Electronic Supplementary Information

Propargyl Alcohol as Acrolein Equivalent: Synthesis of β-(3-

Indolyl)acroleins and β-(Imidazo[1,2-*a*]pyridin-3-yl)acroleins

Bhawani,^a Sonam,^a Vikki N. Shinde,^a Prakash N. Swami,^a Krishnan Rangan^b and Anil

Kumar^{a,*}

^aDepartment of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus,

Rajasthan, 333031, India

^bDepartment of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad

Campus, Telangana, 500078, India

*E-mail: anilkumar@pilani.bits-pilani.ac.in

Contents

1.	General information	S2
2.	General procedure for the synthesis of 3 or 5	S2
3.	Intermolecular competition experiment ¹ H NMR analysis	S2
4.	General procedure for synthesis of 6	S 3
5.	General procedure for synthesis of 8	S 3
6.	Physical and spectral data for 3a-3w , 5a-5o , 6 and 8	S3-S13
7.	Copies of ¹ H and ¹³ C NMR for 3a-3w , 5a-5o , 6 and 8	S14-S54
8.	X-ray crystallographic data of 3a , 3m and 5c	\$55-\$59
9.	References	S 60

1. General information

2-Arylimidazo[1,2-*a*]pyridines and 2-arylindoles were prepared using reported procedures. All the other reagents were commercially available and used as received. The reactions were performed in a 10 mL seal tube at 120 °C, at a stirrer for 16 h. Thin layer chromatography (TLC) was performed on Merck precoated TLC (silica gel 60 F254) plates. Melting points were determined in open capillary tubes on an EZ-Melt automated melting point apparatus and were uncorrected. The ¹H NMR (400 MHz) and ¹³C{¹H} NMR (100 MHz) spectra were recorded on a Bruker Advance 400 spectrometer using CDCl₃ (TMS as an internal standard) as solvent. Chemical shifts (δ) and coupling constants (*J*) are reported in parts per million (ppm) and hertz, respectively. The chemical multiplicities were reported as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), and multiplet (m), and combinations of them as well. HRMS data were recorded on an Agilent 6545 Q-TOF spectrometer in positive mode using electrospray ionization (ESI) as the source. X-ray crystal structures were obtained with a Rigaku Oxford XtaLAB AFC12 (RINC): Kappa dual home/near diffractometer.

2. General procedure for the synthesis of 3 or 5

A 10 mL oven-dried pressure tube was charged with imidazo[1,2-*a*]pyridine/indole derivative (0.52 mmol) and propargyl alcohol (1.0 mL). Thereafter, anhydrous KOAc (1.04 mmol, 2 equiv.) was added rapidly and tube was capped. The reaction mixture was heated with stirring at 120 °C. After heating for 16 h the sealed tube was cooled and reaction mixture was transferred to a separating funnel using ethyl acetate (2 mL) and water (2 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure, and the resulting residue was purified by column chromatography on silica gel (100–200 mesh) using hexanes/ethyl acetate as eluent to afford desired product.

3. Intermolecular competition experiment ¹H NMR analysis

4. General procedure for synthesis of 6

Solution of **3b** (0.095 mmole) in MeOH: DCM (4: 1) (1 mL) was cooled down up to 0 °C. Then, NaBH₄ (0.190 mmole) was added portion-wise over 10 min and the resultant reaction mixture was allowed to blend at RT for 2 h. After completion of the reaction, the solvent was evaporated on reduced pressure, diluted with ethyl acetate (2 mL), and washed with water (2 mL×2). The organic layer was collected separately, dried over the Na₂SO₄ layer, and evaporated at reduced pressure. Obtained crude was further passed through column chromatography to get pure product.

5. General procedure for synthesis of 8

Initially, compound **3a** (0.160 mmole) and ethyl 2-(diethoxyphosphoryl)acetate (7) (0.133 mmole) were added to dry THF and the solution was stirred in an ice bath, to attain 0 °C temperature. Then, at this temperature, NaH (0.199 mmole, 1.5 equiv.) was added gradually. The obtained reaction mixture was stirred for 10 min at 0 °C and then, at RT for 5 h. After completion of the reaction, the reaction mixture was transferred to a separating funnel and diluted with ethyl acetate (5 mL), which was washed with water (5 mL×2). Separated the organic layer, dried over the Na₂SO₄ layer, and used for further purification after evaporating solvent at reduced pressure.

6. Physical and spectral data for 3a-3v, 5a-5o, 6 and 8

(*E*)-3-(2-Phenylimidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3a): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 3: 2 v/v); yellow solid; 98 mg (77%); mp = 101-103 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.63 (d, *J* = 7.6 Hz, 1H), 8.51 (d, *J* = 7.2 Hz, 1H), 7.82 – 7.74 (m, 4H), 7.58 – 7.45 (m, 4H), 7.13 – 7.10 (m, 1H), 6.69 (dd, *J* = 16.4, 7.2 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.5, 153.4, 148.2, 138.0, 133.2, 129.6, 129.3, 128.9, 127.8, 125.9, 122.8, 118.4, 117.3, 114.7; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₆H₁₃N₂O⁺ 249.1022; Found 249.1026.

(*E*)-3-(2-(Imidazo[1,2-*a*]pyridin-2-yl)phenyl)prop-2-en-1-ol (3a'): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 2: 3 v/v); off-white solid; 48 mg (36%); mp = 85-88 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 6.8 Hz, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.69 (s, 1H), 7.67 – 7.56 (m, 2H), 7.36 (t, *J* = 4.2 Hz, 2H), 7.21 (t, *J* = 8.0 Hz, 1H), 7.09 (d, *J* = 16.0 Hz, 1H), 6.82 (t, *J* = 6.8 Hz, 1H), 6.39 – 6.34 (m, 1H), 4.34 (d, *J* = 4.8 Hz, 2H).; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.01, 144.79, 135.58, 132.41, 130.41, 130.22, 130.03,

128.09, 127.64, 126.77, 125.62, 124.78, 117.54, 112.46, 111.52, 63.74; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₃N₂O⁺ 251.1179; Found 251.1168.

