Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

C3-Chlorination of C2-Substituted Benzo[b]thiophene Derivatives in the

Presence of Sodium Hypochlorite.

Vincent Conrad Oppenheimer[‡], Peter Le[‡], Cathy Tran, Haobin Wang,* and Marino J. E. Resendiz*

Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA

[‡]These authors contributed in equal amounts

* To whom correspondence should be addressed. Tel: 303-315-7658; Email: marino.resendiz@ucdenver.edu,

haobin.wang@ucdenver.edu

Supporting Information Index:

Page:	Contents:
S3-S4	Scheme S1. Structures of known compounds, and their corresponding references.
S5-S9	Experimental details
S10-S12	Figure S1-S3. ¹ H, ¹³ C-NMR, GC/MS, and IR of 3-chorobenzo[b]thiophene-2-carbaldehyde 2.
S12-S14	Figure S3-S5. ¹ H, ¹³ C-NMR, GC/MS, and IR of benzo[b]thiophene-2-carbaldehyde 3.
\$15-\$17	Figures S6-S8 . ¹ H, ¹³ C-NMR, GC/MS, and IR of (Benzo[<i>b</i>]thiophen-2- ylmethoxy)(<i>tert</i> -butyl)dimethylsilane 5 .
S17-S19	Figures S8-S10. ¹ H, ¹³ C-NMR, GC/MS, and IR of 3-chloro(Benzo[<i>b</i>]thiophen-2-ylmethoxy)(<i>tert</i> -butyl)dimethylsilane 6.
S20-S22	Figure S11-S13 ¹ H and ¹³ C-NMR, GC/MS, and IR of 3-chlorobenzo[<i>b</i>]thiophen-2- methanol 4.
S22-S24	Figure S13-S15 ¹ H and ¹³ C-NMR, GC/MS, and IR of 2-methyl[<i>b</i>]benzothiophene 7.
\$25-\$27	Figure S16-S18 ¹ H and ¹³ C-NMR, GC/MS, and IR of 3-chloro-2- methylbenzo[<i>b</i>]thiophene 8.
\$27-\$29	Figure S18-S20 ¹ H and ¹³ C-NMR, GC/MS, and IR of 2-chloromethylbenzo[<i>b</i>]thiophene 9.
\$30-\$32	Figure S21-S23 ¹ H and ¹³ C-NMR, GC/MS, and IR of 2-methylbenzo[<i>b</i>]thiophene 1,1-dioxide 12.
\$32-\$34	Figure S23-S25 ¹ H and ¹³ C-NMR, GC/MS, and IR of 3-chloro-2- methylbenzo[<i>b</i>]thiophene 1,1-dioxide 11.
S35-S36	Figure S26-S27 ¹ H NMR and GC/MS of 2-allylbenzo[<i>b</i>]thiophene 13 w/ impurities.

- S37-S39.....Figure S28-S30 ¹H NMR and GC/MS of 2-allyl-3-chlorobenzo[*b*]thiophene 14.
- S39.....Figure S30 1 H-NMR of benzo[*b*]furan-2-methanol 15.
- S40.....Figure S31 ¹H-NMR of of 2-methoxymethylbenzofuran 16.
- S40-S42.....Figure S31-S33. ¹H and ¹³C-NMR, GC/MS, and IR of 2-chloromethyl-3-chlorobenzo[*b*]thiophene 10.
- S43-S45..... Figure S34-S36. ¹H/¹³C NMR, GC-MS, IR of2-Methyl-3-phenylbenzo[b]thiophene 17.
- S46-S47..... Statistical rate theory discussion.
- S48......Table S1. Calculated values, using acetonitrile as solvent.
- S49-S50......**Table S2.** Calculated values, with one water molecule added, and corresponding structures.
- S51-S54......Figure S37-S40. Energy diagram corresponding to the reaction of hypochlorous acid and derivatives 3, 1, 7, methyl ether of 1, and benzofuran analogue of 7.
- S55-S65.....XYZ coordinates for the chlorination of 2-methylbenzo[b]thiophene 7 and S-oxidation
- S66-S72.....XYZ Coordinates for the chlorination of benzo[b]thiophene-2-carbaldehyde (3)
- S73-S80.....XYZ Coordinates for the chlorination of benzo[b]thiophene-2-methanol (1)
- S81-S89.....XYZ Coordinates for the chlorination of benzo[b]thiophene-2-methoxymethyl ether (not synthesized)
- S90-S97.....XYZ Coordinates for the chlorination of 2-methylbenzo[b]furan

Scheme S1. Structure of compounds synthesized, and used in this work. The reference for the reported compounds is included below. Compounds that were previously reported, but that lacked a complete characterization, are labeled as Incomplete; and their full characterization is included herein. New compounds are also labeled accordingly, and their full characterization is included herein.

References

(S1) O'Hara, C.; Yang, C-H.; Francis, A.; Newell, B.; Wang, H.; Resendiz, M. J. E. Photocycloaddition of S,S-Dioxo-benzothiophene-2-methanol, Reactivity in the Solid State and in solution: Mechanistic Studies and Diastereoselective Formation of Cyclobutyl Rings. *J. Org. Chem.* **2019**, 84, 9714-9725.

(S2) Paul, N.; Muthusubramanian, S. Domino Vilsmeier-Haack/ring closure sequences: a facile synthesis of 3-chlorobenzo[b]thiophene-2-carbaldehyde. *Tetrahedron Lett.* **2011**, 52, 3743-3746.

(S3) Zhu, Y.; Zhao, B.; Shi, Y. Highly efficient Cu(I)-catalyzed oxidation of alcohols to ketones and aldehydes with diaziridinone. *Org. Lett.* **2013**, 15, 992-995.

(S4) Kesharwani, T.; Kornman, C.; Tonnaer, A.; Hayes, A.; Kim, S.; Dahal, N.; Romero, R.; Royappa, A. *Tetrahedron*, **2018**, 74, 2973-2984.

(S5) Hamada, S.; Sakamoto, K.; Miyazaki, E.; Elboray, E. E.; Kobayashi, Y.; Furuta, T. ACS Catal. 2023, 13, 8031-8037.

(S6) Urban, S.; Beiring, B.; Ortega, N.; Paul, D.; Glorius, F. Asymmetric hydrogenation of thiophenes and benzothiophenes. *J. Am. Chem. Soc.* **2012**, 134, 15241-15244.

(S7) Capozzi, G.; De Sio, F.; Menichetti, S.; Nativi, C.; Pacini, P. L.; Phthalimidesulfenyl chloride; Part VII: Synthesis of 2-substituted 3-chlorobenzo[b]thiophenes and related heteroaromatics. *Synthesis*, **1994**, *5*, 521-525.

(S8) Okuyama, T.; Tani, Y.; Miyake, K.; Yokoyama, Y. Chiral helicenoid diarylethene with large change in specific optical rotation by photochromism. *J. Org. Chem.* **2007**, 72, 1634-1638.

(S9) Matsubara, R.; Gutierrez, A. C.; Jamison, T. F. Nickel-catalyzed Heck-type reactions of benzyl chlorides and simple olefins. *J. Am. Chem. Soc.* **2011**, 133, 19020-19023.

(S10) Pfaltz, A.; Tosatti, P. Iridium-catalyzed asymmetric hydrogenation of benzo[b]thiophene 1,1-dioxides. *Angew. Chem. Int. Ed.* **2017**, 56, 4579-4582.

(S11) Gabriele, B.; Mancuso, R.; Salerno, G. Anovel synthesis of 2-functionalized benzofurans by palladiumcatalyzed cycloisomerization of 2-(1-hydroxyprop-2-ynyl)phenols followed by acid-catalyzed allilyc isomerization or allylic nucleophilic substitution. *J. Org. Chem.* **2008**, 73, 7336-7341.

(S12) De Luca, L.; Giacomelli, G.; Nieddu, G. A facile approach to the synthesis of chiral 2-substituted benzofurans. *J. Org. Chem.* **2007**, 72, 3955-3957.

Experimental Details

(A) General procedure for the chlorination in the presence of sodium hypochlorite pentahydrate. Prepare a solution of the desired benzothiophene in acetonitrile (0.5 M, 25 mL) and apply heat (70 °C), with stirring, followed by addition of an aqueous solution of sodium hypochlorite pentahydrate (2.67 M, 10 mL). Stir solution for 20 min, followed by addition of a second portion of a NaOCI•5H2O aqueous solution (2.5 M, 2.5 mL) with vigorous stirring. Cool the biphasic solution to room temperature and partition in water (50 mL) and methylene chloride (50 mL). Wash the aqueous layer with methylene chloride (2x 20mL). Combine the organic residues to wash with brine (30 mL), and dry over sodium sulfate. Concentrate under reduced pressure and purify.

(B) General procedure for the chlorination in the presence of sodium hypochlorite pentahydrate at room temperature.

Prepare a solution of the desired benzothiophene in acetonitrile (0.5 M, 25 mL), with stirring, followed by addition of an aqueous solution of sodium hypochlorite pentahydrate (2.67 M, 10 mL). Stir solution for 48 hr. Partition in water (50 mL) and methylene chloride (50 mL. was the aqueous layer with methylene chloride (2x 20 mL). Combine the organic residues to wash with brine (30 mL), and dry over sodium sulfate. Concentrate under reduced pressure and purify *via* column chromatography.

(C) General procedure for the chlorination in the presence of N-chlorosuccinimide.

Under anhydrous conditions, dissolve a mixture of the desired benzothiophene (0.2 M) and 1.1 equivalents of N-chlorosuccinimide in 10 mL dimethylformamide. Stir solution in at 65 °C in an oil bath for 90 minutes. Add 0.15 more equivalents of NCS and stir in the oil bath for an additional 30 minutes. Cool solution to ambient temperature, then partition in water (20 mL) and ethyl acetate (20 mL). Extract the aqueous layer with ethyl acetate (2x 10 mL); combine organic fractions, wash with brine (20 mL) and dry over sodium sulfate. Concentrate under reduced pressure and purify *via* flash column chromatography.

(D) General procedure for the chlorination in the presence of sodium hypochlorite pentahydrate in the absence of solvent (neat).

Charge a round bottom flask with the desired benzothiophene derivative and 5 molar equivalents of sodium hypochlorite pentahydrate. Submerge the reaction flask in an pre-heated oil bath (75 °C), with stirring for 1 h, followed by addition of 2 mol eq. of sodium hypochlorite pentahydrate, and stirring of the oil for additional 1 h. Cool the flask to rt and partition in water (20 mL) and ethyl acetate (20 mL). Extract the aqueous layer with ethyl acetate (2x 10 mL); combine organic fractions, wash with brine (20 mL) and dry over sodium sulfate. Concentrate under reduced pressure and purify *via* flash column chromatography.

Benzo[*b*]thiophene-2-carbaldehyde (3). Use procedure (A) with benzothiophene-2-methanol 1 (2.00 g, 12.2 mmol) and purify *via* flash column chromatography using a gradient from hexanes to 2% ethyl acetate in hexanes. Fast fraction yielded aldehyde **3** in the form of a red oil (0.720 g, 3.66 mmol, 30%). ¹H NMR (400 MHz, CDCl₃): δ 10.11 (s, 1H), 8.03 (s, 1H), 7.94 (d, *J* = 12 Hz, 1H), 7.90 (d, *J* = 12 Hz, 1H), 7.52 (t, *J* = 8 Hz, 1H), 7.44 (t, *J* = 8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 184.71, 143.40, 142.72, 138.58, 134.51, 128.21, 126.31, 125.30, 123.35; IR (neat): 3055, 2816, 2792, 2724, 1663, 1591, 1514 cm⁻¹; bp: >250 °C; GC-MS: 162, 133, 89.

3-Chlorobenzo[*b*]**thiophene-2-methanol (4).** A solution of chlorinated benzothiophene **5** (2.1 g, 6.7 mmol) in THF (20 mL), was treated with 3HF•TEA (2.2 mL, 13.4 mmol) and stirred for 1 h. The solution was then partitioned in a NaHCO₃ aq. solution (50 %) and ethyl acetate. The aqueous layer was then washed with ethyl acetate (x 2, 35 mL). The organic residues were combined, washed over brine (20 mL), and dried over sodium sulfate, followed by concentration under reduced pressure. Purification was achieved *via* flash column chromatography starting with hexanes, followed by a gradient to 20 % ethyl acetate, to yield alcohol **4** in the form of a white solid (1 g, 5 mmol, 75 %). ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, *J* = 12 Hz, 2H), 7.48-7.37 (m, 2H), 4.99 (s, 2H), 2.03 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 137.13, 136.68, 125.5, 124.98, 122.76,

S6

121.83, 117.85, 58.41; IR (neat): 3240, 3050, 2955, 2928, 2849,1562, 1535 cm⁻¹; mp: 91-92 °C; GC-MS: 198, 163, 135.

Alternative method for (4). A solution of aldehyde 2 (0.15 g, 0.76 mmol) in MeOH (6 mL) was cooled to 0 °C, followed by addition of sodium borohydride (0.075 g, 1.98 mmol). The suspension was stirred for 20 min and partitioned in ethyl acetate and water. The aqueous layer was then washed with ethyl acetate (x 2, 10 mL). The organic residues were combined, washed over brine (20 mL), and dried over sodium sulfate, followed by concentration under reduced pressure, to yield alcohol 4 in the form of a white solid (0.145 g, 0.73 mmol, 96 %). Spectroscopic data matched those obtained for the previous step.

