Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Brønsted Acid-Promoted Synthesis of Highly Functionalized Tetrahydrocarbazoles from Diethyl (*E*)-5-diazo-4-oxohex-2-enedioate

Vemula Arunkumar and Rengarajan Balamurugan*

School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad-500046, India

bala@uohyd.ac.in

Table of contents

Sl. No	Description	Page No.
1	General information	S2
2	General procedure for the TfOH-promoted synthesis of tetrahydrocarbazoles from indole and diethyl (<i>E</i>)-5-diazo-4-oxohex-2-enedioate	S3
3	General procedure for the Tf_2NH -catalyzed synthesis of tetrahydrocarbazoles from indole and diethyl (<i>E</i>)-5-diazo-4-oxohex-2-enedioate	S3
4	Characterization of Products 3b-3p	S4
5	Characterization of Products 5b-5t	S9
6	Characterization of Products 7-15	S19
7	Crystal structure and Data of 5a, 10 and 15	S23
8	References	S28
9	Copies of ¹ H NMR and ¹³ C NMR Spectra of 3a- 3p	S29
10	Copies of ¹ H NMR and ¹³ C NMR Spectra of 5a-5t	S45
11	Copies of ¹ H NMR and ¹³ C NMR Spectra of Compounds 7 to 15	S65

1. General information:

All Chemicals and solvents were purchased from various commercial sources (Alfa, Sigma-Aldrich, Avra, TCI, BLD) and used without further purification. Starting materials were prepared by following known literature procedures. All the reactions were carried out under N₂ atmosphere with dry solvents using over dried glassware. Dichloromethane, dichloroethane, acetonitrile were dried over CaH₂ and freshly distilled before use. THF and toluene were dried over sodium and freshly distilled before use. ¹H and ¹³C spectra were recorded on 400 and 500 MHz spectrometers using solution in CDCl₃ with tetramethylsilane (TMS) as an internal standard. IR spectra were recorded using a FT-IR spectrometer reported in cm⁻¹. High-resolution mass spectra (HRMS) were recorded using ESI-Q-TOF technique. Single crystal X-ray diffraction data were collected in Bruker D8-Quest, diffractometers. Melting points were determined by using a melting range apparatus and are uncorrected. For TLC, silica gel plates 60 F254 were used and compounds were visualized by UV light and/or by treatment with seebach solution (phosphomolybdic acid (2.5 g), Ce(SO₄)₂ (1 g), conc. H₂SO₄ (6 mL) and H₂O (94 mL)) followed by heating. Column chromatography was performed on silica gel (100-200 mesh) using ethyl acetate and hexanes and chloroform/ethyl acetate mixture as eluent.

2. General procedure for the TfOH-promoted synthesis of tetrahydrocarbazoles from indole and diethyl (*E*)-5-diazo-4-oxohex-2-enedioate

To a solution of diethyl (*E*)-5-diazo-4-oxohex-2-enedioate¹ (1) (0.100 g, 0.416 mmol) and indole (2a) (0.049 g, 0.42 mmol) in dry DCE (3 mL) in a sealed tube, TfOH (37 µL, 0.42 mmol) was added under nitrogen atmosphere. Then reaction mixture was heated at 80°C. The progress of the reaction was monitored by TLC. After 45 min, the reaction mixture was quenched with saturated aqueous NaHCO₃ solution. Then it was extracted using ethyl acetate (3 x 10 mL). The combined organic layers were washed with saturated aqueous brine solution and dried over anhydrous Na₂SO₄. The solvents were evaporated under reduced pressure. The crude product was purified by column chromatography to get 0.103 g (75%) of the pure diethyl 2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate **3a**. Yellow solid; m.p. = 86-87 °C; R_f = 0.56 in 20% EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 12.97 (br s, 1H), 8.84 (br s, 1H), 7.63 – 7.54 (m, 1H), 7.37 – 7.29 (m, 1H), 7.17 – 7.10 (m, 2H), 4.57 – 4.45 (m, 2H), 4.22 – 4.01 (m, 3H), 3.15 (dd, *J* = 17.5, 3.3 Hz, 1H), 3.08 (dd, *J* = 17.6, 8.3 Hz, 1H), 1.51 (t, *J* = 7.1 Hz, 3H), 1.22 (t, *J* = 7.1 Hz, 3H).

3. General procedure for the Tf₂NH-catalyzed synthesis of tetrahydrocarbazoles from indole and diethyl (*E*)-5-diazo-4-oxohex-2-enedioate

To a solution of diethyl (*E*)-5-diazo-4-oxohex-2-enedioate¹ (1) (0.100 g, 0.416 mmol) and Nmethylindole (4) (0.055 g, 0.42 mmol) in dry DCE (3 mL) in a sealed tube, Tf₂NH (0.023 g, 0.082 mmol) was added under nitrogen atmosphere. Then reaction mixture was heated at 80°C. The progress of the

reaction was monitored by TLC. After 24 h, the reaction mixture was quenched with saturated aqueous NaHCO₃ solution. Then it was extracted using ethyl acetate (3 x 10 mL). The combined organic layers were washed with saturated aqueous brine solution and dried over anhydrous Na₂SO₄. The solvents were evaporated under reduced pressure. The crude product was purified by column chromatography to get 0.105 g (73%) of the pure **5a** as an inseparable mixture of keto and enol forms. Keto/enol forms = 94:6; dr of keto form = 1:0.68; Yellow solid; m.p. = 109-110 °C; R_f = 0.45 in 2% CHCl₃/EtOAc; **Major isomer** : ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.68 (m, 1H), 7.34 – 7.29 (m, 1H), 7.30 – 7.26 (m, 1H), 7.20 – 7.15 (m, 1H), 4.66 (s, 1H), 4.43 (dd, *J* = 6.7, 2.2 Hz, 1H), 4.29 – 4.19 (m, 2H), 4.15 – 4.04 (m, 2H), 3.63 (s, 3H), 3.15 (dd, *J* = 14.3, 6.7 Hz, 1H), 2.95 (dd, *J* = 14.2, 1.8 Hz, 1H), 1.28 (t, *J* = 7.0 Hz, 3H). **Minor isomer**: ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.68 (m, 1H), 4.31 (dd, *J* = 6.8, 3.6 Hz, 1H), 4.29 – 4.19 (m, 2H), 4.14 – 4.05 (m, 2H), 3.63 (s, 3H), 3.25 (dd, *J* = 15.0, 3.7 Hz, 1H), 2.79 (dd, *J* = 15.0, 6.8 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.20 (t, *J* = 7.1 Hz, 3H).

Compounds **5b-5t** were synthesized using the above procedure.

The compounds of 3a, 3c, 3d, 3e, 3f, 3j, 3l, 5a, 5c and 5d are already reported in literature.¹

4. Characterization of Products 3b-3p

Diethyl 2-hydroxy-6-methyl-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3b): Yield (0.062 g,

43%); Yellow solid; m.p. = 82-83 °C; $R_f = 0.51$ in 20% EtOAc/hexanes; ¹H NMR (500 MHz, CDCl₃): δ 13.03 (s, 1H), 8.74 (s, 1H), 7.36 (d, J = 0.5 Hz, 1H), 7.23 (d, J = 8.2 Hz, 1H), 6.95 (dd, J = 8.2, 1.6 Hz, 1H), 4.49 (q, J = 7.1 Hz, 2H), 4.16 (dq, J = 10.8, 7.1 Hz, 1H), 4.13 – 4.06 (m, 2H), 3.12 (dd, J = 17.5, 3.6 Hz, 1H), 3.07 (dd, J = 17.5, 8.2 Hz, 1H), 2.47 (s, 3H), 1.51 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.7, 172.9, 169.4, 134.0,

130.4, 129.3, 126.5, 122.2, 117.7, 110.4, 99.4, 94.5, 61.4, 60.9, 36.1, 32.4, 21.6, 14.5, 14.1. IR (neat, cm⁻¹): υ 3489, 2991, 2985, 1725, 1648, 1597, 1446, 1305, 1227, 1145, 1078, 859. HRMS (ESI-Q-TOF) m/z calcd for C₁₉H₂₂NO₅ (M + H)⁺ 344.1492, found 344.1496.

Diethyl 6-fluoro-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3c): Yield (0.074 g, 51%);

Yellow solid; $R_f = 0.51$ in 20% EtOAc/hexanes; ¹H NMR (500 MHz, CDCl₃): δ 13.03 (s, 1H), 8.80 (s, 1H), 7.21-7.16 (m, 2H), 6.81 (td, J = 9.0, 2.5 Hz, 1H), 4.46 (dq, J = 7.1, 1.6 Hz, 2H), 4.13 (dq, J = 10.8, 7.1 Hz, 1H), 4.10 – 4.03 (m, 1H), 4.01 (dd, J = 8.6, 3.1 Hz, 1H), 3.11 (dd, J = 17.6, 3.1 Hz, 1H), 3.03 (dd, J = 17.6, 8.6 Hz, 1H), 1.46 (t, J = 7.1 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H).

Diethyl 6-chloro-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3d): Yield (0.072 g, 48%);

Yellow solid; m.p. = 142-143 °C; $R_f = 0.48$ in 20% EtOAc/hexanes; ¹H NMR (500 MHz, CDCl₃): δ 13.04, (s, 1H), 8.85 (s, 1H), 7.53 (d, J = 2.0 Hz, 1H), 7.24 (dd, J = 8.5, 1.1 Hz, 1H), 7.08 – 7.03 (m, 1H), 4.53 – 4.47 (m, 2H), 4.20 – 4.02 (m, 2H), 4.05 (dd, J = 8.7, 3.2 Hz, 1H), 3.15 (dd, J = 17.6, 3.1 Hz, 1H), 3.07 (dd, J = 17.6, 8.6 Hz, 1H), 1.50 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz, 3H).

Diethyl 6-bromo-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate

(3e): Yield (0.084 g, 20% EtOAc/hexanes; ¹H
1H), 7.67 - 7.66 (m, 1H), (m, 2H), 4.01 (dd, J = 8.8, J = 17.7, 8.7 Hz, 1H),

49%); Yellow solid; m.p. = 152-153 °C; R_f = 0.42 in NMR (500 MHz, CDCl₃): δ 13.05 (s, 1H), 8.84 (s, 7.17 – 7.13 (m, 2H), 4.50 – 4.44 (m, 2H), 4.18 – 4.05 3.1 Hz, 1H), 3.12 (dd, *J* = 17.7, 3.1 Hz, 1H), 3.03 (dd, 1.47 (t, *J* = 7.1 Hz, 3H), 1.20 (t, *J* = 7.1 Hz, 3H).

Diethyl 6-cyano-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3f): Yield (0.038 g, 26%);

Yellow solid; m.p. = 188-189 °C; $R_f = 0.37$ in 30% EtOAc/hexanes; ¹H NMR (500 MHz, CDCl₃): δ 13.16 (s, 1H), 9.08 (s, 1H), 7.91 (t, J = 0.5 Hz, 1H), 7.39 (dd, J = 8.0, 0.5 Hz, 1H), 7.36 (dd, J = 8.0, 1.5 Hz, 1H), 4.56 – 4.50 (m, 2H), 4.22 – 4.05 (m, 3H), 3.19 (dd, J = 17.7, 2.9 Hz, 1H), 3.10 (dd, J = 17.7, 8.8 Hz, 1H), 1.52 (t, J = 7.1 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H).

