637000	-1.27287900				
0	-3.38215500	2.88936800	0.61907300				
С	-3.51411000	4.20791700	0.06179500				
н	6.37470200	2.79336900	1.32483300				
Н	5.72095200	4.24150500	-0.56221/00				
Н	3.5892/100	3.87698600	-1.//3/0300				
H	4.91831500	0.93065500	2.05942200				
	1.30852900	2.14225100	-1.80/12300				
	0.07315400	-0.09009/00	2.044/0100				
	0.13148000	-2.33902000	1.90209900				
П	2.90900100	-1.02203000	2 60102000				
H	-1 14155700	1 50/72200	-0 51803000				
11	1.17100700	1.00712200	0.01000000				

Н	-0.91045800	0.94340400	1.09462000
Н	-0.77164800	-3.20255900	0.48004900
Н	-1.12035900	-2.40742200	-1.07414700
Н	-3.42511000	0.69410200	1.56090900
Н	-5.69206100	0.17258500	0.75254800
Н	-5.52137000	-2.30065000	0.83556100
Н	-4.53477100	-1.51982000	2.07262700
Н	-3.54575200	-2.65325000	-0.59647800
Н	-3.24254700	-3.34687400	0.99784000
Н	-5.11410000	0.22767900	-1.53645500
Н	2.71329400	-5.02081400	-0.13296400
Н	2.47331100	-4.24095800	-1.71699700
Н	4.87695100	-4.10405500	-1.03312200
Н	4.17449300	-2.48253000	-1.08404200
Н	4.41867200	-3.30650500	0.47816400
Н	-2.92608300	4.29078300	-0.85248600
Н	-4.56108700	4.42095900	-0.15346900
Н	-3.13538800	4.88661000	0.82132600

Optimized Structure for Yohimbine Int-2A (Cis-Up; structure 32)

Zero-po	pint correction =	0	.533444 (Hartr	ree/Particle)		
Thermal correction to Energy = 0.561446						
Therma	I correction to Enthe	alpy =	0.562390			
Therma	I correction to Gibb	s Free Energy	= 0.4759	969		
Sum of	electronic and zero	-point Energie	s = -1418	8.006036		
Sum of	electronic and therr	mal Energies =	-1417	7.978034		
Sum of	electronic and therr	mal Enthalpies	= -1417	7.977090		
Sum of	electronic and therr	mal Free Energ	gies = -14	18.063511		
11						
С	-5.55419700	1.63223300	-0.18164400			
С	-4.97271700	2.52586200	-1.13259700			
С	-3.61961100	2.73668700	-1.22666900			
С	-2.80354900	2.02094200	-0.33158300			
С	-3.36528700	1.13671300	0.64526800			
С	-4.77274600	0.93888500	0.69686600			
Ν	-1.45803000	1.98917400	-0.22938600			
С	-1.10560800	1.15522900	0.83402200			
С	-2.31012600	0.59277600	1.37441400			
С	-2.36630900	-0.47736400	2.40022700			
С	0.14415500	0.78875700	1.20852000	(
С	1.39664200	1.07769200	0.49205100			
С	-1.40472400	-1.70076800	2.19595400			
Ν	-0.70903700	-1.81285700	0.91289900			
С	0.72440200	-2.14723700	0.89565300			
С	1.61817700	-1.44111600	-0.16242500			
С	2.32482200	-0.16104900	0.35347200			
С	3.46877600	0.27021100	-0.59689600			
С	4.48212900	-0.85793600	-0.85807200			
С	3.74875200	-2.01745900	-1.50744100			
С	2.63794900	-2.51410400	-0.59280400			
Н	1.00675300	-1.17218500	-1.03034600			
Н	2.76336900	-0.37978100	1.33358000			
С	-1.41862400	-2.18236700	-0.19536400			
0	-0.92784000	-2.62978700	-1.21073800			
0	-2.73613300	-1.97824800	-0.02177900			
C	-3.58323500	-2.28193000	-1.15052600			
C	4.19028100	1.47329900	-0.03536800			
0	4.91762800	1.43241800	0.93253800			
0	5.07296100	-1.33361600	0.34001000			
C	-3.54666800	-1.18093600	-2.18979900			
0	3.95047200	2.59294900	-0.71323400			
C	4.60087500	3.77765500	-0.22329700			
н	-6.63017800	1.512/3000	-0.16996600			
н	-5.63312200	3.05340700	-1.81161800			
н	-3.19499700	3.41023200	-1.96019100			
н	-5.20268300	0.25935400	1.42341100			
н	-0.81974600	2.58483000	-0.74075500			
н	-3.39189700	-0.838/2900	2.45389000			
н	-2.13009600	-0.03649600	3.37455800			
н	0.22186700	0.21447500	2.12629700			
н	1.19228100	1.50439700	-0.49407900			
н	1.93066500	1.84188600	1.07647300			
п	-1.99/1/100	-2.00055100	2.31103300			

Н	-0.63156700	-1.67048800	2.96100000
Н	0.81210500	-3.22614200	0.73904500
Н	1.11716600	-1.93765400	1.89298300
Н	3.03674300	0.55634700	-1.56018000
Н	5.26014100	-0.47605900	-1.53090500
Н	3.34481100	-1.68549400	-2.46903500
Н	4.45797400	-2.82419600	-1.70758500
Н	2.08514200	-3.32130300	-1.07962100
Н	3.09452200	-2.93645400	0.30866900
Н	-3.27389200	-3.23912500	-1.57054600
Н	-4.57723300	-2.38824800	-0.71757300
Н	5.41269700	-0.57442000	0.83166100
Н	-3.91414200	-0.23921300	-1.77725200
Н	-2.53442500	-1.04055000	-2.57268400
Н	-4.19143500	-1.45741500	-3.02750500
Н	4.27592200	3.98932800	0.79590600
Н	5.68258200	3.64843900	-0.24538500
Н	4.29926600	4.57707600	-0.89481300

Optimized Structure for Yohimbine Int-2B (Cis-Down; structure 33)

Zero-point correction =			0.535085 (Hartree/Particle)		
Thermal correction to Energy =			0.562383		
Thermal correction to Enthalpy = 0.563327					
Thermal correction to Gibbs Free Energy = 0.479789					
Sum of elec	tronic and zerc	point Energie	s = -1418	3.009181	
Sum of elec	tronic and ther	mal Energies =	-1417	.981883	
Sum of elec	tronic and ther	mal Enthalpies	= -1417	080938	
Sum of elec	tronic and ther	mal Free Ener	nies = -14 [.]	18 064477	
				10.001177	
11					
C	-4 43644100	1 99890900	0 40745800		
Č	-3 46636000	3 00156400	0.72539300		
C	-2 18070000	2 07200/00	0.7200000		
C	-2.10070900	1 80351300	-0.50034400		
C	2 90266700	0.09331300	-0.39034400		
C	-2.00200700	0.00474400	-0.93040000		
	-4.12004600	0.94871000	-0.40262800		
N	-0.65754700	1.59197200	-1.15955500		
C	-0.80941300	0.43249300	-1.91806700		
C	-2.15983700	-0.03823000	-1.75517700		
С	-2.56398600	-1.41675500	-2.13088700		
С	0.18130100	-0.27736400	-2.51012700		
С	1.61420300	-0.08925400	-2.20894600	2	
С	-2.07606400	-2.46701400	-1.06393700		
Ν	-0.85301000	-2.11965800	-0.33207700		
С	0.39687300	-2.72187400	-0.85375800		
С	1.78813100	-2.08311300	-0.59606600		
С	1.85287500	-0.54062800	-0.72951300		
Ċ	3,18007600	0.05487100	-0.24040000		
C	3 58632500	-0 49795500	1 14231900		
C	3 73994000	-2 00945000	1 05654100		
C	2 41654400	-2 66743700	0.68578600		
н	2 30062700	-2 47369900	-1 42126800		
н Ц	1 06600600	-2.47303300	-0.12045700		
	0.04499200	1 50202400	0.12043700		
0	-0.94400300	1 1 2 2 2 5 4 0 0	1 59400200		
0	-0.00353300	-1.10220000	1.36400300		
0	-2.21816200	-1.26153800	1.22406000		
	-2.43866500	-0.43588800	2.38558800		
C	3.08416300	1.56556000	-0.13135800		
0	2.07416400	2.22409100	-0.26277600		
0	2.65488100	-0.09480500	2.13236000		
С	-3.84239200	-0.70569000	2.87329600		
0	4.25927900	2.10997200	0.15187500		
С	4.27642200	3.53371400	0.33956900		
Н	-5.43146100	2.08844500	0.82542300		
Н	-3.76491600	3.81558700	1.37643900		
Н	-1.45365600	3.73183500	0.50673700		
Н	-4.84435100	0.18136100	-0.65066700		
Н	0.23126200	2.05960400	-0.98002600		
H	-2.15075100	-1.66920500	-3.10907000		
Н	-3.64938300	-1.49442400	-2,20042200		
Н	-0 12629100	-1 10940900	-3 13309600		
н	2 2/222700	-0 67186/00	-2 88201000		
н	1 87018000	0.07100400	-2 30603100		
н	-1 808/3600	-3 /1228600	-2.00090100		
11	-1.03043000		-1.01102000		

Н	-2.87655000	-2.62578600	-0.34894400
Н	0.44804300	-3.75623200	-0.49390800
Н	0.23784900	-2.79125100	-1.93072400
Н	3.99282500	-0.17433200	-0.93925000
Н	4.53492300	-0.04228500	1.42874000
Н	4.50846500	-2.23592700	0.30944900
Н	4.09231500	-2.38852200	2.01869700
Н	2.57478300	-3.73605500	0.51667500
Н	1.71997500	-2.58750100	1.51976200
Н	-2.30287400	0.60657500	2.08206400
Н	-1.69689100	-0.68075400	3.14461800
Н	1.78957000	-0.49631100	1.95991300
Н	-3.94013600	-1.74066300	3.20715100
Н	-4.57552200	-0.51652500	2.08772700
Н	-4.06418400	-0.04897000	3.71733400
Н	5.31047100	3.78639600	0.55838400
Н	3.94390200	4.03682500	-0.56855200
Н	3.63113700	3.80721800	1.17422300
Optimized Structure for Yohimbine Int-2C (Trans; structure 34)