Benzo[*b*]**thiophen-2-ylmethoxy**(*tert*-**buty**]**)dimethylsilane (5).** A solution of alcohol 1 (2g, 12.18 mmol) in dry pyridine (50 mL) was treated with *t*-butyldimethylsilyl chloride (2.2 g, 14.6 mmol) at once, and stirred for 2 h. The solution was then partitioned in water (75 mL) and ethyl acetate (125 mL). The organic residues were then washed with water (x 2, 40 mL) then brine (40 mL), and dried over sodium sulfate, followed by concentration under reduced pressure. Purification was achieved *via* flash column chromatography starting with hexanes, followed by a gradient to 10 % ethyl acetate, to yield silylated derivative **5** in the form of a clear oil that solidify over time (3.1 g, 11.1 mmol, 91 %). ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, *J* = 12 Hz, 1H), 7.71 (d, *J* = 8 Hz, 1H), 7.36-7.26 (m, 2H), 7.15 (s, 1H), 0.98 (s, 9H), 0.16 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 146.29, 139.71, 124.10, 123.84, 123.28, 122.38, 119.77, 61.40, 25.90, 18.43, 5.21; IR (neat): 3063, 2926, 2897, 2854 cm⁻¹; mp: 39-40 °C; GC-MS: 221, 147.

2-Methylbenzo[*b*]thiophene (7). Charge a flame-dried flask with benzothiophene (5.5 g, 38.4 mmol), dissolve in tetrahydrofuran (125 mL) and cool to -78 °C. Add a solution of *n*-butyllithium in hexanes (25 mL, 1.6 M) dropwise (over 5 min) and stir with slow warming to room temperature for 1 hour. Cool the solution (-78 °C) and add iodomethane (4.8 mL, 77.1 mmol) dropwise and stir with slow warming to room temperature for 90 min. The solution was then partitioned over a NH₄Cl aq. solution (100 mL), followed by washing of the

organic residues with brine and drying over sodium sulfate. The clear solution was concentrated under reduced pressure to yield a yellow solid (5.2 g, 34.9 mmol, 91%). ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 8 Hz, 1H), 7.66 (d, *J* = 8 Hz, 1H), 7.33-7.24 (m, 2H), 6.99 (s, 1H), 2.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.88, 140.48, 139.71, 124.08, 123.36, 122.55, 122.01, 121.61, 16.18; IR (neat): 3060, 3049, 2942, 2914, 2849 cm⁻¹; mp: 51-53 °C; GC-MS: 147, 115.

3-Chloro-2-methylbenzo[*b*]thiophene (8). Use procedure (A) with 2-methylbenzo[*b*]thiophene 7 (1.00 g, 6.75 mmol) and purify *via* flash column chromatography using. The first collected fraction yielded chlorinated benzothiophene **8** in the form of a clear, greenish oil (0.735 g, 4.05 mmol, 60%). ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 8 Hz, 2H), 7.41 (t, J = 8 Hz, 2H), 7.34 (t, *J* = 8 Hz, 2H), 2.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 137.01, 136.36, 133.25, 124.74, 124.69, 122.24, 121.29, 118.03, 13.76; IR (neat): 3059, 2916, 1681, 1569, 1543 cm⁻¹; bp: >250 °C; GC-MS: 182, 147.

2-Methylbenzo[*b*]thiophene-1,1-dioxide (12). Charged a round bottom flask with benzothiophene derivative 7 (1.00 g, 6.75 mmol) and dissolved with methanol (5 mL). A 0.44 M aqueous solution of Oxone® (9.57 g, 15.53 mmol, 2.3 equiv.) was added. Stirred at 90°C for 40 minutes. Partitioned the mixture and ethyl acetate and water, washed organics with brine, dried with sodium sulfate and concentrated to dryness under reduced pressure to yield compound 12 in the form of a light pink solid (1.00 g, 5.60 mmol, 83%). ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, *J* = 8 Hz, 1H), 7.51 (t, *J* = 8 Hz, 1H), 7.43 (t, *J* = 8 Hz, 1H), 7.27 (d, *J* = 8 Hz, 1H), 6.77 (s, 1H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.99, 136.53, 133.62, 131.68, 129.34, 125.92, 124.30, 121.56, 9.11; IR (neat): 3065, 2921, 2852, 1597, 1581 cm⁻¹; GC-MS: 180, 137, 131, 115, 109.

2-Allylbenzo[b]thiophene (13). Charge a flame-dried flask with benzothiophene (16.2g, 120.7 mmol), dissolve in tetrahydrofuran (125 mL) and cool to -78 °C. Add a solution of *n*-butyllithium in hexanes (48 mL, 2.5 M) dropwise (over 5 min) and stir with slow warming to room temperature for 1 hour. Cool the solution (-

78 °C) and add allyl bromide (10.45 mL, 120.7 mmol) dropwise and stir with slow warming to room temperature for 90 min. The solution was then partitioned over a NH₄Cl aq. solution (100 mL), followed by washing of the organic residues with brine and drying over sodium sulfate. The clear solution was concentrated under reduced pressure to yield a yellow oil (21 g) as a mixture containing the desired product **13** along with benzothiophene (app. 15 % by NMR) and other minor impurities. ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 8 Hz, 1H), 7.68 (d, *J* = 8 Hz, 1H), 7.37-7.24 (m, 2H), 7.04 (s, 1H), 6.10-5.99 (m, 1H), 5.26-5.12 (m, 2H), 3.66 (d, *J* = 8 Hz, 2H); GC-MS: 174, 147, 129, 115.

Benzo[*b*]**furan-2-methanol (15).** Use same procedure as that previously reported for benzothiophene.^(S1) ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, *J* = 8 HZ, 1H), 7.51 (d, *J* = 8 Hz, 1H), 7.34-7.24 (m, 2H), 6.70 (s, 1H), 4.81 (s, 2H), 2.00 (s, 1H); IR (neat): 3313, 3065, 2932, 2868, 1604, 1586 cm⁻¹.

2-Methoxymethylbenzo[*b*]furan (16).^(S12) ¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, *J* = 8 Hz, 1H), 7.48 (d, *J* = 8 Hz), 7.30-7.20 (m, 2H), 6.69 (s, 1H), 4.56 (s, 2H), 3.44 (s, 3H); IR (neat): 2987, 2924, 2853, 2822, 1602, 1586 cm⁻¹.

Figure S1. ¹H and ¹³C-NMR of 3-chorobenzo[b]thiophene-2-carbaldehyde 2.

Figure S2. GC-MS of 3-chorobenzo[b]thiophene-2-carbaldehyde 2

Figure S3. IR of 3-chorobenzo[b]thiophene-2-carbaldehyde **2** (top), and ¹H-NMR of benzo[b]thiophene-2-carbaldehyde **3**.

Figure S4. ¹³C-NMR and IR of benzo[b]thiophene-2-carbaldehyde 3.

Figure S5. GC-MS of benzo[b]thiophene-2-carbaldehyde 3.

Figure S6. ¹H and ¹³C-NMR of (Benzo[*b*]thiophen-2-ylmethoxy)(*tert*-butyl)dimethylsilane 5.

Figure S7. GC-MS of (Benzo[b]thiophen-2-ylmethoxy)(tert-butyl)dimethylsilane 5.

Figure S8. IR of (Benzo[*b*]thiophen-2-ylmethoxy)(*tert*-butyl)dimethylsilane **5** (top) and ¹H-NMR of 3-chloro(Benzo[*b*]thiophen-2-ylmethoxy)(*tert*-butyl)dimethylsilane **6** (bottom).

Figure S9. ¹³C-NMR and IR of 3-chloro(Benzo[*b*]thiophen-2-ylmethoxy)(*tert*-butyl)dimethylsilane 6.

Figure S10. GC-MS of 3-chloro(Benzo[*b*]thiophen-2-ylmethoxy)(*tert*-butyl)dimethylsilane 6.

Figure S11. ¹H and ¹³C-NMR of 3-chlorobenzo[*b*]thiophen-2-methanol 4.

Figure S12. GC-MS of 3-chlorobenzo[*b*]thiophen-2-methanol 4.

Figure S14. ¹³C-NMR and IR of 2-methyl[*b*]benzothiophene 7.

Figure S15. GC-MS and IR of 2-methyl[*b*]benzothiophene 7.

Figure S16. ¹H and ¹³C-NMR of 3-chloro-2-methylbenzo[*b*]thiophene 8.

Figure S17. GC-MS of 3-chloro-2-methylbenzo[*b*]thiophene 8.

Figure S18. IR of 3-chloro-2-methylbenzo[*b*]thiophene **8** (top), and ¹H NMR of 2-chloromethylbenzo[*b*]thiophene **9** (bottom).

Figure S19. ¹³C NMR and IR of 2-chloromethylbenzo[*b*]thiophene 9.

Figure S20. GC-MS of 2-chloromethylbenzo[b]thiophene 9.

Figure S21. ¹H and ¹³C-NMR, of 2-methylbenzo[*b*]thiophene 1,1-dioxide 12.

Figure S22. GC-MS of 2-methylbenzo[*b*]thiophene 1,1-dioxide 12.

Figure S23. IR of 2-methylbenzo[*b*]thiophene 1,1-dioxide **10** (top) and ¹H-NMR of 3-chloro-2-methylbenzo[*b*]thiophene 1,1-dioxide **11**.

Figure S24. ¹³C NMR and IR of 3-chloro-2-methylbenzo[*b*]thiophene 1,1-dioxide 11.

Figure S25. GC-MS of 3-chloro-2-methylbenzo[*b*]thiophene 1,1-dioxide 11.

Figure S26. ¹H NMR of 2-allylbenzo[b]thiophene 13 w/ impurities.

Figure S27. GC-MS of 2-allylbenzo[b]thiophene 13 w/ impurities.

Figure S28. ¹H and ¹³C NMR of 2-allyl-3-chlorobenzo[*b*]thiophene 14.

Figure S29. GC-MS of 2-allyl-3-chlorobenzo[b]thiophene 14.

Figure S30. IR of 2-allyl-3-chlorobenzo[b]thiophene 14 (top); and ¹H-NMR of benzo[b]furan-2-methanol 15.

Figure S31. ¹H-NMR of 2-methoxymethylbenzofuran **16** (top); and 2-chloromethyl-3-chlorobenzo[*b*]thiophene **10** (bottom).

Figure S32. ¹³C-NMR and IR of 2-chloromethyl-3-chlorobenzo[*b*]thiophene 10 (bottom).

Figure S33. GC-MS 2-chloromethyl-3-chlorobenzo[b]thiophene 10 (bottom).

Figure S34. ¹H (top) and ¹³C (bottom) NMR of2-Methyl-3-phenylbenzo[b]thiophene 17.

Figure S35. GC-MS of2-Methyl-3-phenylbenzo[b]thiophene 17.

Figure S36. IR of2-Methyl-3-phenylbenzo[b]thiophene 17.

We will first discuss statistical rate theory for treating a multi-step reaction and clarify the meaning of effective barrier height in the context of such a reaction.

We start with a generic two-step reaction (eq 1), where R represents the reactant(s), I is the intermediate, and P represents the product(s). With a thermal distribution of energies for each species, the effective rate constant keff for the overall reaction can be given by invoking the detailed balance condition (eq 2), that is, the effective rate constant is the product of the rate constant for the first forward step to the intermediate, k1, and the branching ratio for the intermediate to reach the product as opposed to a path back to the reactant. The effective rate constant can be further explored by employing the canonical transition state theory for each elementary step (eq 3), where T is the temperature in Kelvin, k B is the Boltzmann constant, h is the Planck constant, and $\Delta G_{\pm}^{\pm}=G(TS)$ -Gr is the free energy difference between the transition state (TS) and the reactant of the corresponding elementary step [for example, R for the first forward step, I for the second forward step or the first backward step. Also note G(TS) is calculated without the reaction coordinate. For the two-step reaction considered above, there are two transition states, TS1 and TS2. Thus, the transition state rate constant for each step is given as the set of equations 4. Using these expressions, the branching ratio can be written more explicitly as equation 5. To analyze the effective rate constant, we consider three situations. First, if the transition state for the first step is much higher than that for the second step, $G(TS1) \gg G(TS2)$, then the branching ratio above is approximately one, Pbranch $\simeq 1$, which renders the effective rate constant given as equation 6. That is, the effective barrier height is the barrier height for the first step, which equals to the free energy difference between the first transition state (the higher barrier) and the reactant. The second case occurs when the transition state for the second step is much higher than that for the first step, $G(TS2) \gg G(TS1)$, then the branching ratio is approximated by equation 7, which renders the effective rate constant as equation 8. That is, the effective barrier height equals the free energy difference between the second transition state (again the higher barrier) and the reactant.

The third case is when the transition state for the first step is approximately the same as that for the second step, $G(TS1) \simeq G(TS2)$, then the branching ratio above is approximately half, Pbranch $\simeq 1/2$, which renders the effective rate constant given as equation 9. In this situation one can still consider the dominant exponential contribution and treat the effective barrier height as the barrier height for the first step, with a multiplicative factor (1/2) for the rate constant.