Diethyl 7-fluoro-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3g): Yield (0.062 g, 43%);

Yellow solid; m.p. = 102-105 °C; R_f = 0.51 in 20% EtOAc/hexanes; ¹H NMR (500 MHz, CDCl₃): δ 13.02 (s, 1H), 8.82 (s, 1H), 7.52 – 7.44 (m, 1H), 7.09 – 6.99 (m, 1H), 6.92 – 6.86 (m, 1H), 4.52 – 4.46 (m, 2H), 4.19 – 4.12 (m, 1H), 4.12 – 4.04 (m, 2H), 3.16 – 3.10 (m, 1H), 3.10 – 3.03 (m, 1H), 1.52 – 1.47 (m, 3H), 1.26 – 1.14 (m, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 176.5,

172.7, 169.3, 159.5 (d, J = 235.0 Hz), 135.5 (d, J = 11.3 Hz), 130.6, 122.9, 118.5 (d, J = 8.5 Hz), 108.5 (d, J = 23.7 Hz), 99.7, 97.3 (d, J = 26.2 Hz), 94.3, 61.5, 61.0, 36.0, 32.2, 14.5, 14.1. IR (neat, cm⁻¹): υ 3469, 2981, 1719, 1647, 1625, 1587, 1221, 1133, 1078, 837, 758. HRMS (ESI-Q-TOF) m/z calcd for C₁₈H₁₉FNO₅ (M + H)⁺ 348.1242, found 348.1241.

Diethyl 7-chloro-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3h): Yield (0.080 g, 53%);

Yellow solid; m.p. = 92-94 °C; $R_f = 0.48$ in 20% EtOAc/hexanes; ¹H NMR (500 MHz, CDCl₃): δ 13.06 (s, 1H), 8.83 (s, 1H), 7.46 (d, J = 8.5 Hz, 1H), 7.34 – 7.31 (m, 1H), 7.09 (dd, J = 8.5, 1.8 Hz, 1H), 4.48 (dq, J = 7.1, 1.0 Hz, 2H), 4.15 (dq, J = 10.8, 7.1 Hz, 1H), 4.11 – 4.04 (m, 2H), 3.14 (dd, J = 17.6, 3.2 Hz, 1H), 3.06 (dd, J = 17.6, 8.6 Hz, 1H), 1.49 (t, J = 7.1 Hz, 3H), 1.20

(t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 177.2, 172.6, 169.3, 136.0, 131.1, 126.3, 124.9, 120.7, 118.7, 110.7, 99.8, 94.1, 61.6, 61.1, 35.9, 32.2, 14.5, 14.1. IR (neat, cm⁻¹): υ 3472, 2983, 1722, 1647, 1595, 1468, 1330, 1223, 1079, 855. HRMS (ESI-Q-TOF) m/z calcd for C₁₈H₁₉ClNO₅ (M + H)⁺ 364.0946, found 364.0946.

Diethyl 7-bromo-2-hydroxy-4,9-dihydro-3*H*-carbazole-1,4-dicarboxylate (3i): Yield (0.079 g, 46%);

Brown solid; m.p. = 124-125 °C; $R_f = 0.36$ in 20% EtOAc/hexanes; ¹H NMR (500 MHz, CDCl₃): δ 13.07 (s, 1H), 8.82 (s, 1H), 7.49 (d, J = 1.5 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.22 (dd, J = 8.4, 1.7 Hz, 1H), 4.49 (qd, J = 7.1, 1.1 Hz, 2H), 4.18 – 4.11 (m, 1H), 4.11 – 4.03 (m, 2H), 3.14 (dd, J = 17.6, 3.2 Hz, 1H), 3.07 (dd, J = 17.6, 8.6 Hz, 1H), 1.50 (t, J = 7.1 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 177.2, 172.6,

169.2, 136.4, 131.1, 125.2, 123.3, 119.1, 113.8, 113.7, 99.8, 94.1, 61.6, 61.1, 35.8, 32.2, 14.5, 14.1. IR (neat, cm⁻¹): υ 3471, 2980, 1714, 1646, 1591, 1465, 1365, 1218, 1077, 852; HRMS (ESI-Q-TOF) m/z calcd for C₁₈H₁₉BrNO₅ (M + H)⁺ 408.0441, found 408.0433.

Diethyl 2-hydroxy-8-methyl-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3j): Yield (0.075 g, 52%);

7.1 Hz, 3H).

Yellow solid; m.p. = 80-83 °C; $R_f = 0.45$ in 20% EtOAc/hexanes; ¹H NMR (500 MHz, CDCl₃): δ 12.95 (s, 1H), 8.79 (s, 1H), 7.43 (d, J = 7.9 Hz, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.94 (d, J = 7.1 Hz, 1H), 4.49 (q, J = 7.1 Hz, 2H), 4.20 – 4.13 (m, 1H), 4.13 – 4.03 (m, 2H), 3.14 (dd, J = 17.5, 3.5 Hz, 1H), 3.08 (dd, J = 17.5, 8.3 Hz, 1H), 2.49 (s, 3H), 1.53 (t, J = 7.1 Hz, 3H), 1.21 (t, J =

Diethyl 8-fluoro-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3k): Yield (0.056 g, 39%);

Yellow solid; m.p. = 108-109 °C; $R_f = 0.38$ in 20% EtOAc/hexanes; ¹H NMR (500 MHz, CDCl₃): δ 13.05 (s, 1H), 8.92 (s, 1H), 7.30 (d, J = 7.9 Hz, 1H), 7.03 – 6.97 (m, 1H), 6.81 (ddd, J = 11.0, 7.5, 0.5 Hz, 1H), 4.49 (dq, J = 7.1, 1.7 Hz, 2H), 4.17 – 4.09 (m, 1H), 4.09 – 4.02 (m, 2H), 3.13 (dd, J = 17.6, 3.3 Hz, 1H), 3.06 (dd, J = 17.6, 8.4 Hz, 1H), 1.49 (t, J = 7.1 Hz, 3H), 1.18 (t, J = 7.1 Hz,

3H). ¹³C NMR (125 MHz, CDCl₃): δ 177.4, 172.6, 169.4, 149.2 (d, *J* = 241.2 Hz), 131.1, 129.8 (d, *J* = 5.0 Hz), 120.3 (d, *J* = 6.2 Hz), 113.8 (d, *J* = 3.7 Hz), 105.7 (d, *J* = 16.2 Hz), 100.5 (d, *J* = 2.5 Hz), 94.2, 61.7, 61.1, 36.0, 32.3, 14.4, 14.1. IR (neat, cm⁻¹): v 3480, 2989, 1727, 1645, 1562, 120, 1094, 1028, 776; HRMS (ESI-Q-TOF) m/z calcd for C₁₈H₁₉FNO₅ (M + H)⁺ 348.1242, found 348.1244.

Diethyl 8-bromo-2-hydroxy-4,9-dihydro-3*H*-carbazole-1,4-dicarboxylate (31): Yield (0.081 g, 48%);

Yellow solid; m.p. = 108-109 °C; $R_f = 0.38$ in 20% EtOAc/hexanes; ¹H NMR (500 MHz, CDCl₃): δ 12.99 (s, 1H), 9.04 (s, 1H), 7.50 (d, J = 7.9 Hz, 1H), 7.25 (dd, J = 7.6, 0.8 Hz, 1H), 7.01 (t, J = 7.8 Hz, 1H), 4.49 (dq, J = 7.1, 1.5 Hz, 2H), 4.19 – 4.12 (m, 1H), 4.11 – 4.04 (m, 2H), 3.15 (dd, J = 17.6, 3.3 Hz, 1H), 3.08 (dd, J = 17.6, 8.6 Hz, 1H), 1.56 (t, J = 7.1 Hz, 3H), 1.20 (t, J = 7.1

Hz, 3H).

Diethyl 2-hydroxy-5-methyl-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3m): Yield (0.065 g,

45%); Yellow solid; m.p. = 80-85 °C; R_f = 0.42 in 20% EtOAc/hexanes; ¹H NMR (500 MHz, CDCl₃): δ 12.98 (s, 1H), 8.82 (s, 1H), 7.15 (d, *J* = 8.1 Hz, 1H), 7.00 – 6.95 (m, 1H), 6.83 (d, *J* = 7.2 Hz, 1H), 4.46 (dq, *J* = 7.1, 1.0 Hz, 2H), 4.28 (dd, *J* = 8.0, 1.6 Hz, 1H), 4.17 – 4.08 (m, 1H), 4.04 – 3.96 (m, 1H), 3.11 (dd, *J* = 17.1, 8.0 Hz, 1H), 3.02 (dd, *J* = 17.1, 1.7 Hz, 1H), 2.71 (s, 3H), 1.47 (t, *J* = 7.1 Hz,

3H), 1.16 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 176.8, 172.9, 169.5, 135.6, 130.2, 129.2, 125.2, 121.6, 120.8, 108.7, 100.7, 94.5, 61.4, 61.0, 36.8, 33.3, 19.7, 14.5, 14.0. IR (neat, cm⁻¹): υ 3348, 2979, 1722, 1644, 1578, 1462, 1266, 1077, 970, 776. HRMS (ESI-Q-TOF) m/z calcd for C₁₉H₂₂NO₅ (M + H)⁺ 344.1492, found 344.1492.

Diethyl 5-fluoro-2-hydroxy-4,9-dihydro-3*H*-carbazole-1,4-dicarboxylate (3n): Yield (0.060 g, 42%);

Yellow solid; m.p. = 98-99 °C; R_f = 0.62 in 20% EtOAc/hexanes; ¹H NMR (500 MHz, CDCl₃): δ 13.01 (s, 1H), 8.86 (s, 1H), 7.09 (d, J = 8.1 Hz, 1H), 6.98 (td, J = 8.0, 5.0 Hz, 1H), 6.75 (dd, J = 10.8, 7.9 Hz, 1H), 4.51 – 4.45 (m, 2H), 4.23 (t, J = 5.7 Hz, 1H), 4.18 – 4.10 (m, 1H), 4.08 – 4.00 (m, 1H), 3.11 (d, J = 5.6 Hz, 2H), 1.49 (t, J = 7.1 Hz, 3H), 1.17 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 177.0, 173.0, 169.2, 156.1 (d, J = 245.0 Hz), 138.1 (d, J = 11.2 Hz),

130.4, 121.0 (d, J = 7.5 Hz), 115.5 (d, J = 20.0 Hz), 109.0, 106.9 (d, J = 3.7 Hz), 105.3 (d, J = 18.7 Hz), 98.3, 94.3, 61.6, 61.0, 36.3, 32.8, 14.5, 14.0. IR (neat, cm⁻¹): v 3414, 2980, 1720, 1634, 1595, 1368, 1078, 859, 730. HRMS (ESI-Q-TOF) m/z calcd for C₁₈H₁₉FNO₅ (M + H)⁺ 348.1242, found 348.1241.