(*E*)-3-(2-(*p*-Tolyl)imidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3b): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 4: 1 v/v); yellow solid; 110 mg (81%); mp = 92 – 94 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.63 (d, *J* = 7.6 Hz, 1H), 8.50 (d, *J* = 7.2 Hz, 1H), 7.82 (d, *J* = 4.8 Hz, 1H), 7.78 (s, 1H), 7.66 (d, *J* = 8 Hz, 2H), 7.47 (t, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.10 (t, *J* = 7.0 Hz, 1H), 6.69 (dd, *J* = 16.4, 7.2 Hz, 1H), 2.47 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.5, 153.7, 148.2, 139.5, 138.2, 130.3, 129.6, 129.5, 127.7, 125.9, 122.6, 118.4, 117.2, 114.6, 21.4; HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₇H₁₅N₂O⁺ 263.1179; Found 263.1187.

(*E*)-3-(2-(4-Methoxyphenyl)imidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3c): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 4: 1 v/v) ; yellow solid; 118 mg (83%); mp = 73-75.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.64 (d, *J* = 7.6 Hz, 1H), 8.51 – 8.49 (m, 2H), 7.81 – 7.77 (m, 2H), 7.72 – 7.70 (m, 2H), 7.49 – 7.45 (m, 1H), 7.13 – 7.08 (m, 3H), 6.69 (dd, *J* = 16.4, 7.6 Hz, 1H), 3.92(s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.5, 160.6, 153.5, 148.2, 138.3, 130.9, 127.8, 125.9, 125.6, 122.4, 118.3, 117.0, 114.5, 114.4, 55.4; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₅N₂O₂⁺ 279.1128; Found 279.1121.

(*E*)-3-(2-(4-Fluorophenyl)imidazo[1,2-a]pyridin-3-yl)acrylaldehyde (3d): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 3: 7 v/v); yellow solid; 100 mg (73%); mp = 212-214 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.65 (d, *J* = 7.2 Hz, 1H), 8.52 – 8.50 (m, 1H), 7.81 – 7.78 (m, 1H), 7.77 – 7.73 (m, 3H), 7.51 – 7.47 (m, 1H), 7.27 – 7.23 (m, 2H), 7.15 – 7.11 (m, 1H), 6.69 (dd, *J* = 16.2, 7.4 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.3, 163.5 (d, *J*_{C-F} = 249.0 Hz), 152.3, 148.1, 137.5, 131.4 (d, *J*_{C-F} = 8.0 Hz), 129.4 (d, *J*_{C-F} = 3.0 Hz), 127.9, 125.9, 123.1, 118.4, 117.3, 116.1 (d, *J*_{C-F} = 22.0 Hz), 114.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.52; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₆H₁₂FN₂O⁺ 267.0928; Found 267.0920.

(*E*)-3-(2-(4-Chlorophenyl)imidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3e): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 3: 2 v/v); yellow solid; 95 mg (74%); mp = 177-179 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.65 (d, *J* = 7.6 Hz, 1H), 8.51 (d, *J* = 7.2 Hz, 1H), 7.81 (d, *J* = 9.2 Hz, 1H), 7.75 (d, *J* = 16.4 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.50 (t, *J* = 7.8 Hz, 1H), 7.14 (t, *J* = 6.8 Hz, 1H), 6.70 (dd, *J* = 16.2, 7.4 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.3, 151.9, 148.2, 137.4, 135.6, 131.8, 130.8,

129.2, 127.9, 125.9, 123.3, 118.5, 117.4, 114.8; HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{16}H_{12}ClN_2O^+$ 283.0633; Found 283.0639.

(*E*)-3-(2-(4-Bromophenyl)imidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3f): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 2: 3 v/v); yellow solid; 119 mg (71%); mp = 185-187 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.65 (d, *J* = 7.2 Hz, 1H), 8.51 (d, *J* = 6.8 Hz, 1H), 7.81 (d, *J* = 8.8 Hz, 1H), 7.75 (d, *J* = 16.4 Hz, 1H), 7.71 – 7.69 (m, 2H), 7.66 – 7.63 (m, 2H), 7.52 – 7.47 (m, 1H), 7.16 – 7.12 (m, 1H), 6.70 (dd, *J* = 16.2, 7.4 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.3, 151.9, 148.2, 137.4, 132.2, 132.1, 131.0, 127.9, 125.8, 123.9, 123.3, 118.5, 117.3, 114.81; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₆H₁₂BrN₂O⁺ 327.0128; Found 327.0134.

(*E*)-4-(3-(3-Oxoprop-1-en-1-yl)imidazo[1,2-*a*]pyridin-2-yl)benzonitrile (3g): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 2: 3 v/v); yellow solid; 56 mg (41%); mp = 268-270 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.68 (d, *J* = 6.0 Hz, 1H), 8.52 (d, *J* = 6.8 Hz, 1H), 7.91 – 7.82 (m, 5H), 7.74 (d, *J* = 16.4 Hz,, 1H), 7.52 (t, *J* = 8.0 Hz, 1H), 7.17 (t, *J* = 7.0 Hz, 1H), 6.73 (dd, *J* = 16.0, 7.2 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.0, 150.4, 148.2, 137.9, 136.6, 132.7, 130.1, 128.2, 125.8, 124.3, 118.7, 118.5, 117.8, 115.1, 112.9; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₂N₃O⁺ 274.0975; Found 274.0971.

