Supporting Information

Transition Metal-free Efficient Synthesis of Bis(indolyl)propynes (BIPs)

Anjali Chaturvedi, Vishal Sharma, Fathimath Nafla CM, Katikam SivaPrasad, Deepak Sharma, Nikhil Kumar, Rushal Chandel, Manpreet Singh, Ravindra K. Rawal,* and Virender Singh*
Table of Contents

1. Experimental Section 3
 Synthesis of α,β-unsaturated aromatic acetylenic aldehydes 3
 Synthesis of α,β-unsaturated aliphatic acetylenic aldehydes 3
 General Procedure for the synthesis of the intermediate gem-dibromolefins 1a 4
 Procedure for the Synthesis of α,β-unsaturated acetylenic aldehydes 12 4

2. NMR spectra of all new compounds 5-50
Experimental Section:

1. Synthesis of α,β-unsaturated aromatic acetylenic aldehydes:

\[\text{R}^1\text{CHO} \xrightarrow{\text{CBr}_4, \text{PPh}_3, \text{DCM}} \text{R}^1\text{CHO} \]

- \[\text{R}^1\text{CHO} \xrightarrow{\text{CBr}_4, \text{PPh}_3, \text{DCM}} \text{R}^1\text{CHO} \]
 \(\text{R}^1 = \text{cyclopropyl, hexyl} \)

Scheme S1. Synthesis of α,β-unsaturated aromatic acetylenic aldehydes

Synthesis of α,β-unsaturated aliphatic acetylenic aldehydes:

\[\text{R}^1\text{CHO} \xrightarrow{\text{CBr}_4, \text{PPh}_3, \text{DCM}} \text{R}^1\text{CHO} \]

- \[\text{R}^1\text{CHO} \xrightarrow{\text{CBr}_4, \text{PPh}_3, \text{DCM}} \text{R}^1\text{CHO} \]

Scheme S2. Synthesis of α,β-unsaturated aliphatic acetylenic aldehydes:
General Procedure for the Synthesis of the intermediate \textit{gem}-dibromolefins 1a:

Under an atmosphere of argon, a solution of triphenylphosphine (3 eq., 0.141 mol) and tetrabromomethane (1.5 eq., 0.071 mol) in anhydrous DCM was stirred at 0 °C for 30 minutes. The aldehyde (1, 1.0 eq., 0.047 mol) was added over a period of five minutes and the mixture as stirred at 0 °C for one hour. After addition of water, the layers were separated, and the aqueous layer was extracted with DCM (3 x 100 mL). The combined organic layers were dried over Na$_2$SO$_4$ and the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel with 100% hexane as the eluent to afford the intermediate \textit{gem}-dibromolefins 1a with 95% yield.

Procedure for the synthesis of \(\alpha,\beta\)-unsaturated acetylenic aldehydes 12:

Under an atmosphere of argon, n-BuLi (14.4 mL, 1.2 eq., 1.6 M in \textit{n}-hexane) was added over a period of 30 minutes via syringe pump to a solution of \textit{gem}-dibromoolefine (1a, 5.0 g, 1.0 eq.) in anhydrous THF at \(-78\) °C, and the mixture was stirred at \(-40\) °C for 15 minutes. After addition of DMF (3 mL, 2.0 eq.) in one lot, the mixture was allowed to warm to room temperature and stirred for one hour. The mixture was added to a stirring solution of KH$_2$PO$_4$ (aq.)/diethyl ether (1:1). After five minutes, the layers were separated and the aqueous layer was extracted with diethyl ether. The combined organic layers were dried over Na$_2$SO$_4$, the solvent was removed under reduced pressure and the crude product was subjected to column chromatography (hexane/EtOAc, 99:1, v/v) to obtain 3-phenylpropioaldehyde (12) in 84% yield.
Fig. S1. 1H-NMR spectrum of 12a in CDCl$_3$.

Figure S2. 13C-NMR spectrum of 12a in CDCl$_3$.
Figure S3: 1H-NMR spectrum of 12b in CDCl$_3$.