Diethyl 5-chloro-2-hydroxy-4,9-dihydro-3*H*-carbazole-1,4-dicarboxylate (30): Yield (0.090 g, 60%);

Brown solid; m.p. = 138-139 °C; R_f = 0.57 in 20% EtOAc/hexanes; ¹H NMR (500 MHz, CDCl₃): δ 13.06 (s, 1H), 8.95 (s, 1H), 7.23 (dd, J = 8.0, 0.9 Hz, 1H), 7.07 (dd, J = 7.7, 0.9 Hz, 1H), 7.02 – 6.98 (m, 1H), 4.62 (dd, J = 8.4, 2.2 Hz, 1H), 4.49 (q, J = 7.1 Hz, 2H), 4.22 – 4.14 (m, 1H), 4.11 – 4.03 (m, 1H), 3.18 (dd, J = 17.5, 8.4 Hz, 1H), 3.12 (dd, J = 17.5, 2.2 Hz, 1H), 1.50 (t, J = 7.1 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.2, 173.1, 169.1, 136.7, 131.6,

124.7, 123.9, 121.1, 120.8, 109.5, 100.4, 94.5, 61.6, 61.0, 35.8, 33.1, 14.5, 14.0. IR (neat, cm⁻¹): υ 3411, 2983, 2358, 1723, 1648, 1596, 1429, 1367, 1229, 1077, 941. HRMS (ESI-Q-TOF) m/z calcd for C₁₈H₁₉ClNO₅ (M + H)⁺ 364.0946, found 364.0944.

Diethyl 5-bromo-2-hydroxy-4,9-dihydro-3*H*-carbazole-1,4-dicarboxylate (3p): Yield (0.104 g, 62%); Br Yellow solid; m.p. = 139-140 °C; $R_f = 0.62$ in 20% EtOAc/hexanes; ¹H NMR (500

(t, J = 7.9 Hz, 1H), 4.75 (dd, J = 8.0, 2.6 Hz, 1H), 4.49 (q, J = 7.1 Hz, 2H), 4.24 – 4.15 (m, 1H), 4.11 – 4.04 (m, J = 10.8, 7.1 Hz, 1H), 3.18 (dd, J = 17.5, 8.0 Hz, 1H), 3.13 (dd, J = 17.5, 2.7 Hz, 1H), 1.50 (t, J = 7.1 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.2, 173.1, 169.3, 136.6, 131.8, 125.2, 124.2, 121.4, 112.6, 110.1, 101.1, 94.5, 61.7, 61.1, 35.5, 33.1, 14.5, 14.1. IR (neat, cm⁻¹): v 3414, 2977, 2352, 1724, 1646, 1594, 1225, 1076, 858, 770. HRMS (ESI-Q-TOF) m/z calcd for C₁₈H₁₉BrNO₅ (M + H)⁺ 408.0441, found 408.0446.

5. Characterization of Products 5b-5t:

Diethyl 9-ethyl-2-oxo-2,3,4,9-tetrahydro-1*H*-carbazole-1,4-dicarboxylate (5b): Yield (0.106 g, 71%);

dr = 1:0.79; Keto/enol forms = 98:2; Yellow solid; m.p. = 85-86 °C; R_f = 0.6 in 2% CHCl₃/EtOAc; **Major isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.71 (t, *J* = 7.5 Hz, 1H), 7.37 – 7.31 (m, 1H), 7.29 – 7.23 (m, 1H), 7.20 – 7.13 (m, 1H), 4.65 (s, 1H), 4.43 (dd, *J* = 6.7, 2.1 Hz, 1H), 4.29 – 4.16 (m, 2H), 4.23 – 4.17 (m, 4H), 3.19 (dd, *J* = 14.2, 6.7 Hz, 1H), 2.93 (dd, *J* = 14.2, 2.1 Hz, 1H), 1.34 – 1.17 (m,

9H). ¹³C NMR (125 MHz, CDCl₃): δ 199.8, 173.0, 167.0, 136.8, 130.2, 125.7, 122.5, 120.02, 119.9, 109.6, 107.7, 62.6, 61.4, 55.0, 39.9, 38.9, 38.2, 15.1, 14.9, 14.1. **Minor isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.71 (t, *J* = 7.5 Hz, 1H), 7.37 – 7.31 (m, 1H), 7.26 (m, 1H), 7.20 – 7.13 (m, 1H), 4.63 (s, 1H), 4.31 (dd, *J* = 6.8, 3.6 Hz, 1H), 4.29 – 4.16 (m, 2H), 4.23 – 4.17 (m, 4H), 3.26 (dd, *J* = 15.1, 3.5 Hz, 1H), 2.77 (dd, *J* = 15.1, 6.8 Hz, 1H), 1.34 – 1.17 (m, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 200.4, 172.2, 167.0, 136.7, 130.1, 125.5, 122.5, 120.0, 119.4, 109.6, 107.8, 62.3, 61.4, 54.5, 40.6, 38.4, 38.3, 15.1, 14.9, 14.1. IR (neat, cm⁻¹): v 2980, 2925, 1722, 1619, 1495, 1332, 1250, 1152, 1027, 854, 733. HRMS (ESI-Q-TOF) m/z calcd for C₂₀H₂₄NO₅ (M + H)⁺ 358.1649, found 358.1648.

Diethyl 9-benzyl-2-oxo-2,3,4,9-tetrahydro-1*H*-carbazole-1,4-dicarboxylate (5c): Yield (0.098 g,

56%); dr = 1:0.59; Keto/enol forms = 96:4; Yellow gum; m.p. = 109-110 °C; R_f = 0.74 in 2% CHCl₃/EtOAc; **Major isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.79 – 7.74 (m, 1H), 7.31 – 7.25 (m, 6H), 6.95 – 6.92 (m, 2H), 5.43 – 5.19 (m 2H), 4.60 (s, 1H), 4.51 (dd, J = 6.8, 2.0 Hz, 1H), 4.20 – 4.09 (m, 2H), 3.86 – 3.79 (m, 2H), 3.32 – 3.24 (m, 1H), 2.97 (dd, J = 14.3, 1.7 Hz, 1H), 1.20 (t, J =

7.5 Hz, 3H), 1.10 (t, *J* = 7.0 Hz, 3H). Minor isomer: ¹H NMR (500 MHz, CDCl₃): δ 7.79 – 7.74 (m, 1H),

7.31 – 7.25 (m, 6H), 6.95 – 6.92 (m, 2H), 5.43 – 5.19 (m 2H), 4.53 (s, 1H), 4.35 (dd, *J* = 6.8, 3.6 Hz, 1H), 4.20 – 4.09 (m, 2H), 3.86 – 3.79 (m, 2H), 3.32 – 3.24 (m, 1H), 2.28 (dd, *J* = 15.2, 6.9 Hz, 1H), 1.25 (t, *J* = 7.0 Hz, 3H), 1.18 (t, *J* = 7.5 Hz, 3H).

Diethyl 9-allyl-2-oxo-2,3,4,9-tetrahydro-1*H*-carbazole-1,4-dicarboxylate (5d): Yield (0.078 g, 51%);

dr = 1:0.55; Keto/enol forms = 97:3; Yellow gum; $R_f = 0.57$ in 2% CHCl₃/EtOAc; ¹H NMR (500 MHz, CDCl₃): **Major isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.71 (t, J = 7.5 Hz, 1H), 7.31 – 7.22 (m, 2H), 7.20 – 7.14 (m, 1H), 5.91 – 5.81 (m, 1H), 5.17 – 5.10 (m, 1H), 4.83 (dd, J = 17.1, 1.0 Hz, 1H), 4.72 – 4.68 (m, 1H), 4.65 – 4.61 (m, 2H), 4.44 (dd, J = 6.7, 2.1 Hz, 1H), 4.26

-4.10 (m, 2H), 4.07 (q, J = 7.1 Hz, 2H), 3.21 (dd, J = 14.3, 6.8 Hz, 1H), 2.93 (dd, J = 14.3, 2.0 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.17 (t, J = 7.1 Hz, 3H). **Minor isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.71 (t, J = 7.5 Hz, 1H), 7.31 – 7.22 (m, 2H), 7.20 – 7.14 (m, 1H), 5.91 – 5.81 (m, 1H), 5.17 – 5.10 (m, 1H), 4.90 (dd, J = 17.1, 1.0 Hz, 1H), 4.72 – 4.68 (m, 1H), 4.65 – 4.61 (m, 2H), 4.32 (dd, J = 6.7, 3.6 Hz, 1H), 4.26 – 4.10 (m, 2H), 4.07 (q, J = 7.1 Hz, 2H), 3.27 (dd, J = 15.1, 3.6 Hz, 1H),2.77 (dd, J = 15.1, 6.8 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H).

Diethyl 6-Methoxy-9-methyl-2-oxo-2,3,4,9-tetrhydro-1H-carbazole-1,4-dicarboxylate (5e): Yield

(0.066 g, 43%); dr = 1:0.58; Keto/enol forms = 93:7; Yellow solid; m.p. = 112-113 °C; $R_f = 0.71$ in 2% CHCl₃/EtOAc; **Major isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.25 – 7.19 (m, 1H), 7.16 (d, J = 2.1 Hz, 1H), 6.97 – 6.92 (m, 1H), 4.65 (s, 1H), 4.40 (d, J = 5.1 Hz, 1H), 4.31 – 4.20 (m, 2H), 4.18 – 4.06 (m, 2H), 3.89 (s, 3H), 3.62 (s, 3H), 3.16 (dd, J = 14.2, 6.7 Hz, 1H), 2.98

-2.94 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H), 1.22 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.6, 173.0, 166.8, 154.4, 133.3, 131.3, 125.5, 112.7, 110.2, 107.2, 101.0, 62.6, 61.4, 55.9, 54.8, 40.0, 38.9, 30.0, 14.1. **Minor isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.25 - 7.19 (m, 1H), 7.16 (d, J = 2.1 Hz, 1H), 6.97 - 6.92 (m, 1H), 4.65 (s, 1H), 4.40 (d, J = 5.1 Hz, 1H), 4.31 - 4.20 (m, 2H), 4.18 - 4.06 (m, 2H), 3.89 (s, 3H), 3.62 (s, 3H), 3.26 (dd, J = 15.0, 3.4 Hz, 1H), 2.80 (dd, J = 15.0, 6.8 Hz, 1H), 1.29 (t, J = 6.9 Hz, 3H), 1.24 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.1, 172.2, 166.9, 154.5, 133.21, 131.2, 125.7, 112.7, 110.2, 107.2, 101.0, 62.2, 61.4, 55.9, 54.5, 40.7, 38.4, 29.9, 14.1. IR (neat, cm⁻¹): ν 2980, 2457, 1723, 1583, 1469, 1367, 1178, 1095, 969, 855, 734. HRMS (ESI-Q-TOF) m/z calcd for C₂₀H₂₄NO₆ (M + H)⁺ 374.1598, found 374.1595.