(*E*)-3-(2-(*o*-Tolyl)imidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3h): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 3:2 v/v); yellow solid; 102 mg (75%); mp = 121-123 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.54 (d, *J* = 7.2 Hz, 1H), 8.49 (d, *J* = 6.8 Hz, 1H), 7.80 (d, *J* = 9.2 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.42 – 7.33 (m, 4H), 7.15 (t, *J* = 7.0 Hz, 1H), 6.43 (dd, *J* = 16.2, 7.4 Hz, 1H), 2.31 (s, 3H).; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.3, 153.3, 151.3, 147.9, 137.3, 136.9, 132.7, 130.7, 130.4, 129.4, 127.5, 125.9, 125.3, 122.7, 118.5, 114.6, 19.9; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₅N₂O⁺ 263.1179; Found 263.1170.

(*E*)-3-(2-(2-Methoxyphenyl)imidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3i): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 3: 2 v/v); yellow solid; 101 mg (71%); mp = 152-154 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.56 (d, *J* = 7.2 Hz, 1H), 8.46 (d, *J* = 6.8 Hz, 1H), 7.80 (d, *J* = 9.2 Hz, 1H), 7.60 (d, *J* = 16.4 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 2H), 7.48 – 7.42 (m, 1H), 7.15 – 7.07 (m, 3H), 6.49 (dd, *J* = 16.2, 7.4 Hz, 1H), 3.84 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.5, 156.9, 150.3, 148.1, 138.0, 132.0, 131.0, 127.2, 125.3, 122.5, 122.4, 121.1, 118.7, 118.5, 114.5, 111.4, 55.6; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₅N₂O₂⁺ 279.1128; Found 279.1136.

(*E*)-3-(2-(3-Methoxyphenyl)imidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3j): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 3: 2 v/v); yellow solid; 99 mg (70%); mp = 174-176 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.64 (d, *J* = 7.2 Hz, 1H), 8.51 (d, *J* = 6.8 Hz, 1H), 7.83 (d, *J* = 8.4 Hz, 1H), 7.80 (s, 1H), 7.50 – 7.44 (m, 2H), 7.32 – 7.28 (m, 2H), 7.14 – 7.10 (m, 1H), 7.07 – 7.05 (m, 1H), 6.69 (dd, *J* = 16.4, 7.6 Hz, 1H), 3.91 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.5, 160.0, 153.2, 148.1, 138.0, 134.5, 129.9, 127.8, 125.9, 122.9, 122.1, 118.5, 117.4, 115.4, 114.68, 114.66, 55.5; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₅N₂O₂⁺ 279.1128; Found 279.1132.

(*E*)-3-(2-(3-Nitrophenyl)imidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3k): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 3: 7 v/v); yellow solid; 100 mg (66%); mp = 210-212 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.67 (d, *J* = 7.6 Hz, 1H), 8.98 (d, *J* = 6.8 Hz, 1H), 8.56 (t, *J* = 2 Hz, 1H), 8.38 – 8.35 (m, 1H), 8.25 – 8.22 (m, 1H), 8.08 (d, *J* = 16.4 Hz, 1H), 7.89 – 7.85 (m, 2H), 7.63 (dd, *J* = 9.0, 6.6 Hz, 1H), 7.28 – 7.24 (m, 1H), 6.76 (dd, *J* = 16.2, 7.4 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 194.9, 148.64, 148.60, 147.7, 137.8, 136.0, 135.6, 131.0, 129.2, 127.8, 125.0, 124.2, 124.0, 118.13, 118.06, 115.6; HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₆H₁₂N₃O₃⁺ 294.0873; Found 294.0877.

(*E*)-3-(2-(Naphthalen-2-yl)imidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3l): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 3: 2 v/v); yellow solid; 121 mg (78%); mp = 130-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.64 (d, *J* = 7.2 Hz, 1H), 8.55 (d, *J* = 6.8, 1H), 8.22 (s, 1H), 8.04 – 7.84 (m, 7H), 7.59 (s, 1H), 7.50 (d, *J* = 15.6 Hz, 1H), 7.14 (s, 1H), 6.73 (dd, *J* = 15.8, 7.4 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.4, 157.0, 153.3, 148.3, 138.0, 133.5, 133.3, 130.6, 129.4, 128.7, 128.5, 127.8, 127.0, 126.71, 126.68, 125.9, 123.1, 118.5, 117.6, 114.7; HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₂₀H₁₅N₂O⁺ 299.1179; Found 299.1177.

(*E*)-3-(2-(Thiophen-3-yl)imidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3m): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 2: 3 v/v); yellow solid; 78 mg (60%); mp = 130-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.67 (d, *J* = 7.2 Hz, 1H), 8.48 (d, *J* = 6.8 Hz, 1H), 7.87 (d, *J* = 16.4 Hz, 1H), 7.77 (d, *J* = 9.2 Hz, 1H), 7.73 (s, 1H), 7.54 (dd, *J* = 13.4, 4.6 Hz, 2H), 7.46 (t, *J* = 8.0 Hz, 1H), 7.10 (t, *J* = 7.0 Hz, 1H), 6.70 (dd, *J* = 16.4, 7.2 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.4, 148.7, 148.2, 137.5, 134.3, 128.1, 127.9, 126.8, 126.0, 125.9, 122.8, 118.3, 117.3, 114.6; HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₄H₁₁N₂OS⁺ 255.0587; Found 255.0584.

(*E*)-3-(8-Methyl-2-phenylimidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3n): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 3: 2 v/v); yellow solid; 99 mg (73%); mp = 136-138 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.62 (d, *J* = 7.2 Hz, 1H), 8.38 (d, *J* = 6.8 Hz, 1H), 7.80 – 7.74 (m, 3H), 7.58 – 7.50 (m, 3H), 7.28 (d, *J* = 6.8 Hz, 1H), 7.03 (t, *J* = 7.0 Hz, 1H), 6.66 (dd, *J* = 16.4, 7.6 Hz, 1H), 2.73 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.6, 153.0, 148.5, 138.3, 133.5, 129.7, 129.2, 128.9, 128.6, 126.8, 123.7, 122.5, 117.8, 114.6, 17.1; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₅N₂O⁺ 263.1179; Found 263.1173.