Figure S4: 13C-NMR spectrum of 12b in CDCl$_3$.
Figure S5 1H-NMR spectrum of 12c in CDCl$_3$.

Figure S6 13C-NMR spectrum of 12c in CDCl$_3$.
Figure S7. 1H-NMR spectrum of 12d in CDCl$_3$.

Figure S8. 13C-NMR spectrum of 12d in CDCl$_3$.
Figure S9 1H-NMR spectrum of $12e$ in CDCl$_3$.

Figure S10 13C-NMR of spectrum $12e$ in CDCl$_3$.
Figure S11 1H-NMR spectrum of 12f in CDCl$_3$. 13C-NMR Could not be recorded due to solubility problem.

Figure S12 1H-NMR spectrum of 12h in CDCl$_3$.
Figure S13 13C-NMR spectrum of 12h in CDCl$_3$.

Figure S14 1H-NMR spectrum of 12i in CDCl$_3$.

Figure S15 13C-NMR spectrum of 12i in CDCl$_3$.

Figure S16 1H-NMR spectrum of 12j in CDCl$_3$.
Figure S17 13C-NMR spectrum of 12j in CDCl$_3$.

Figure S18 1H-NMR spectrum of 12k in CDCl$_3$.

13
Figure S19: H-NMR spectrum of 12k in CDCl$_3$.

Figure S20: H-NMR spectrum of 12l in CDCl$_3$.
Figure S21 13C-NMR spectrum of 12l in CDCl$_3$.

Figure S22 1H-NMR spectrum of 12n in CDCl$_3$. 13C-NMR could not be recorded due to solubility problem.
Figure S23 1H-NMR spectrum of 12o in CDCl$_3$ + DMSO-d$_6$.

Figure S24 13C-NMR spectrum of 12o in CDCl$_3$.
Figure S25 1H-NMR spectrum of 12p in CDCl$_3$.

Figure S26 13C-NMR of spectrum 12p in CDCl$_3$.
Figure S27 1H-NMR spectrum of 13a in CDCl$_3$.

Figure S28 13C-NMR spectrum of 13a in CDCl$_3$.
Figure S29 1H-NMR spectrum of 13c in CDCl$_3$ + DMSO-d$_6$.

Figure S30 13C-NMR spectrum of 13c in CDCl$_3$.
Figure S31 1H-NMR spectrum of 13o in CDCl$_3$ + DMSO-d$_6$.

Figure S32 13C-NMR spectrum of 13o in CDCl$_3$ + DMSO-d$_6$.
Figure S33 1H-NMR spectrum of 14a in CDCl$_3$.

Figure S34 13C-NMR spectrum of 14a in CDCl$_3$.
Figure S35 1H-NMR spectrum of 14d in CDCl$_3$.

Figure S36 13C-NMR spectrum of 14d in CDCl$_3$.

Figure S37 1H-NMR spectrum of 14f in CDCl$_3$ + DMSO-d$_6$.

Figure S38 13C-NMR spectrum of 14f in CDCl$_3$ + DMSO-d$_6$.
Figure S39 1H-NMR spectrum of 14j in CDCl$_3$.

Figure S40 13C-NMR spectrum of 14j in CDCl$_3$.
Figure S41: 1H-NMR spectrum of 15g in CDCl$_3$.

Figure S42: 13C-NMR spectrum of 15g in CDCl$_3$.
Figure S43 1H-NMR spectrum of 15k in CDCl$_3$.

Figure S44 13C-NMR spectrum of 15k in CDCl$_3$ + DMSO-d$_6$.
Figure S45 1H-NMR spectrum of 16a in CDCl$_3$.

Figure S46 13C-NMR spectrum of 16a in CDCl$_3$.
Figure S47: 1H-NMR spectrum of 16f in CDCl$_3$ + DMSO-d$_6$.

Figure S48: 13C-NMR spectrum of 16f in CDCl$_3$ + DMSO-d$_6$.
Figure S49 1H-NMR spectrum of 16n CDCl$_3$ + DMSO-d$_6$.