Diethyl 6,9-dimethyl-2-oxo-2,3,4,9-tetrhydro-1H-carbazole-1,4-dicarboxylate (5f): Yield (0.078 g,

52%); dr = 1:0.67; Keto/enol forms = 94:6; Yellow solid; m.p. = 99-100 °C; $R_f = 0.65$ in 2% CHCl₃/EtOAc; **Major isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.47 (dd, J = 2.6, 1.6 Hz, 1H), 7.18 (dd, J = 8.3, 4.8 Hz, 1H), 7.10 – 7.06 (m, 1H), 4.63 (s, 1H), 4.38 (dd, J = 6.7, 2.1 Hz, 1H), 4.27 – 4.17 (m, 2H), 4.14 – 4.02 (m, 2H), 3.58 (s, 3H), 3.13 (dd, J = 14.3, 6.8 Hz, 1H), 2.94 – 2.90

(m, 1H), 2.46 (s, 3H), 1.27 (t, J = 7.5 Hz, 3H), 1.18 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 199.7, 173.0, 166.9, 136.4, 130.9, 129.3, 125.4, 124.1, 118.9, 109.0, 107.2, 62.5, 61.3, 54.8, 40.1, 38.9, 29.9, 21.4, 14.0. **Minor isomer:** ¹H NMR (500 MHz, CDCl₃): 7.47 (dd, J = 2.6, 1.6 Hz, 1H), 7.18 (dd, J = 8.3, 4.8 Hz, 1H), 7.10 – 7.06 (m, 1H), 4.63 (s, 1H), 4.38 (dd, J = 6.7, 2.1 Hz, 1H), 4.27 – 4.17 (m, 2H), 4.14 – 4.02 (m, 2H), 4.61 (s, 3H), 3.21 (dd, J = 15.0, 3.6 Hz, 1H), 2.75 (dd, J = 15.0, 6.8 Hz, 1H), 2.46 (s, 3H), 1.26 (t, J = 7.5 Hz, 3H), 1.20 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 199.7, 173.0, 166.9, 136.4, 130.9, 129.3, 125.4, 124.1, 118.9, 109.0, 107.2, 62.5, 61.3, 54.8, 40.1, 38.9, 29.9, 21.4, 14.0. IR (neat, cm⁻¹): υ 2929, 2134, 1720, 1651, 1444, 1368, 1297, 1147, 1029, 861, 792. HRMS (ESI-Q-TOF) m/z calcd for C₂₀H₂₄NO₅ (M + H)⁺ 358.1649, found 358.1643

Diethyl 6-Fluoro-9-methyl-2-oxo-2,3,4,9-tetrhydro-1H-carbazole-1,4-dicarboxylate (5g): Yield

(0.075 g, 50%); dr = 1:0.72; Keto/enol forms = 91:9; Yellow gum; $R_f = 0.75$ in 2% CHCl₃/EtOAc; **Major isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.36 – 7.31 (m, 1H), 7.22 (dt, J = 8.9, 4.5 Hz, 1H), 7.04 – 6.97 (m, 1H), 4.63 (s, 1H), 4.35 (dd, J = 6.7, 2.2 Hz, 1H), 4.31 – 4.18 (m, 2H), 4.17 – 4.06 (m, 2H), 3.62 (s, 3H), 3.13 (dd, J = 14.3, 6.8 Hz, 1H), 2.95 (dd, J = 14.3, 2.2 Hz, 1H), 1.29 (t, J

= 7.1 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.1, 172.8, 166.7, 158.1 (d, J = 234.0 Hz), 134.6, 132.5, 125.5 (d, J = 10.0 Hz), 110.9 (d, J = 26.0 Hz), 110.1 (d, J = 10 Hz), 107.7, 104.3 (d, J = 24.0 Hz), 62.7, 61.5, 54.8, 39.9, 38.8, 30.1, 14.0. **Minor isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.36 – 7.31 (m, 2H), 7.22 (dt, J = 8.9, 4.5 Hz, 1H), 7.04 – 6.97 (m, 1H), 4.63 (s, 1H), 4.35 (dd, J = 6.7, 2.2 Hz, 1H), 4.31 – 4.18 (m, 2H), 4.17 – 4.06 (m, 2H), 3.25 (dd, J = 15.3, 3.9 Hz, 1H), 2.78 (dd, J = 15.1, 6.8 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.7, 172.0, 166.7, 158.1 (d, J = 234.0 Hz), 134.5, 132.3, 125.5 (d, J = 10.0 Hz), 110.9 (d, J = 26.0 Hz), 110.1 (d, J = 10 Hz), 107.7, 104.3 (d, J = 24.0 Hz), 62.4, 61.5, 40.5, 38.2, 30.1, 14.0. IR (neat, cm⁻¹): ν 2919, 2155, 1724, 1486, 1369, 1297, 1028, 855, 734. HRMS (ESI-Q-TOF) m/z calcd for C₁₉H₂₁FNO₅ (M + H)⁺ 362.1398, found 362.1396.

Diethyl 6-chloro-9-methyl-2-oxo-2,3,4,9-tetrhydro-1H-carbazole-1,4-dicarboxylate (5h): Yield

(0.078 g, 50%); dr = 1:0.62; Keto/enol forms = 90:10; Yellow gum; R_f = 0.6 in 2% CHCl₃/EtOAc; **Major isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.69 – 7.64 (m, 1H), 7.22 – 7.19 (m, 2H), 4.63 (s, 1H), 4.36 (dd, *J* = 6.7, 2.2 Hz, 1H), 4.29 – 4.20 (m, 2H), 4.16 – 4.06 (m, 2H), 3.61 (s, 3H), 3.13 (dd, *J* = 14.3, 6.8 Hz, 1H), 2.95 (dd, *J* = 14.3, 2.0 Hz, 1H), 1.29 (t, *J* = 7.1 Hz, 3H), 1.21 (t, *J* = 7.1

Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.0, 172.7, 166.6, 136.4, 132.3, 126.3, 125.9, 122.9, 118.8, 110.4, 107.4, 62.7, 61.6, 54.7, 39.8, 38.7, 30.1, 14.0. **Minor isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.69 – 7.64 (m, 1H), 7.22 - 7.19 (m, 2H), 4.63 (s, 1H), 4.36 (dd, *J* = 6.7, 2.2 Hz, 1H), 4.29 – 4.20 (m, 2H), 4.16 – 4.06 (m, 2H), 3.62 (s, 3H), 1.31 – 1.25 (m, 3H), 3.25 (dd, *J* = 15.2, 3.7 Hz, 1H), 2.78 (dd, *J* = 15.1, 6.8 Hz, 1H), 1.28 (t, *J* = 7.3 Hz, 3H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.6, 171.9, 166.6, 136.3, 132.1, 126.1, 125.8, 122.9, 118.8, 110.4, 107.4, 62.4, 61.6, 54.3, 40.4, 38.1, 29.9, 14.0. IR (neat, cm⁻¹): v 2989, 2919, 1724, 1588 1469, 1368, 1182, 1095, 860, 796. IR (neat, cm⁻¹): v 2921, 2851, 1722, 1587, 1460, 1368, 1233, 1177, 1068, 843, 735. HRMS (ESI-Q-TOF) m/z calcd for C₁₉H₂₁CINO₅ (M + H)⁺ 378.1103, found 378.1103.

Diethyl 6-bromo-9-methyl-2-oxo-2,3,4,9-tetrhydro-1H-carbazole-1,4-dicarboxylate (5i): Yield

(0.084 g, 48%); dr = 1:0.60; Keto/enol forms = 90:10; Brown gum; $R_f = 0.64$ in 2% CHCl₃/EtOAc; **Major isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.84 (d, J = 1.8 Hz, 1H), 7.36 (dd, J = 3.1, 2.0 Hz, 1H), 7.21 (d, J = 4.7 Hz, 1H), 4.65 (s, 1H), 4.38 (dd, J = 6.8, 2.3 Hz, 1H), 4.32 – 4.21 (m, 2H), 4.22 – 4.06 (m, 2H), 3.63 (s, 3H), 3.15 (dd, J = 14.3, 6.8 Hz, 1H), 2.98 (dd, J = 14.3, 2.2 Hz,

1H), 1.29 (t, J = 7.3 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 198.9, 172.6, 166.5, 136.7, 132.2, 126.7, 125.4, 121.9, 113.3, 110.9, 107.3, 62.7, 61.5, 54.7, 39.8, 38.7, 30.0, 14.0. **Minor isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.85 (d, J = 1.8 Hz, 1H), 7.37 (dd, J = 3.1, 2.0 Hz, 1H), 7.19 (d, J = 4.7 Hz, 1H), 4.64 (s, 1H), 4.38 (dd, J = 6.8, 2.3 Hz, 1H), 4.32 – 4.21 (m, 2H), 4.22 – 4.06 (m, 2H), 3.65 (s, 3H), 3.29 (dd, J = 15.2, 3.9 Hz, 1H), 2.80 (dd, J = 15.2, 6.9 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.5, 172.0, 166.5, 136.6, 132.0, 126.9, 125.3, 121.9, 113.3, 110.9, 107.3, 62.4, 61.5, 54.3, 40.4, 38.1, 29.9, 14.0. IR (neat, cm⁻¹): υ 2989, 2916, 1725, 1610, 1579, 1468, 1368, 1190, 1096, 1022, 858, 794. HRMS (ESI-Q-TOF) m/z calcd for C₁₉H₂₁BrNO₅ (M + H)⁺422.0598, found 422.0599.

Diethyl 7-Methoxy-9-methyl-2-oxo-2,3,4,9-tetrhydro-1H-carbazole-1,4-dicarboxylate (5j): Yield

(0.069 g, 45%); dr = 1:0.80; Keto/enol forms = 97:3; Brown gum; $R_f = 0.4$ in 2% CHCl₃/EtOAc; **Major isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.55 (d, J = 2.8 Hz, 1H), 6.84 (dd, J = 4.5, 2.2 Hz, 1H), 6.76 (d, J = 2.2 Hz, 1H), 4.62 (s, 1H), 4.38 (dd, J = 6.7, 2.2 Hz, 1H), 4.32 – 4.18 (m, 2H), 4.17 – 4.04 (m, 2H), 3.88 (s, 3H), 3.58 (s, 3H), 3.13 (dd, J = 14.2, 6.8 Hz, 1H),

2.93 (dd, J = 14.2, 2.1 Hz, 1H), 1.28 (t, J = 7.0 Hz, 3H), 1.18 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.7, 173.0, 167.0, 157.0, 138.9, 129.6, 120.0, 119.7, 109.7, 107.8, 93.1, 62.5, 61.4, 55.7, 54.8, 40.0, 39.0, 29.9, 14.1. **Minor isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.57 (d, J = 2.8 Hz, 1H), 6.82 (dd, J = 4.5, 2.2 Hz, 1H), 6.77 (d, J = 2.2 Hz, 1H), 4.62 (s, 1H), 4.38 (dd, J = 6.7, 2.2 Hz, 1H), 4.32 – 4.18 (m, 2H), 4.17 – 4.04 (m, 2H), 3.88 (s, 3H), 3.59 (s, 3H), 3.24 (dd, J = 15.0, 3.9 Hz, 1H), 2.78 (dd, J = 15.0, 6.8 Hz, 1H), 1.27 (t, J = 7.0 Hz, 3H), 1.20 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.2, 172.2, 167.0, 157.0, 138.8, 129.4, 119.6, 109.7, 107.8, 93.1, 62.2, 61.4, 55.7, 54.4, 40.6, 38.4, 29.8, 14.1. IR (neat, cm⁻¹): v 2922, 1730, 1623, 1494, 1377, 1227, 1031, 860. HRMS (ESI-Q-TOF) m/z calcd for C₂₀H₂₄NO₆ (M + H)⁺ 374.1598, found 374.1596.