(*E*)-3-(8-Methyl-2-(*p*-tolyl)imidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3o): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 2: 3 v/v); yellow solid; 110 mg (77%); mp = 165-167 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.59 (d, *J* = 7.6 Hz, 1H), 8.37 (d, *J* = 6.8 Hz, 1H), 7.76 (d, *J* = 16.0 Hz, 1H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.54 (s, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 7.6 Hz, 1H), 6.62 (dd, *J* = 16.4, 7.6 Hz, 1H), 2.50 (s, 3H), 2.46 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.5, 154.0, 148.7, 139.4, 139.3, 138.3, 130.4, 129.6, 129.5, 125.3, 121.7, 117.0, 116.93, 116.89, 21.44, 21.39; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₇N₂O⁺ 277.1335; Found 277.1339.

(*E*)-3-(2-(4-Chlorophenyl)-8-methylimidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3p): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 2: 3 v/v); yellow solid; 114 mg (75%); mp = 216-218 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.62 (d, *J* = 7.6 Hz, 1H), 8.36 (d, *J* = 6.8 Hz, 1H), 7.74 – 7.69 (m, 3H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 6.0 Hz, 1H), 7.03 (t, *J* = 6.8 Hz, 1H), 6.66 (dd, *J* = 16.2, 7.4 Hz, 1H), 2.71 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.3, 151.5, 148.5, 137.7, 135.4, 132.0, 130.9, 129.1, 128.7, 126.9, 123.6, 122.9, 117.8, 114.7, 17.1; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₄ClN₂O⁺ 297.0789; Found 297.0798.

(*E*)-3-(7-Methyl-2-phenylimidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3q): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 3: 2 v/v); yellow solid; 107 mg (79%); mp = 177-179 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.61 (d, *J* = 7.6 Hz, 1H), 8.39 (d, *J* = 7.2 Hz, 1H), 7.79 – 7.73 (m, 3H), 7.57 – 7.53 (m, 3H), 7.52 – 7.48 (m, 1H), 6.95 (dd, *J* = 7.0, 1.8 Hz, 1H), 6.64 (dd, *J* = 16.4, 7.6 Hz, 1H), 2.52 (s 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.5, 153.8, 148.7, 139.5, 138.2, 133.3, 129.6, 129.2, 128.9, 125.3, 121.9, 117.2, 117.0, 21.5; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₅N₂O⁺ 263.1179; Found 263.1171.

(*E*)-3-(2-(4-Methoxyphenyl)-7-methylimidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3r): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 3: 2 v/v); yellow solid; 128 mg (85%); mp = 96-98 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.60 (d, *J* = 7.6 Hz, 1H), 8.37 (d, *J* = 7.2 Hz, 1H), 7.77 – 7.67 (m, 1H), 7.53 (s, 1H), 7.07 (d, *J* = 8.4 Hz, 2H), 6.92 (d, *J* = 7.2 Hz, 1H), 6.62 (dd, *J* = 16.2, 7.4 Hz, 1H), 3.90 (s, 3H), 2.51 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.5, 160.6, 153.8, 148.8, 139.4, 138.4, 130.9, 125.7, 125.3, 121.5, 117.0, 116.9, 116.7, 114.4, 55.4, 21.5; HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₈H₁₇N₂O₂⁺ 293.1285; Found 293.1280.

(*E*)-3-(7-Methyl-2-(4-nitrophenyl)imidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3s):

Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 1: 3 v/v); yellow solid; 120 mg (76%); mp = 239-241 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.67 (d, *J* = 7.2 Hz, 1H), 8.43 – 8.40 (m, 3H), 7.98 – 7.94 (m, 2H), 7.73 (d, *J* = 16.4 Hz, 1H), 7.59 (s, 1H), 7.01 (dd, *J* = 7.2, 2.0 Hz, 1H), 6.69 (dd, *J* = 16.4, 7.2 Hz, 1H), 2.55 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.0, 150.2, 148.7, 148.1, 140.1, 139.9, 136.7, 130.3, 125.1, 124.1, 123.6, 117.8, 117.7, 117.3, 21.5; HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₇H₁₄N₃O₃⁺ 308.1030; Found 308.1033.

(*E*)-3-(7-Chloro-2-phenylimidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3t): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 3: 7 v/v); yellow solid; 94 mg (65 %); mp = 194-196 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.67 (d, *J* = 7.6 Hz, 1H), 8.54 (dd, *J* = 2.0, 0.8 Hz, 1H), 7.80 – 7.74 (m, 4H), 7.59 – 7.51 (m, 3H), 7.44 (dd, *J* = 9.4, 1.8 Hz, 1H), 6.71 (dd, *J* = 16.4, 7.2 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.3, 153.6, 146.4, 137.3, 132.9, 129.5, 129.0, 128.9, 123.8, 122.9, 118.7, 117.6, 113.6; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₆H₁₂ClN₂O⁺ 283.0633; Found 283.0638.

(*E*)-3-(7-Bromo-2-phenylimidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3u): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 2: 3 v/v); yellow solid; 114 mg (68%); mp = 168-170 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.67 (d, *J* = 7.2 Hz, 1H), 8.63 (s, 1H), 7.79 – 7.69 (m, 4H), 7.59 – 7.52 (m, 4H), 6.71 (dd, *J* = 16.6, 7.4 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.3, 153.4, 146.5, 140.0, 137.3, 132.8, 131.0, 129.5, 129.0, 125.9, 123.9, 118.9, 117.5, 109.4; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₆H₁₂BrN₂O⁺ 327.0128; Found 327.0126.