Thus, in all three cases, the effective barrier height for the overall reaction equals to the free energy of the higher transition minus that of the reactant. The free energy difference between the transition state and the intermediate only enters the expression for the branching ratio, but not the expression for the overall rate constant. This is important as for a multi-step reaction one should always regard (approximately) the effective barrier height as the difference between a transition state and the reactant, and not a barrier height calculated from any intermediate. The above analysis can be generalized to reactions with more steps. Consider, for example, a three-step reaction (eq 10). Thereby one may separate the first effective step (eq 11), and use the above analysis for a two-step reaction to render it as an effective one-step reaction (eq 12). This effective step is then inserted into the three-step process and yield equation 13. This way, one is back to the analysis for a two-step reaction. Using this procedure, one may analyze a multi-step reaction (eq 14) and identify the effective barrier as the difference between the free energy of the highest transition state and that of the reactant. In another word, only the barrier of the rate-limiting step matters, in terms of transition state theory, for a complex, multi-step reaction. The relative free energy difference between any transition state and the adjacent intermediate only enters the expression for the branching ratio, and is essentially cancelled out in the final effective rate expression. The above discussions using transition state theory assume that there exists a transition state for each elementary step. Identifying such a transition state is straightforward in electronic

structure theory calculations whenever a saddle point can be obtained. For some steps considered in this paper, the process proceeds via a pre-reaction complex and sometimes a post-reaction complex, that is, the mechanism can be modeled as equation 15.

For the association reaction step (k1) there is no barrier along the potential energy profile from the reactants to the pre-reaction complex. However, in the language of variational transition state theory,47 a free energy barrier exists and serves as the transition state for the association reaction. This barrier is usually not high. In our case it is likely lower than the transition state for the isomerization reaction, which makes the scenario the second case in the above analysis for a two-step reaction. In that case, the effective barrier height equals the free energy difference between the second transition state (the saddle point identified in DFT calculations) and the reactants.

$$R \xrightarrow{k_{1}} I \xrightarrow{k_{2}} P \qquad (eq 1) \qquad R \xrightarrow{k_{1}} I_{1} \xrightarrow{k_{2}} I_{2} \xrightarrow{k_{3}} P \qquad (eq 10)$$

$$k_{eff} = k_{1}P_{branch} = k_{1} \frac{k_{2}}{k_{1} + k_{2}} \qquad (eq 2) \qquad R \xrightarrow{k_{1}} I_{1} \xrightarrow{k_{2}} I_{2} \qquad (eq 11)$$

$$k^{\text{TST}}(T) = \frac{k_{\text{B}}T}{h} e^{-\Delta G_{\ddagger}^{4}/k_{\text{B}}T} \qquad (eq 3) \qquad R \xrightarrow{k_{1}} I_{1} \xrightarrow{k_{2}} I_{2} \simeq R \xrightarrow{k_{2}^{\text{eff}}} I_{2} \qquad (eq 12)$$

(eq 4)

$$R \stackrel{K_2^{m}}{\longleftrightarrow_{K_2}} I_2 \xrightarrow{K_3} P \qquad (eq 13)$$

(eq 11)

$$R \xrightarrow{k_1}_{i_{-1}} I_1 \xrightarrow{k_2}_{k_{-2}} I_2 \xrightarrow{k_3}_{k_{-3}} I_3 \xrightarrow{k_4}_{k_{-4}} \dots \xrightarrow{k_n} P \qquad (eq 14)$$

$$A + B \xleftarrow[k_1]{k_1} A - -B \xleftarrow[k_2]{k_2} C - -D \xrightarrow[k_3]{k_3} C + D \qquad (eq 15)$$

$$P_{\text{branch}} = \frac{k_2}{k_{\cdot 1} + k_2} = \frac{1}{k_{\cdot 1}/k_2 + 1} = \frac{1}{e^{-[G(TS1)-G(TS2)]/k_BT} + 1}$$
 (eq 5)

 $k_1 = \frac{k_B T}{h} e^{-\Delta G_1 \ddagger / k_B T} \qquad \Delta G_1 = G(TS1) - G(R)$

 $k_2 = \frac{k_B T}{h} e^{-\Delta G_2 \ddagger / k_B T} \qquad \Delta G_2 = G(TS2) - G(I)$

 $k_{.1} = \frac{k_{B}T}{h} e^{-\Delta G_{.1} \ddagger / k_{B}T} \Delta G_{.1} = G(TS1) - G(I)$

$$\mathbf{k}_{\text{eff}} = \mathbf{k}_{1} \mathbf{P}_{\text{branch}} \simeq \mathbf{k}_{1} = \frac{\mathbf{k}_{B} T}{h} \mathbf{e}^{\cdot \Delta G \ddagger / k_{B} T} = \frac{\mathbf{k}_{B} T}{h} \mathbf{e}^{\cdot [G(TS1) \cdot G(R)] / k_{B} T} \qquad (\text{eq } 6)$$

$$P_{\text{branch}} = \frac{1}{e^{-[G(TS1)-G(TS2)]/k_BT} + 1} \simeq \frac{1}{e^{-[G(TS1)-G(TS2)]/k_BT}} = e^{[G(TS1)-G(TS2)]/k_BT} \quad (eq~7)$$

$$\begin{aligned} k_{eff} &= k_1 P_{branch} \simeq \frac{k_B T}{h} e^{-\Delta G_1 \frac{1}{2}/k_B T} \cdot e^{[G(TS1) - G(TS2)]/k_B T} = \\ & \frac{k_B T}{h} e^{-[G(TS1) - G(R)]/k_B T} \cdot e^{[G(TS1) - G(TS2)]/k_B T} = \frac{k_B T}{h} e^{-[G(TS2) - G(R)]/k_B T} \\ k_{eff} &= k_1 P_{branch} \simeq \frac{1}{2} k_1 = \frac{1}{2} \frac{k_B T}{h} e^{-\Delta G_1 \frac{1}{2}/k_B T} = \frac{1}{2} \frac{k_B T}{h} e^{-[\Gamma(T\Sigma1) - \Gamma(P)]/k_B T} (eq 9) \end{aligned}$$

It is important to note that whenever H+ is mentioned, within the tables below, and discussion/calculations in general, it means adding H3O+ to one side and H2O to the other.

	Electronic Energy	Free Energy	Relative Electronic Energy	Relative Free Energy
Poputant	1282 24060	1000 100670		
Reactant	-1202.24009	-1202.120073		
M1 (BT-Me)	-745.9057306	-745.79633		
HOCI	-535.94765	-535,957229		
BT-Me + HOCI + H+	-1282.24069	-1282.128673	0	0
(M5) BT-Int1	-1281.82266	-1281 706824		
(M3-TS1) BT-Int1 + H+	-1282.20997	-1282.081938	19.27716526	29.32665648
Int1 Min1 (post)	-1281.887764	-1281.770314		
(M4) BT-Int1 Min1 (post) + H+	-1282.275073	-1282.145428	-21.57576142	-10.51392167
BT-Int1 Min2 (pre)	-1281.861708	-1281.744405		
(M2) BT-Int1 Min2 (pre) + H+	-1282.249017	-1282.119519	-5.225662545	5.744221963
(M6-TS2) BT-Int2	-1282.203188	-1282.074362	23.53272052	34.08066845
(M5) BT-Int2 Min1 (pre)	-1282 286913	-1282 160734	-29 00563787	-20 11858208
(M7) BT-Int2 Min2 (post)	-1282.231257	-1282.1051	5.91927559	14.79228144
BT_Int3	-1205 863271	-1205 753689		
(MQ-TS3) BT-Int3 + H2O	-1203.000271	-1282 178618	-32 23256203	-31 3/006108
BT-Int3 Min1 (post)	-1202.232000	-1202.170010	-52.25250255	-01.0+090190
(M10) BT-Int3 Min1 (post) + H2(-1203.000237	-1282 20/806	-17 0362/5/5	_47 77418076
BT-Int3 Min2 (pre)	-1202.017001	-1205.204000		-11.11+10010
(M8) BT-Int3 Min2 (pre) + H2O	-1282.304014	-1282.190814	-39.73643448	-38.99406784
BT-Me-CI	-1205.504874	-1205.406382		
(M11) BT-Me-CI + H3O+	-1282.320968	-1282.206425	-50.37500383	-48.79011864
420	76 40070460	76 424020		
	-70.42070433	-70.424929		
	-70.01009303	-70.000043		
	-0.307309319	-0.373114		
	-400.7999087	-400.011070		
HOCI	-400.3763067 -535 94765	-400.393391		
	-000.04100	-000.001220		
Sulfoxide	-821.0584693	-820.94762		
(M12) Sulfoxide + HCl + H+	-1282.245687	-1282.13381	-3.135926643	-3.223516302
Sulfone TS	-1356.97566	-1356.857663		
(M14 - TS2a) Sulfone TS + HCI	+ H+ - F -1282.215228	-1282.086624	15.97774164	26.38614697
Sulfone TS Min1 (pre)	-1357.010676	-1356.893933		
(M13) Sulfone TS Min1 (pre) + H	HCI + H+ -1282.250244	-1282.122894	-5.995482414	. 3.6263774
Sulfone TS Min2 (post)	-1357.071654	-1356.954197		
(M15) Sulfone TS Min2 (post) +	HCI + H -1282.311222	-1282.183158	-44.25954335	-34.18985511
Sulfone	-896.2618135	-896.146587		
(M16) Sulfone + 2HCl + H+ - HC	-1282.30129	-1282.186624	-38.02728215	-36.36480303

Table S1. Calculated values using acetonitrile as solvent. The assignment for each molecule M1-M16 correspond to those made on Figure 2.