Diethyl 7-Methyl-9-methyl-2-oxo-2,3,4,9-tetrhydro-1H-carbazole-1,4-dicarboxylate (5k): Yield

(0.074 g, 50%); dr = 1:0.72; Keto/enol forms = 96:4; Brown gum; $R_f = 0.37$ in 2% CHCl₃/EtOAc; **Major isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.56 (d, *J* = 3.8 Hz, 1H), 7.10 (s, 1H), 7.01 (dd, *J* = 4.4, 0.9 Hz, 1H), 4.63 (s, 1H), 4.40 (dd, *J* = 6.7, 2.1 Hz, 1H), 4.31 – 4.18 (m, 2H), 4.13 – 4.03 (m, 2H), 3.59 (s, 3H), 3.14 (dd, *J* = 14.3, 6.7 Hz, 1H), 2.95 – 2.91 (m, 1H), 2.49 (s,

3H), 1.28 (t, J = 7.1 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.8, 173.1, 166.9, 138.4, 132.5, 130.2, 123.1, 121.7, 118.9, 109.4, 107.6, 62.5, 61.4, 54.8, 40.0, 39.0, 29.8, 21.9, 14.0. **Minor isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.58 (d, J = 3.8 Hz, 1H), 7.11 (s, 1H), 7.00 (dd, J = 4.4, 0.9 Hz, 1H), 4.63 (s, 1H), 4.40 (dd, J = 6.7, 2.1 Hz, 1H), 4.30 – 4.17 (m, 2H), 4.15 – 4.03 (m, 2H), 3.60 (s, 3H), 3.24 (dd, J = 15.0, 3.7 Hz, 1H), 2.78 (dd, J = 15.0, 6.8 Hz, 1H), 2.50 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.2, 172.2, 166.9, 138.3, 132.5, 130.0, 123.2, 121.8, 118.9, 109.4, 107.6, 62.2, 61.4, 54.4, 40.7, 38.4, 29.8, 21.9, 14.0. IR (neat, cm⁻¹): υ 2921, 1730, 1590, 1468, 1371, 1178, 1031, 858, 754. HRMS (ESI-Q-TOF) m/z calcd for C₂₀H₂₄NO₅ (M + H)⁺ 358.1649, found 358.1647.

Diethyl 7-Fluoro-9-methyl-2-oxo-2,3,4,9-tetrhydro-1H-carbazole-1,4-dicarboxylate (51): Yield

(0.081 g, 54%); dr = 1:0.83; Keto/enol forms = 95:5; Brown gum; R_f = 0.45
in 2% CHCl₃/EtOAc; Major isomer: ¹H NMR (500 MHz, CDCl₃): δ 7.64
- 7.55 (m, 1H), 7.00 (dd, J = 4.9, 2.2 Hz, 1H), 6.96 - 6.88 (m, 1H), 4.63 (s, 1H), 4.39 (dd, J = 6.7, 2.2 Hz, 1H), 4.31 - 4.18 (m, 2H), 4.17 - 4.03 (m, 2H), 3.58 (s, 3H), 3.13 (dd, J = 14.3, 6.8 Hz, 1H), 2.97 - 2.92 (m, 1H), 1.30

(t, J = 7.0 Hz, 3H), 1.19 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.2, 172.8, 166.8, 160.3 (d, J = 238.0 Hz), 138.1, 131.3, 121.7, 120.2 (d, J = 10.1 Hz), 108.8 (d, J = 6.0 Hz), 108.6 (d, J = 5.0 Hz), 108.0 (d, J = 6.0 Hz), 96.0 (d, J = 26.0 Hz), 62.7, 61.5, 54.7, 39.8, 38.9, 30.0, 14.0. **Minor isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.64 – 7.55 (m, 1H), 6.98 (dd, J = 4.9, 2.2 Hz, 1H), 6.96 – 6.88 (m, 1H), 4.63 (s, 1H), 4.39 (dd, J = 6.7, 2.2 Hz, 1H), 4.31 – 4.18 (m, 2H), 4.17 – 4.03 (m, 2H), 3.59 (s, 1H), 3.25 (dd, J = 15.1, 3.8 Hz, 1H), 2.79 (dd, J = 15.0, 6.8 Hz, 1H), 1.30 (t, J = 7.0 Hz, 3H), 1.19 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.7, 172.0, 166.8, 160.3 (d, J = 238.0 Hz), 138.3, 131.0, 121.9, 120.2 (d, J = 10.0 Hz), 108.8 (d, J = 6.0 Hz), 108.6 (d, J = 5.0 Hz), 108.0 (d, J = 6.0 Hz), 96.0 (d, J = 26.0 Hz), 62.4, 61.5, 54.7, 40.5, 38.3, 29.9, 14.0. IR (neat, cm⁻¹): v 2980, 1722, 1623, 1576, 1470, 1360, 1234, 1175, 1028, 945, 828. HRMS (ESI-Q-TOF) m/z calcd for C₁₉H₂₁FNO₅ (M + H)⁺ 362.1398, found 362.1397.

Diethyl 7-chloro-9-methyl-2-oxo-2,3,4,9-tetrhydro-1H-carbazole-1,4-dicarboxylate (5m): Yield

(0.106 g, 68%); dr = 1:0.64; Keto/enol forms = 91:9; Brown gum; $R_f = 0.8$ in 2% CHCl₃/EtOAc; **Major isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.59 (dd, J = 8.4, 2.1 Hz, 1H), 7.36 – 7.22 (m, 1H), 7.13 (dd, J = 8.4, 1.8 Hz, 1H), 4.62 (s, 1H), 4.38 (dd, J = 6.8, 2.2 Hz, 1H), 4.29 – 4.15 (m, 2H), 4.15 – 4.04 (m, 2H), 3.59 (s, 3H), 3.13 (dd, J = 14.3, 6.8 Hz, 1H), 2.95 (dd, J = 14.3, 2.2

Hz, 1H), 1.29 (t, J = 7.0 Hz, 3H), 1.18 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.0, 172.7, 166.6, 138.5, 131.7, 128.7, 123.7, 120.2, 118.6, 109.5, 108.0, 62.7, 61.5, 54.7, 39.8, 38.8, 30.0, 14.0. **Minor isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.59 (dd, J = 8.4, 2.1 Hz, 1H), 7.36 – 7.22 (m, 1H), 7.13 (dd, J = 8.4, 1.8 Hz, 1H), 4.62 (s, 1H), 4.38 (dd, J = 6.8, 2.2 Hz, 1H), 4.29 – 4.15 (m, 2H), 4.15 – 4.04 (m, 2H), 3.60 (s, 3H), 3.24 (dd, J = 15.1, 3.6 Hz, 1H), 2.78 (dd, J = 15.1, 6.8 Hz, 1H), 1.34 – 1.27 (t, J = 7.0 Hz, 3H), 1.19 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.6, 171.9, 166.6, 138.4, 131.5, 128.7, 123.9, 120.7, 118.6, 109.5, 108.1, 62.4, 61.5, 54.3, 40.5, 38.2, 29.9, 14.0. IR (neat, cm⁻¹): υ 2980, 1726, 1623, 1480, 1385, 1234, 1182, 1026, 863. HRMS (ESI-Q-TOF) m/z calcd for C₁₉H₂₁ClNNaO₅ (M + Na)⁺ 400.0922, found 400.0922.

Diethyl 8-methoxy-9-methyl-2-oxo-2,3,4,9-tetrhydro-1H-carbazole-1,4-dicarboxylate (5n): Yield

(0.088 g, 57%); dr = 1:0.56; Keto/enol forms = 95:5; Brown gum; $R_f = 0.75$ in 2% CHCl₃/EtOAc; **Major isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.29 – 7. 24 (m, 1H), 7.07 – 7.01 (m, 1H), 6.69 – 6.05 (m, 1H), 4.61 (s, 1H), 4.37 (dd, J = 6.7, 2.1 Hz, 1H), 4.28 – 4.18 (m, 2H), 4.13 – 4.03 (m, 2H), 3.91 (s, 3H), 3.89 (s, 3H), 3.12 (dd, J = 14.2, 6.7 Hz, 1H), 2.91 (dd, J = 14.2, 2.1 Hz, 1H), 1.28

(t, J = 7.0 Hz, 3H), 1.18 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.8, 173.0, 166.8, 147.7, 131.4, 127.6, 127.3, 120.4, 111.9, 108.0, 103.5, 62.5, 61.4, 55.4, 55.0, 40.0, 38.9, 33.0, 14.1. **Minor isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.29 – 7. 24 (m, 1H), 7.07 – 7.01 (m, 1H), 6.69 – 6.05 (m, 1H), 4.60 (s, 1H), 4.37 (dd, J = 6.7, 2.1 Hz, 1H), 4.28 – 4.18 (m, 2H), 4.13 – 4.03 (m, 2H), 3.92 (s, 3H), 3.90 (s, 3H), 3.20 (dd, J = 15.1, 3.4 Hz, 1H), 2.76 (dd, J = 15.0, 6.8 Hz, 1H), 1.26 (t, J = 7.5 Hz, 3H), 1.19 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.3, 172.2, 166.8, 147.7, 131.2, 127.4, 120.4, 111.9, 108.0, 103.5, 62.2, 61.4, 55.0, 54.4, 40.8, 38.3, 32.9, 14.1. IR (neat, cm⁻¹): υ 2986, 1728, 1581, 1458, 1496, 1370, 1251, 1094, 854, 777. HRMS (ESI-Q-TOF) m/z calcd for C₂₀H₂₄NO₆ (M + H)⁺ 374.1598 found 374.1598.

