Supporting Information

Transition Metal-free Efficient Synthesis of Bis(indolyl)propynes (BIPs)

Anjali Chaturvedi, Vishal Sharma, Fathimath Nafla CM, Katikam SivaPrasad, Deepak Sharma, Nikhil Kumar, Rushal Chandel, Manpreet Singh, Ravindra K. Rawal,* and Virender Singh*

Table of Contents

Experimental Section	3
Synthesis of α , β -unsaturated aromatic acetylenic aldehydes	3
Synthesis of α , β -unsaturated aliphatic acetylenic aldehydes	3
General Procedure for the synthesis of the intermediate gem-dibromolefins 1a	4
Procedure for the Synthesis of α,β -unsaturated acetylenic aldehydes 12	4
NMR spectra of all new compounds	5-50
[Experimental Section Synthesis of α,β-unsaturated aromatic acetylenic aldehydes Synthesis of α,β-unsaturated aliphatic acetylenic aldehydes General Procedure for the synthesis of the intermediate <i>gem</i> -dibromolefins 1a Procedure for the Synthesis of α,β-unsaturated acetylenic aldehydes 12 NMR spectra of all new compounds

Experimental Section:

1. Synthesis of α , β -unsaturated aromatic acetylenic aldehydes:

Scheme S1. Synthesis of α , β -unsaturated aromatic acetylenic aldehydes

Synthesis of α , β -unsaturated aliphatic acetylenic aldehydes:

General Procedure for the Synthesis of the intermediate gem-dibromolefins 1a:

Under an atmosphere of argon, a solution of triphenylphosphine (3 eq., 0.141 mol) and tetrabromomethane (1.5 eq., 0.071 mol) in anhydrous DCM was stirred at 0 °C for 30 minutes. The aldehyde (**1**, 1.0 eq., 0.047 mol) was added over a period of five minutes and the mixture as stirred at 0 °C for one hour. After addition of water, the layers were separated, and the aqueous layer was extracted with DCM (3 x 100 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel with 100% hexane as the eluent to afford the intermediate *gem*-dibromolefins **1a** with 95% yield.

Procedure for the synthesis of α , β -unsaturated acetylenic aldehydes 12:

Under an atmosphere of argon, n-BuLi (14.4 mL, 1.2 eq., 1.6 M in *n*-hexane) was added over a period of 30 minutes via syringe pump to a solution of *gem*-dibromoolefine (**1a**, 5.0 g, 1.0 eq.) in anhydrous THF at –78 °C, and the mixture was stirred at –40 °C for 15 minutes. After addition of DMF (3 mL, 2.0 eq.) in one lot, the mixture was allowed to warm to room temperature and stirred for one hour. The mixture was added to a stirring solution of KH₂PO₄ (aq.)/diethyl ether (1:1). After five minutes, the layers were separated and the aqueous layer was extracted with diethyl ether. The combined organic layers were dried over Na₂SO₄, the solvent was removed under reduced pressure and the crude product was subjected to column chromatography (hexane/EtOAc, 99:1, v/v) to obtain 3-phenylpropiolaldehyde (**12**) in 84% yield.

Figure S2 $\,^{13}\text{C-NMR}$ spectrum of 12a in $\text{CDCI}_{3.}$

Figure S4 ¹³C-NMR spectrum of 12b in CDCl_{3.}

Figure.S6 ¹³C-NMR spectrum of 12c in CDCl₃.

7

Figure S10 ¹³C-NMR of spectrum 12e in CDCl_{3.}

Figure S11 ¹H-NMR spectrum of 12f in CDCl_{3.} ¹³C-NMR Could not be recorded due to solubility problem.

Figure S12 ¹H-NMR spectrum of 12h in CDCl_{3.}

Figure S14 ¹H-NMR spectrum of 12i in CDCl_{3.}

Figure S16 ¹H-NMR spectrum of 12j in CDCl_{3.}

Figure S18 ¹H-NMR spectrum of 12k in CDCl_{3.}

Figure S20 ¹H-NMR spectrum of 12I in CDCl_{3.}

Figure S22 ¹H-NMR spectrum of 12n in CDCl₃ ¹³C-NMR Could not be recorded due to solubility problem.

Figure S24 ¹³C-NMR spectrum of 120 in CDCl_{3.}

Figure S26 ¹³C-NMR of spectrum 12p in CDCl₃.

Figure S28 ¹³C-NMR spectrum of 13a in CDCl₃.

Figure S32 ¹³C-NMR spectrum of 130 in CDCl₃ + DMSO-d₆.

Figure.S36 ¹³C-NMR spectrum of 14d in CDCl_{3.}

Figure.S44 ¹³C-NMR spectrum of **15k** in CDCl₃ + DMSO-d₆.

Figure S52 ¹³C-NMR spectrum of 17a in CDCl_{3.}

Figure S54 $^{\rm 13}\text{C-NMR}$ spectrum of 17i in CDCl_3.

Figure S72 ¹³C-NMR spectrum of 20a in CDCl_{3.}

Figure S74 ¹³C-NMR spectrum of 20d in CDCl₃.

Figure S76 ¹³C-NMR spectrum of 21a in CDCl_{3.}

Figure S78 ¹³C-NMR spectrum of 21c in CDCl_{3.}

Figure S84 ¹³C NMR spectrum of 21n in CDCl_{3.}

Figure S94 ¹³C NMR spectrum of 22k in CDCl_{3.}