Zero-po	pint correction =	0	.533636 (Hartr	ee/Particle)	
Therma	al correction to Ener	gy =	0.561610		
Therma	al correction to Enth	alpy =	0.562554		
Therma	al correction to Gibb	s Free Energy	= 0.4758	68	
Sum of	electronic and zero	-point Energie	s = -1418	.015706	
Sum of	electronic and there	mal Energies =	-1417	987731	
Sum of	electronic and ther	mal Enthalpies	= -1417	.986787	
Sum of	electronic and there	mal Free Energ	gies = -14 ⁻	8.073473	
11					
С	-5.50796000	1.34710500	0.31542400		
С	-5.29006800	2.05982500	-0.91000600		🦲 🌳 🝙
C	-4.04190700	2.31373900	-1.41039300		
С	-2.94966400	1.83592100	-0.65547400		
С	-3.13872100	1.14512800	0.58940300		
С	-4.46173400	0.89921500	1.06313800	And N	
N	-1.63974500	1.90162800	-0.91223900		
C	-0.91761500	1.28434900	0.12607000		
С	-1.89039300	0.80349400	1.08870500		
C	-1.61106700	0.11488600	2.37828200		
C	0.43679700	1.25184500	0.09864100		
C	1.37507400	0.70016700	1.10431800		
C	-1.22277300	-1.39496000	2.27400200		
N	-0.56675500	-1.81324800	1.03988700		
C	0.83423600	-2.259/6/00	1.03147700		<u> </u>
C	1.72599800	-1.57503900	-0.01922800		
C	2.39852300	-0.30100800	0.52008500		
C	3.30371000	0.30866000	-0.57450500		
C	4.39495300	-0.69927700	-0.99221100		
	3.73550000	-1.95924200	-1.53205500		
	2.78494100	-2.57127500	-0.50557600		
	1.09047700	-1.30012400	-0.07430000		
	3.04729400	-0.36392300	1.33362300		
	-1.32233700	-2.25000100	-0.01003000		
0	-0.07210900	1 07764000	-0.96365600		
C	-2.02052200	-1.97704900	-0.87880200		
C	3 92766600	1 50867000	-0.07009200		
0	<i>4</i> 91 <i>4</i> 72800	1.53007000	0.59643300		
0	5 21210300	-1 08044600	0.0304000		
C	-3 60159500	-1 42033000	-2 00472800		
Õ	3 25343000	2 67502400	-0.50911700		
Č	3 76128200	3 94575800	-0.06777100		
Ĥ	-6.52669500	1,17646700	0.64000100		
Н	-6.15709000	2.40520200	-1.46193700		
Н	-3.89098700	2.84360800	-2.34230300		
Н	-4.61622400	0.36492800	1.99320200		
Н	-1.21658100	2.33306800	-1.72485900		
Н	-0.82933800	0.66631500	2.90272300		
Н	-2.50441800	0.17508100	3.00183700		
Н	0.89834500	1.72840700	-0.76571300		
Н	0.86190300	0.23100200	1.93753100		
Н	1.92330700	1.56019500	1.51574300		
Н	-0.55345600	-1.62704400	3.10165300		

Н	-2.12780400	-1.98394700	2.40892300
Н	1.23875300	-2.09209100	2.03186900
Н	0.84637400	-3.33776700	0.84901200
Н	2.70718500	0.53388200	-1.46369200
Н	5.01184400	-0.23604100	-1.77230300
Н	4.51590300	-2.67358800	-1.80470300
Н	3.18800300	-1.70433800	-2.44545600
Н	2.27825700	-3.43751600	-0.93906600
Н	3.36035800	-2.92850300	0.35568800
Н	-3.18449000	-3.40171900	-1.23364100
Н	-4.48189400	-2.54174500	-0.37932300
Н	5.57507600	-0.27609100	0.49531700
Н	-4.25465000	-1.80627300	-2.79113000
Н	-4.02012000	-0.47757700	-1.64820700
Н	-2.61493600	-1.24108100	-2.43750700
Н	3.09367900	4.69165400	-0.49116200
Н	3.75230200	3.99804800	1.02122300
Н	4.77691400	4.09129200	-0.43470800

Zero-point correction =	0.577982 (Hartree/Particle)
Thermal correction to Energy =	0.608655
Thermal correction to Enthalpy =	0.609599
Thermal correction to Gibbs Free	Energy = 0.517148
Sum of electronic and zero-point	Energies = -1533.293854
Sum of electronic and thermal Er	ergies = -1533.263181
Sum of electronic and thermal Er	thalpies = -1533.262237
Sum of electronic and thermal Fr	ee Energies = -1533.354688
o. /	
01	
C 5.84332300 -0.009	994500 -1.13651200
C 5.98748400 -1.25	48100 -0.48667500
C 5.00378400 -1.743	
C 3.85825200 -0.962	
C 3.69507300 0.290	
C 4.70927700 0.76	
N 2.73185000 -1.18	
C 2.42256900 0.823	
	7/5900 -0.161/0000
C = 0.55097400 - 0.159	
C 1.24053200 2.028	
N -0.06350100 1.356	
C = -0.20033000 = 0.022	238900 -2.21098700
C = -0.11100000 - 1.14	
C = -1.06459400 - 1.000	000000 0.00072200
C = -2.27464400 - 1.950	729100 -0.00073300 729100 1 40657400
C = -2.00451500 - 2.00	115900 2 49469700
C = -1.76460900 -2.36	220100 1 04422900
H = 0.01552300 -1.15	182400 -0.83618000
H = -1.44986800 - 0.010	102400 -0.03010300 11/100 0.06078300
C = -1.19461700 -2.039	R70200 -1 33633200
O -2 33025700 1 60	S15100 -1 48891400
O -0.95026600 3.26	506100 -0.84638100
C -2 08984900 3 96	327100 -0.31152100
C -3 41832400 -1 61	541000 0.85442900
O -4.27197400 -2.40	327000 1.17167100
O -3.50836600 -0.89	231500 -1.90783300
O 0.74878900 -0.41	207500 3.25033700
C -2.47033800 3.41	300800 1.04560900
O -3.42019900 -0.34	635800 1.27053500
C -4.52285000 0.030	626100 2.10046900
C 1.46748700 0.61	41000 3.91176400
H 6.63555100 0.34	85100 -1.78718500
H 6.88766200 -1.833	315600 -0.64910000
H 5.11590200 -2.698	323800 0.85646200
H 4.60761000 1.720	060400 -1.45438700
H 2.58030800 -1.963	334400 1.90710000
H 1.07886900 2.487	71800 0.52546800
H 2.63516600 2.87	90800 -0.18976400
H 0.04708300 0.809	07600 1.73582900
Н -1.12825700 -1.40	187300 2.13777000

Н	0.19032000	-2.21806900	1.30589600
Н	1.91217400	1.46946600	-2.22535100
Н	1.13224400	3.03222600	-1.98547300
Н	0.59777100	-0.09761900	-2.94763400
Н	-1.14385900	-0.00390400	-2.75710700
Н	-1.96011100	-2.96520700	0.21161100
Н	-3.66669200	-2.82612800	-1.45002400
Н	-1.98304200	-3.62929500	-2.73447400
Н	-1.90224500	-2.01705400	-3.41116500
Н	0.36385400	-2.56838100	-2.76348300
Н	-0.15214000	-3.28766900	-1.25243200
Н	-1.75773700	5.00335300	-0.24359600
Н	-2.91456500	3.90272000	-1.02063200
Н	-2.97801300	-0.10134300	-1.71287500
Н	-3.33226700	3.95814300	1.43770900
Н	-2.73747200	2.35704900	0.96462000
Н	-1.64424000	3.52277100	1.75216300
Н	-4.35659200	1.08130900	2.35123300
Н	-5.46089100	-0.07859100	1.55653300
Н	-4.54639200	-0.57103700	3.00603000
Н	2.50484100	0.66878400	3.56374600
Н	0.98817900	1.58663600	3.76072700
Н	1.46060900	0.37116600	4.97480800

Zero-point correction = Thermal correction to E	nergy =	0.578246 (0.6087	Hartree/Particle) 50
I nermal correction to E	nthaipy =	0.6096	94
Thermal correction to C	bbs Free Ene	ergy = 0.8	518839
Sum of electronic and a	zero-point Ene	rgies = -	1533.291204
Sum of electronic and t	hermal Energi	es =	1533.260700
Sum of electronic and t	hermal Enthal	oies = -	1533.259755
Sum of electronic and t	hermal Free E	nergies =	-1533.350611
		0	
0 1			
C -4 594013	00 -1 580612	00 0.09345	100
C -4 302349	00 -1 675251		500
C _3 333535	00 -0.878/3/	00 1.40521	800
C -3.33333333333333333333333333333333333	00 -0.070434	00 2.00000	000
		00 1.23022	900
-2.940489	00 0.144288	00 -0.15132	100
C -3.925946	00 -0.678673	00 -0.71763	
N -1.639884	00 0.900648	00 1.51725	600
C -1.279829	00 1.573354	00 0.36794	200
C -2.064185	00 1.159228	00 -0.67661	900
C -1.962196	00 1.630452	00 -2.09170	500
C -0.171948	00 2.582034	00 0.39888	500
C 1.148331	00 1.988961	00 0.87655	300
C -1.180289	00 0.658101	00 -2.99001	500
N 0.067732	00 0 182003	00 -2.38700	700
C 1 189613		00 -2.00700	600
C 2 26/162	00 1.137002	00 -2.41700	700
C 2.204102	00 1.131772	00 - 1.20955	000
	00 0.772447		900
C 2.809260	00 0.213680		000
C 3.873643	00 -0.698792	00 0.45627	800
C 4.527664	00 0.043753	00 -0.70170	800
C 3.503109	00 0.349310	00 -1.78572	200
H 2.589311	00 2.178571	00 -1.22714	200
Н 0.946906	00 0.017943	00 0.03351	700
C 0.228956	00 -1.120445	00 -2.07148	000
O 1.293775	00 -1.640756	00 -1.76643	600
O -0.915777	00 -1.821984	00 -2.11781	000
C -0.879707	00 -3.136684	00 -1.53006	400
C 2.225215	00 -0.526714	00 2.27543	100
0 2.830734	00 -0.721630	00 3.30187	400
0 3 341902	00 -1 955623		100
0 -0.461093	00 3 637570		300
C _0 900031	00 -3.046106		100
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 - 3.040190	00 -0.01000	400
0 0.904100	00 -0.973790	00 2.07002	400
0.397021		00 3.12285	700
C -1.577561	00 4.417920	00 0.93105	100
H -5.3554/3	00 -2.224967	00 -0.33075	300
H -4.846059	00 -2.387689	00 2.07904	500
Н -3.108450	00 -0.950705	00 3.11444	400
Н -4.155880	00 -0.613324	00 -1.77625	900
H -1.206255	00 1.027324	00 2.42029	700
Н -1.496926	00 2.618552	00 -2.12063	200
Н -2.958713	00 1.749360	00 -2.52808	000
Н -0.062307	00 3.007212	00 -0.60468	400
Н 0.996883	00 1.714688	00 1.92771	100

1.89069100	2.79401400	0.87599100
-0.93313200	1.15025200	-3.93607600
-1.79711300	-0.20503200	-3.21891600
0.70815900	2.11513200	-2.44244400
1.71418400	1.02935100	-3.37456300
3.36529000	1.05279200	1.51958600
4.61863300	-0.91616700	1.22523600
4.97390200	0.96609600	-0.31260500
5.33636600	-0.56690900	-1.11145600
3.18917800	-0.58458100	-2.25039600
3.97094200	0.94506100	-2.57541500
-1.77689700	-3.62245100	-1.91249100
-0.00065500	-3.66850300	-1.89460800
2.61877600	-1.82848600	-0.55509900
-1.81080300	-2.54600500	0.32009000
-0.03024500	-2.49450000	0.34651200
-0.87493400	-4.05134800	0.41071500
-0.60416500	-1.99757100	2.77891600
0.97860300	-2.65000600	3.29667600
0.34842000	-1.15924300	4.04337400
-2.50426900	3.83387000	0.94757600
-1.65848300	5.23269800	1.65029600
-1.43970000	4.84022700	-0.07212200
	1.89069100 -0.93313200 -1.79711300 0.70815900 1.71418400 3.36529000 4.61863300 4.97390200 5.33636600 3.18917800 3.97094200 -1.77689700 -0.00065500 2.61877600 -1.81080300 -0.60416500 0.97860300 0.34842000 -2.50426900 -1.65848300 -1.43970000	1.890691002.79401400-0.933132001.15025200-1.79711300-0.205032000.708159002.115132001.714184001.029351003.365290001.052792004.61863300-0.916167004.973902000.966096005.33636600-0.566909003.18917800-0.584581003.970942000.94506100-1.77689700-3.62245100-0.00065500-3.668503002.61877600-1.82848600-1.81080300-2.54600500-0.60416500-1.997571000.97860300-2.650006000.34842000-1.15924300-2.504269003.83387000-1.658483005.23269800-1.439700004.84022700