Diethyl 8,9-dimethyl-2-oxo-2,3,4,9-tetrhydro-1H-carbazole-1,4-dicarboxylate (50): Yield (0.096 g,

64%); dr = 1:0.60; Keto/enol forms = 94:6; Brown gum; $R_f = 0.45$ in 2% CHCl₃/EtOAc; **Major isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.55 – 7.49 (m, 1H), 7.06 – 7.00 (m, 1H), 6.96 (t, J = 5.7 Hz, 1H), 4.63 (s, 1H), 4.39 (dd, J = 6.8, 2.1 Hz, 1H), 4.31 – 4.18 (m, 2H), 4.14 – 4.02 (m, 2H), 3.87 (s, 3H), 3.13 (dd, J = 14.2, 6.8 Hz, 1H), 2.92 (dd, J = 14.2, 1.8 Hz, 1H), 2.76 (s, 3H),

1.28 (t, J = 7.1 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.3, 173.0, 166.9, 136.9, 131.5, 126.1, 125.6, 121.3, 120.1, 117.2, 108.0, 62.6, 61.4, 54.5, 40.8, 38.8, 33.0, 20.2, 14.0. **Minor isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.55 – 7.49 (m, 1H), 7.06 – 7.00 (m, 1H), 6.96 (t, J = 5.7 Hz, 1H), 4.62 (s, 1H), 4.39 (dd, J = 6.8, 2.1 Hz, 1H), 4.31 – 4.18 (m, 2H), 4.14 – 4.02 (m, 2H), 3.88 (s, 3H), 3.21 (dd, J = 15.0, 3.3 Hz, 1H), 2.77 (s, 3H), 2.80 – 2.72 (m, 1H), 1.27 (t, J = 7.1 Hz, 3H), 1.19 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.7, 173.0, 172.2, 166.9, 136.7, 131.3, 126.2, 125.6, 121.3, 120.2, 117.2, 108.0, 62.3, 61.4, 54.5, 40.0, 38.2, 32.9, 20.2, 14.0. IR (neat, cm⁻¹): υ 2986, 1729, 1580, 1455, 1368, 1186, 1080, 854, 744. HRMS (ESI-Q-TOF) m/z calcd for C₂₀H₂₄NO₅ (M + H)⁺ 358.1649, found 358.1648.

Diethyl 8-Fluoro-9-methyl-2-oxo-2,3,4,9-tetrhydro-1H-carbazole-1,4-dicarboxylate (5p): Yield

(0.072 g, 48%); dr = 1:0.56; Keto/enol forms = 89:11; Yellow gum; R_f = 0.62 in 2% CHCl₃/EtOAc; **Major isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.63 (d, *J* = 7.7 Hz, 1H), 7.42 (d, *J* = 7.5 Hz, 1H), 7.00 (t, J = 7.7 Hz, 1H), 4.65 (s, 1H), 4.40 (d, *J* = 6.5, 1.5 Hz, 1H), 4.33 – 4.21 (m, 2H), 4.15 – 4.08 (m, 2H), 4.01 (s, 3H), 3.15 (dd, *J* = 14.0, 6.5 Hz, 1H), 2.96 (d, *J* = 7.1 Hz, 1H), 1.32 (t, *J* = 7.1

Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 199.0, 172.7, 166.6, 150.1 (d, J = 242.5 Hz), 132.3, 128.9 (d, J = 5.0 Hz), 125.9 (d, J = 8.7 Hz), 120.2 (dd, J = 6.2, 3.7 Hz), 114.9 (d, J = 3.4 Hz), 108.3 (dd, J = 17.5, 6.2 Hz). 62.7, 61.5, 54.7, 32.4, 14.0. **Minor isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.64 (d, J = 7.7 Hz, 1H), 7.42 (d, J = 7.5 Hz, 1H), 7.02 (t, J = 7.7 Hz, 1H), 4.65 (s, 1H), 4.40 (d, J = 6.5, 1.5 Hz, 1H), 4.33 – 4.21 (m, 2H), 4.15 – 4.08 (m, 2H), 4.02 (s, 3H), 3.24 (dd, J = 15.5, 3.0 Hz, 1H), 2.79 (dd, J = 15.1, 7.0 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H), 1.20 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 199.5, 171.9, 166.6, 150.1 (d, J = 242.5 Hz), 132.1, 129.1 (d, J = 5.0 Hz), 125.9 (d, J = 8.7 Hz), 120.2 (dd, J = 6.2, 3.7 Hz), 114.9 (d, J = 3.4 Hz), 108.3 (dd, J = 17.5, 6.2 Hz), 62.4, 61.4, 54.7, 40.5, 38.2, 32.3, 14.0. IR (neat, cm⁻¹): v 2980, 1723, 1452, 1366, 1177, 1030, 873, 777. HRMS (ESI-Q-TOF) m/z calcd for C₁₉H₂₁FNO₅ (M + H)⁺ 362.1398, found 362.1399.

Diethyl 8-bromo-9-methyl-2-oxo-2,3,4,9-tetrhydro-1H-carbazole-1,4-dicarboxylate (5q): Yield

(0.067 g, 38%); dr = 1:0.61; Keto/enol forms = 90:10; Yellow gum; R_f = 0.57 in 2% CHCl₃/EtOAc; **Major isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.44 (d, *J* = 7.8 Hz, 1H), 7.09 – 7.02 (m, 1H), 6.97 – 6.91 (m, 1H), 4.64 (s, 1H), 4.40 (dd, *J* = 6.5, 2.0 Hz, 1H), 4.32 – 4.23 (m, 2H), 4.17–4.06 (m, 2H), 3.85 (s, 3H), 3.15 (dd, *J* = 14.0, 6.5 Hz, 1H), 2.96 (dd, *J* = 14.5, 2.0 Hz, 1H), 1.32 (t, *J* = 7.1 Hz, 3H), 1.20 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100

MHz, CDCl₃): δ 198.3, 172.3, 166.5, 134.7, 133.2, 128.0, 121.0, 118.5, 108.5, 103.9, 62.4, 61.3, 55.1, 39.8, 38.7, 32.7, 13.8. **Minor isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.45 (d, *J* = 8.0 Hz, 1H), 7.09 – 7.02 (m, 1H), 6.97 – 6.91 (m, 1H), 4.65 (s, 1H), 4.40 (dd, *J* = 6.5, 2.0 Hz, 1H), 4.32 – 4.23 (m, 2H), 4.17–4.06 (m, 2H), 3.86 (s, 3H), 3.25 (dd, *J* = 15.0, 3.5 Hz, 1H), 2.80 (dd, *J* = 15.0, 6.5 Hz, 1H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 198.9, 171.6, 166.3, 134.7, 133.2, 128.0, 121.0, 118.4, 108.5, 103.9, 62.2, 61.3, 54.6, 40.3, 38.1, 32.5, 13.8. IR (neat, cm⁻¹): v 2979, 1723, 1636, 1463, 1369, 1233, 1174, 1093, 784, 724. HRMS (ESI-Q-TOF) m/z calcd for C₁₉H₂₁BrNO₅ (M + H)⁺ 422.0598, found 422.0597.

Diethyl 5,9-dimethyl-2-oxo-2,3,4,9-tetrahydro-1H-carbazole-1,4-dicarboxylate (5r): Yield (0.074 g,

50%); dr = 1:0.61; Keto/enol forms = 89:11; Yellow solid; m.p. = 108-109 °C; $R_f = 0.57$ in 2% CHCl₃/EtOAc; **Major isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.20 – 7.16 (m, 2H), 6.96 – 6.91 (m, 1H), 4.73 (s, 1H), 4.72 – 4.70 (m, 1H), 4.33 – 4.20 (m, 2H), 4.17 – 4.04 (m, 2H), 3.63 (s, 3H), 3.24 (dd, *J* = 14.2, 6.4 Hz, 1H), 2.91 (dd, *J* = 14.2, 1.9 Hz, 1H), 2.78 (s, 3H), 1.32 (*t*, *J* = 7.1 Hz, 3H), 1.21 (*t*, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.8, 173.6, 166.9,

138.1, 131.3, 130.6, 124.1, 122.6, 121.7, 108.5, 107.27, 62.6, 61.5, 55.1, 41.2, 40.4, 30.0, 19.9, 14.1, 14.0. **Minor isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.20 – 7.16 (m, 2H), 6.96 – 6.91 (m, 1H), 4.72 – 4.69 (m, 1H), 4.64 (dd, J = 6.4, 2.2 Hz, 1H), 4.33 – 4.20 (m, 2H), 4.17 – 4.04 (m, 2H), 3.63 (s, 3H), 3.13 (dd, J = 15.5, 1.9 Hz, 1H), 2.86 – 2.81 (m, 3H), 1.31 (t, J = 7.1 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.1, 172.7, 166.7, 137.9, 131.1, 130.7, 124.2, 122.5, 121.7, 108.6, 107.3, 62.2, 61.5, 54.2, 42.3, 39.1, 29.8, 19.8, 14.2, 14.1. IR (neat, cm⁻¹): υ 2924, 1720, 1565, 1463, 1330, 1148, 1025, 855, 742. HRMS (ESI-Q-TOF) m/z calcd for C₂₀H₂₄NO₅ (M + H)⁺ 358.1649, found 358.1648.

Diethyl 5-fluoro-9-methyl-2-oxo-2,3,4,9-tetrahydro-1H-carbazole-1,4-dicarboxylate (5s): Yield

(0.064 g, 43%); dr = 1:0.80; Keto/enol forms = 89:11; Yellow solid; m.p. = 110-111 °C; $R_f = 0.74$ in 2% CHCl₃/EtOAc; **Major isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.20 – 7.13 (m, 1H), 7.08 (t, J = 8.0 Hz, 1H), 6.80 – 6.77 (m, 1H), 4.65 (s, 1H), 4.57 (dd, J = 6.9, 2.3 Hz, 1H), 4.30 – 4.20 (m, 2H), 4.19 – 4.07 (m, 2H), 3.62 (s, 3H), 3.24 – 3.17 (m, 1H), 2.91 (dd, J = 14.2, 2.3 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz,

CDCl₃): δ 199.1, 173.2, 166.7, 156.6 (d, *J* = 246.0 Hz), 140.5, 131.16 (d, *J* = 38.0 Hz), 123.19 (d, *J* = 7.0 Hz), 114.3, 106.5, 105.33 (d, *J* = 19.0 Hz), 62.7, 61.4, 54.9, 40.6, 39.6, 30.3, 14.0. **Minor isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.20 – 7.13 (m, 1H), 7.08 (t, *J* = 8.0 Hz, 1H), 6.83 – 6.77 (m, 1H), 4.62 (s, 1H), 4.45 (dd, *J* = 7.1, 3.6 Hz, 1H), 4.30 – 4.20 (m, 2H), 4.19 – 4.07 (m, 2H), 3.64 (s, 3H), 3.23 – 3.18 (m, 1H), 2.86 (dd, *J* = 15.2, 6.8 Hz, 1H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.20 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.6, 172.4, 166.5, 156.6 (d, *J* = 246.0 Hz), 140.5, 131.16 (d, *J* = 38.0 Hz), 123.19 (d, *J* = 7.0 Hz), 114.3, 106.5, 105.33 (d, *J* = 19.0 Hz), 62.4, 61.3, 54.3, 41.1, 38.8, 30.2, 14.0. IR (neat, cm⁻¹): υ 2980, 2160, 1721, 1630, 1567, 1465, 1367, 1236, 1174, 1090, 856. HRMS (ESI-Q-TOF) m/z calcd for C₁₉H₂₁FNO₅ (M + H)⁺ 362.1398, found 362.1398.