(*E*)-3-(7-Bromo-2-(4-methoxyphenyl)imidazo[1,2-*a*]pyridin-3-yl)acrylaldehyde (3v): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 3: 2 v/v); yellow solid; 127 mg (69%); mp = 134-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.66 (d, *J* = 7.6 Hz, 1H), 8.61 (s, 1H), 7.76 (d, *J* = 16.4 Hz, 1H), 7.68 (dd, *J* = 9.0, 6.6 Hz, 3H), 7.52 (dd, *J* = 9.4, 1.8 Hz, 1H), 7.08 (d, J = 8.8 Hz, 2H), 6.70 (dd, J = 16.4, 7.6 Hz, 1H), 3.92 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.3, 160.8, 153.4, 146.5, 137.6, 130.91, 130.87, 125.9, 125.2, 123.4, 118.7, 117.1, 114.5, 109.1, 55.4; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₄BrN₂O₂⁺ 357.0233; Found 357.0239.

(*E*)-4-(2-(4-Methoxyphenyl)-7-methylimidazo[1,2-*a*]pyridin-3-yl)but-3-en-2-one (3w): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes: 3:7 v/v); Orange-yellow solid; 26 mg (21%); mp = 148-150 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 6.8 Hz, 1H), 7.89 (d, J = 16.4 Hz, 1H), 7.71 – 7.68 (m, 2H), 7.50 (s, 1H), 7.08 – 7.04 (m, 2H), 6.87 (dd, J = 7.0, 1.8 Hz, 1H), 6.65 (d, J = 16.4 Hz, 1H), 3.91 (s, 3H), 2.49 (s, 3H), 2.36 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.9, 160.3, 152.5, 148.2, 138.5, 130.8, 129.9, 126.2, 125.0, 120.7, 116.7, 116.5, 116.4, 114.3, 55.4, 27.7, 21.4; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₃N₂O⁺ 307.1441; Found 307.1421.

(*E*)-3-(2-Phenyl-1*H*-indol-3-yl)acrylaldehyde (5a): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 1: 4 v/v); yellow solid; 90 mg (72%); mp = 170-172 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.59 (d, *J* = 8 Hz, 1H), 8.75 (s, 1H), 8.00 (d, *J* = 7.2 Hz, 1H), 7.77 (d, *J* = 16.0 Hz, 1H), 7.61 – 7.54 (m, 5H), 7.49 (dd, *J* = 6.6, 2.2 Hz, 1H), 7.39-7.32 (m, 2H), 6.93 (dd, *J* = 15.8, 7.8 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 194.5, 147.0, 143.6, 136.4, 131.0, 129.6, 129.28, 129.27, 126.3, 125.8, 124.0, 122.4, 121.0, 111.6, 110.4; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₄NO⁺ 248.1070; Found 248.1078.

(*E*)-3-(2-(*p*-Tolyl)-1*H*-indol-3-yl)acrylaldehyde (5b): Purification by column chromatography on silica gel (eluent: EtOAc/hexanse, 1: 4 v/v); yellow solid; 78 mg (73%); mp = 160-162 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.25 (s, 1H), 9.51 (d, *J* = 8.0 Hz, 1H), 7.95 (d, *J* = 7.6 Hz, 1H), 7.79 (d, *J* = 15.6 Hz, 1H), 7.57 (d, *J* = 7.2 Hz, 2H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.43 (d, *J* = 7.6 Hz, 2H), 7.26 (t, *J* = 10.8 Hz, 2H), 6.75 (dd, *J* = 16.2, 8.2 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 194.5, 147.7, 145.1, 139.5, 137.3, 130.1, 130.0, 128.2, 126.2, 124.2, 123.6, 122.2, 120.9, 112.7, 108.9, 21.4; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₆NO⁺ 262.1226; Found 262.1219.

(*E*)-3-(2-(4-Methoxyphenyl)-1*H*-indol-3-yl)acrylaldehyde (5c): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 1: 3 v/v); yellow solid; 110 mg (77%); mp = 156-158 °C;¹H NMR (400 MHz, CDCl₃) δ 9.57 (d, *J* = 7.6 Hz, 1H), 8.78 (s, 1H), 7.97 – 7.95 (m, 1H), 7.74 (d, *J* = 16.0 Hz, 1H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.48 – 7.46 (m, 1H), 7.35 – 7.32 (m, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 6.91 (dd, *J* = 15.6, 8.0 Hz, 1H), 3.92 (s, 3H); ¹³C NMR

(100 MHz, CDCl₃) δ 194.5, 160.8, 147.4, 144.0, 136.3, 130.6, 126.4, 125.2, 123.8, 123.2, 122.3, 120.8, 114.8, 111.5, 110.0, 55.5; HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₈H₁₆NO₂⁺ 278.1176; Found 278.1181.

(*E*)-3-(2-(4-Hydroxyphenyl)-1*H*-indol-3-yl)acrylaldehyde (5d): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 1: 3 v/v); yellow solid; 102 mg (75%); mp = 128-130 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.15 (s, 1H), 10.01 (s, 1H), 9.50 (d, *J* = 7.6 Hz, 1H), 7.92 (d, *J* = 7.6 Hz, 1H), 7.78 (d, *J* = 15.6 Hz, 1H), 7.49 (dd, *J* = 13.2, 7.6 Hz, 3H), 7.26 – 7.21 (m, 2H), 7.00 (d, *J* = 8.4 Hz, 2H), 6.72 (dd, *J* = 15.6, 7.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 194.4, 159.1, 148.0, 145.8, 137.2, 131.5, 126.3, 123.7, 123.4, 122.1, 121.7, 120.7, 116.4, 112.5, 108.4; HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₇H₁₄NO₂⁺ 264.1019; Found 264.1026.