Zero-point correction = 0 Thermal correction to Energy = Thermal correction to Enthalpy = Thermal correction to Gibbs Free Energy Sum of electronic and zero-point Energies Sum of electronic and thermal Energies Sum of electronic and thermal Enthalpies Sum of electronic and thermal Free Energy	0.650271 (Hartree/Particle) 0.685573 0.686517 $\prime = 0.583919$ es = -8654.152572 = -8654.117271 s = -8654.116326 rgies = -8654.218924
0 1	
C 6.39143500 -0.52864500	0.09784700
C 6.45264200 -0.38384600	-1.30215500
C 5.30274300 -0.31400600	-2.07080500
C 4.07718800 -0.38716000	-1.40306800
C 3.99197800 -0.54168100	0.00126100
C 5.17480200 -0.60819100	0.75424700
N 2.79287600 -0.34143900	
C = 1.90321600 - 0.47724500	-0.83616300
C = 2.39134200 - 0.00789300	1 72828600
C = 2.04701000 -0.72423000 C = 0.43414900 -0.41996800	-1 11487100
C -0.04983600 0.92399500	-1.65842100
C 2.08987200 0.60037800	2,50588000
N 1.05314900 1.56442400	2.11947500
C 1.37880900 2.76406700	1.34581600
C 1.20373400 2.62904100	-0.17989800
C -0.17178300 2.05020200	-0.62348800
C -1.08769700 3.13235900	-1.23278400
C -1.04211500 4.48867500	-0.50655400
C 0.40341100 5.03698000	-0.48205200
C 1.46649000 3.98928600	-0.83786900
H 1.98406200 1.94573900	-0.52102300
\square -0.00491000 1.03020400 \square -0.18077100 1.47552300	2 64240000
\cap -1.07001900 2.31514900	2.04243300
O -0.37886000 0.34929300	3 34749900
C -1.75179200 0.03584200	3.66101100
C -2.54204000 2.71965900	-1.34369600
O -3.32116300 3.24074400	-2.10522500
O -1.64538300 4.41771500	0.77430500
O 0.08328700 -1.36608000	-2.12352100
C 0.41452600 -2.71645000	-1.85327700
C -2.48559400 -0.39715400	2.40815600
C = 0.01205700 - 3.22962500	-0.48706600
C = 0.98059500 - 3.87427200	0.28672500
	2.00531400
C -0.02009000 -4.00047000 C -1 60345500 -3 70048400	2.00001400
C -1 28405200 -3.13912300	0.02682700
-2.82210500 -2.17612200	-1.02791100
O -2.89646200 1.74758100	-0.49918800
C -4.27735300 1.37248800	-0.52465800
H 7.31371000 -0.57968500	0.66496900
H 7.42008100 -0.32616000	-1.78768400

H	5.34931900	-0.20273300	-3.14815400
Н	5.13644100	-0.72428800	1.83270100
Н	2.52796600	-0.29220900	-2.85850400
Н	1.02132100	-1.10262200	1.72072000
Н	2.64529100	-1.45358500	2.28556100
Н	-0.10937700	-0.64140700	-0.18614100
Н	-1.03885600	0.72041200	-2.08202400
Н	0.59480300	1.24183400	-2.48708200
Н	3.05209700	1.09053800	2.34672500
Н	1.99170000	0.39928100	3.57350800
Н	2.42247400	3.01484100	1.55034300
Н	0.77096400	3.58132400	1.73634700
Н	-0.76937800	3.32837200	-2.26312100
Н	-1.67348600	5.18044900	-1.06711000
Н	0.48142100	5.87224600	-1.18225100
Н	0.58022700	5.45090100	0.51362600
Н	2.45814300	4.35389600	-0.55356900
Н	1.49119200	3.84791400	-1.92333000
Н	-1.68011800	-0.77559800	4.38445000
Н	-2.21895000	0.89925600	4.13489600
Н	-1.33842200	3.64617600	1.28031600
Н	1.49149700	-2.87584900	-1.97691100
Н	-0.10643500	-3.29030900	-2.62497400
Н	-3.49256400	-0.73920100	2.66116200
Н	-1.95052500	-1.22182500	1.93483900
Н	-2.56439100	0.42812200	1.69736900
Н	1.99542900	-3.92749600	-0.09442500
Н	1.44702500	-4.93060100	2.09708300
Н	-0.88575500	-4.79149000	2.96284100
Н	-2.61666900	-3.64229500	1.63549700
Н	-4.90418400	2.22945900	-0.27532400
Н	-4.55101900	0.99543800	-1.51135700
Н	-4.39000700	0.59173400	0.22364800

Zero-point correction Thermal correction to	= Energy =	0.650634 (Hartree/P 0.686822	article)
Thermal correction to	Enthalpy =	0.687767	
Thermal correction to	Gibbs Free Ener	rgy = 0.581913	
Sum of electronic and	I zero-point Energy	gies = -8654.147	633
Sum of electronic and	I thermal Energie	es = -8654.1114	444
Sum of electronic and	l thermal Enthalp	ies = -8654.110	500
Sum of electronic and	I thermal Free Er	nergies = -8654.21	6354
		-	
0 1			
C 0.47814	500 5.0531310	0 0.63988000	
C -0.29291	900 4.9101170	00 -0.53151700	
C -0.76346	3.6719150	00 -0.93553300	
C -0.44440	400 2.5706480	00 -0.13569700	
C 0.31130	300 2.6933930	0 1.05444700	
C 0.78530	000 3.9589980	0 1.43139500	
N -0.76559	400 1.2451190	00 -0.27987700	
C -0.29329	800 0.5395090	0 0.80546400	
C 0.39536	400 1.3800620	0 1.64623600	
C 1.08040	400 1.0289490	0 2.93155400	
C -0.62621	400 -0.9241980	0 0.89163700	
C 0.19872	200 -1.7852340	00 -0.06922100	
C 2.62575	600 1.0830160	0 2.89305700	
N 3.27578	900 0.4380230	0 1.75480700	
C 3.51066	200 -1.0046030	0 1.77587900	0-0-0
C 2.25425	100 -1.8220830	0 1.44360800	
C 1.71860	600 -1.5700380	0 0.01318500	
C 2.40175	200 -2.4381080	00 -1.08621100	
C 2.63780	300 -3.8974050	00 -0.65936200	4
C 3.32216	600 -4.0083950	0 0.69547000	
C 2.46566	500 -3.3106930	00 1.74853500	
H 1.49334	800 -1.4727790	0 2.14024100	
H 1.90351	800 -0.5204540	00 -0.23915000	Ţ
C 3.78682	400 1.1457420	0 0.71473600	
O 4.40461	200 0.6503330	00 -0.21122200	
O 3.55747	800 2.4668620	0 0.81421600	
C 3.96631	700 3.2599380	0 -0.31404100	
C 3.66878	200 -1.8137350	00 -1.64282600	
O 4.79609	000 -2.2080480	00 -1.44597900	
O 3.31400	500 -4.6297050	00 -1.67154500	
O -1.98570	900 -1.146486	00 0.52731600	
C -2.91911	800 -0.5232510	00 1.39891500	
C 3.00331	200 3.1091970	00 -1.47362300	
C -4.28970	700 -1.0610020	00 1.09287200	
C -4.90082	200 -1.9235940	00 2.00451400	
C -6.16084	900 -2.4591620	00 1.76670400	
C -6.83214	700 -2.1368930	00 0.59346900	
C -6.24258	6700 -1.2816390	00 -0.33117500	
C -4.98232	.800 -0.747133	00 -0.07962500	
l -4.16915	5100 0.553959	00 -1.50898700	
O 3.38342	400 -0.8114720	00 -2.47196600	
C 4.50038	700 -0.1752890	00 -3.10416200	
H 0.83340	100 6.0378100	0 0.92178800	
Н -0.51966	5100 5.7864090	00 -1.12802000	

Н	-1.35129200	3.55650600	-1.83921800
Н	1.38317100	4.07872600	2.32891500
Н	-1.41913100	0.86329200	-0.95142300
Н	0.74615300	0.04685600	3.27140000
Н	0.77483300	1.73554100	3.71174100
Н	-0.48712100	-1.25213300	1.92800800
Н	-0.06170200	-2.83243400	0.11448000
Н	-0.13705900	-1.54255200	-1.08260400
Н	3.01122000	0.61124600	3.80207700
Н	2.94239600	2.12311500	2.90638400
Н	3.84554000	-1.27193800	2.78400200
Н	4.32190500	-1.22282500	1.08110200
Н	1.71985700	-2.45595200	-1.94211300
Н	1.65421000	-4.37103800	-0.57997500
Н	3.44206900	-5.06720300	0.93978500
Н	4.32026100	-3.56300900	0.64316600
Н	2.91529300	-3.41625000	2.74024000
Н	1.49033800	-3.80916500	1.79429500
Н	3.97019900	4.28197600	0.06494500
Н	4.98268800	2.97984100	-0.59445600
Н	4.21386600	-4.28310200	-1.71956700
Н	-2.66255500	-0.74856600	2.44019300
Н	-2.89148100	0.56650200	1.26815700
Н	2.92976500	2.06372000	-1.78056500
Н	3.36090600	3.69579100	-2.32395500
Н	2.01187500	3.47160200	-1.19754400
Н	-4.36983000	-2.17596600	2.91627300
Н	-6.61300200	-3.12493300	2.49224300
Н	-7.81508500	-2.54615600	0.39147300
Н	-6.76608500	-1.02813000	-1.24467400
Н	5.05200500	-0.90081600	-3.70421000
Н	4.07609700	0.59314200	-3.74670000
Н	5.15154200	0.26666900	-2.35289000