6-(4-methoxyphenyl)-9-mmethyl-2-oxo-2,3,4,9-tertrahydro-1H-carbazole-1,4-

dicarboxylate (5t). Yield (0.075 g, 40%); dr = 1:0.81; Keto/enol forms = 92:8; Yellow gum; $R_f = 0.57$ in

2% CHCl₃/EtOAc; **Major isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.86 (d, J = 1.5 Hz, 1H), 7.60 (d, J = 8.6 Hz, 2H), 7.50 (dd, J = 3.0, 1.8 Hz, 1H), 7.39 (d, J = 5.2 Hz, 1H), 7.02 (d, J = 8.6 Hz, 2H), 4.69 (s, 1H), 4.48 (dd, J = 6.7, 2.1 Hz, 1H), 4.32 – 4.22 (m, 2H), 4.19 – 4.09 (m, 2H), 3.89 (s, 3H), 3.68 (s, 3H), 3.19 (dd, J = 14.3, 6.7 Hz, 1H), 2.99 (dd, J = 14.2, 2.0 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.6, 173.0, 172.2,

166.8, 158.6, 137.1, 134.9, 133.4, 131.5, 128.3, 125.8, 122.2, 117.1, 114.2, 109.6, 108.0, 62.6, 61.5, 55.4, 54.4, 40.1, 38.9, 30.0, 14.1. **Minor isomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.87 (d, *J* = 1.5 Hz, 1H), 7.60 (d, *J* = 8.6 Hz, 1H), 7.52 (dd, *J* = 3.0, 1.8 Hz, 2H), 7.37 (d, *J* = 5.3 Hz, 1H), 7.02 (d, *J* = 8.7 Hz, 2H), 4.68 (s, 1H), 4.37 (dd, *J* = 6.7, 3.6 Hz, 1H), 4.32 – 4.22 (m, 2H), 4.19 – 4.09 (m, 2H), 3.89 (s, 3H), 3.68 (s, 3H), 3.29 (dd, *J* = 15.0, 3.6 Hz, 1H), 2.83 (dd, *J* = 15.0, 6.8 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.0, 173.0, 172.2, 166.8, 158.6, 137.2, 134.9, 133.3, 131.4, 128.3, 125.6, 122.2, 117.1, 114.2, 109.6, 108.0, 62.3, 61.5, 55.4, 54.8, 40.8, 38.3, 29.9, 14.1. IR (neat, cm⁻¹): v 2923, 1730, 1608, 1577, 1478, 1370, 1242, 1180, 1097, 801, 734. HRMS (ESI-Q-TOF) m/z calcd for C₂₆H₂₈NO₆ (M + H)⁺ 450.1911, found 450.1911.

6. Characterization of Products 7-15

Ethyl 2-diazo-5-(1H-indol-3-yl)-3-oxo-5-phenylpentanoate (7)³

A solution of diazoacetoacetate enone 6 (0.150 g, 0.614 mmol), indole 2 (0.108 g, 0.922 mmol), and $Sc(OTf)_3$ (0.015 g, 0.030 mmol) in acetonitrile (2 mL) was stirred at room temperature for 24 h. Then solvent was evaporated under reduced pressure and the obtained crude was purified by column

S18

Diethyl

chromatography to get 0.118 g (53%) of Ethyl 2-diazo-5-(1*H*-indol-3-yl)-3-oxo-5-phenylpentanoate (7). Light yellow solid; $R_f = 0.71$ in 20% EtOAc/Hexanes; ¹H NMR (500 MHz, CDCl₃) δ 8.00 (s, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.38 (d, J = 7.3 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.19 – 7.12 (m, 3H), 7.13 (s, 1H), 7.03 (t, J = 7.5 Hz, 1H), 4.99 (t, J = 7.5 Hz, 1H), 4.31 (q, J = 7.0 Hz, 2H), 3.71 (dd, J = 7.5, 3.4 Hz, 2H), 1.34 (t, J = 7.0 Hz, 3H) ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 161.3, 144.0, 136.5, 128.3, 127.9, 126.7, 126.2, 122.1, 121.4, 119.5, 119.4, 119.0, 111.0, 77.2, 61.4, 46.0, 38.2, 14.3. IR (neat, cm⁻¹): v 3401, 2950, 2136, 1711, 1646, 1456, 1372, 1206, 1042, 741. HRMS (ESI-Q-TOF) m/z calcd for C₂₁H₁₉N₃NaO₃ (M+Na)⁺ 384.1319, found 384.1318.

Ethyl 2-Hydroxy-4-phenyl-4,9-dihydro-3*H*-carbazole-1-carboxylate (8):

To a solution of ehyl 2-diazo-5-(1*H*-indol-3-yl)-3-oxo-5-phenylpentanoate (7) (0.050 g, 0.14 mmol) in dry DCE (1.5 mL), Tf₂NH (0.008 g, 0.03 mmol) was added under nitrogen atmosphere. Then reaction mixture was heated at 80 °C. The progress of the reaction was monitored by TLC. After 3h, the reaction mixture was quenched with saturated aqueous NaHCO₃ solution. Then it was extracted using ethyl acetate (3 x 10 mL). The combined organic layers were washed with saturated aqueous brine solution and dried over anhydrous Na₂SO₄. The solvents were evaporated under reduced pressure. The crude product was purified by column chromatography to get 0.015 g (33%) of the pure ethyl 2-Hydroxy-4-phenyl-4,9dihydro-3*H*-carbazole-1-carboxylate (8). Yellow gum; R_f = 0.45 in 20% EtOAc/Hexanes; ¹H NMR (500 MHz, CDCl₃) δ 12.91 (s, 1H), 8.87 (s, 1H), 7.35 (dd, J = 10.2, 7.9 Hz, 2H), 7.32 – 7.29 (m, 3H), 7.27 – 7.23 (m, 1H), 7.07 (ddd, J = 8.1, 6.7, 1.6 Hz, 1H), 6.95 -6.91 (m, 2H), 4.54 (qd, J = 7.1, 1.1 Hz, 2H), 4.47 (t, J = 7.9 Hz, 1H), 3.22 (dd, J = 17.4, 8.3 Hz, 1H), 2.98 (dd, J = 17.4, 7.5 Hz, 1H), 1.55 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.7, 169.5, 144.0, 135.8, 130.0, 128.6, 127.6, 126.7, 126.2, 120.5, 119.6, 118.2, 110.6, 105.7, 95.2, 61.5, 39.5, 37.0, 14.5. IR (neat, cm⁻¹): υ 3484, 2937, 1646, 1591, 1308, 1248, 1219, 1065, 739. HRMS (ESI-Q-TOF) m/z calcd for C₂₁H₂₀NO₃ (M + H)⁺ 338.1438, found 338.1435.

Synthesis of ethyl 9-methyl-3-oxo-2,3-dihydro-1*H*-pyrrolo[1,2-a]indole-1-carboxylate (10):

A solution of diethyl of (*E*)- 5-diazo-4-oxohex-2-enedioate **1** (0.050 g, 0.21 mmol) and 3-methyl indole **9** (0.027 g, 0.21 mmol) in dry DCE (1.5 mL), 20 mol% Tf₂NH (0.012 g, 0.043 mmol) was added under nitrogen atmosphere and stirred for 24h. The reaction mixture was quenched with a saturated NaHCO₃ solution. Then it was extracted using ethyl acetate. The combined organic layers were washed with saturated brine solution and dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The obtained crude residue was purified by column chromatography by eluting with 10% EtOAc/hexane to afford the compounds **10** and **11**. Yield (0.022 g, 41%); Yellow solid; m.p. = 109-110 °C; R_f = 0.51 in 20% EtOAc/Hexanes; ¹H NMR (500 MHz, CDCl₃): δ 8.12 – 8.01 (m, 1H), 7.54 – 7.45 (m, 1H), 7.37 – 7.30 (m, 2H), 4.33 – 4.23 (m, 3H), 3.54 (dd, *J* = 18.2, 3.6 Hz, 1H), 3.28 (dd, *J* = 18.2, 9.2 Hz, 1H), 2.30 (t, *J* = 0.5 Hz, 3H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 170.0, 169.1, 135.9, 134.9, 130.2, 124.1, 124.0, 119.0, 113.7, 111.5, 62.0, 38.4, 37.8, 14.1, 8.4. IR (neat, cm⁻¹): v 2979, 1736, 1454, 1376, 1310, 1215, 1102, 750. HRMS (ESI-Q-TOF) m/z calcd for C₁₅H₁₆NO₃ (M + H)⁺ 258.1125, found 258.1133.

Diethyl2-diazo-5-(3-methyl-1H-indol-2-yl)-3-oxohexanedioate (11): Yield (0.010 g, 13%); Yellow

solid; m.p. = 82-83 °C; R_f = 0.57 in 20% EtOAc/Hexanes; ¹H NMR (500 MHz, CDCl₃): δ 8.44 (s, 1H), 7.54 (d, *J* = 7.8 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.18 (dd, *J* = 11.2, 3.9 Hz, 1H), 7.12 (t, *J* = 7.4 Hz, 1H), 4.49 (dd, *J* = 9.2, 4.9 Hz, 1H), 4.32 – 4.21 (m, 3H), 4.15 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.71 (dd, *J* = 18.3, 9.2 Hz, 1H), 3.44 (dd, *J* = 18.3, 4.9

Hz, 1H), 2.33 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 190.3, 172.8, 161.1, 135.6, 129.6, 128.8, 121.9, 119.1, 118.5, 110.7, 108.9, 76.2, 61.6, 61.5, 42.8, 38.2, 14.3, 14.0, 8.4. IR (neat, cm⁻¹): υ 3351, 2970, 2136, 1712, 1648, 1467, 1306, 1207, 1028, 740. HRMS (ESI-Q-TOF) m/z calcd for C₁₉H₂₂N₃O₅ (M + H)⁺ 372.1154, found 372.1154.