Reactant -1358.57581 -1358.577039 (M1) BT-Me -822.3406216 -822.214696 - (M2) BT-Me +0358.675581 -1358.57039 0 BT-Me + HOC1 + H= -1358.675581 -1358.124323 - (M3) BT-Int1 -1358.27041 -1358.42033 - (M3-TS1) BT-Int1 (hr) -1358.27141 -1358.43037 17.73456493 29.870707, BT-Int1 (hr) (pc) -1358.235916 -1358.13243 - - - (M4) BT-Int1 (hr) (pc) -1358.235916 -1358.182484 - - - (M4) BT-Int1 Min2 (post) -1358.5325916 -1358.546362 -23.62215775 -10.870347 (M6-TS2) BT-Int2 (min2 (post) -1358.77555 -1358.55888 -4.40049106 11.640928 (M7) BT-Int2 Min1 (prc) -1358.77557 -1358.55888 -1.40049106 11.640928 BT-Int2 Min1 (post) -1282.227792 -1282.17929 - - (M9) BT-Int3 Min1 (post) + H2O -1358.758238 -32.0011459 -30.6343867 BT-Int2 Min1 (post) -1282.179929		Electronic Energy	Free Energy	Relative Electronic Energy	Relative Free Energy
Reactant -1358.673531 -1358.673593 (M1) BT-Me -822.34406216 -652.214066 MCI -355.594765 -535.957229 BT-Me + HOC1 + H+ -1358.675581 -1358.47039 0 (M5) BT-Iat1 -1358.675581 -1358.47039 0 (M5) BT-Iat1 -1358.52001 -1358.49437 17.73456493 29.870707. BT-Iat1 Min (rep) -1358.529716 -1358.8163017 - 558985462 BT-Iat1 Min (rep) -1358.529716 -1358.54131 -5.753812191 5.58985462 BT-Iat1 Min2 (post) +1358.5259716 -1358.564367 -25.9502137 5.5562187 (M6) BT-Ind Min2 (post) +1358.757565 -1358.57898 -26.45300453 -19.8035722 (M7) BT-In2 Min2 (post) +1358.757565 -1358.57898 -26.45300453 -19.8035722 (M7) BT-In2 Min2 (post) +1282.257576 -1358.57898 -22.045300453 -19.8035722 (M7) BT-In2 Min2 (post) +1282.257576 -1358.59488 -14.00409106 11.6409285 BT-In12 Min1 (post) +1282.257576 -1358.					
(M1) BT-Me -822.3406216 -822.214696 HOCI -535.94765 -535.95729 BT-Me + HOCI + H+ -1358.675581 -1358.547039 0 (M5) BT-Int1 -1358.647539 1358.439437 17.73456493 29.870707 BT-Int1 Min1 (pre) -1358.647519 -1358.538131 -5.753812191 5.5898546 BT-Int1 Min1 (pre) -1358.53916 -1358.189248 - - - (M4) BT-Int1 Min1 (post) + H+ -1358.64717 -1358.54362 -23.62215775 -10.870347 (M6-TS2) BT-Int2 -1358.71736 -1358.79839 -26.4500453 -19.803572 (M5) BT-Int2 Min2 (post) -1358.77555 -1358.578488 -1.490049106 11.6409285 BT-Int3 Min1 (post) -1282.297792 -1282.170299 - - BT-Int3 Min1 (post) -1282.297792 -1282.170929 - - BT-Int3 Min1 (post) -1282.29783 -1358.678576 -358.672487 -49.4113383 -47.373434 BT-Int3 Min2 (pre) -1358.78576 -1358.672487 -49.4113383 -47.373434	Reactant	-1358.675581	-1358.547039		
HOCI	(M1) BT-Me	-822.3406216	-822.214696		
BT-Me + HOCl + H+ -1358.675381 -1358.547039 0 (M5) BT-Intl -1358.26001 -1358.12423	HOCI	-535,94765	-535.957229		
(M5) BT-Int1 -1358.2600 -1358.124323 (M3-TS1) BT-Int1 Hit -1358.647319 -1358.124323 (M3-TS1) BT-Int1 Min1 (pre) -1358.647319 -1358.163017 BT-Int1 Min1 (pre) -1358.56475 -1358.5131 -5.753812191 (M2) BT-Int1 Min2 (post) + H+ -1358.56475 -1358.564362 -23.62215775 -10.8703470 (M4) BT-Int1 Min2 (post) + H+ -1358.713225 -1358.564362 -23.62215775 -10.8703470 (M6-TS2) BT-Int2 -1558.647351 -1358.57538 -26.45300453 -19.805725 (M5) BT-Int2 Min2 (post) -1358.717755 -1358.57588 -24.6300453 -19.805725 BT-Int3 -1282.297792 -1282.170929 - - (M0) BT-Int3 Min1 (post) -1282.32558 -1282.17547 - (M0) BT-Int3 Min1 (post) -1282.325578 -1282.17547 - - (M0) BT-Int3 Min1 (post) -1282.31212 -1282.17547 - - - (M1) BT-Int3 Min1 (post) + H2O -1388.75632 -1358.675432 - - - - (BT-Me + HOCl + H+	-1358.675581	-1358.547039	0	0
(M3-TS1) BT-Im1 + H+ -1358.647319 -1358.499437 17.73456493 29.870707 BT-Im1 Min1 (pre) -1358.547319 -1358.163017 - - (M2) BT-Im1 Min2 (post) + H+ -1358.54875 -1358.54131 -5.753812191 5.5888546 BT-Im1 Min2 (post) + H+ -1358.54375 -1358.5564362 -23.62215775 -10.870347 (M4) BT-Im1 Min2 (post) + H+ -1358.647319 -1358.564362 -23.62215775 -10.870347 (M6-TS2) DT-Im2 -1358.647317 -1358.564362 -23.62215775 -10.870347 (M5) BT-Im2 Min1 (pre) -1358.677955 -1358.578598 -26.45300453 -19.803572 (M7) BT-Im2 Min2 (post) -1282.297792 -1282.170929 - - (M7) BT-Im3 H2O -1358.726576 -1358.595858 -32.00011459 -30.6343866 BT-Im3 Min1 (post) -1282.31212 -1282.107929 - - (M0) BT-Im3 Min1 (post) -1282.31212 -1282.107929 - - (M10) BT-Im3 Min1 (pre) + H2O -1358.75933 -1358.672476 -49.4113383 -47.3734341	(M5) BT-Int1	-1358.26001	-1358,124323		
BT-Int1 Min1 (pre) -1358.297441 -1358.163017 (M2) BT-Int1 Min1 (pre) + H+ -1358.68475 -1358.15914 -5.753812191 ST-Int1 Min1 (pre) + H+ -1358.68475 -1358.159248 - (M4) BT-Int1 Min2 (post) + H+ -1358.159248 - - (M4) BT-Int1 Min2 (post) + H+ -1358.159248 - - (M6-TS2) BT-Int2 -1358.654171 -1358.459462 -23.62215775 -10.8703470 (M6-TS2) BT-Int2 -1358.71736 -1358.75898 -26.45300453 -19.803572 (M7) BT-Int2 Min1 (pre) -1358.75755 -1358.528488 -1.490049106 11.640928' BT-Int3 -1282.297792 -1282.170929 - - - (M9-TS3) BT-Int3 + H2O -1358.754323 -1358.62476 -49.4113383 -47.337434 BT-Int3 Min1 (post) -1282.31212 -1282.18259 - - - (M8) BT-Int3 Min2 (pre) + H2O -1358.754323 -1358.607488 -40.42152425 -37.9323217 BT-Me-C1 - -1282.14949 - - - -	(M3-TS1) BT-Int1 + H+	-1358.647319	-1358,499437	17,73456493	29.87070722
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BT-Int1 Min1 (pre)	-1358.297441	-1358,163017		
BT-Intl Min2 (post) -1358.325916 -1358.189248 (M4) BT-Intl Min2 (post) + H+ -1358.713225 -1358.564362 -23.62215775 -10.8703470 (M6-TS2) BT-Int2 -1358.71736 -1358.574596 -25.98502137 35.562218; (M5) BT-Int2 Min1 (pre) -1358.717736 -1358.578598 -26.45300453 -19.903572; (M7) BT-Int2 Min2 (post) -1358.77756 -1358.578598 -24.645300453 -19.900572; (M7) BT-Int3 + H2O -1358.77756 -1358.598588 -32.00011459 -30.634386; BT-Int3 Min1 (post) -1282.325538 -1282.170929 - - (M0) BT-Int3 Min1 (post) -1282.31212 -1282.5995 - - (M8) BT-Int3 Min2 (pre) -1282.31212 -1282.51259 - - (M8) BT-Int3 Min2 (pre) + H2O -1358.756197 -1358.623949 - - (M1) BT-Me-Cl + H3O+ -1358.756197 -1358.623949 - - (M11) BT-Me-Cl + H3O+ -1358.756197 -1358.623949 - - (M11) BT-Me-Cl + H3O+ -0.387303919 -	(M2) BT-Int1 Min1 (pre) + H+	-1358.68475	-1358.538131	-5.753812191	5.589854626
(M4) BT-Int1 Min2 (post) + H+ -1358.713225 -1358.564362 -23.62215775 -10.8703470 (M6-TS2) BT-Int2 -1358.634171 -1358.490367 25.98502137 35.562218. (M5) BT-Int2 Min1 (pre) -1358.717736 -1358.578598 -26.45300453 -19.803572. (M7) BT-Int2 Min2 (post) -1358.717736 -1358.528488 -1.490049106 11.640928' BT-Int3 -1282.297792 -1282.170929 - -30.6343866 BT-Int3 Min1 (post) -1282.325538 -1328.598585 -32.00011459 -30.6343866 BT-Int3 Min1 (post) -1282.325538 -1388.598585 -32.00011459 -30.6343866 BT-Int3 Min2 (pre) -1358.754937 -1358.622476 -49.4113383 -47.3734341 BT-Int3 Min2 (pre) +1282.311212 -1282.182559 - - - (M8) BT-Int3 Min2 (pre) + H2O -1358.756197 -1358.622476 -49.4113383 -47.3734341 BT-Me-C1 -1281.940103 -1281.823949 - - - (M1) BT-Me-C1+ H3O+ -1358.756197 -1358.623922 -50.58732794	BT-Int1 Min2 (post)	-1358.325916	-1358,189248		
(Mo-TS2) BT-Int2 -1358.634171 -1358.490367 25.98502137 35.562218; (M5) BT-Int2 Min1 (prc) -1358.717736 -1358.578598 -26.45300453 -19.803572; (M7) BT-Int2 Min2 (post) -1358.677955 -1358.528488 -1.490049106 11.640928; BT-Int3 -1282.297792 -1282.170929 - - (M9-TS3) BT-Int3 + H2O -1358.726576 -1358.59858 -32.00011459 -30.634386; BT-Int3 Min1 (post) -1282.35538 -1282.19797 - - - (M10) BT-Int3 Min1 (post) -1282.31212 -1282.182559 - - - (M8) BT-Int3 Min2 (prc) -1358.756197 -1358.607488 -40.42152425 -37.9323217 BT-Me-Cl - -1281.940103 -1281.823949 - - (M11) BT-Me-Cl + H3O+ -75.81609385 -76.424929 - - - H2O -76.42878453 -76.424929 - - - - H2O -76.42878453 -76.424929 - - - - </td <td>(M4) BT-Int1 Min2 (post) + H+</td> <td>-1358.713225</td> <td>-1358.564362</td> <td>-23.62215775</td> <td>-10.87034707</td>	(M4) BT-Int1 Min2 (post) + H+	-1358.713225	-1358.564362	-23.62215775	-10.87034707
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(M6-TS2) BT-Int2	-1358 634171	-1358 490367	25 98502137	35 56221838
(M7) BT-Int2 Min2 (pc) -1358 77955 -1358 57954 -20 1505715 20 1505715 BT-Int2 Min2 (pcs) -1358 677955 -1358 52848 -1.490049106 11.640928 BT-Int3 -1282.297792 -1282.170929 - - (M9-TS3) BT-Int3 Min1 (post) -1282.325538 -1282.197547 - - (M10) BT-Int3 Min1 (post) -1282.311212 -1282.622476 -49.4113383 -47.337434 BT-Int3 Min2 (pre) -1358.754323 -1358.622476 -49.4113383 -47.337434 BT-Int3 Min2 (pre) -1282.311212 -1282.182559 - - - (M8) BT-Int3 Min2 (pre) + H2O -1358.756197 -1358.607488 -40.42152425 -37.9323217 BT-Me-C1 -1281.940103 -1281.823949 - - - (M11) BT-Me-C1 + H3O + -1358.756197 -1358.607488 -40.42152425 -37.9323217 H2O -76.42878453 -76.4287929 -	(M5) BT-Int2 Min1 (pre)	-1358 717736	-1358 578598	-26 45300453	-19 80357231
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(M7) BT-Int2 Min2 (post)	-1358.677955	-1358.528488	-1.490049106	11.64092873
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BT-Int3	-1282.297792	-1282.170929		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(M9-TS3) BT-Int3 + H2O	-1358.726576	-1358.595858	-32.00011459	-30.63438628
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BT-Int3 Min1 (post)	-1282.325538	-1282.197547		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(M10) BT-Int3 Min1 (post) + H2O	-1358.754323	-1358.622476	-49.4113383	-47.33743415
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BT-Int3 Min2 (pre)	-1282.311212	-1282.182559		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(M8) BT-Int3 Min2 (pre) + H2O	-1358.739997	-1358.607488	-40.42152425	-37.93232177
(M11) BT-Me-Cl + H3O + -1358.756197 -1358.623992 -50.58732794 -48.2887385 H2O -76.42878453 -76.424929 H3O + -76.81609385 -76.800043 H+ -0.387309319 -0.375114 HCI -460.7999087 -460.393391 HCI -460.3783687 -460.393391 HOCI -535.94765 -535.957229 Sulfoxide -821.0588543 -820.948015 (M12) Sulfoxide + HCl + H+ -1282.246072 -1282.134205 47960.24277 47949.7792 Sulfox TS -1356.976312 -1356.857928 (M14 - TS2a) Sulfone TS + HCl + H+ - HOCl -1282.21588 -1282.086889 47979.18858 47979.470 Sulfone TS Min1 (pre) -1357.01124 -1356.897461 (M13) Sulfone TS Min2 (post) -1357.072044 -1356.95461 (M15) Sulfone TS Min2 (post) + HCl + H+ - HOCl -1282.311612 -1282.183571 47919.116 4	BT-Me-Cl	-1281.940103	-1281.823949		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(M11) BT-Me-Cl+H3O+	-1358.756197	-1358.623992	-50.58732794	-48.28873855
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Н2О	76 42878453	76 424020		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H2O H3O+	-76 81609385	-76.800043		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H+	-0.387309319	-0 375114		
Cl- -460.3783687 -460.393391 HOCI -535.94765 -535.957229 Sulfoxide -821.0588543 -820.948015 (M12) Sulfoxide + HCl + H+ -1282.246072 -1282.134205 47960.24277 47949.7792 Sulfone TS -1356.976312 -1356.857928 - - - (M14 - TS2a) Sulfone TS + HCl + H+ - HOCl -1282.21588 -1282.086889 47979.18858 47979.470 Sulfone TS Min1 (pre) -1357.01124 -1356.894558 - - - (M13) Sulfone TS Min1 (pre) + HCl + H+ - HOCl -1282.250808 -1282.123519 47957.27109 47956.4848 Sulfone TS Min2 (post) -1357.072044 -1356.95461 - - - (M15) Sulfone TS Min2 (post) + HCl + H+ - HOCl -1282.311612 -1282.183571 47919.116 47918.8016 Sulfone -896.2622188 -896.147 -	HCI	-460 7999087	-460 811076		
HOCI -535.94765 -535.957229 Sulfoxide -821.0588543 -820.948015 (M12) Sulfoxide + HCl + H+ -1282.246072 -1282.134205 Sulfone TS -1356.976312 -1356.857928 (M14 - TS2a) Sulfone TS + HCl + H+ - HOCl -1282.21588 -1282.086889 Sulfone TS Min1 (pre) -1357.01124 -1356.894558 (M13) Sulfone TS Min1 (pre) + HCl + H+ - HOCl -1282.250808 -1282.123519 Sulfone TS Min2 (post) -1357.072044 -1356.95461 (M15) Sulfone TS Min2 (post) + HCl + H+ - HOCl -1282.311612 -1282.183571 (M16) Sulfone + 2HCl + H+ - HOCl -1282.301695 -1282.187037	Cl-	-460 3783687	-460 393391		
Sulfoxide 821.0588543 820.948015	HOCI	-535.94765	-535.957229		
(M12) Sulfoxide + HCl + H+ -1282.246072 -1282.134205 47960.24277 47949.7792 Sulfone TS -1356.976312 -1356.857928 - - - - (M14 - TS2a) Sulfone TS + HCl + H+ - HOCl -1282.21588 -1282.086889 47979.18858 47979.470 Sulfone TS Min1 (pre) -1357.01124 -1356.894558 - - (M13) Sulfone TS Min1 (pre) + HCl + H+ - HOCl -1282.250808 -1282.123519 47957.27109 47956.4848 Sulfone TS Min2 (post) -1357.072044 -1356.95461 - - (M15) Sulfone TS Min2 (post) + HCl + H+ - HOCl -1282.311612 -1282.183571 47919.116 47918.8016 Sulfone -896.2622188 -896.147 - - - 47915.33868 47916.6266	Sulfovide	-821 0588543	-820 948015		
Sulfone TS -1356.976312 -1356.857928 (M14 - TS2a) Sulfone TS + HC1 + H + - HOC1 -1282.21588 -1282.086889 47979.18858 47979.470 Sulfone TS Min1 (pre) -1357.01124 -1356.894558 - - (M13) Sulfone TS Min1 (pre) + HC1 + H + - HOC1 -1282.250808 -1282.123519 47957.27109 47956.4848 Sulfone TS Min2 (post) -1357.072044 -1356.95461 - - (M15) Sulfone TS Min2 (post) + HC1 + H + - HOC1 -1282.311612 -1282.183571 47919.116 47918.8016 Sulfone -896.2622188 -896.147 - - - 47925.33868 47916.6266	(M12) Sulfovide + HC1 + H+	-1282 246072	-1282 134205	47960 24277	47949 77926
M14 - TS2a) Sulfone TS + HCl + H - HOCl -1282.21588 -1282.086889 47979.18858 47979.470 Sulfone TS Min1 (pre) -1357.01124 -1356.894558 -1282.123519 47957.27109 47956.4848 Sulfone TS Min1 (pre) + HCl + H+ - HOCl -1282.250808 -1282.123519 47957.27109 47956.4848 Sulfone TS Min2 (post) -1357.072044 -1356.95461 -1282.183571 47919.116 47918.8016 Sulfone -896.2622188 -896.147 -1282.33668 47916.6266 47916.6266	Sulfone TS	-1262.240072	-1262.134203	+/)00.242//	+/)+).//)20
Sulfone TS Min1 (pre) -1357.01124 -1356.894558 -1797.18856 (M13) Sulfone TS Min1 (pre) + HCl + H+ - HOCl -1282.250808 -1282.123519 47957.27109 Sulfone TS Min2 (post) -1357.072044 -1356.95461 -1100000000000000000000000000000000000	$(M14 - TS^{2a})$ Sulfone TS + HC1 + H+ - HOC1	-1350.970512	-1282 086880	/7070 18858	17070 1705
(M13) Sulfone TS Min1 (pre) + HCl + H+ - HOCl -1282.250808 -1282.123519 47957.27109 47956.4848 Sulfone TS Min2 (post) -1357.072044 -1356.95461 - - (M15) Sulfone TS Min2 (post) + HCl + H+ - HOCl -1282.311612 -1282.183571 47919.116 47918.8016 Sulfone -896.2622188 -896.147 - - 47916.6266	Sulfone TS Min1 (pre)	-1262.21368	-1356 894558	47777.10050	47777.4705
Sulfone TS Min2 (post) -1357.072044 -1356.95461 (M15) Sulfone TS Min2 (post) -1282.311612 -1282.183571 Sulfone -896.2622188 -896.147 (M16) Sulfone + 2HCl + H+ - HOCl -1282.301695 -1282.187037	(M13) Sulfone TS Min1 (pre) + $HC1 + H+ - HOC1$	-1357.01124	-1282 123510	47957 27100	47956 48482
(M15) Sulfone TS Min2 (post) + HCl + H - HOCl -1282.311612 -1282.183571 47919.116 47918.8016 Sulfone -896.2622188 -896.147 - 47925.33868 47916.6266	Sulfone TS Min2 (nost)	-1357 072044	-1356 95461	ч757.2/10)	+7750.40402
Sulfone -896.2622188 -896.147 (M16) Sulfone + 2HCl + H+ - HOCl -1282.301695 -1282.187037 47925.33868 47916.6266	(M15) Sulfone TS Min2 (post) + HC1 + H+ - HOC1	_1282 311612	-1282 183571	47010 116	47918 80162
(M16) Sulfone + 2HCl + H + - HOCl -1282.301695 -1282.187037 47925.33868 47916.6266	Sulfone	-896 2622188	-896 147	7/717.110	17710.00102
	(M16) Sulfone + 2HCl + H+ - HOCl	-1282.301695	-1282,187037	47925.33868	47916.62668