Optimized Structure for Apovincamine

Zero-point c	orrection =	0	.419998 (Hartr	ee/Particle)
Thermal cor	rection to Ener	gy =	0.440552	
Thermal cor	rection to Enth	alpy =	0.441497	
Thermal cor	rection to Gibb	s Free Energy	= 0.3722	67
Sum of elec	tronic and zerc	-point Energie	s = -1074	1.093370
Sum of elec	tronic and ther	mal Energies =	-1074	.072816
Sum of elec	tronic and ther	mal Enthalpies	-1074	.071872
Sum of elec	tronic and ther	mal Free Ener	nies = -10	74 141101
0.1				
C.	3 87472400	-2 63756000	0 63389900	
C	1 163/5800	-1 27855800	0.83706700	
C	2 22266200	0.28010200	0.59206100	
0	3.22300300	-0.20919200	0.38390100	
	1.97105500	-0.00031000	0.11474100	
C	1.65311400	-2.06136100	-0.06876400	
C	2.62542100	-3.03559400	0.18554600	
Ν	0.82734700	0.04306500	-0.20336600	
С	0.51617700	1.41145900	-0.12785900	
С	-0.76265900	1.80620300	-0.04283900	1ª
С	-1.93169800	0.84932200	0.02617100	
С	-1.58031600	-0.41738800	-0.79469400	
С	-0.17666300	-0.85566700	-0.52315200	<u> </u>
N	-2 49330600	-1.55201800	-0.56822900	
C	-1 99603000	-2 73248200	-1 28971700	
C	-0.64187200	-3 28202600	-0 77770500	
0	0.04107200	-3.20292000	-0.11119300	
	0.27320000	-2.13333000	-0.40209000	
	1.60940500	2.39143100	-0.38782000	
0	2.58191200	2.15110800	-1.05749400	
C	-2.72181300	-1.86359800	0.84725200	
С	-3.20370400	-0.64280500	1.61724800	
С	-2.15817400	0.46167500	1.50355000	
С	-3.17759300	1.50562000	-0.60900700	
0	1.36674200	3.57679100	0.17090900	
С	2.32442000	4.60460000	-0.11790400	
С	-3.83146500	2.60494000	0.22298200	
н	-1.67234400	-0.14629100	-1.85506500	
Н	4,63731300	-3.38027200	0.83789500	
н	5 14363000	-0 99042900	1 19923800	
н	3 46731300	0.75134900	0 74723500	
н Ц	2 30/02600	-4 08503300	0.14723300	
	0.06227100	2 97122200	0.04232700	
	2 75005700	2.07123300	1 22210400	
	-2.75905700	-3.51262500	-1.23219400	
н	-1.88987700	-2.45018000	-2.34128700	
н	-0.78382900	-3.89736300	0.11834800	
Н	-0.21877700	-3.94152200	-1.54216400	
Н	-1.80921400	-2.23746800	1.33825000	
Н	-3.46493700	-2.66534400	0.88196800	
Н	-4.16876500	-0.30653000	1.22563100	
Н	-3.35018800	-0.91523900	2.66548800	
Н	-1.21091800	0.09780500	1.91922500	
н	-2.43725500	1.34770400	2.07797100	
Н	-2 87363200	1 91105500	-1 58007200	
н	-3 9102300	0 72230100	-0.81941600	
 Н	1 97670200	5 18631200	0.010-1000	
11	1.9/0/9000	0.40001200	0.41410000	

Н	3.31232300	4.31036800	0.23691700
Н	2.36041000	4.79674700	-1.19062700
Н	-3.11114500	3.36473200	0.53976300
Н	-4.60494000	3.10907900	-0.36071900
Н	-4.30778100	2.20240000	1.11999900

Optimized Structure for V-Int-1A (structure 35)

Ze	ro-point correction = 0	0.529401 (Hartree/Particle)					
Th	Thermal correction to Energy = 0.557823						
Th	Thermal correction to Enthalpy = 0.558767						
Th	Thermal correction to Gibbs Free Energy = 0.470671						
Su	im of electronic and zero-point Energie	es = -1493.963564					
Su	im of electronic and thermal Energies :	= -1493.935142					
Su	im of electronic and thermal Enthalpies	s = -1493.934198					
Su	im of electronic and thermal Free Ener	rgies = -1494.022294					
	2 62642020 0 4052 4000	0.05744000					
C	3.62612900 -0.40534600						
	4.19890300 -0.74904900						
	3.42140900 -1.03411800	1.15291000					
	2.03430000 -0.95513400						
	1.44315000 -0.05009700	2.51255500					
	2.25215500 -0.50764900						
	0.99495500 -1.20524100 0.94244400 -1.14950700						
C C	-0.21414300 -1.14930700	-1.82205000					
Č	-1.57431000 -1.47012500	-1.20996800					
C C	-1 51981300 -1 35329200	0.33888400					
č	-0 18785900 -1 14239000						
Ň	-2.45780300 -0.31597700	0.95797300					
C	-2.47503500 -0.55858500	2.47309500					
Č	-1.11004400 -0.34282800	3.13399800					
Č	0.01625200 -0.77597500	2.24576000					
С	2.15138500 -0.69123200	-1.91560300					
0	2.87486400 0.19642600	-1.54550200					
С	-3.84698200 -0.56462500	0.40573600					
С	-3.90646800 -0.32809400	-1.10688000					
С	-2.54885000 -0.43929900	-1.82619500					
С	-2.06864700 -2.89856500	-1.56550500					
С	-2.10114900 1.13385200	0.73698900					
0	-2.82178600 1.97951500	1.14958000					
0	-0.97242700 1.22245000	0.08651000					
C	-0.41136600 2.47224300	-0.25841400					
C	-1.17876500 3.47932700	-0.81887100					
C	-0.52797100 4.64918100	-1.20045900					
C	0.84661000 4.78241300	-1.02541700					
	1.38/40100 3./4223900	-0.47097000 -0.08037000					
		-0.00037000					
C	2.27000100 -1.33029000	-3.07343900					
	-1.15274500 -0.04041000	-1.00880000					
ч	-1.13274300 -4.02003300	0.74329700					
Н	4 27121600 -0 18646800	4 20008400					
н	5 27764100 -0 79878700	2 03143900					
н	3.88678200 -1.30881100	0.07487300					
н	1.80487600 -0.13353000	4.47215400					
н	-0.18633000 -1.18426100	-2.90343400					
н	-3.22797400 0.11528100	2.87806500					
Н	-2.81973000 -1.58702500	2.57827100					
Н	-0.97798900 0.71749600	3.37644600					
Н	-1.12933500 -0.88034700	4.08567600					

Н	-4.52747200	0.08273200	0.95545200
Н	-4.05816600	-1.60226800	0.66575400
Н	-4.61338200	-1.05385200	-1.51129100
Н	-4.32340600	0.66132900	-1.30245800
Н	-2.06545600	0.53694100	-1.86235300
Н	-2.72070000	-0.72344900	-2.86610200
Н	-3.07086700	-3.02314700	-1.13882800
Н	-2.17771900	-2.94728600	-2.65245000
Н	-2.24632200	3.36179700	-0.95525500
Н	-1.10268100	5.45598400	-1.63885600
Н	1.34236500	5.69719100	-1.32725300
Н	2.65884100	3.83890600	-0.34395200
Н	1.50995500	1.73134200	0.33802600
Н	3.15444100	0.20192000	-4.17722800
Н	4.29239500	-0.96916600	-3.45752800
Н	3.26210600	-1.45988200	-4.83392300
Н	-1.59496600	-4.99383500	-1.34607200
Н	-0.17895500	-3.96917700	-1.58956600
Н	-0.98199800	-4.01446100	-0.01823900

Optimized Structure for V-Int-1B (structure 36)

Zero-point correction = Thermal correction to Energy = Thermal correction to Enthalpy = Thermal correction to Gibbs Free Energ Sum of electronic and zero-point Energi Sum of electronic and thermal Energies Sum of electronic and thermal Enthalpie Sum of electronic and thermal Free Energies	$\begin{array}{llllllllllllllllllllllllllllllllllll$
11	
C 5 11349700 -2 91812800	-0 73311900
C 5.58936600 -1.60111000	-0.61506100
C 4.73047500 -0.52506700	-0.45921900
C 3.36057400 -0.79533800	-0.42322500
C 2.86741400 -2.11938700	-0.51240600
C 3.75762400 -3.18717600	-0.67872400
N 2.26103700 0.04631100	-0.24901200
C 2.17034700 1.42315900	0.00517400
C 1.09111500 1.91542900	0.62045800
C -0.04867200 1.05471000	1.12408000
C -0.19832400 -0.13245300	0.13370200
C 1.12865700 -0.74551400	-0.18120200
N -1.08376100 -1.27725600	0.66938300
C -0.98507700 -2.48485300	-0.29029800
C 0.39833300 -3.12138300	-0.30374000
C 1.43666900 -2.05261600	-0.36159200
C 3.18583900 2.32205900	-0.62334700
O 3.74882300 2.06468300	-1.65545700
C -0.68225100 -1.70159500	2.07247800
C -0.63475600 -0.52924600	3.03360200
C 0.34056300 0.52748400	2.52563000
C -1.31868500 1.93079400	1.20921800
C -2.55095900 -0.92826000	0.65632100
O -3.26549100 -1.20306900	1.55848900
O -2.84385400 -0.38525700	0 -0.50330400
C -4.19370200 -0.04259100	-0.76954700
C -4.82534900 0.92144500	-0.00447900
C -6.12860700 1.26973000	-0.34415900
C -6.76050800 0.66068300	-1.42528000
	-2.17522100
	-1.84894600
	0.06804700
	0.00340000
	0.0259300
	-0.00090100
H 5 12121200 0 /7826100	-0.0+000700
H = 3.38742600 -4.20372400	-0.75434500
Η 1 02287700 2 08556000	0.77203500
H -1 23844300 -2 08703400	-1 27234400
Η -1 75178000 -2.007 30400	0.03357600
H 0.43193000 -3.75859800	-1 19193300
Н 0.54566000 -3.77841700	0.55811800

Н	-1.38815700	-2.47365400	2.37128600
Н	0.31002900	-2.13616500	1.97548200
Н	-1.63039000	-0.11789700	3.20565600
Н	-0.28685500	-0.92327100	3.99072000
Н	1.34472200	0.09309800	2.47986100
Н	0.38504200	1.37572600	3.21141600
Н	-2.15769400	1.35344000	1.60740600
Н	-1.10857300	2.68769500	1.97193700
Н	-4.31596400	1.38523400	0.83143500
Н	-6.64765500	2.02149600	0.23793200
Н	-7.77482400	0.93944600	-1.68405400
Н	-6.58389700	-0.77609600	-3.01738900
Н	-4.24618200	-1.41055600	-2.41701100
Н	3.86698600	4.73201600	-1.48411200
Н	4.25635300	5.24462900	0.18526800
Н	5.23763400	3.98510800	-0.61944900
Н	-0.92899800	3.26761500	-0.46521900
Н	-2.59461800	3.27487600	0.10357600
Н	-2.01236900	1.93665400	-0.87634800

Optimized Structure for V-Int-1C

Zero-point correct	ection = tion to Ener	0 0	.476817 (Hartr 0.502366	ee/Particle)		
Thermal correct	tion to Enth	alov=	0.503310			
Thermal correct	tion to Gibb	s Free Enerav	= 0.4222	27		
Sum of electror	nic and zero	point Energie	s = -1302	2.304052		
Sum of electror	nic and ther	mal Energies =	-1302	.278504		
Sum of electror	nic and ther	mal Enthalpies	= -1302	2.277559		
Sum of electror	nic and ther	mal Free Energ	gies = -130	02.358642		
		·				
11						
C 3.	60303900	-3.30794100	-0.43537900			
C 4.	22215700	-2.04745200	-0.39030700			
C 3.	48762800	-0.87273100	-0.41899000			
C 2.	09733200	-0.98177700	-0.48054000			
C 1.	46251900	-2.24433900	-0.57459700			
C 2.	22752900	-3.41625400	-0.53759700			1.4
N 1.	09911100	-0.00116900	-0.55357300		<u>a</u>	
C 1.	07215900	1.33311500	-0.11115600	3	I	~~~
C -0.	.05812900	2.04711000	-0.10164900			
C -1.	.41025100	1.57246900	-0.56325900			
C -1.	.39835000	0.05108200	-0.88467700			
C -0.	.09949800	-0.65915000	-0.76396900			
N -2.	.43030100	-0.77855800	-0.11934400	-	Y -	
C -2.	.45176200	-2.18016700	-0.74210500			
C -1.	.12058300	-2.92524900	-0.60868800			J.
C 0.	05208300	-2.00246800	-0.74200200			49
C 2.	26822000	1.88/42600	0.60173100			
0 2.	.87843400	1.28475500	1.44613300			<u></u>
C -3.	.78256200	-0.12808300	-0.33238000			
C -3.	.83558600	1.27338800	0.28751300			
C -2.	45249500	1.90237600	0.02000000			
C -1.	10005200	2.34227300	-1.00010100			
0 -3	06523700	-0.94132200	2 03700700			
0 -1	01/65500	-0.5/1/5000	1 70816100			
C -0	68807600	-0.54145000	3 11824000			
0 2	51955300	3 14139400	0 24403900			
C 3.	56786600	3,79806300	0.97672200			
C -0.	79046800	2.18985900	-3.00424600			
H -1.	.75751100	-0.06596500	-1.90896800			
Н 4.	21466200	-4.20202800	-0.40920200			
H 5.	30286000	-1.98848700	-0.33715200			
Н 3.	98769600	0.08516500	-0.39870200			
H 1.	74786500	-4.38641400	-0.60464400			
Н -0.	.01225400	3.06479300	0.27091800			
Н -3.	.26426400	-2.71722600	-0.25461300			
Н -2.	.71187900	-2.00821200	-1.78541300			
Н -1.	.06753900	-3.41952300	0.36863200			
H -1.	.12601700	-3.71983800	-1.35945700			
Н -3.	.89887400	-0.10100800	-1.41682600			
H -4.	.52932700	-0.79803200	0.08769300			
H -4.	.42719400	1.89923200	-0.38147600			
H -4.	.36908800	1.23054000	1.23781600			
H -2.	.06723300	1.59829300	1.50368500			