(*E*)-3-(2-(4-Fluorophenyl)-1*H*-indol-3-yl)acrylaldehyde (5e): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 2: 3 v/v); yellow solid; 93 mg (68%); mp = 232-234 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.59 (d, *J* = 8.0 Hz, 1H), 8.68 (s, 1H), 8.00 – 7.98 (m, 1H), 7.69 (d, *J* = 15.6 Hz, 1H), 7.61 – 7.58 (m, 2H), 7.50 – 7.47 (m, 1H), 7.39-7.34 (m, 2H), 7.32 (t, *J* = 2.8 Hz, 1H), 7.30 (s, 1H), 6.93 (dd, *J* = 15.8, 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 146.5, 142.4, 136.3, 131.2 (d, *J* = 8.3 Hz), 127.1 (d, *J* = 3.4 Hz), 126.2, 125.9, 123.3 (d, *J* = 159.1 Hz), 120.9, 120.1, 117.6, 116.5 (d, *J* = 21.7 Hz), 111.6, 110.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -110.44; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₃FNO⁺ 266.0976; Found 266.0969.

(*E*)-3-(2-(4-Chlorophenyl)-1*H*-indol-3-yl)acrylaldehyde (5f): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 1: 3 v/v); yellow solid; 96 mg, (66%); mp = 153-155 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.60 (d, *J* = 7.6 Hz, 1H), 8.71 (s, 1H), 7.99 (d, *J* = 7.2 Hz, 1H), 7.69 (d, *J* = 16.0 Hz, 1H), 7.57 (q, *J* = 7.5 Hz, 3H), 7.49 (d, *J* = 7.2 Hz, 1H), 7.39 – 7.32 (m, 2H), 6.93 (dd, *J* = 15.6, 8.0 Hz, 1H), 3.52 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 146.3, 135.9, 134.2, 131.9, 130.5, 129.6, 129.4, 126.2, 124.2, 122.5, 121.0, 112.2, 111.6, 111.2; HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₇H₁₃ClNO⁺ 282.0680; Found 282.0666.

(*E*)-3-(2-(4-Bromophenyl)-1*H*-indol-3-yl)acrylaldehyde (5g): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 1: 3 v/v); yellow solid; 118 mg (70%); mp = 210-212 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.60 (d, *J* = 7.6 Hz, 1H), 8.70 (s, 1H), 8.00 – 7.98 (m, 1H), 7.74 – 7.67 (m, 3H), 7.50-7.46 (m, 3H), 7.40 – 7.32 (m, 2H), 6.93 (dd, *J* = 15.8,

7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 146.2, 142.0, 136.4, 132.5, 130.7, 129.8, 126.2, 126.2, 124.2, 124.2, 122.6, 121.0, 111.6, 110.7; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₃BrNO⁺ 326.0175; Found 326.0180.

(*E*)-3-(2-(*o*-Tolyl)-1*H*-indol-3-yl)acrylaldehyde (5h): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 1: 9 v/v); yellow solid; 96 mg (69%); mp = 194-196 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.44 (d, *J* = 8.0 Hz, 1H), 8.72 (s, 1H), 7.99 – 7.97 (m, 1H), 7.49 – 7.44 (m, 2H), 7.42 (d, *J* = 4.4 Hz, 1H), 7.40 – 7.35 (m, 5H), 6.78 (dd, *J* = 15.8, 7.8 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.5, 146.9, 143.6, 137.7, 136.3, 130.9, 130.8, 130.3, 130.0, 126.1, 125.8, 125.0, 123.7, 122.3, 120.6, 111.6, 111.4, 20.1; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₆NO⁺ 262.1226; Found 262.1220.

(*E*)-3-(2-(3-(Trifluoromethyl)phenyl)-1*H*-indol-3-yl)acrylaldehyde (5i): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 2: 3 v/v); yellow solid; 85 mg (52%); mp = 150-152 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.61 (d, *J* = 8.0 Hz, 1H), 8.71 (s, 1H), 8.01 (d, *J* = 7.6 Hz, 1H), 7.87 (s, 1H), 7.83 – 7.80 (m, 2H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.68 (d, *J* = 16.0 Hz, 1H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.40 – 7.36 (m, 2H), 6.96 (dd, *J* = 15.8, 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 159.0, 155.8, 145.7, 144.4, 130.3 (q, ²*J*_{C-F} = 34.3 Hz), 129.9, 129.2, 126.8, 126.1, 124.5, 123.0, 122.3 (q, ¹*J*_{C-F} = 257 Hz), 121.6, 121.1, 118.2, 111.7, 90.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.74; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₃F₃NO⁺ 316.0944; Found 316.0948.

(*E*)-3-(2-(Thiophen-2-yl)-1*H*-indol-3-yl)acrylaldehyde (5j): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 1: 3 v/v); yellow solid; 91 mg (69%); mp = 93-95 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.67 (d, *J* = 7.6 Hz, 1H), 8.64 (s, 1H), 7.98 – 7.93 (m, 2H), 7.59 (d, *J* = 5.2 Hz, 1H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.40 (d, *J* = 3.6 Hz, 1H), 7.38 – 7.31 (m, *J* = 7.4 Hz, 3H), 6.96 (dd, *J* = 15.8, 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 146.1, 136.4, 136.3, 131.8, 128.6, 128.4, 128.3, 126.3, 124.3, 122.5, 121.0, 112.1, 111.5, 111.1; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₅H₁₂NOS⁺ 254.0634; Found 254.0636.

(*E*)-3-(5-Bromo-2-phenyl-1*H*-indol-3-yl)acrylaldehyde (5k): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 1: 3 v/v); yellow solid; 103 mg (61%); mp = 258-260 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 12.50 (s, 1H), 9.53 (d, *J* = 7.6 Hz, 1H), 8.11 (d, *J* = 1.6 Hz, 1H), 7.78 (d, *J* = 16.0 Hz, 1H), 7.70 – 7.58 (m, 5H), 7.48 (d, *J* = 8.8 Hz, 1H), 7.43 (dd, *J* = 8.4, 1.6 Hz, 1H), 6.74 (dd, *J* = 16.0, 7.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 194.6, 146.6, 145.5, 136.0, 130.7, 130.1, 130.0, 129.6, 127.9, 126.4, 125.0, 122.9,

114.8, 114.7, 108.6; HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{17}H_{13}BrNO^+$ 326.0175; Found 326.0178.