Table S2. Calculated values using an additional molecule of water, in the vicinity, at each step. The assignment for each molecule M1-M16 correspond to those made on Figure 2.

Table 2 structures.

S55

XYZ Coordinates for the chlorination of 2-methylbenzo[b]thiophene (7) and oxidation to sulfone

	• (\$	Starting material)		
6	1.616374000	1.496307000	0.000094000	
6	2.810364000	0.793683000	0.000198000	
6	0.399971000	0.794518000	-0.000199000	
1	3.752358000	1.332792000	0.000480000	
6	2.817546000	-0.611212000	-0.000003000	
6	0.427729000	-0.615433000	-0.000239000	
1	3.762979000	-1.144151000	0.000059000	
6	1.629339000	-1.327701000	-0.000199000	
1	1.633078000	-2.413144000	-0.000140000	
1	1.612382000	2.582435000	0.000366000	
6	-0.949674000	1.305478000	-0.000282000	
6	-1.896608000	0.337205000	0.000323000	
16	-1.192876000	-1.273245000	0.000108000	
1	-1.189522000	2.363704000	-0.000598000	
6	-3.384481000	0.497576000	0.000023000	
1	-3.834655000	0.034404000	0.883506000	
1	-3.639656000	1.559605000	-0.000424000	
1	-3.834319000	0.033753000	-0.883269000	

		pre-151	
6	1.220668000	1.248914000	-1.453807000
6	2.376084000	1.504489000	-0.736607000
6	0.045033000	0.907178000	-0.768785000
1	3.287114000	1.766786000	-1.261075000
6	2.384425000	1.430953000	0.665503000
6	0.074766000	0.837791000	0.637013000
1	3.299062000	1.636785000	1.208351000
6	1.235885000	1.098972000	1.365972000
1	1.239693000	1.039945000	2.447615000
1	1.215985000	1.306446000	-2.536336000
6	-1.260953000	0.596303000	-1.298171000
6	-2.176871000	0.299587000	-0.348631000
16	-1.494367000	0.382704000	1.272271000
1	-1.491855000	0.593070000	-2.356237000
6	-3.612310000	-0.078156000	-0.525218000
1	-4.271510000	0.628177000	-0.016370000

1	-3.859819000	-0.081400000	-1.586727000
1	-3.810015000	-1.072611000	-0.119280000
8	-0.056601000	-2.463440000	0.042632000
1	-0.369307000	-1.702568000	0.561283000
17	1.611939000	-2.212150000	-0.133072000

	0	TS1		
6	-2.862636000	0.261959000	1.058984000	
6	-3.491331000	-0.920956000	0.681557000	
6	-1.652287000	0.610905000	0.457414000	
1	-4.431153000	-1.198104000	1.147421000	
6	-2.932826000	-1.758142000	-0.290886000	
6	-1.109770000	-0.245037000	-0.519093000	
1	-3.440774000	-2.675085000	-0.569513000	
6	-1.729957000	-1.427114000	-0.909121000	
1	-1.292414000	-2.069639000	-1.665726000	
1	-3.303691000	0.909830000	1.809747000	
6	-0.814891000	1.777763000	0.687008000	
6	0.299287000	1.816213000	-0.069838000	
16	0.396651000	0.408140000	-1.142481000	
1	-1.057875000	2.547761000	1.411388000	
6	1.412048000	2.810993000	-0.094672000	
1	1.498484000	3.287733000	-1.075451000	
1	1.227536000	3.582985000	0.654833000	
1	2.366147000	2.323810000	0.129833000	
8	1.969792000	-0.573885000	-0.206694000	
1	1.522544000	-0.645807000	0.661586000	
17	3.652977000	-1.503656000	0.671825000	

1	4.191723000	0.090005000	-1.094791000
6	3.069149000	-0.421653000	0.656787000
6	0.800728000	0.249247000	0.638945000
1	3.906834000	-0.907275000	1.140611000
6	1.838981000	-0.357507000	1.315465000
1	1.706913000	-0.778084000	2.304377000
1	2.299851000	1.216828000	-2.236912000
6	-0.332053000	1.380677000	-1.127516000
6	-1.377297000	1.248187000	-0.307314000
16	-0.840817000	0.533341000	1.260603000
1	-0.414755000	1.839781000	-2.105517000
6	-2.815180000	1.600645000	-0.453885000
1	-3.119607000	2.343963000	0.285417000
1	-2.983758000	2.003078000	-1.452182000
1	-3.440555000	0.713525000	-0.324886000
8	-1.570484000	-0.878949000	1.384707000
1	-1.446489000	-1.445608000	0.514819000
17	-1.159627000	-2.306322000	-1.038364000

		е рі	re-TS2
6	2.142549000	1.087125000	1.188275000
6	3.249375000	1.074850000	0.332933000
6	1.066581000	0.267022000	0.894082000
1	4.091637000	1.719556000	0.551009000
6	3.294788000	0.250083000	-0.786080000
6	1.141831000	-0.553348000	-0.236472000
1	4.164093000	0.258768000	-1.430476000
6	2.229026000	-0.604143000	-1.083608000
1	2.255662000	-1.264430000	-1.940912000
1	2.124370000	1.724198000	2.063498000
6	-0.202769000	0.117827000	1.617046000
6	-1.063377000	-0.759039000	1.094926000
16	-0.312147000	-1.555793000	-0.338718000
1	-0.436263000	0.696023000	2.503011000
6	-2.448633000	-1.155685000	1.462339000
1	-2.498846000	-2.208325000	1.745872000
1	-2.774892000	-0.543814000	2.302650000
1	-3.131832000	-0.989223000	0.625660000

8	-1.180460000	-0.861150000	-1.539546000
1	-1.989709000	0.980508000	-1.261736000
1	-1.423152000	-1.525195000	-2.206411000
17	-2.494074000	2.034452000	-0.712762000

		104	-
6	-2.728188000	0.125100000	1.285916000
6	-3.446333000	-0.979997000	0.805029000
6	-1.600037000	0.545073000	0.596804000
1	-4.326527000	-1.313481000	1.343708000
6	-3.054045000	-1.651506000	-0.349958000
6	-1.220540000	-0.148399000	-0.569901000
1	-3.625733000	-2.501826000	-0.703562000
6	-1.924611000	-1.239418000	-1.064761000
1	-1.610679000	-1.755303000	-1.965496000
1	-3.052308000	0.647405000	2.179724000
6	-0.698978000	1.652508000	0.885422000
6	0.310194000	1.798559000	-0.002097000
16	0.201302000	0.582981000	-1.271309000
1	-0.822469000	2.308632000	1.740240000
6	1.437396000	2.777447000	-0.023119000
1	1.441437000	3.361181000	-0.947325000
1	1.332905000	3.460253000	0.821878000
1	2.399627000	2.262772000	0.061321000
8	1.980331000	-0.637295000	-0.303942000
1	1.371647000	-1.243930000	0.176544000
1	2.209811000	-1.092408000	-1.146314000
17	3.715862000	-1.508167000	0.695986000

6	1.694976000	0.672027000	-0.383070000
1	4.566310000	-0.983919000	-1.069449000
6	3.041244000	-1.682323000	0.274469000
6	1.155655000	-0.258433000	0.516407000
1	3.574989000	-2.591588000	0.521480000
6	1.806411000	-1.434795000	0.863101000
1	1.371219000	-2.134547000	1.565434000
1	3.378172000	1.110139000	-1.654372000
6	0.828019000	1.819236000	-0.582787000
6	-0.319491000	1.783939000	0.114614000
16	-0.406650000	0.312007000	1.124016000
1	1.079386000	2.640590000	-1.242408000
6	-1.441949000	2.765302000	0.165644000
1	-1.577350000	3.153498000	1.177066000
1	-1.220201000	3.597506000	-0.502042000
1	-2.382310000	2.307253000	-0.148788000
8	-2.019434000	-1.208585000	-0.706133000
1	-1.731098000	-2.141931000	-0.766727000
1	-1.415359000	-0.638232000	0.047787000
17	-3.695633000	-1.143577000	-0.386364000

		🍯 ` pre-TS3		
6	-2.018554000	-1.558756000	0.090023000	
6	-3.215542000	-0.937569000	-0.064991000	
6	-0.828109000	-0.754648000	0.121465000	
1	-4.135818000	-1.504805000	-0.092983000	
6	-3.274907000	0.483437000	-0.193117000	
6	-0.915784000	0.684549000	-0.015120000	
1	-4.247818000	0.945126000	-0.317286000	
6	-2.161099000	1.296719000	-0.168262000	
1	-2.250545000	2.369477000	-0.269796000	
1	-1.932948000	-2.633236000	0.192273000	
6	0.448775000	-1.181778000	0.280589000	
6	1.486482000	-0.113734000	0.308130000	
16	0.596287000	1.475887000	0.035637000	
1	0.750764000	-2.217878000	0.394204000	
6	2.262957000	-0.086560000	1.622734000	
1	1.573013000	0.085235000	2.450406000	
1	2.768639000	-1.042048000	1.760383000	
1	3.000782000	0.714368000	1.595081000	
17	2.601649000	-0.430611000	-1.068893000	