Н	-2.55704200	2.98791500	0.57763000
Н	-2.77961200	2.00396200	-2.17656000
Н	-1.88017900	3.39995200	-1.59533100
Н	-1.38250100	-0.02482800	3.69115200
Н	0.32750800	-0.26131800	3.19408400
Н	-0.74446000	-1.67994200	3.42971500
Н	3.62156300	4.80395700	0.56933500
Н	4.51211800	3.27432400	0.82819400
Н	3.32351900	3.82633100	2.03866000
Н	0.17952400	2.61728100	-2.74251900
Н	-1.15743400	2.70948900	-3.89135400
Н	-0.62919700	1.14405900	-3.28230400

Optimized Structure for V-Int-1D

Zero-point correction = Thermal correction to Er Thermal correction to Er Thermal correction to Gi Sum of electronic and ze Sum of electronic and th Sum of electronic and th	0 hergy = hthalpy = bbs Free Energy ero-point Energie ermal Energies = ermal Enthalpies	0.478378 (Hartr 0.503067 0.504011 2 = 0.4264 2s = -1302 = -1302 3 = -1302	ee/Particle) 62 2.321193 .296504 2.295560				
Sum of electronic and th	ermal Free Ener	gies = -130	02.373110				
11							
C 3.9723790	0 -3.34654800	-0.05925700					
C 4.5636210	0 -2.08939800	0.15296500					
C 3.8193640	0 -0.92059000	0.14129900			-		
C 2.4471870	0 -1.03461300	-0.09178600				3 🧑	0
C 1.8320800	0 -2.29648100	-0.27851800			>>>		
C 2.6099200	0 -3.46067800	-0.27093900		1000			
N 1.4386530	0 -0.07091800	-0.13329600				5 51	
C 1.4549920	0 1.31553200	0.08541100	5			<u> </u>	
C 0.3362740 C _0.0710/70	0 1.94131300	0.47150500		9-		T -	Ψ.
C -1 0483190	0 0.03691600	-0 25488600			9		
C 0 2329810	0 -0 72899500	-0 29170500					9
N -2.1487690	0 -0.98245100	0.09109200		_		_	
C -2.0093550	0 -2.21736000	-0.82444200		2			
C -0.7325740	0 -3.00631700	-0.56018400		2			
C 0.4161360	0 -2.06577900	-0.41084700		•			
C 2.6610830	0 2.08024300	-0.35577000					
O 3.3902760	0 1.71181400	-1.23954600					
C -2.0891160	0 -1.41546500	1.54647600					
C -2.1008110	0 -0.23430400	2.49830600					
C -0.9361430	0 0.70212800	2.19284000					
C -2.1241780	0 2.24038900	0.54464000					
	0 -0.45334900	-0.21687800					
	0 -0.04334300	-1 37385600					
-3.3104900	0 0.14223100	-1 79795700					
0 2 7919490	0 3 22636000	0.30200400					
C 3.8572440	0 4.08180700	-0.14427500					
C -2.1597980	0 2.94928400	-0.80908500					
Н -1.2923180	0 0.40510500	-1.25179500					
H 4.5930770	0 -4.23460100	-0.04730100					
H 5.6307600	0 -2.02882900	0.33164700					
H 4.2947870	0 0.03529600	0.31013100					
H 2.1478710	0 -4.43051400	-0.41905800					
Н 0.3635530	0 3.01646900	0.59719100					
н -2.9014300	0 -2.82033600	-0.64844600					
н -2.0220550	0 -1.82397000	-1.84060900					
	0 -3.048/9200	0.318/4400					
	0 -3.003/0000	1 60601500					
H _1 1561120	0 -1 96400500	1 65370/00					
H -3.0605280	0 0 28401100	2 47134500					
Н -1.9905920	0 -0.64200200	3.50528800					
Н 0.0047850	0 0.16592200	2.35466200					

Н	-0.94113000	1.55991800	2.86856700
Н	-3.09427800	1.77383400	0.74072100
Н	-2.00497800	2.98896100	1.33456300
Н	-5.10963100	1.44335800	-1.05656700
Н	-5.51479000	-0.07739700	-1.91386300
Н	-4.56663700	1.19532600	-2.74903800
Н	3.80116300	4.96749000	0.48262300
Н	3.71381700	4.34349300	-1.19276300
Н	4.81773100	3.58314600	-0.01491200
Н	-2.27287300	2.25629600	-1.64481600
Н	-1.25136600	3.53106500	-0.97961500
Н	-3.00320100	3.64237700	-0.84031200

Optimized Structure for V-Int-2A (structure 37)

Zero-point correction =	0	.526156 (Hartr	ee/Particle)				
Thermal correction to Ener	gy =	0.555201					
Thermal correction to Enthalpy = 0.556145							
Thermal correction to Gibb	Thermal correction to Gibbs Free Energy = 0.467884						
Sum of electronic and zero	-point Energie	s = -1493	8.959514				
Sum of electronic and them	mal Energies =	-1493	.930469				
Sum of electronic and them	mal Enthalpies	= -1493	.929525				
Sum of electronic and them	mal Free Energ	gies = -149	94.017786				
	·	5					
11							
C -2.85675000	1.29963800	2.31226900					
C -2.21372900	2,47175100	1.80586000					
C -0.95819200	2 46463500	1 25244000					
C -0.29199200	1 22369600	1 19391900	· · · ·				
C -0.89768400	0.04146700	1 75957100	F				
C = -2.05700+00	0.04140700	2 20031000					
C -2.21002700	0.09090100	2.29931000	120				
10 0.92037500	0.00407900	0.00793400	1				
	1.36231400	-0.00014000					
C 3.05206400	1.00859000	-0.36169000					
C 3.43213400	-0.39282900	0.02252500					
C 2.37348100	-1.03667500	0.82936400					
C 1.17763500	-0.46082300	1.03993000	E				
N 0.26736400	-2.68256000	-0.66091200					
C 0.13684400	-3.35508400	0.63535100					
C -0.19898500	-2.45809300	1.87666600					
C -0.00209500	-1.00750300	1.63703600					
C 1.51233100	2.86418600	-0.74942300					
O 2.22799700	3.82671500	-0.80693200					
C 1.45671900	-2.87633500	-1.50905200					
C 2.17715200	-1.58346900	-1.96987200					
C 3.51623400	-1.27280900	-1.28038800					
C 4.80297300	-0.42443400	0.73644000					
C -0.79241500	-2.08834800	-1.25570400					
O -1.85290600	-2.03408100	-0.39434300					
0 -0.81832400	-1.65963800	-2.38551100					
C -2 87114800	-1 11509700	-0.59490200					
C -2 63102800	0 17304100	-1.06111500					
C -3 68975400	1 07392600	-1 10041700					
C -4 96314700	0.69706200	-0.68106500					
C _5 18308400	-0.50010400	-0.00100500					
C -4 13552300	-0.53919400	-0.22351300					
0 0 2202000	2 75429200	1 24262700					
0 0.32930900	2.75426200	-1.34302700					
C -0.12417400	3.91288400	-2.06568100					
C 4.84309100	0.41396700	2.00881000					
H 2.54072900	-2.05154400	1.18326200					
H -3.85651800	1.38669900	2.71846400					
H -2.74540900	3.41478300	1.86849500					
H -0.50392300	3.38043500	0.90219800					
H -2.67361100	-0.79778600	2.69991400					
H 3.74979000	1.56109700	-0.98269300					
H -0.63422200	-4.12495600	0.57309300					
H 1.08500800	-3.86074300	0.80569200					
H 0.43990700	-2.78117300	2.70485000					
H -1.23232900	-2.62305500	2.17841000					

Н	2.14256200	-3.51118700	-0.94660900
Н	1.14749700	-3.43886100	-2.39263300
Н	1.49726100	-0.73085600	-1.88365600
Н	2.37376300	-1.69098300	-3.03789000
Н	4.03176500	-2.20138000	-1.01568900
Н	4.17173500	-0.72774900	-1.96524600
Н	5.03868100	-1.46888200	0.96076800
Н	5.55190000	-0.07100500	0.02140900
Н	-1.63961900	0.47136500	-1.37930900
Н	-3.51365900	2.08252300	-1.45651300
Н	-5.77987700	1.40830400	-0.71598900
Н	-6.17141600	-0.90420300	0.09997600
Н	-4.28077000	-2.52476800	0.17909500
Н	-0.20894600	4.76627300	-1.39204600
Н	0.57211400	4.14384200	-2.87131400
Н	-1.09623600	3.64230100	-2.46844700
Н	4.09209400	0.07715900	2.72953100
Н	5.82155600	0.33486100	2.48592000
Н	4.65767700	1.46966900	1.79705300

Optimized Structure for V-Int-2B

0.474931 (Hartree/Particle)						
Thermal correction to Energy = 0.500828						
0.501772						
y = 0.420535						
es = -1302.294600						
= -1302.268704						
s = -1302.267759						
rgies = -1302.348997						
-0.36358500						
0.32065600						
0.27900900						
-0.47938400						
-1.16853000						
-1.09453300						
-0.63808900						
-0.13632300						
-0.04060800						
-0.42498000						
-1.39182200						
-1.38810300						
0.08984300						
-1.01822200						
-2.22816000						
-1.73264200						
0.03920100						
-0.52843600						
-0.00457600						
0.71332700						
0.85052700						
-0.95754400						
1.32604600						
1.27198600						
2.30007000						
2.52050100						
0.000/0000						
0.00269700						
0.09300700						
0.00565700						
0.81671000						
-1 61099500						
0.29630400						
-1 99642000						
-0.63698300						
-1 38400700						
-2 83384600						
-2 84875200						
-1.07343500						
0.38260400						
1.73330800						
0.21965800						
1.21359200						