(*E*)-3-(6-Chloro-5-methyl-2-phenyl-1H-indol-3-yl)acrylaldehyde (5l): Purification by column chromatography on silica gel (eluent: EtOAc/hexane, 1: 3 v/v); yellow solid; 96 mg (63%); mp = 104-106 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.59 (d, *J* = 7.6 Hz, 1H), 8.55 (s, 1H), 7.84 (,1H), 7.72 (d, *J* = 15.6 Hz, 1H), 7.60 – 7.54 (m, 5H), 7.49 (s, 1H), 6.90 (dd, *J* = 15.8, 7.8 Hz, 1H), 2.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 146.4, 135.3, 130.1, 129.7, 129.3, 129.2, 126.0, 125.3, 122.2, 111.7, 20.6; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₅ClNO⁺ 296.0837; Found 296.0841.

(*E*)-3-(1-Methyl-1*H*-indol-3-yl)acrylaldehyde (5m): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 3: 7 v/v); semisolid; 40 mg (44%); ¹H NMR (400 MHz, CDCl₃) δ 9.64 (d, *J* = 8.0 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 16.0 Hz, 1H), 7.48 (s, 1H), 7.42 – 7.33 (m, 3H), 6.77 (dd, *J* = 15.8, 7.8 Hz, 1H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 146.3, 133.9, 125.9, 124.3, 123.4, 121.9, 120.5, 112.4, 110.2, 100.0, 33.4; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₂H₁₂NO⁺ 186.0913; Found 186.0910.

(*E*)-3-(1-methyl-2-phenyl-1*H*-indol-3-yl)acrylaldehyde (5n): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 1: 4 v/v); yellow solid; 95 mg (70%); mp = 128-130 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.46 (d, *J* = 8.0 Hz, 1H), 8.01 (d, *J* = 7.6 Hz, 1H), 7.62 – 7.60 (m, 3H), 7.49 – 7.44 (m, 4H), 7.42 – 7.36 (m, 2H), 6.82 (dd, *J* = 16.0, 8.0 Hz, 1H), 3.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 147.4, 146.6, 138.1, 130.9, 129.7, 128.9, 125.4, 124.5, 123.6, 122.4, 120.8, 118.0, 110.9, 110.3, 31.3; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₆NO⁺ 262.1226; Found 262.1230.

(*E*)-3-(1-Methyl-2-(*p*-tolyl)-1*H*-indol-3-yl)acrylaldehyde (50): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 1: 4 v/v); yellow solid, 102 mg, (72%); mp = 144-146 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.46 (d, *J* = 8.0 Hz, 1H), 8.00 (d, *J* = 6.8 Hz, 1H), 7.48 (d, *J* = 16.0 Hz, 1H), 7.45 – 7.35 (m, 6H), 7.30 (d, *J* = 16.4 Hz, 1H), 6.81 (dd, *J* = 15.8, 7.8 Hz, 1H), 3.69 (s, 3H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 147.5, 146.8, 139.8, 138.1, 130.7, 129.6, 126.6, 125.4, 124.3, 123.4, 122.3, 120.7, 110.8, 110.2, 31.3, 21.5; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₆NO⁺ 276.1383; Found 276.1388.

(*E*)-3-(2-(*p*-Tolyl)imidazo[1,2-*a*]pyridin-3-yl)prop-2-en-1-ol (6): Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 4: 1 v/v); yellow solid; 23 mg (92%); mp = 104-106 °C ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.60 – 8.58 (m, 1H), 7.70 (d, *J* = 8.0 Hz,

2H), 7.63 - 7.60 (m, 1H), 7.32 - 7.27 (m, 3H), 7.00 - 6.97 (m, 1H), 6.89 - 6.84 (m, 1H), 6.40 - 6.34 (m, 1H), 5.01 (t, J = 5.4 Hz, 1H), 4.24 - 4.21 (m, 1H), 2.36 (s, 3H);¹³C NMR (100 MHz, DMSO- d_6) δ 144.8, 143.4, 137.4, 133.7, 132.2, 129.5, 128.7, 125.3, 125.3, 118.6, 117.4, 115.8, 113.2, 62.1, 21.3; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₇N₂O⁺ 265.1335; Found 265.1331.

(8):

Ethyl-(2*E*,4*E*)-5-(2-(*p*-tolyl)imidazo[1,2-*a*]pyridin-3-yl)penta-2,4-dienoate

Purification by column chromatography on silica gel (eluent: EtOAc/hexanes, 2: 3 v/v); yellow solid; 30 mg (68%); mp = 102-104 °C ¹H NMR (400 MHz, CDCl₃) δ 8.45 – 8.43 (m, 1H), 7.79 – 7.76 (m, 2H), 7.75 – 7.72 (m, 1H), 7.54 – 7.49 (m, 2H), 7.48 – 7.45 (m, 1H), 7.36 – 7.32 (m, 1H), 7.21 (d, *J* = 16.0 Hz, 1H), 7.02 – 6.99 (m, 1H), 6.89 – 6.82 (m, 1H), 5.96 (d, *J* = 15.2 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 1.34 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 148.5, 146.6, 145.1, 134.1, 129.3, 128.7, 128.6, 126.6, 125.9, 124.8, 124.4, 120.4, 118.3, 118.2, 113.6, 60.4, 14.4; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₀H₁₉N₂O₂⁺ 319.1441; Found 319.1446.

7. Copies of $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR for 3a-3v, 5a-5o, 6 and 8

110 100 f1 (ppm)

S17

-- 2.31

S24

3I, ¹³C{¹H} NMR 100MHz, CDCI₃

^{9.68}
 ^{2,66}
 ^{9.66}
 ⁶⁶

<2.50 2.46

S31

-- 2.51

сно

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

S43

--- 3.88

8. X-ray crystallographic data of 3a, 3m and 5c

8.1 Single crystal X-ray data of 3a

Experimentation: Single crystals of **3a** [$C_{16}H_{12}N_2O$] were grown from slow evaporation of CDCl₃ solution. A suitable crystal was selected and mounted on an XtaLAB AFC12 (RINC): Kappa dual home/near diffractometer. The crystal was kept at 93(2) K during data collection. Using Olex2,¹ the structure was solved with the ShelXT² structure solution program using Intrinsic phasing and refined with the ShelXL³ refinement package using least squares minimization.