		1.	
6	1.824778000	-1.432823000	-0.536135000
6	3.074297000	-0.918950000	-0.241296000
6	0.706091000	-0.597176000	-0.382874000
1	3.956923000	-1.537137000	-0.354204000
6	3.205418000	0.403591000	0.209725000
6	0.854003000	0.734870000	0.065473000
1	4.193877000	0.787921000	0.438840000
6	2.105880000	1.245716000	0.372243000
1	2.232100000	2.265063000	0.717833000
1	1.697616000	-2.454184000	-0.878378000
6	-0.651102000	-0.919848000	-0.655324000
6	-1.574102000	0.191333000	-0.367417000
16	-0.672260000	1.615313000	0.146186000
1	-0.977346000	-1.782746000	-1.228707000
6	-2.880435000	0.390478000	-1.075306000
1	-2.668906000	0.890539000	-2.024808000
1	-3.363931000	-0.567152000	-1.270802000
1	-3.543202000	1.022203000	-0.481921000
17	-1.809408000	-1.120745000	1.082861000

		🗢 post-TS3		
6	1.536611000	1.454078000	0.372522000	
6	2.866827000	1.100708000	0.154733000	
6	0.564509000	0.472348000	0.267982000	
1	3.636216000	1.858779000	0.228715000	
6	3.223274000	-0.211527000	-0.154169000	
6	0.941348000	-0.829616000	-0.045579000	
1	4.263354000	-0.462953000	-0.317857000	
6	2.256811000	-1.208043000	-0.259321000	
1	2.523106000	-2.229141000	-0.498801000	
1	1.263986000	2.475127000	0.610855000	
6	-0.908024000	0.610470000	0.503034000	
6	-1.551626000	-0.719813000	0.208024000	
16	-0.469130000	-1.902103000	-0.141178000	

1	-1.123064000	0.842139000	1.552889000
6	-3.008446000	-0.936951000	0.247749000
1	-3.404150000	-0.539622000	1.186731000
1	-3.461841000	-0.353463000	-0.561390000
1	-3.275130000	-1.984503000	0.135644000
17	-1.673182000	1.908081000	-0.461635000

S-oxidation can occur after post-TS2 to provide methylated sulfoxide, and subsequent S-oxidation to the sulfone

1	-4.042205000	-1.056485000	0.219381000
6	-2.904517000	0.746694000	-0.013404000
6	-0.548380000	0.462782000	-0.132060000
1	-3.779473000	1.384688000	-0.011063000
6	-1.636207000	1.313905000	-0.156936000
1	-1.512513000	2.383620000	-0.278507000
1	-2.062098000	-2.550378000	0.229657000
6	0.632535000	-1.594885000	0.051256000
6	1.683089000	-0.777097000	-0.062688000
16	1.164732000	0.929360000	-0.376869000
1	0.725639000	-2.666823000	0.184875000
6	3.145369000	-1.050542000	-0.012347000
1	3.619899000	-0.426465000	0.749490000
1	3.320849000	-2.097886000	0.232113000
1	3.620696000	-0.826095000	-0.970138000
8	1.651615000	1.822445000	0.757842000

			prc-152a
6	2.763324000	0.828854000	-1.070510000
6	3.321284000	-0.348505000	-0.571861000
6	1.462514000	1.161818000	-0.708374000
1	4.338122000	-0.610052000	-0.838887000
6	2.594814000	-1.190306000	0.268511000
6	0.744320000	0.292992000	0.118251000
1	3.051586000	-2.093380000	0.654108000
6	1.277818000	-0.880609000	0.615435000
1	0.697147000	-1.532592000	1.255871000
1	3.335764000	1.480271000	-1.720315000
6	0.698430000	2.368803000	-1.045778000
6	-0.526149000	2.416095000	-0.512658000
16	-0.934914000	0.874433000	0.342810000
1	1.111408000	3.161969000	-1.659022000
6	-1.573312000	3.472767000	-0.566488000
1	-1.876996000	3.755697000	0.444808000
1	-1.187510000	4.354718000	-1.077288000
1	-2.462344000	3.119357000	-1.094206000
8	-1.221924000	1.161045000	1.811290000
8	-1.686766000	-1.998102000	0.446577000
1	-1.801487000	-1.985175000	-0.515294000
17	-1.307627000	-3.612595000	0.814267000

6	2.741737000	0.679630000	-0.847041000
6	3.467164000	-0.357687000	-0.257671000
6	1.444613000	0.917957000	-0.413420000
1	4.482972000	-0.545025000	-0.583296000
6	2.910860000	-1.157553000	0.738085000
6	0.913390000	0.100208000	0.586022000
1	3.494779000	-1.955085000	1.179429000
6	1.599627000	-0.944183000	1.169811000
1	1.145033000	-1.567044000	1.930365000
1	3.181079000	1.291636000	-1.625387000
6	0.507613000	1.958787000	-0.861807000
6	-0.685902000	1.957364000	-0.259955000
16	-0.778068000	0.546258000	0.860679000
1	0.780713000	2.690397000	-1.613791000
6	-1.878143000	2.837395000	-0.380196000
1	-2.159775000	3.234550000	0.597749000
1	-1.646512000	3.668587000	-1.045395000
1	-2.732009000	2.289153000	-0.783687000
8	-1.126689000	0.920246000	2.257852000
8	-1.588216000	-1.267572000	0.286344000
1	-2.488110000	-0.942141000	0.105397000
17	-2.188308000	-3.224803000	-0.090685000

6	0.876651000	0.144232000	0.514873000
1	3.394417000	-1.990027000	1.102389000
6	1.557405000	-0.875884000	1.143695000
1	1.134008000	-1.407005000	1.987343000
1	3.037926000	1.046777000	-1.923996000
6	0.437126000	1.875597000	-1.090469000
6	-0.727595000	1.964689000	-0.448577000
16	-0.764243000	0.736379000	0.861905000
1	0.695718000	2.506302000	-1.932868000
6	-1.920259000	2.833335000	-0.632009000
1	-2.111811000	3.417973000	0.270881000
1	-1.753164000	3.513362000	-1.466304000
1	-2.806733000	2.228668000	-0.838282000
8	-0.889182000	1.355089000	2.177156000
8	-1.752091000	-0.308366000	0.532325000
1	-1.269395000	-1.438192000	-0.832485000
17	-0.739240000	-2.105556000	-1.821632000

Sulfone

6	-2.140407000	1.476787000	0.000027000
6	-3.212376000	0.581138000	-0.000013000
6	-0.847394000	0.972675000	-0.000034000
1	-4.224827000	0.965911000	0.000044000
6	-3.004138000	-0.795580000	-0.000097000
6	-0.668342000	-0.409628000	-0.000199000
1	-3.850761000	-1.470333000	-0.000110000
6	-1.706808000	-1.316104000	-0.000156000
1	-1.527293000	-2.384302000	-0.000252000
1	-2.311914000	2.546654000	0.000143000
6	0.422037000	1.729848000	0.000120000
6	1.531409000	0.991548000	0.000209000
16	1.081153000	-0.749454000	0.000044000
1	0.432900000	2.813479000	0.000172000
6	2.976365000	1.342947000	-0.000089000
1	3.469990000	0.933727000	-0.884924000
1	3.092471000	2.426050000	0.001460000
1	3.471124000	0.931049000	0.882854000

- 8 1.503302000 -1.388172000 -1.246768000
- 8 1.502670000 -1.388423000 1.246932000

XYZ Coordinates for the chlorination of benzo[b]thiophene-2-carbaldehyde (3)

Starting Material (3) 6 -1.700201000 1.606541000 0.000004000 6 -2.966708000 1.061401000 -0.000076000 0.000061000 6 -0.582325000 0.750508000 1 -3.833915000 1.710162000 -0.000153000 6 -0.000067000 -3.149667000 -0.335711000 6 -0.785029000 -0.646563000 0.000042000 1 -4.154329000 -0.740976000 -0.000092000 6 -2.071034000 -1.199529000 0.000018000 1 -2.215089000 -2.272830000 0.000042000 1 -1.554557000 2.680455000 -0.000025000 6 0.808553000 1.087223000 0.000080000 6 1.613285000 -0.010326000 0.000082000 16 0.720896000 -1.514685000 0.000059000 1 1.195303000 2.098176000 -0.000062000 6 3.082652000 -0.015147000 -0.000220000 1 3.565101000 -1.006798000 -0.000950000 8 3.745747000 0.997047000 0.000094000

		pre-TS1	
6	2.977243000	0.734581000	-1.160326000
6	3.970131000	-0.209518000	-0.997384000
6	1.792766000	0.623627000	-0.409173000
1	4.885764000	-0.133979000	-1.570880000
6	3.809016000	-1.274886000	-0.090943000
6	1.649651000	-0.450628000	0.494205000
1	4.602161000	-2.004392000	0.020005000
6	2.655866000	-1.407845000	0.660379000
1	2.534707000	-2.227955000	1.357165000
1	3.097334000	1.556185000	-1.856803000
6	0.639385000	1.473983000	-0.415479000
6	-0.325985000	1.055873000	0.444662000
16	0.116863000	-0.396407000	1.317848000
1	0.532482000	2.356701000	-1.032780000

6	-1.627523000	1.701000000	0.684583000
1	-2.266998000	1.230659000	1.447958000
8	-2.571033000	-0.674128000	-0.456331000
1	-1.994010000	-1.434243000	-0.285682000
17	-4.120546000	-1.331401000	-0.678003000
8	-1.985875000	2.693657000	0.093625000

		15	1
6	2.881491000	0.249632000	-0.998326000
6	3.520137000	-0.941260000	-0.682082000
6	1.659707000	0.542060000	-0.387976000
1	4.466869000	-1.180909000	-1.149550000
6	2.960461000	-1.838285000	0.234910000
6	1.118099000	-0.372712000	0.533079000
1	3.478646000	-2.760597000	0.465721000
6	1.748467000	-1.565446000	0.860135000
1	1.316073000	-2.257316000	1.571552000
1	3.316272000	0.946467000	-1.704374000
6	0.814752000	1.699656000	-0.560767000
6	-0.311309000	1.662126000	0.189119000
16	-0.410265000	0.203711000	1.177014000
1	1.045440000	2.526807000	-1.220659000
6	-1.375678000	2.680968000	0.248142000
1	-2.213715000	2.474157000	0.932239000
8	-1.804610000	-0.939418000	0.197836000
1	-1.438071000	-0.827807000	-0.697622000
17	-3.315867000	-2.168655000	-0.700197000
8	-1.337175000	3.687735000	-0.415786000

0.957465000	0.162464000	0.710755000
4.272316000	-0.306093000	0.706255000
2.169196000	-0.338162000	1.132216000
2.247657000	-1.024877000	1.965192000
1.873615000	2.179098000	-1.856359000
-0.572655000	1.399155000	-0.613148000
-1.458186000	0.785592000	0.190811000
-0.628953000	-0.184675000	1.449054000
-0.882337000	2.091184000	-1.388104000
-2.927873000	0.935110000	0.190876000
-3.475877000	0.443799000	1.009109000
-0.949972000	-1.713390000	1.158668000
-0.755694000	-1.961100000	0.151043000
-0.372582000	-2.215886000	-1.560500000
-3.495789000	1.562108000	-0.667359000
	0.957465000 4.272316000 2.169196000 2.247657000 1.873615000 -0.572655000 -1.458186000 -0.628953000 -0.882337000 -0.882337000 -2.927873000 -3.475877000 -0.949972000 -0.755694000 -0.372582000 -3.495789000	0.9574650000.1624640004.272316000-0.3060930002.169196000-0.3381620002.247657000-1.0248770001.8736150002.179098000-0.5726550001.399155000-1.4581860000.785592000-0.628953000-0.184675000-0.8823370002.091184000-2.9278730000.935110000-3.475877000-1.713390000-0.755694000-1.961100000-0.372582000-2.215886000-3.4957890001.562108000

			-
6	-2.425019000	-1.096725000	1.148279000
6	-3.557892000	-0.925735000	0.346879000
6	-1.293397000	-0.352350000	0.858438000
1	-4.447165000	-1.506296000	0.556624000
6	-3.566041000	-0.021662000	-0.708925000
6	-1.329910000	0.553343000	-0.210587000
1	-4.456771000	0.094960000	-1.312518000
6	-2.438277000	0.755633000	-1.001391000
1	-2.444207000	1.471921000	-1.812615000
1	-2.427234000	-1.792734000	1.977469000
6	-0.000027000	-0.364389000	1.534171000
6	0.903708000	0.479580000	1.011740000
16	0.215574000	1.419838000	-0.346319000
1	0.218050000	-1.004531000	2.381919000
6	2.310442000	0.720935000	1.352070000
1	2.706382000	0.112781000	2.178219000
8	0.917465000	0.686919000	-1.625205000
1	1.861134000	-1.159489000	-1.406376000
1	1.285908000	1.356795000	-2.226534000
17	2.439718000	-2.144665000	-0.808308000
8	2.977283000	1.522669000	0.745470000