Synthesis of diethyl 9-methyl-1-(3-methylbut-2-en-1-yl)-2-oxo-2,3,4,9-tetrahydro-1*H*-carbazole-1,4-dicarboxylate (13).¹

To a solution of diethyl 9-methyl-2-oxo-2,3,4,9-tetrahydro-1*H*-carbazole-1,4-dicarboxylate **5a** (0.030 g, 0.087 mmol) and prenyl bromide **12** (11 µL, 0.095 mmol) in dry acetonitrile (1 mL) taken in a 10 mL RB flask, K₂CO₃ (0.026 g, 0.19 mmol) was added. The reaction mixture was stirred for 2h at room temperature. Then, the reaction mixture was filtered. The crude residue was purified by column chromatography by eluting with 10% EtOAc/hexane to afford the compound **13**. Yield (0.030 g, 86%); Yellow gum; $R_f = 0.37$ in 20% EtOAc/Hexanes; ¹H NMR (500 MHz, CDCl₃): δ 7.75 (d, J = 7.8 Hz, 1H), 7.37 – 7.29 (m, 2H), 7.22 (t, J = 7.2 Hz, 1H), 4.70 – 4.66 (m, 1H), 4.62 – 4.52 (m, 1H), 4.33 (dd, J = 6.7, 2.9 Hz, 1H), 4.30 – 4.21 (m, 1H), 4.14 – 4.10 (m, 3H), 3.65 (s, 3H), 3.23 (dd, J = 15.0, 9.8 Hz, 1H), 3.08 (dd, J = 14.8, 2.9 Hz, 1H), 2.94 (d, J = 10.4 Hz, 1H), 2.72 (dd, J = 14.7, 6.8 Hz, 1H), 1.58 (s, 3H), 1.53 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H), 1.17 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 204.6, 172.2, 170.1, 138.4, 136.5, 133.6, 125.3, 122.3, 119.9, 119.4, 117.5, 109.2, 108.2, 62.1, 61.1, 60.8, 40.9, 38.1, 34.9, 30.5, 25.8, 17.8, 14.0, 13.8. IR (neat, cm⁻¹): v 2922, 1735, 1468, 1367, 1226, 1135, 1025, 743. HRMS (ESI-Q-TOF) m/z calcd for C₂₄H₃₀NO₅ (M + H)⁺ 412.2118, found 412.2118.

Synthesis of diethyl 2-hydroxy-9-methyl-9*H*-carbazole-1,4-dicarboxylate (14).²

A solution of diethyl 9-methyl-2-oxo-2,3,4,9-tetrahydro-1*H*-carbazole-1,4-dicarboxylate **5a** (0.025 g, 0.073 mmol) and DDQ (0.066 g, 0.29 mmol) in 1,4 dioxane (1 mL) taken in a sealed tube was stirred at 100 °C for 12 h. After completion of the reaction as monitored by TLC, it was brought to room

temperature. The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography using a 20% ethyl acetate in hexanes to afford compound **14**. Yield (0.021 g, 84%); Yellow solid; m.p. = 99-100 °C; $R_f = 0.28$ in 20% EtOAc/Hexanes; ¹H NMR (500 MHz, CDCl₃): δ 10.20 (br s, 1H), 8.51 (d, J = 8.0 Hz, 1H), 7.45 (ddd, J = 8.2, 7.2, 1.1 Hz, 1H), 7.39 (d, J = 8.1 Hz, 1H), 7.32 (s, 1H), 7.26 (ddd, J = 8.1, 7.1, 1.3 Hz, 1H), 4.55 (q, J = 7.0 Hz, 2H), 4.52 (q, J = 7.0 Hz, 2H), 3.75 (s, 3H), 1.47 (t, J = 7.0 Hz, 3H), 1.46 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 169.1, 167.2, 159.1, 143.3, 142.1, 131.4, 125.8, 123.5, 121.6, 120.6, 116.0, 111.0, 109.3, 101.2, 62.1, 61.6, 35.8, 14.3. IR (neat, cm⁻¹): v 2979, 1720, 1662, 1568, 1373, 1273, 1196, 1094, 1017, 747. HRMS (ESI-Q-TOF) m/z calcd for C₁₉H₂₀NO₅ (M + H)⁺ 342.1336, found 342.1336.

Synthesis of diethyl 9-methyl-2-(1-methyl-1*H*-indol-3-yl)-9H-carbazole-1,4-dicarboxylate (15).

A solution of 9-methyl-2-oxo-2,3,4,9-tetrahydro-1*H*-carbazole-1,4-dicarboxylate **5a** (0.025 g, 0.073 mmol) and N-methyl indole **4a** (0.010 g, 0.076 mmol) in dry DCE (1 mL) taken in a sealed tube, TfOH (1.3 μ L, 0.015 mmol) was added under nitrogen atmosphere. The reaction mixture was heated at 80 °C for 5h. The reaction mixture was quenched with a saturated aqueous NaHCO₃ solution. Then it was extracted using ethyl acetate. The combined organic layers were washed with saturated aqueous brine solution and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure. The crude residue was purified by column chromatography by eluting with 10% EtOAc/hexanes to afford the compound **15**. Yield (0.013 g, 39%); Yellow solid; m.p. = 131-132 °C; R_f = 0.8 in 10% EtOAc/Hexanes; ¹H NMR (500 MHz, CDCl₃): δ 8.83 (t, *J* = 9.1 Hz, 1H), 7.99 (s, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.58 – 7.52 (m, 1H), 7.44 (d, *J* = 8.3 Hz, 1H), 7.38 (d, *J* = 8.2 Hz, 1H), 7.32 – 7.27 (m, 2H), 7.22 (s, 1H), 7.18 (t, *J* = 7.2 Hz, 1H), 4.52 (q, *J* = 7.1 Hz, 2H), 4.18 (q, *J* = 7.2 Hz, 2H), 3.86 (s, 3H), 3.86 (s, 3H), 1.44 (t, *J* = 7.1 Hz, 3H), 1.03 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 169.5, 167.7, 142.5, 138.0, 136.7, 129.9, 128.1, 127.8, 126.8, 126.3, 125.1, 124.3, 122.1, 121.1, 120.9, 120.2, 120.0, 119.8, 119.7, 113.9, 109.2, 108.4, 61.5, 61.2, 32.9, 30.7, 14.3, 13.6. IR (neat, cm⁻¹): v 2923, 1716, 1590, 1466, 1392, 1230, 1080,

1055, 1018, 967, 858, 793. HRMS (ESI-Q-TOF) m/z calcd for $C_{28}H_{27}N_2O_4$ (M + H)⁺ 455.1965, found 455.1965.

7. Crystal structure and Data of 5a, 10 and 15

The Rigaku Oxford Diffraction detector system $[\lambda(Mo-K\alpha) = 0.71073 \text{ Å}]$ at 288K, 296K, graphite monochromator with a ω scan width of 0.30. The data were reduced using OLEX 2.1.27 and the structures were solved using SHELXT-97 and refined using the program SHELXL-2018/3. All non-hydrogen atoms were refined anisotropically.

Experimental: Single crystals of **5a**, **10** and **15** were obtained by slow evaporation method used for the crystal growth from the mixture of ethyl acetate/hexane at room temperature.

ORTEP-Drawing of compound 5a:

X-Ray Crystal Data for Compound 5a:

CCDC Number	2275329
Compound identification code	RB001A_0m_a
Empirical formula	C19 H21 N O5

Formula weight	343.37
Temperature	288 K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P 21/c
Unit cell dimensions	a=8.4646(7) alpha= 90 b=21.096(2) beta=105.960(4) c=10.1483(10) gamma=90
Volume	1742.3(3)Å3
Ζ	4
Density (calculated)	1.309 g/cm3
Absorption coefficient	0.095 mm-1
F(000)	728.0
Reflections collected	4033
Independent reflections	2823
Completeness to theta = 27.539°	0.995
Refinement method	Full-matrix least-squares on F2
Max. and min. transmission	0.991 and 0.983
Goodness-of-fit on F2	1.058
R(reflections)	0.0676(2823)
wR2(reflections)	0.1976(4013)
Diffractometer	Xcalibur Gemini Eos CCD

ORTEP-Drawing of compound 10:

X-Ray Crystal Data for Compound 10:

CCDC Number	2275179
Compound identification code	rb47
Empirical formula	C15 H14 N O3
Formula weight	256.27
Temperature	296 K
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	P -1
Unit cell dimensions	a=8.6191(4) alpha=81.898(4)
	b=8.8839(4) beta=73.226(3)
	c=9.3999(3) gamma=73.495(4)
Volume	659.38(5)Å3

Ζ	2
Density (calculated)	1.291 g/cm3
Absorption coefficient	0.090 mm-1
F(000)	470.0
Reflections collected	2904
Independent reflections	1563
Completeness to theta = 27.539°	0.970
Refinement method	Full-matrix least-squares on F2
Max. and min. transmission	0.987 and 0.983
Goodness-of-fit on F2	1.047
R(reflections)	0.0664(1563)
wR2(reflections)	0.2301(2817)
Diffractometer	Xcalibur Gemini Eos CCD

X-Ray Crystal Data for Compound 15:

X-Ray Crystal Data for Compound 15:

CCDC Number	2277539
Compound identification code	rb 54
Empirical formula	C29 H26 N O4
Formula weight	406.38
Temperature	296 К
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	P -1
Unit cell dimensions	a=7.8862(5) alpha=109.715(9) b=12.8660(12) beta=97.202(7) c=12.9041(13) gamma=106.377(7)
Volume	1146.8(2)Å3
Ζ	2
Density (calculated)	1.311 g/cm3
Absorption coefficient	0.087 mm-1
F(000)	478.0
Reflections collected	3917
Independent reflections	1155
Completeness to theta = 27.539°	0.995
Refinement method	Full-matrix least-squares on F2
Max. and min. transmission	0.991 and 0.987
Goodness-of-fit on F2	1.208
R(reflections)	0.1775(1155)
wR2(reflections)	0.5960(3915)
Diffractometer	Xcalibur Gemini Eos CCD

8. References

- 1. S, Sakthivel, R. Balamurugan, J. Org. Chem. 2018, 83, 12171.
- 2. E. Alvarez-Manzaneda, R. Chahboun, E. Cabrera, E. Alvarez, A. Haidour, J. M. Ramos, R. Alvarez-Manzaneda, Y. Charrah, Es-Samti, *Org. Biomol. Chem.* 2009, **7**, 5146.
- 3. C. S. Shanahan, P. Truong, S. M. Mason, J. S Leszczynski, M. P. Doyle, Org. Lett. 2013, 15, 36

9. Copies of ¹H NMR and ¹³C NMR Spectra of 3a- 3p

S34

S35

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

13.046 14.057 14.057 14.057 14.057 14.057 14.056

10. Copies of ¹H NMR and ¹³C NMR Spectra of 5a- 5t

7.775 7.775 7.775 7.775 7.775 7.728 7.728 7.728 7.72555 7.72555 7.72555 7.725555 7.72555 7.725557 7.725557 7.725557 7.725557 7.7

5c ¹H NMR, CDCI₃, 500 MHz

7.572 7.555 7.555 7.555 7.555 7.555 7.555 6.841 6.833 6.6.835 6.835 6.835 6.835 6.835 6.835 6.835 6.835 6.635 6.764 6.754 6.754 6.754 7.6.754 7.6.754 7.6.754 7.6.754 7.6.754 7.6.754 7.4.255 7.4.255 7.4.255 7.4.242 7.4.223 7.4.223 7.4.223 7.4.223 7.4.225 7.4.225 7.4.225 7.4.225 7.4.223 7.4.225 7.227 7.227 7.227 7.227 7.226 7.227 7.227 7.227 7.227 7.227 7.227 7.227 7.227 7.227 7.227 7.227 7.227 7.227 7.227 7.227 7.227 7.226 7.227 7.

S58

S59

11. Copies of ¹H NMR and ¹³C NMR Spectra of Compounds 7 to 15