Н	0.93944800	2.72914500	1.61076500
Н	2.49416800	3.14061700	-1.76236100
Н	0.99266200	3.97655500	-1.41504400
Н	-2.99334000	-2.36538300	2.29333100
Н	-1.71076600	-1.29471400	2.92874400
Н	-3.42435200	-0.90891700	3.23522400
Н	5.93946600	-1.07402000	1.67734200
Н	4.99687300	-2.56979400	1.40471100
Н	5.76511700	-1.73898600	0.02462600
Н	3.00688800	5.08430700	-0.39049000
Н	1.79847400	4.65651700	0.81882200
Н	3.26216400	3.68013500	0.64121800

Zero-poin	t correction =	0	.570325 (Hartr	ee/Particle)			
Thermal of	correction to Ener	gy =	0.602397				
Thermal of	correction to Enth	alpy =	0.603341				
Thermal of	correction to Gibb	s Free Energy	= 0.5059	16			
Sum of el	ectronic and zero	-point Energie	s = -1609).244758			
Sum of el	ectronic and theri	mal Energies =	-1609	.212686			
Sum of el	ectronic and theri	mal Enthalpies	= -1609	.211742			
Sum of el	ectronic and theri	mal Free Energ	gies = -160	09.309167			
		·	5				
01							
С	-4.40872400	3.37965600	0.12231500				
С	-4.18946600	2.02109500	-0.04484300			7	
С	-2.87045600	1.59760700	-0.23063900			2	
C	-1.79062600	2.51251900	-0.21743400				
С	-3.35079700	4.30532400	0.10588600				
С	-2.04331500	3.88157100	-0.06031900				
Ν	-2.32901100	0.32984900	-0.39662600	- 9		3 da 34	
С	-0.93939600	0.44517300	-0.43049900	00		5000	
Ċ	-0.56989600	1.75312000	-0.34931300	<u> </u>		T	•
С	0.82266300	2.30183800	-0.34230900				
С	1.46319000	2.32550700	1.05161000		š	2	
Ν	1.79280900	0.99422100	1.58554600	 /		2	
С	1.15095700	0.48889100	2.80981800	-0			
С	-0.13683900	-0.81948700	-0.40891400				
С	-0.76684200	-1.77274200	0.62952000				
С	-0.76631400	-1.12555000	2.04296000				
С	0.59646900	-0.94035000	2.73841900				
С	2.94297300	0.37873000	1.22627500				
0	3.43470500	-0.58319000	1.77395600				
0	3.50701100	0.97913900	0.13304000				
С	4.61735900	0.37921100	-0.44668300				
С	4.55319700	-0.92078300	-0.93243000				
С	5.66576700	-1.45370900	-1.57303200				
С	6.82152700	-0.69170900	-1.73046600				
С	6.86413900	0.61039100	-1.24257900				
С	5.75820800	1.15301200	-0.59362300				
С	-2.93461400	-0.93324900	-0.24918700				
С	-2.21398700	-1.95610000	0.22528200				
С	-0.02700400	-3.12386700	0.60149100				
0	-0.12704600	-1.47743800	-1.66523500				
С	0.57390000	-0.75738800	-2.66015900				
C	-4.27731600	-1.13007900	-0.86114000				
0	-4.72048600	-0.44537900	-1.74850200				
0	-4.91732900	-2.17799900	-0.34113200				
C	-6.16669100	-2.51093900	-0.96033800				
C	-0.40218800	-4.07355100	1.73623900				
Н	0.89280100	-0.58281900	-0.11811200				
Н	-5.42266300	3.73417700	0.26764600				
H	-5.01692800	1.32527300	-0.03009700				
	-3.20529900	0.30015000	0.23227900				
	-1.22514900	4.59426100					
	1.40449900	1.13439500	-1.01934000				
	0.00402100 2 27105100	3.33032400 2.02072000	1 02007000				
	2.37 IOD IUU	2.32313000	1.02007000				

28700 75700 236300 000300 562900
75700 236300 000300 562900
236300 000300 562900
000300 562900
562900
)14300
981400
127000
151200
333200
381100
466600
128400
395300
118400
)75200
535200
470800
458000
637700
266400
711500
972400

Zero-poi Thermal Thermal Thermal Sum of e Sum of e Sum of e	nt correction = correction to Ener correction to Enth correction to Gibb electronic and zero electronic and ther electronic and ther electronic and ther	0 rgy = palpy = ps Free Energy p-point Energies mal Energies = mal Enthalpies mal Free Energ	.518736 (Hartr 0.547523 0.548467 = 0.46109 s = -1417 = -1417 gies = -147	ee/Particle) 99 .579822 551036 .550091 7.637459			
0.1							
C	-0.62821800	4,15304600	-0.09199400				
Ċ	0.36870900	3.19241000	-0.16398500				
С	0.13253200	1.96643200	0.46508800	1			
С	-1.08718500	1.70270300	1.13150200				
С	-1.83486500	3.91552700	0.58931000				
С	-2.07203100	2.69590500	1.19921300				
Ν	0.90381500	0.81131000	0.54422200				
С	0.15316100	-0.16855300	1.19487300		T		
C	-1.04978700	0.33328900	1.58433900		. 4		
C	-2.17758300	-0.44862000	2.17316000	- A			
	-3.28157100	-0.71636600	1.13184600				
	-2.77201100	-1.20000100	-0.14940000		1		
C	0 69922000	-1 56296800	1 21303100	0-			
C	1.21024100	-1.90352500	-0.20188000	5		515	
Č	0.04244400	-1.83171500	-1.22285200				
С	-1.07754000	-2.88135700	-1.10696900			<u> </u>	
С	-2.97446000	-0.53650500	-1.31107200				
0	-2.76835500	-0.99236100	-2.42153100				
0	-3.41766600	0.72144600	-1.11432700		T		
С	-3.48014700	1.54110900	-2.28087200		<u> </u>		
C	2.03967900	0.44598600	-0.20548600				
C	2.21267800	-0.83035800	-0.57032800				
	1.89525900	-3.28396000	-0.18636200				
0	1.77031700	-1.70000300	2.12249000				
C	3 11725000	1 46160300	-0 35008400				
õ	3,26674900	2.40242000	0.37876600				
Õ	3.92212900	1.19086600	-1.38801000				
C	5.04740000	2.06592100	-1.53972200				
С	2.24441200	-3.83338000	-1.56764900				
Н	-0.46909100	5.11164400	-0.57254400				
Н	1.29075200	3.39775800	-0.68969400				
Н	-2.58692000	4.69524200	0.62749800				
н	-3.01059500	2.50290700	1.70826600				
Н	-1.80227200	-1.39103700	2.57862400				
Н	-2.63/13200	0.08800900	3.00898000				
п Ц	-3.98461500	-1.40008/00	1.53166200				
н	-3.03332300	0.20004000	0.34073100				
Н	-2.03501500	-2.00410000	-0 48508000				
н	-0.09600000	-2 26292300	1 49250400				
н	-0.38654900	-0.82654800	-1.19759800				
Н	0.48698800	-1.93217100	-2.21585400				

Н	-0.66885900	-3.84038800	-0.77261100
Н	-1.46265700	-3.04399500	-2.11213700
Н	-4.15009700	1.10913800	-3.02497600
Н	-2.48510800	1.66637200	-2.71077800
Н	-3.86210600	2.50173400	-1.94167900
Н	3.12494100	-1.10259700	-1.08757500
Н	2.80056100	-3.20365600	0.41919100
Н	1.24397600	-3.99240400	0.33620200
Н	2.27321400	-1.76594200	4.08205800
Н	0.64960900	-2.40185900	3.71942400
Н	0.94707300	-0.64009700	3.70788200
Н	5.59055200	1.69628100	-2.40579100
Н	5.67725800	2.03024200	-0.65040100
Н	4.70995400	3.08860700	-1.71036000
Н	2.83382000	-3.12030500	-2.15138000
Н	1.35128500	-4.07806400	-2.14734300
Н	2.83674200	-4.74601600	-1.47070200

Optimized Structure for Ethyl Chloroformate

Zero-point correction = 0.081816 (Hartree/Particle) Thermal correction to Energy = 0.088524 Thermal correction to Enthalpy = 0.089468 Thermal correction to Gibbs Free Energy = 0.050110 Sum of electronic and zero-point Energies = -727.877986 Sum of electronic and thermal Energies = -727.871278 Sum of electronic and thermal Enthalpies = -727.870334 Sum of electronic and thermal Free Energies = -727.909692

01			
CI	-2.03671600	-0.63235600	0.00012300
С	-0.61271700	0.41276900	-0.00014600
0	0.46682700	-0.32678600	-0.00004100
0	-0.70203500	1.59616100	-0.00014400
С	1.72901000	0.40446900	-0.00004200
С	2.82873500	-0.62549300	0.00006900
Н	1.75007900	1.03599800	-0.88947300
Н	1.75001700	1.03612700	0.88929800
Н	3.79383300	-0.11536300	0.00006500
Н	2.77083800	-1.25602800	0.88872700
Н	2.77089900	-1.25615900	-0.88849900

Optimized Structure for Methyl Chloroformate

Zero-point correction =	0.053578 (Hartree/Particle)
Thermal correction to Energy =	0.058946
Thermal correction to Enthalpy =	0.059891
Thermal correction to Gibbs Free Ener	gy = 0.024319
Sum of electronic and zero-point Energy	gies = -688.595575
Sum of electronic and thermal Energie	s = -688.590207
Sum of electronic and thermal Enthalp	ies = -688.589263
Sum of electronic and thermal Free En	ergies = -688.624835

01

13000
64400
29000
11100
26300
56200
57400
97100

Optimized Structure for Phenyl Chloroformate

Zero-point correction =	0.105835 (Hartree/Particle)
Thermal correction to Energy =	0.114137
Thermal correction to Enthalpy =	0.115081
Thermal correction to Gibbs Free Energy	gy = 0.070681
Sum of electronic and zero-point Energ	jies = -880.254734
Sum of electronic and thermal Energies	s = -880.246432
Sum of electronic and thermal Enthalpi	es = -880.245487
Sum of electronic and thermal Free En	ergies = -880.289888

01			
CI	-3.25384000	0.16481500	-0.24480300
С	-1.61729300	-0.15993100	0.30651100
0	-0.76502000	0.36070300	-0.56483100
0	-1.38529800	-0.74970200	1.30451600
С	0.60814500	0.17905300	-0.29819900
С	1.17350300	-1.07339000	-0.46517000
С	2.54108200	-1.21015000	-0.25320200
С	3.30896400	-0.10679200	0.11152100
С	2.71220400	1.14059600	0.26668300
С	1.34359700	1.29325300	0.06156300
Н	0.55595000	-1.91651900	-0.75220700
Н	3.00554800	-2.18113800	-0.37641200
Н	4.37424100	-0.22032200	0.27332400
Н	3.30876000	2.00012100	0.54797600
Н	0.85211500	2.25216100	0.17325800

Optimized Structure for 2-lodobenzyl Alcohol

Zero-point correction =	0.124451 (Hartree/Particle)
Thermal correction to Energy =	0.132945
Thermal correction to Enthalpy =	0.133889
Thermal correction to Gibbs Free Ener	gy = 0.089098
Sum of electronic and zero-point Energy	gies = -7236.504255
Sum of electronic and thermal Energies	s = -7236.495762
Sum of electronic and thermal Enthalpi	es = -7236.494817
Sum of electronic and thermal Free En	ergies = -7236.539608