100Identification code	3a [exp_1006_AK-NS-1491(MF)-1_autored]
Empirical formula	$C_{16}H_{12}N_2O$
Formula weight	248.28
Temperature/K	93(2)
Crystal system	triclinic
Space group	P-1
a/Å	10.1660(3)
b/Å	11.6979(5)
c/Å	12.1456(5)
α/°	63.066(4)
β/°	84.657(3)
γ/°	84.039(3)
Volume/Å ³	1279.00(9)
Ζ	4
$ ho_{ m calc} { m g/cm}^3$	1.289
μ/mm^{-1}	0.656
F(000)	520.0
Crystal size/mm ³	0.18 imes 0.05 imes 0.03
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	8.176 to 159.496
Index ranges	$-10 \le h \le 12, -14 \le k \le 14, -15 \le l \le 15$
Reflections collected	11900

Table S1: Crystal data and structure refinement for 3a

Independent reflections	5258 [$R_{int} = 0.0348$, $R_{sigma} = 0.0491$]
Data/restraints/parameters	5258/0/343
Goodness-of-fit on F ²	1.068
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0415, wR_2 = 0.1111$
Final R indexes [all data]	$R_1 = 0.0514, wR_2 = 0.1180$
Largest diff. peak/hole / e Å ⁻³	0.16/-0.25

Figure S1. The ORTEP diagram of **3a** [CCDC: 2266949]. Thermal ellipsoids are drawn at 50 % probability level.

8.2 Single crystal X-ray data of 3m

Experimentation: Single crystals of **3m** [$C_{14}H_{10}N_2OS$] were grown from slow evaporation of CDCl₃ solution. A suitable crystal was selected and mounted on an XtaLAB AFC12 (RINC): Kappa dual home/near diffractometer. The crystal was kept at 93(2) K during data collection. Using Olex2,¹ the structure was solved with the ShelXT² structure solution program using Intrinsic phasing and refined with the ShelXL³ refinement package using least squares minimization.

Identification code	3m [exp_1007_AK-VNS-1506_autored]
Empirical formula	$C_{14}H_{10}N_2OS$
Formula weight	254.30
Temperature/K	93(2)
Crystal system	triclinic
Space group	P-1
a/Å	10.0711(4)
b/Å	11.4925(5)
c/Å	11.9654(5)
α/°	61.660(4)
$\beta/^{\circ}$	81.255(3)
γ/°	84.932(3)
Volume/Å ³	1204.54(10)
Z	4
$\rho_{calc}g/cm^3$	1.402
μ/mm^{-1}	2.286
F(000)	528.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.05
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	8.464 to 159.424
Index ranges	$-10 \le h \le 12, -14 \le k \le 14, -14 \le l \le 14$
Reflections collected	13008
Independent reflections	5049 [$R_{int} = 0.0351$, $R_{sigma} = 0.0376$]
Data/restraints/parameters	5049/0/326
Goodness-of-fit on F ²	1.096
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0664, \mathrm{wR}_2 = 0.2033$
Final R indexes [all data]	$R_1 = 0.0706, \mathrm{wR}_2 = 0.2088$
Largest diff. peak/hole / e Å ⁻³	1.44/-1.09

Table S2: Crystal data and structure refinement for 3m.

Figure S2. The ORTEP diagram of 3m [CCDC: 2266961]. Thermal ellipsoids are drawn at 50 % probability level.

8.3 Single crystal X-ray data of 5c

Experimentation: Single crystals of **5c** $[C_{18}H_{15}NO_2]$ were grown from slow evaporation of CDCl₃ solution. A suitable crystal was selected and mounted on an XtaLAB AFC12 (RINC): Kappa dual home/near diffractometer. The crystal was kept at 93(2) K during data collection. Using Olex2,¹ the structure was solved with the ShelXT² structure solution program using Intrinsic phasing and refined with the ShelXL³ refinement package using least squares minimization.

Table S3: Crystal data and structure refinement for 5c

Identification code	5c [exp_1005_AK_VNS-1499(A)]
Empirical formula	$C_{18}H_{15}NO_2$
Formula weight	277.31
Temperature/K	93(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	9.8190(2)
b/Å	13.9258(2)
c/Å	10.6950(2)

α/°	90
β/°	97.120(2)
$\gamma/^{\circ}$	90
Volume/Å ³	1451.13(5)
Z	4
$\rho_{calc}g/cm^3$	1.269
μ/mm^{-1}	0.664
F(000)	584.0
Crystal size/mm ³	$0.12\times0.06\times0.05$
Radiation	Cu Ka (λ = 1.54184)
2Θ range for data collection/°	9.076 to 158.934
Index ranges	$-12 \le h \le 12, -17 \le k \le 17, -13 \le l \le 8$
Reflections collected	8389
Independent reflections	$3060 [R_{int} = 0.0319, R_{sigma} = 0.0369]$
Data/restraints/parameters	3060/0/191
Goodness-of-fit on F ²	1.051
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0401, wR_2 = 0.1035$
Final R indexes [all data]	$R_1 = 0.0460, wR_2 = 0.1070$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.22

Figure S3. The ORTEP diagram of **5c** [CCDC: 2266943]. Thermal ellipsoids are drawn at 50 % probability level.

9. References

- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. [1] *Cryst.* **2009**, *42*, 339-341.
- [2] [3]
- G. Sheldrick, *Acta Cryst. A* 2015, *71*, 3-8.
 G. Sheldrick, *Acta Cryst. C* 2015, *71*, 3-8.