TS2

6	-2.806710000	0.132110000	1.336137000
6	-3.662796000	-0.776484000	0.698892000
6	-1.635058000	0.502948000	0.696559000
1	-4.578667000	-1.075402000	1.192367000
6	-3.361971000	-1.292192000	-0.556684000
6	-1.343466000	-0.036360000	-0.573582000
1	-4.042027000	-1.987654000	-1.030955000
6	-2.189029000	-0.924426000	-1.222795000
1	-1.951355000	-1.322453000	-2.200916000
1	-3.057456000	0.543570000	2.305834000
6	-0.611144000	1.430370000	1.134132000
6	0.396061000	1.573651000	0.240817000
16	0.155403000	0.597098000	-1.195620000
1	-0.642235000	1.957614000	2.080188000
6	1.632666000	2.358335000	0.348372000
1	1.720287000	2.980485000	1.251102000
8	1.678738000	-0.927646000	-0.388996000
1	1.078818000	-1.699114000	-0.339355000
1	2.194715000	-1.040981000	-1.212819000
17	3.229394000	-2.161677000	0.679262000
8	2.493819000	2.306542000	-0.495262000

6	-3.622994000	-1.613248000	-0.076163000
6	-1.503804000	-0.537167000	-0.157673000
1	-4.228170000	-2.508190000	-0.157067000
6	-2.258976000	-1.708173000	-0.270411000
1	-1.790901000	-2.656237000	-0.500417000
1	-3.985295000	1.718126000	0.567479000
6	-1.175695000	1.746951000	0.211882000
6	0.121711000	1.314677000	-0.032079000
16	0.214033000	-0.407595000	-0.360520000
1	-1.416493000	2.780128000	0.431864000
6	1.184206000	2.219125000	0.016345000
1	0.957229000	3.260446000	0.232458000
8	3.230718000	-0.453079000	-0.682116000
1	3.885183000	-0.586947000	-1.385524000
1	2.682409000	1.045097000	-0.358357000
17	3.730986000	-1.383192000	0.641861000
8	2.424908000	1.988481000	-0.159435000

			pre-TS3
6	-2.212689000	-1.443478000	0.560482000
6	-3.397164000	-0.821607000	0.332285000
6	-0.998583000	-0.732251000	0.265584000
1	-4.334289000	-1.318810000	0.541708000
6	-3.420668000	0.507076000	-0.190399000
6	-1.052337000	0.613991000	-0.270123000
1	-4.384935000	0.971454000	-0.362941000
6	-2.282304000	1.230195000	-0.488607000
1	-2.346907000	2.234545000	-0.883807000
1	-2.152182000	-2.448640000	0.957294000
6	0.271466000	-1.174598000	0.428291000
6	1.325206000	-0.189283000	0.057598000
16	0.485168000	1.299848000	-0.576894000
1	0.552499000	-2.153638000	0.802320000
6	2.229390000	0.121624000	1.295284000
1	2.810134000	-0.753890000	1.624676000
17	2.411991000	-0.915169000	-1.164089000
8	2.289406000	1.194910000	1.799775000
•			TS3
----	--------------	--------------	--------------
6	-2.138981000	1.251720000	-0.714016000
6	-3.344798000	0.638980000	-0.429724000
6	-0.956959000	0.556607000	-0.425540000
1	-4.275001000	1.148940000	-0.641617000
6	-3.370046000	-0.640797000	0.139390000
6	-0.997482000	-0.734162000	0.140029000
1	-4.325281000	-1.102985000	0.357124000
6	-2.204193000	-1.344630000	0.433853000
1	-2.247280000	-2.334412000	0.868399000
1	-2.094639000	2.244297000	-1.144422000
6	0.376727000	0.997172000	-0.657939000
6	1.360322000	0.005772000	-0.198203000
16	0.601999000	-1.449912000	0.374967000
1	0.655482000	1.807728000	-1.321051000
6	2.774067000	-0.080940000	-0.765404000
1	3.189096000	0.867439000	-1.135613000
17	1.392013000	1.508906000	1.068348000
8	3.351185000	-1.122769000	-0.784861000

post-TS3

6	2.030529000	1.223801000	0.421861000
6	3.260223000	0.611598000	0.182023000
6	0.881677000	0.461936000	0.302943000
1	4.167313000	1.196210000	0.268420000
6	3.346427000	-0.737655000	-0.164886000
6	0.988862000	-0.884299000	-0.051491000
1	4.315064000	-1.186348000	-0.342713000
6	2.201899000	-1.516837000	-0.287728000
1	2.254326000	-2.564293000	-0.553663000
1	1.972327000	2.271811000	0.689112000

6	-0.533968000	0.889490000	0.532387000
6	-1.400482000	-0.296673000	0.249846000
16	-0.593060000	-1.650833000	-0.162299000
1	-0.705052000	1.221096000	1.562723000
6	-2.905166000	-0.285092000	0.340923000
1	-3.348758000	0.645025000	0.720383000
17	-1.061692000	2.235164000	-0.532375000
8	-3.542189000	-1.245696000	0.018454000

Product (not observed)

6	1.672378000	1.519695000	-0.000113000
6	3.016776000	1.214327000	-0.000182000
6	0.738811000	0.469180000	0.000041000
1	3.749606000	2.011493000	-0.000292000
6	3.452727000	-0.125263000	-0.000113000
6	1.186301000	-0.865185000	0.000063000
1	4.514607000	-0.339001000	-0.000157000
6	2.551696000	-1.172325000	0.000028000
1	2.888809000	-2.201224000	0.000092000
1	1.329822000	2.547484000	-0.000106000
6	-0.694091000	0.530944000	0.000173000
6	-1.300410000	-0.691566000	0.000191000
16	-0.132046000	-1.995060000	0.000112000
6	-2.729632000	-1.033352000	-0.000236000
1	-2.945176000	-2.115285000	-0.000495000
17	-1.516790000	2.042432000	0.000130000
8	-3.625852000	-0.222824000	-0.000271000

XYZ Coordinates for the chlorination of benzo[b]thiophene-2-methanol (1)

0-		Q 💕	
	2	K 5	
		Sta Sta	rting material (1)
6	2.012664000	1.481381000	0.059720000
6	3.188996000	0.758883000	0.145771000
6	0.789883000	0.799186000	-0.042430000
1	4.136004000	1.279076000	0.224196000
6	3.171578000	-0.646079000	0.133730000
6	0.791948000	-0.609450000	-0.054837000
1	4.103747000	-1.193885000	0.202179000
6	1.978033000	-1.342190000	0.035798000
1	1.964678000	-2.425368000	0.027106000
1	2.025583000	2.565329000	0.070873000
6	-0.545907000	1.333149000	-0.134085000
6	-1.498168000	0.375285000	-0.220328000
16	-0.829195000	-1.244324000	-0.183715000
1	-0.772049000	2.392374000	-0.135581000
6	-2.979625000	0.568774000	-0.346628000
1	-3.189753000	1.642227000	-0.317686000
1	-3.334884000	0.177928000	-1.301746000
8	-3.710537000	-0.130247000	0.649690000
1	-3.438307000	0.199847000	1.512302000

pre-TS1 6 1.516054000 -1.277837000 1.450784000 -1.615519000 0.699118000 6 2.626766000 0.341595000 -0.872167000 0.799071000 6 1 3.538098000 -1.926104000 1.195771000 6 2.589026000 -1.564620000 -0.704115000 6 0.324486000 -0.823357000 -0.607806000 -1.273998000 1 3.469682000 -1.835383000 6 1.440007000 -1.173685000 -1.371329000

6	-0.926460000	-0.484040000	1.366718000
6	-1.846385000	-0.145362000	0.436649000
16	-1.234909000	-0.290320000	-1.203974000
1	-1.124656000	-0.456812000	2.430954000
6	-3.230591000	0.371875000	0.657089000
1	-3.488372000	0.233736000	1.711472000
1	-3.262305000	1.443312000	0.430742000
8	0.414744000	2.469647000	-0.055299000
1	0.049445000	1.739876000	-0.583800000
17	2.072657000	2.131301000	0.064175000
8	-4.120410000	-0.336003000	-0.194470000
1	-4.974019000	0.106820000	-0.177646000

X		
	•	TS1
2.987935000	0.325324000	-1.082462000
3.762589000	-0.675954000	-0.507719000
1.715069000	0.574739000	-0.570732000
4.751205000	-0.877731000	-0.901267000
3.287966000	-1.424563000	0.573538000
1.256516000	-0.192042000	0.513529000
3.909601000	-2.198436000	1.006119000
2.024265000	-1.187362000	1.104403000
1.651776000	-1.761814000	1.943191000
3.363182000	0.908188000	-1.915098000
0.734004000	1.560173000	-0.995326000
-0.403843000	1.534532000	-0.280408000
-0.354030000	0.313735000	1.000687000
0.897260000	2.245813000	-1.817345000
-1.663236000	2.316024000	-0.454550000
-1.473863000	3.125321000	-1.165836000
-2.439081000	1.661912000	-0.867452000
-1.679093000	-1.065333000	0.167803000
-1.170652000	-1.197742000	-0.651757000
-3.128815000	-2.410753000	-0.592353000
-2.055771000	2.809223000	0.815924000
-2.963753000	3.121203000	0.756994000
	2.987935000 3.762589000 1.715069000 4.751205000 3.287966000 1.256516000 3.909601000 2.024265000 1.651776000 3.363182000 0.734004000 -0.403843000 -0.354030000 0.897260000 -1.663236000 -1.473863000 -2.439081000 -1.679093000 -1.170652000 -3.128815000 -2.055771000 -2.963753000	2.9879350000.3253240003.762589000-0.6759540001.7150690000.5747390004.751205000-0.8777310003.287966000-1.4245630001.256516000-0.1920420003.909601000-2.1984360002.024265000-1.1873620001.651776000-1.7618140003.3631820000.9081880000.7340040001.560173000-0.4038430000.3137350000.8972600002.245813000-1.6632360002.316024000-1.4738630003.125321000-2.439081000-1.065333000-1.170652000-1.197742000-3.128815000-2.410753000-2.0557710002.809223000-2.9637530003.121203000

post-TS1

6	-2.325168000	-0.898733000	-1.312977000
6	-3.447103000	-0.593971000	-0.539319000
6	-1.068241000	-0.780829000	-0.739035000
1	-4.432698000	-0.670605000	-0.981431000
6	-3.323618000	-0.197421000	0.789382000
6	-0.972274000	-0.378747000	0.596542000
1	-4.208222000	0.033557000	1.368877000
6	-2.066007000	-0.103366000	1.391120000
1	-1.959267000	0.188160000	2.428332000
1	-2.430001000	-1.216603000	-2.342929000
6	0.244172000	-1.004870000	-1.355116000
6	1.282288000	-0.773779000	-0.550505000
16	0.729611000	-0.411907000	1.122872000
1	0.357895000	-1.305767000	-2.389773000
6	2.753568000	-0.763042000	-0.787133000
1	2.953855000	-1.217337000	-1.761723000
1	3.101819000	0.276126000	-0.808753000
8	1.181892000	1.085895000	1.427174000
1	0.913948000	1.730555000	0.646700000
17	0.405568000	2.713566000	-0.763350000
8	3.363592000	-1.475146000	0.274424000
1	4.304667000	-1.275634000	0.281151000

6	1.369553000	0.322876000	0.516214000
1	4.590341000	-0.591988000	0.515684000
6	2.594845000	-0.011005000	1.053267000
1	2.763556000	-0.047532000	2.121783000
1	1.973592000	0.189180000	-2.809488000
6	-0.278481000	0.784662000	-1.144983000
6	-1.043920000	0.989798000	-0.071700000
16	-0.079421000	0.787406000	1.427164000
1	-0.664275000	0.873951000	-2.152920000
6	-2.505291000	1.328809000	0.045608000
1	-2.631505000	2.240822000	0.637197000
1	-3.018789000	0.517991000	0.569610000
8	-0.669096000	-0.642191000	1.962121000
1	-1.455128000	-1.993188000	0.634140000
1	-0.807988000	-0.607278000	2.923605000
17	-1.943143000	-2.453552000	-0.467992000
8	-3.087409000	1.436276000	-1.227318000
1	-2.873036000	2.297186000	-1.601940000

			TS2
6	2.520885000	0.442886000	-1.384225000
6	3.509658000	-0.459069000	-0.965523000
6	1.407763000	0.637844000	-0.581537000
1	4.380170000	-0.616491000	-1.589755000
6	3.396115000	-1.146375000	0.236312000
6	1.313033000	-0.071831000	0.627914000
1	4.173817000	-1.833490000	0.543357000
6	2.283184000	-0.958727000	1.064153000
1	2.187954000	-1.487970000	2.003908000
1	2.626452000	0.983308000	-2.316858000
6	0.267019000	1.515164000	-0.784041000
6	-0.645299000	1.468906000	0.213322000
16	-0.163507000	0.355410000	1.466512000
1	0.149101000	2.156259000	-1.648123000
6	-1.951053000	2.214272000	0.324501000
1	-2.032002000	2.679310000	1.311533000
1	-2.777746000	1.507271000	0.221334000