01

С	-0.28525100	-0.54370100	-0.00004900
С	-0.61544300	-1.89451500	-0.00021100
С	-1.95082600	-2.28208800	-0.00023200
С	-2.94907900	-1.31539000	-0.00009400
С	-2.61012300	0.03327000	0.00007900
С	-1.27628200	0.44095100	0.00010800
С	-0.92053000	1.90543500	0.00029100
0	-2.10271100	2.68213700	0.00026800
I	1.74235700	-0.01109300	-0.00003900
Н	0.16827400	-2.64207300	-0.00031400
Н	-2.20287700	-3.33615400	-0 00035900
ы		0100010100	0.00000000
п	-3.99277600	-1.60760900	-0.00011900
H	-3.99277600 -3.38252000	-1.60760900 0.79187300	-0.00011900 0.00018300
H H	-3.99277600 -3.38252000 -0.30901900	-1.60760900 0.79187300 2.12508900	-0.00011900 0.00018300 0.88413100
H H H	-3.99277600 -3.38252000 -0.30901900 -0.30886900	-1.60760900 0.79187300 2.12508900 2.12526400	-0.00011900 0.00018300 0.88413100 -0.88339900

Optimized Structure for Methanol

Zero-point correction =	0.051832 (Hartree/Particle)
Thermal correction to Energy =	0.055120
Thermal correction to Enthalpy =	0.056064
Thermal correction to Gibbs Free Ener	gy = 0.029120
Sum of electronic and zero-point Energy	gies = -115.657849
Sum of electronic and thermal Energie	s = -115.654560
Sum of electronic and thermal Enthalpi	ies = -115.653616
Sum of electronic and thermal Free En	ergies = -115.680560

01			
С	-0.66507200	-0.01995900	0.00000600
0	0.74708100	0.12325600	0.00000800
Н	-1.08957000	0.98378600	-0.00135300
Н	-1.01827000	-0.54893900	-0.89078900
Н	-1.01847800	-0.54668900	0.89205800
Н	1.14010200	-0.75445800	-0.00001800

Optimized Structure for Propargyl Alcohol

Zero-point correction =0.061979 (Hartree/Particle)Thermal correction to Energy =0.06650Thermal correction to Enthalpy =0.067594Thermal correction to Gibbs Free Energy =0.035425Sum of electronic and zero-point Energies =-191.785842Sum of electronic and thermal Energies =-191.781171Sum of electronic and thermal Enthalpies =-191.780227Sum of electronic and thermal Free Energies =-191.812396

01

С	-1.91825600	-0.21585000	-0.01431400
С	-0.77478300	0.15166600	0.00256500
С	0.62781400	0.58775800	0.03476100
0	1.53830200	-0.48736900	-0.11102800
Н	-2.93366100	-0.54403700	-0.03183300
Н	0.81391100	1.26846900	-0.79713700
Н	0.80792100	1.13812700	0.96402700
Н	1.39676700	-1.10504700	0.61509600

Optimized Structure for HCI

Zero-point correction =	0.006684 (Hartree/Particle)
Thermal correction to Energy =	0.009045
Thermal correction to Enthalpy =	0.009989
Thermal correction to Gibbs Free Ener	gy = -0.011206
Sum of electronic and zero-point Energy	gies = -460.794913
Sum of electronic and thermal Energies	s = -460.792553
Sum of electronic and thermal Enthalpi	es = -460.791608
Sum of electronic and thermal Free En	ergies = -460.812803

01

• •			
CI	0.00000000	0.00000000	0.07153700
Н	0.00000000	0.00000000	-1.21612500

Optimized Structure for Chloride

Zero-point correction =	0.000000 (Hartree/Particle)
Thermal correction to Energy =	0.001416
Thermal correction to Enthalpy =	0.002360
Thermal correction to Gibbs Free Ener	rgy = -0.015023
Sum of electronic and zero-point Ener	gies = -460.354617
Sum of electronic and thermal Energie	es = -460.353201
Sum of electronic and thermal Enthalp	bies = -460.352257
Sum of electronic and thermal Free Er	nergies = -460.369640

Optimized Structure for HBr

Zero-point correction = 0.006052 (Hartree/Particle) Thermal correction to Energy = 0.008413 Thermal correction to Enthalpy = 0.009357 Thermal correction to Gibbs Free Energy = -0.013171 Sum of electronic and zero-point Energies = -2574.765615 Sum of electronic and thermal Energies = -2574.763255 Sum of electronic and thermal Enthalpies = -2574.762311 Sum of electronic and thermal Free Energies = -2574.784838

01			
Br	0.00000000	0.00000000	0.03950400
Н	0.00000000	0.00000000	-1.38262800

Optimized Structure for Bromide

Zero-point correction =	0.000000 (Hartree/Particle)
Thermal correction to Energy =	0.001416
Thermal correction to Enthalpy =	0.002360
Thermal correction to Gibbs Free Energy	gy = -0.016176
Sum of electronic and zero-point Energ	ies = -2574.327641
Sum of electronic and thermal Energies	s = -2574.326225
Sum of electronic and thermal Enthalpie	es = -2574.325281
Sum of electronic and thermal Free End	ergies = -2574.343817

-1 1

Br 0.0000000 (0.00000000	0.0000000
----------------	------------	-----------

Sample Input File (Propargyl Alcohol)

%mem=64GB %nprocshared=12 %chk=Propargyl_OH-1_DFT_Freq_CHCl3_SMD.chk

#p M062X/GEN OPT=CalcAll freq scrf=(SMD,solvent=chloroform) scf=xqc int=ultrafine Integral=NOXCTest

Propargyl_OH-1_DFT_Freq_SMD

01

-			
С	-1.91169300	-0.21965100	-0.01668700
С	-0.76664300	0.15295600	0.00712900
С	0.60714100	0.60266900	0.03751700
0	1.53179500	-0.48958600	-0.10920600
Н	-2.89966900	-0.53648200	-0.03792100
Н	0.85414600	1.25694000	-0.83104800
Н	0.84108100	1.14505400	0.98129300
Н	1.37724700	-1.16466800	0.59357600

H C O 0 6-311++G(d,p)

18.) Antiplasmodial Methods and Results.

Dose-Response Curves

Rate of Killing Assay

Compounds were added at 10 x EC₅₀ concentrations to synchronous Dd2 culture at 1% parasitemia and 4% hematocrit starting at six hours post invasion (HPI). Dd2 culture was synchronized by using 5% sorbitol. Cultures were exposed to the compound of interest for 12, 24, and 48 hours, followed by washing steps and continuous monitoring of parasite regrowth over the course of four days. PBS and 0.5% BSA were used for washing and blocking steps. Samples were collected every 24 hours until the 96-hour time point. A mixture of Mitotracker

Deep red (MTR) and SYBR Green I dyes were used to stain the culture to track mitochondria content and parasitemia, respectively. Uninfected red blood cells and no mitotracker controls were used to assist with flowcytometry gating. Dimethyl sulfoxide (DMSO) was used as a negative control. Dihydroartemisinin (DHA) was used as a positive control for rapid parasite killing, and atovaquone was also used as a positive control for late stage killing. GraphPad Prism was used to analyze the flow cytometry data. Results are expressed as the means of triplicate biological experiments and parasite viability.

Stage Specific Assay & Supporting Data for Compound 41

Dd2 culture was synchronized by using 5% sorbitol. The culture was then diluted to 1% parasitemia and 2% hematocrit. Compounds of interest were added at 5 x EC₅₀ concentrations at 6, 18, 30 and 42 HPI. DMSO and DHA were used as a negative and positive controls, respectively. Samples were collected every 12 hours at every stage until reinvasion at 54 HPI. Giemsa smearing was used to observe the parasite morphology, and flow cytometry was used to observe parasite DNA content. Samples were fixed in 4% paraformaldehyde, and PBS was used for washing steps. Samples were permeabilized in 0.25% Triton X-100 and stained using DNA dye YOYO-1. FlowJo (v 10.8) was used to analyze the flow cytometry data. Results are representative of triplicate biological experiments. Note: Experimental data for compound **40** is shown below (the data for compound **41** is reported in the manuscript).

19.) References.

- Norwood, V. M.; Brice-Tutt, A. C.; Eans, S. O.; Stacy, H. M.; Shi, G.; Ratnayake, R.; Rocca, J. R.; Abboud, K. A.; Li, C.; Luesch, H.; McLaughlin, J. P.; Huigens III, R. W. Preventing Morphine-Seeking Behavior through the Re-Engineering of Vincamine's Biological Activity. *J. Med. Chem.* **2020**, *63*, 5119-5138.
- (2) Guerriero, A.; D'Ambrosio, M.; Pietra, F. Slowly Interconverting Conformers of The Briarane Diterpenoids Verecynarmin B, C, and D, Isolated from the Nudibranch Mollusc Armina Maculata and the Pennatulacean Octocoral Veretillum Cynomorium of East Pyrenean Waters. *Helv. Chim. Acta* **1988**, *71*, 472-485.
- (3) Bain, A. D.; Bell, R. A.; Fletcher, D. A.; Hazendonk, P.; Maharajh, R. A.; Rigby, S.; Valliant, J. F. NMR Studies of Chemical Exchange amongst Five Conformers of a Ten-Membered Ring Compound Containing Two Amide Bonds and a Disulfide. *J. Chem. Soc. Perkin Trans.* 2 1999, No. 7, 1447-1454.
- (4) Lebl, T.; Lorion, M. M.; Jones, A. M.; Philp, D.; Westwood, N. J. Synthesis and Characterisation of Medium-Sized Ring Systems by Oxidative Cleavage. Part 2: Insights from the Study of Ring Expanded Analogues. *Tetrahedron* **2010**, *66*, 9694-9702.
- (5) Norwood, V. M.; Murillo-Solano, C.; Goertzen, M. G.; Brummel, B. R.; Perry, D. L.; Rocca, J. R.; Chakrabarti, D.; Huigens III, R. W. Ring Distortion of Vincamine Leads to the Identification of Re-Engineered Antiplasmodial Agents. ACS Omega 2021, 6, 20455-20470.
- (6) Paciaroni, N. G.; Ratnayake, R.; Matthews, J. H.; Norwood, V. M.; Arnold, A. C.; Dang, L. H.; Luesch, H.; Huigens III, R. W. A Tryptoline Ring-Distortion Strategy Leads to Complex and Diverse Biologically Active Molecules from the Indole Alkaloid Yohimbine. *Chem. Eur. J.* **2017**, *23*, 4327-4335.
- (7) Liu, C. T.; Sun, S. C.; Yu, Q. S. Synthesis and Photooxidation of the Condensation Products of Tryptamine and Catechol Derivatives. An Approach to the Synthesis of a Probable Precursor of Koumine. *J. Org. Chem.* **1983**, *48*, 44-47.
- (8) Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112-122.
- Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3-8.
- (10) Sheldrick, G. M. SHELXTL2014 Structure Determination Software Suite. Bruker AXS: Madison, WI 2014.
- (11) Sheldrick, G. M. SHELXT Integrated Space-Group and Crystal-Structure Determination. *Acta Crystallogr. Sect. A Found. Adv.* **2015**, *71*, 3-8.
- (12) Allinger, N. L. Conformational Analysis. 130. MM2. A Hydrocarbon Force Field Utilizing V1 and V2 Torsional Terms. J. Am. Chem. Soc. 1977, 99, 8127-8134.
- (13) Schrödinger, LLC. Schrödinger Release 2022-3. New York, New York, 2021.
- Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J. M.; Lu, C.; Dahlgren, M. K.; Mondal, S.; Chen, W.; Wang, L.; Abel, R.; Friesner, R. A.; Harder, E. D. OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules. *J. Chem. Theory Comput.* **2019**, *15*, 1863-1874.
- (15) Jorgensen, W. L.; Tirado-Rives, J. The OPLS [Optimized Potentials for Liquid Simulations] Potential Functions for Proteins, Energy Minimizations for Crystals of Cyclic Peptides and Crambin. J. Am. Chem. Soc. 1988, 110, 1657-1666.
- (16) Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J. Y.; Wang, L.; Lupyan, D.; Dahlgren, M. K.; Knight, J. L.; Kaus, J. W.; Cerutti, D. S.; Krilov, G.; Jorgensen, W. L.; Abel, R.; Friesner, R. A. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. *J. Chem. Theory Comput.* **2016**, *12*, 281-296.
- (17) Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of Absolute Solvation Free Energies Using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. *J. Chem. Theory Comput.* **2010**, *6*, 1509-1519.
- (18) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225-11236.
- (19) Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G. A.; Dahlgren, M. K.; Russell, E.;
 Von Bargen, C. D.; Abel, R.; Friesner, R. A.; Harder, E. D. OPLS4: Improving Force Field Accuracy on
 Challenging Regimes of Chemical Space. *J. Chem. Theory Comput.* **2021**, *17*, 4291-4300.
- (20) Ponder, J. W.; Richards, F. M. An Efficient Newton-like Method for Molecular Mechanics Energy Minimization of Large Molecules. J. Comput. Chem. 1987, 8, 1016-1024.
- (21) Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. J. Am. Chem. Soc. **1990**, *112*, 6127-6129.
- (22) Avogadro: An Open-Source Molecular Builder and Visualization Tool. Version 1.2.0. http://avogadro.cc/.
- Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. *J. Cheminform.* 2012, *4*, 17.
- (24) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;

Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; and Fox, D. J.; Gaussian, Inc., Wallingford CT, **2013**.

- (25) Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2019**.
- (26) Stewart, J. J. P. Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements. J. Mol. Model. 2007, 13, 1173-1213.
- (27) Miertuš, S.; Tomasi, J. Approximate Evaluations of the Electrostatic Free Energy and Internal Energy Changes in Solution Processes. *Chem. Phys.* **1982**, *65*, 239-245.
- (28) Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic Interaction of a Solute with a Continuum. A Direct Utilization of AB Initio Molecular Potentials for the Prevision of Solvent Effects. *Chem. Phys.* **1981**, *55*, 117-129.
- (29) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378-6396.
- (30) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Function. *Theor. Chem. Acc.* 2008, 120, 215-241.
- (31) Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self-consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets. J. Chem. Phys. **1984**, 80, 3265-3269.
- (32) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-Row Elements, Li-F. *J. Comput. Chem.* **1983**, *4*, 294-301.
- (33) McLean, A. D.; Chandler, G. S. Contracted Gaussian Basis Sets for Molecular Calculations. I. Second

Row Atoms, Z =11–18. J. Chem. Phys. 1980, 72, 5639-5648.

- (34) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. **1980**, 72, 650-654.
- (35) Easton, R. E.; Giesen, D. J.; Welch, A.; Cramer, C. J.; Truhlar, D. G. The MIDI! Basis Set for Quantum Mechanical Calculations of Molecular Geometries and Partial Charges. *Theor. Chim. Acta* **1996**, *93*, 281-301.
- (36) GaussView, Version 6, Dennington, R.; Keith, T.; Millam, J. M. Semichem Inc., Shawnee Mission, KS, 2016.

20.) NMR Spectra.

NMR spectra appear in the following order: (1) yohimbine (internal reference for derivatives), (2) ring-cleaved yohimbine derivatives (in the order shown on Supplementary Figure 1), (3) ring-cleaved apovincamine and vinburnine derivatives (in the order shown on Supplementary Figure 2), and (4) ring-cleaved reserpine derivatives (in the order shown on Supplementary Figure 2).

Internal Reference Cited (used with permission): Chem. Eur. J. **2017**, 23, 4327-4335.

Internal Reference Cited (used with permission): Chem. Eur. J. **2017**, 23, 4327-4335.

Internal Reference Cited (used with permission): Chem. Eur. J. **2017**, 23, 4327-4335. f1 (ppm)

Internal Reference Cited (used with permission): Chem. Eur. J. **2017**, 23, 4327-4335.

Compound 13: COSY, T = 100 °C, $C_2D_2CI_4$ (full)

 $C_2D_2CI_4$ (zoomed in)

Compound 13: HSQC, T = 100 °C, $C_2D_2CI_4$ (full)

 $C_2 D_2 Cl_4$ (zoomed in)

 $T = 100 \ ^{\circ}C, \ C_2 D_2 C I_4$

Compound 15: COSY, T = 100 °C, $C_2D_2Cl_4$ (zoomed in)

 $C_2D_2Cl_4$ (zoomed in, version 2)

Compound 15: NOE, T = 100 °C, $C_2D_2CI_4$

Compound 17: HSQC, T = 100 °C, $C_2D_2CI_4$ (zoomed in)

Compound 17: HMBC, T = 100 °C, $C_2D_2Cl_4$ (full)

Compound 47: COSY, T = 100 °C, $C_2D_2Cl_4$ (full)

 $C_2 D_2 Cl_4$ (zoomed in)

Compound 47: HSQC, T = 100 °C, $C_2D_2CI_4$ (full)

 $C_2D_2CI_4$ (zoomed in)

Compound 47: HMBC, T = 100 °C, $C_2D_2CI_4$ (full)

Compound 48: COSY, T = 100 °C, $C_2D_2CI_4$ (full)

 $C_2 D_2 Cl_4$ (zoomed in)

Compound 48: HSQC, T = 100 °C, $C_2D_2Cl_4$ (wide)

S170

 $C_2D_2Cl_4$ (zoomed in, version 3)

Compound 49: COSY, T = 100 °C, $C_2D_2CI_4$ (full)

 $C_2D_2Cl_4$ (zoomed in)

Compound 49: HSQC, T = 100 °C, $C_2D_2CI_4$ (full)

 $C_2D_2Cl_4$ (zoomed in, version 1)

Compound 52: COSY, T = 100 °C, $C_2D_2Cl_4$ (full)

Compound 52: COSY, T = 100 °C, $C_2D_2Cl_4$ (zoomed in, version 1)

Compound 52: HSQC, T = 100 °C, $C_2D_2CI_4$ (full)

Compound 21: COSY, T = 100 °C, $C_2D_2Cl_4$ (full)

Compound 21: HSQC, T = 100 °C, $C_2D_2Cl_4$ (full)

Compound 21: HSQC, T = 100 °C, $C_2D_2CI_4$ (zoomed in, version 1)

Compound 21: HSQC, T = 100 °C, $C_2D_2Cl_4$ (zoomed in, version 2)

 $C_2D_2Cl_4$ (zoomed in, version 3)

Compound 22: COSY, T = 100 °C, $C_2D_2CI_4$ (full)

Compound 22: COSY, T = 100 °C, $C_2D_2Cl_4$ (zoomed in, version 1)

Compound 22: HSQC, T = 100 °C, $C_2D_2CI_4$ (full)

Compound 22: HSQC, T = 100 °C, $C_2D_2CI_4$ (zoomed in, version 1)

 $C_2D_2CI_4$ (zoomed in, version 2)

Compound 53: COSY, T = 100 °C, $C_2D_2CI_4$ (full)

 $C_2 D_2 Cl_4$ (zoomed in)

Compound 53: HSQC, T = 100 °C, $C_2D_2CI_4$ (zoomed in, version 1)

Compound 53: HSQC, T = 100 °C, $C_2D_2CI_4$ (zoomed in, version 2)

Compound 54: HSQC, T = 100 °C, $C_2D_2CI_4$ (zoomed in, version 3)

 $C_2D_2CI_4$ (zoomed in, version 4)

S230

DMSO-*d6* (zoomed in)

DMSO-*d6* (zoomed in)

S241

Compound 59: COSY, T = 100 °C, $C_2D_2CI_4$ (full)

 $C_2D_2CI_4$ (zoomed in)

S247

Compound 61: COSY, T = 25 °C, $CDCl_3$ (full)

Compound 62: COSY, T = 100 °C, $C_2D_2CI_4$ (full)

S254

Compound 62: HSQC, T = 100 °C, $C_2D_2CI_4$ (full)

S255

f1 (ppm)

f1 (ppm)

Compound 62: HSQC, T = 100 °C, $C_2D_2CI_4$ (zoomed in)

Compound 16: COSY, T = 100 °C, $C_2D_2CI_4$ (full)

 $C_2D_2Cl_4$ (zoomed in)

Compound 16: NOE, T = 100 °C, $C_2D_2CI_4$

Compound 64: COSY, T = 100 °C, $C_2D_2CI_4$ (full)

Compound 64: HSQC, T = 100 °C, $C_2D_2Cl_4$ (full)

Compound **64**: HSQC, T = 100 °C, $C_2D_2CI_4$ (zoomed in, version 1). Key correlation to assign 22 & 22'.

Compound 27: COSY, T = 100 °C, $C_2D_2CI_4$ (full)

Compound 27: COSY, T = 100 °C, $C_2D_2Cl_4$ (zoomed in)

Compound 27: HSQC, T = 100 °C, $C_2D_2CI_4$ (full)

f1 (ppm)

Compound 27: HSQC, T = 100 °C, $C_2D_2CI_4$ (zoomed in, version 1)

 $C_2D_2CI_4$ (zoomed in, version 2)

Compound 71: COSY, T = 100 °C, $C_2D_2CI_4$ (full)

Compound 71: COSY, T = 100 °C, $C_2D_2Cl_4$ (zoomed in)

Compound 71: HSQC, T = 100 °C, $C_2D_2CI_4$ (full)

Compound **72**: COSY, T = 100 °C, $C_2D_2Cl_4$ (zoomed in, version 1). Allylic coupling observed between protons at 11 and 13.

Compound 72: COSY, T = 100 °C, $C_2D_2Cl_4$ (zoomed in, version 2).

 $C_2D_2CI_4$ (zoomed in, version 1)

Compound 74: COSY, T = 100 °C, $C_2D_2CI_4$ (full)

 $C_2 D_2 Cl_4$ (zoomed in)

S314

Compound 40: COSY, MeOD-d4 (full)

Compound 40: HSQC, MeOD-d4 (full)

Compound **40**: HSQC, MeOD-*d4* (full, increased signal intensity to characterize the C13 signal for C4)

S319

Compound 40: HSQC, MeOD-d4 (aliphatic region) S322

Compound **40**: HSQC, MeOD-*d4* (aliphatic region; zoomed in, version 2 with increased intensity)

Compound 41: ¹³C NMR, CDCl₃ (aromatic region) S

Compound 41: ¹³C NMR, CDCl₃ (aliphatic region)

Compound 41: DEPT, CDCl₃

Compound 41: COSY, CDCl₃ (full)

f1 (ppm)

Compound 41: COSY, CDCl₃ (aromatic region)

Compound 41: COSY, CDCl₃ (aliphatic region)

Compound 41: HSQC, CDCl₃ (full)

f1 (ppm)

Compound 41: HSQC, CDCl₃ (zoomed in, version 1)

f1 (ppm)

to define the "C" methoxy signal, part 1)