Figure S50 13C-NMR spectrum of 16n CDCl$_3$ + DMSO-d$_6$.
Figure S51 1H-NMR spectrum of 17a in CDCl$_3$.

Figure S52 13C-NMR spectrum of 17a in CDCl$_3$.

30
Figure S53 1H-NMR spectrum of $17i$ in CDCl$_3$.

Figure S54 13C-NMR spectrum of $17i$ in CDCl$_3$.

Figure S55 1H-NMR spectrum of $17k$ in CDCl$_3$.

Figure S56 13C-NMR spectrum of $17k$ in CDCl$_3$.
Figure S57 1H-NMR spectrum of 18a in CDCl$_3$.

Figure S58 13C-NMR spectrum of 18a in CDCl$_3$.
Figure S59 1H-NMR spectrum of 18d in CDCl$_3$.

Figure S60 13C-NMR spectrum of 18d in CDCl$_3$.
Figure S61 1H-NMR spectrum of 18e in CDCl$_3$.

Figure S62 13C-NMR spectrum of 18e in CDCl$_3$.
Figure S63 1H-NMR spectrum of 19a in CDCl$_3$.

Figure S64 13C-NMR spectrum of 19a spectrum in CDCl$_3$.
Figure S65 1H-NMR spectrum of 19f in CDCl$_3$ + DMSO-d$_6$.

Figure S66 13C-NMR spectrum of 19f in CDCl$_3$.
Figure S67: 1H-NMR spectrum of 19k in CDCl$_3$.

Figure S68: 13C-NMR spectrum of 19k in CDCl$_3$.
Figure S69 1H-NMR spectrum of 19n in CDCl$_3$ + DMSO-d$_6$.

Figure S70 13C-NMR spectrum of 19n in CDCl$_3$ + DMSO-d$_6$.
Figure S71 1H-NMR spectrum of 20a in CDCl$_3$.

Figure S72 13C-NMR spectrum of 20a in CDCl$_3$.
Figure S73 1H-NMR spectrum of 20d in CDCl$_3$.

Figure S74 13C-NMR spectrum of 20d in CDCl$_3$.
Figure S75 1H-NMR spectrum of 21a in CDCl$_3$.

Figure S76 13C-NMR spectrum of 21a in CDCl$_3$.
Figure S77: 1H-NMR spectrum of 21c in CDCl$_3$.

Figure S78: 13C-NMR spectrum of 21c in CDCl$_3$.

Figure S79 \(^1\)H-NMR spectrum of 21h in CDCl\(_3\).

Figure S80 \(^13\)C-NMR spectrum of 21h in CDCl\(_3\).
Figure S81 1H-NMR spectrum of 21k in CDCl$_3$.

Figure S82 13C-NMR spectrum of 21k in CDCl$_3$.
Figure S83 1H-NMR spectrum of 21n in CDCl$_3$.

Figure S84 13C NMR spectrum of 21n in CDCl$_3$.
Figure S85 1H-NMR spectrum of 22a in CDCl$_3$.

Figure S86 13C NMR spectrum of 22a in CDCl$_3$.
Figure S87 1H-NMR spectrum of 22c in CDCl$_3$.

Figure S88 13C-NMR spectrum of 22c in CDCl$_3$.
Figure S89 1H NMR spectrum of 22d in CDCl$_3$.

Figure S90 13C NMR spectrum of 22d in CDCl$_3$.
Figure S91 1H NMR spectrum of 22e in CDCl$_3$.

Figure S92 13C NMR spectrum of 22e in CDCl$_3$.
Figure S93 1H NMR spectrum of 22k in CDCl$_3$.

Figure S94 13C NMR spectrum of 22k in CDCl$_3$.
Figure S95 1H NMR spectrum of 22n in CDCl$_3$ + DMSO-d$_6$.

Figure S96 13C NMR spectrum of 22n in CDCl$_3$ + DMSO-d$_6$.
Figure S97 1H NMR spectrum of $22o$ in CDCl$_3$.

Figure S98 13C NMR spectrum of $22o$ in CDCl$_3$.