8	-1.471384000	-1.376424000	0.470167000
1	-0.772682000	-2.057003000	0.539532000
1	-2.056052000	-1.519165000	1.241369000
17	-2.699014000	-2.676682000	-0.813236000
8	-2.084844000	3.154516000	-0.712151000
1	-1.537663000	3.921832000	-0.514867000

post-TS2

6	-0.366267000	2.828727000	-0.833095000
6	0.837782000	3.449148000	-0.532228000
6	-0.635642000	1.566955000	-0.294884000
1	1.053938000	4.426186000	-0.946619000
6	1.778329000	2.832767000	0.300685000
6	0.321772000	0.973140000	0.538633000
1	2.711287000	3.335393000	0.523263000
6	1.529658000	1.581525000	0.852628000
1	2.251620000	1.101859000	1.501705000
1	-1.093221000	3.308709000	-1.477291000
6	-1.810644000	0.732896000	-0.474993000
6	-1.759173000	-0.437525000	0.180139000
16	-0.257167000	-0.594881000	1.123642000
1	-2.655399000	1.019864000	-1.087632000
6	-2.777337000	-1.544264000	0.226941000
1	-2.993992000	-1.802410000	1.268746000
1	-2.370489000	-2.436134000	-0.255258000
8	1.205357000	-2.333713000	-0.657069000
1	1.014203000	-2.126722000	-1.594951000
1	0.645296000	-1.657564000	0.025952000
17	2.894317000	-2.279416000	-0.392617000
8	-3.946630000	-1.198884000	-0.477263000
1	-4.432657000	-0.540449000	0.030003000

	<u>_</u>	pre-TS3	
6	2.135811000	1.510407000	0.411124000
6	3.339897000	0.913482000	0.215259000
6	0.944562000	0.754317000	0.141272000
1	4.261220000	1.444871000	0.410578000
6	3.403419000	-0.432830000	-0.252429000
6	1.038156000	-0.608316000	-0.339490000
1	4.381184000	-0.877002000	-0.400475000
6	2.286783000	-1.197599000	-0.528883000
1	2.381396000	-2.214311000	-0.884646000
1	2.045365000	2.528799000	0.766992000
6	-0.339182000	1.161457000	0.293862000
6	-1.373837000	0.135992000	-0.004028000
16	-0.481875000	-1.340952000	-0.633523000
1	-0.645922000	2.144428000	0.636481000
6	-2.192027000	-0.216151000	1.273299000
1	-2.694245000	0.698145000	1.591359000
1	-2.944279000	-0.958483000	0.999405000
17	-2.501417000	0.778442000	-1.232245000
8	-1.353472000	-0.636034000	2.308943000
1	-1.184342000	-1.581017000	2.233376000

I	4.381299000	-0.961935000	-0.260156000
6	2.282877000	-1.216396000	-0.571024000
1	2.392275000	-2.123706000	-1.150272000

1	1.927902000	2.072618000	1.531111000
6	-0.458632000	0.880759000	0.634861000
6	-1.382860000	-0.037967000	-0.040759000
16	-0.517298000	-1.355702000	-0.795702000
1	-0.812595000	1.567060000	1.395695000
6	-2.801655000	-0.268155000	0.463072000
1	-3.236941000	0.695542000	0.724822000
1	-3.401386000	-0.730503000	-0.322389000
17	-1.322405000	1.640098000	-1.065567000
8	-2.727943000	-1.039537000	1.631911000
1	-2.675940000	-1.974614000	1.406485000

		post-TS3
1.814295000	1.422459000	0.497822000
3.150722000	1.048592000	0.368623000
0.834877000	0.469376000	0.270407000
3.926180000	1.784542000	0.539163000
3.506103000	-0.255437000	0.025463000
1.212616000	-0.824564000	-0.075743000
4.551019000	-0.522520000	-0.066693000
2.532925000	-1.224661000	-0.201816000
2.797830000	-2.240141000	-0.465438000
1.543062000	2.437298000	0.763082000
-0.648787000	0.640027000	0.369449000
-1.279958000	-0.679857000	0.026656000
-0.206171000	-1.869594000	-0.296499000
-0.980417000	0.933769000	1.369843000
-2.770123000	-0.852008000	-0.031887000
-3.074645000	-0.536132000	-1.036590000
-3.039323000	-1.904173000	0.081357000
-1.287307000	1.885122000	-0.755012000
-3.404133000	-0.013132000	0.893281000
-3.423703000	-0.444723000	1.754384000
	1.814295000 3.150722000 0.834877000 3.926180000 3.506103000 1.212616000 4.551019000 2.532925000 2.797830000 1.543062000 -0.648787000 -1.279958000 -0.206171000 -0.980417000 -2.770123000 -3.039323000 -1.287307000 -3.404133000 -3.423703000	1.8142950001.4224590003.1507220001.0485920000.8348770000.4693760003.9261800001.7845420003.506103000-0.2554370001.212616000-0.8245640004.551019000-0.5225200002.532925000-1.2246610002.797830000-2.2401410001.5430620002.437298000-0.648787000-0.679857000-0.206171000-1.869594000-0.980417000-0.536132000-3.039323000-1.904173000-1.2873070001.885122000-3.404133000-0.444723000

Product 4 (not obtained in the chlorination since oxidation was observed)

6	-2.027723000	1.265148000	0.087523000
6	-3.276964000	0.673311000	0.130843000
6	-0.893325000	0.447926000	-0.005974000
1	-4.162429000	1.292937000	0.201892000
6	-3.413500000	-0.724073000	0.083081000
6	-1.041699000	-0.948880000	-0.055769000
1	-4.401716000	-1.166305000	0.117347000
6	-2.302990000	-1.546568000	-0.008096000
1	-2.408193000	-2.623942000	-0.044839000
1	-1.917154000	2.342511000	0.124755000
6	0.499985000	0.811525000	-0.057968000
6	1.355312000	-0.232607000	-0.145496000
16	0.501304000	-1.759106000	-0.163807000
6	2.851531000	-0.220093000	-0.262125000
1	3.139881000	-0.378293000	-1.303308000
1	3.223656000	0.760046000	0.047643000
17	1.002562000	2.471768000	-0.018529000
8	3.456985000	-1.267638000	0.473161000
1	3.301894000	-1.114340000	1.411031000

XYZ Coordinates for the chlorination of benzo[b]thiophene-2-methoxymethyl ether (not synthesized)

Starting Material

6	2.030718000	1.703443000	0.000007000
6	3.359126000	1.314770000	0.000098000
6	1.024609000	0.725241000	-0.000066000
1	4.139558000	2.066204000	0.000148000
6	3.709835000	-0.044959000	0.000123000
6	1.396656000	-0.632615000	-0.000044000
1	4.755125000	-0.329571000	0.000177000
6	2.734866000	-1.030077000	0.000056000
1	3.004353000	-2.079316000	0.000043000
1	1.760901000	2.753449000	-0.000001000
6	-0.408533000	0.893384000	-0.000127000
6	-1.077338000	-0.281014000	-0.000059000
16	-0.009866000	-1.670407000	-0.000254000
1	-0.907764000	1.852606000	-0.000108000
6	-2.560028000	-0.493988000	0.000045000
1	-2.855739000	-1.074236000	0.885512000
1	-2.855858000	-1.074185000	-0.885415000
8	-3.197489000	0.758779000	0.000126000
6	-4.606546000	0.631151000	0.000265000
1	-4.950511000	0.096149000	-0.891741000
1	-4.950334000	0.096142000	0.892335000
1	-5.022146000	1.637007000	0.000310000

6	1.835532000	-1.153397000	-1.376694000
1	1.801178000	-1.109997000	-2.458506000
1	1.953728000	-1.310956000	2.527432000
6	-0.535194000	-0.515885000	1.370516000
6	-1.463262000	-0.190256000	0.444045000
16	-0.854067000	-0.317604000	-1.198433000
1	-0.730272000	-0.494867000	2.435451000
6	-2.855294000	0.300999000	0.669205000
1	-3.117195000	0.160388000	1.725258000
1	-2.917147000	1.374928000	0.443174000
8	0.735704000	2.471267000	-0.039835000
1	0.379716000	1.739415000	-0.571773000
17	2.401198000	2.164012000	0.059965000
8	-3.738847000	-0.410927000	-0.170385000
6	-5.067325000	0.063814000	-0.057655000
1	-5.438106000	-0.053728000	0.966436000
1	-5.128503000	1.120518000	-0.340273000
1	-5.681422000	-0.527844000	-0.733771000

TS1 6 1.211226000 2.916931000 -1.010542000 6 4.002685000 -0.512599000 0.498611000 6 1.636966000 -0.876454000 0.676113000 1 5.000214000 -0.608834000 0.909334000 6 3.827786000 0.107395000 -0.741621000 6 1.483963000 -0.248204000 -0.570289000 1 4.687470000 0.487093000 -1.279467000 6 2.559471000 0.242352000 -1.298036000 1 2.418393000 0.718262000 -2.260320000 1 3.058074000 -1.497094000 2.168901000 6 0.363251000 -1.315299000 1.226761000 6 -0.691216000 -1.030152000 0.446466000 16 -0.203935000 -0.218661000 -1.046503000 1 0.271346000 -1.816231000 2.182410000 6 -2.149637000 -1.211248000 0.695257000 1 -2.288776000 -1.874876000 1.557191000 1 -2.601940000 -0.237365000 0.930971000 8 -0.786095000 1.644483000 -0.309478000 1 -0.971063000 2.037662000 -1.179580000

S84

17	-1.373837000	3.463223000	0.597238000
8	-2.741091000	-1.745098000	-0.467938000
6	-4.149405000	-1.840462000	-0.349531000
1	-4.426299000	-2.502751000	0.477464000
1	-4.592397000	-0.852903000	-0.182311000
1	-4.524132000	-2.252980000	-1.284013000

	•		post-TS1
6	-3.479568000	-1.053294000	-0.167167000
6	-4.308141000	0.055045000	0.024428000
6	-2.105773000	-0.876796000	-0.102395000
1	-5.382168000	-0.070423000	-0.033682000
6	-3.781577000	1.315524000	0.291042000
6	-1.603630000	0.399207000	0.171907000
1	-4.444285000	2.159271000	0.434008000
6	-2.400242000	1.504602000	0.386278000
1	-1.978662000	2.476515000	0.609537000
1	-3.898482000	-2.031986000	-0.366034000
6	-1.041307000	-1.871008000	-0.297862000
6	0.194949000	-1.384730000	-0.185269000
16	0.166719000	0.342692000	0.301885000
1	-1.248582000	-2.907133000	-0.536986000
6	1.546840000	-1.970599000	-0.407883000
1	1.473696000	-3.063672000	-0.438874000
1	1.937005000	-1.621975000	-1.374816000
8	0.700972000	1.107545000	-0.999004000
1	1.555163000	1.634942000	-0.718848000
17	3.046946000	2.427297000	-0.076276000
8	2.378706000	-1.523102000	0.636329000
6	3.743818000	-1.831857000	0.406732000
1	3.890004000	-2.914282000	0.336692000
1	4.095443000	-1.357363000	-0.515138000
1	4.305651000	-1.443115000	1.253201000

pre-TS2

6	-1.958605000	0.316263000	-1.837134000
6	-3.269107000	0.288435000	-1.348183000
6	-0.951711000	-0.235399000	-1.064727000
1	-4.062653000	0.727318000	-1.940007000
6	-3.575950000	-0.293062000	-0.122795000
6	-1.291263000	-0.818180000	0.160302000
1	-4.598185000	-0.300953000	0.232206000
6	-2.575526000	-0.880858000	0.657755000
1	-2.802180000	-1.350004000	1.606570000
1	-1.732810000	0.764958000	-2.796348000
6	0.490445000	-0.290125000	-1.332217000
6	1.220033000	-0.879511000	-0.382923000
16	0.159632000	-1.489850000	0.927775000
1	0.941851000	0.134782000	-2.220992000
6	2.708923000	-1.091661000	-0.279740000
1	2.953866000	-2.110527000	-0.587463000
1	3.031637000	-0.964189000	0.761986000
8	0.513107000	-0.402392000	2.097879000
1	0.149873000	1.579047000	1.669557000
1	0.575604000	-0.846074000	2.960462000
17	-0.272286000	2.559289000	0.943682000
8	3.382337000	-0.211841000	-1.133932000
6	3.505543000	1.099419000	-0.596452000
1	2.524790000	1.536595000	-0.383547000
1	4.099613000	1.078849000	0.322161000
1	4.013097000	1.701837000	-1.346471000

			1.54
6	-2.372512000	-0.640545000	-1.616624000
6	-3.552431000	0.020589000	-1.249176000
6	-1.366175000	-0.791575000	-0.672641000
1	-4.341321000	0.142343000	-1.980500000
6	-3.728451000	0.512930000	0.037349000
6	-1.562356000	-0.274652000	0.619763000
1	-4.650150000	1.013538000	0.304211000
6	-2.724637000	0.368793000	1.004911000
1	-2.857851000	0.749322000	2.009638000
1	-2.247419000	-1.034354000	-2.617761000
6	-0.082856000	-1.449113000	-0.798516000
6	0.663096000	-1.424747000	0.335664000
16	-0.146337000	-0.572575000	1.610770000
1	0.265127000	-1.920435000	-1.709734000
6	2.051429000	-1.993552000	0.525992000
1	1.978301000	-3.056636000	0.760431000
1	2.553988000	-1.494688000	1.363707000
8	0.820122000	1.491323000	0.806104000
1	0.139687000	2.084039000	1.183050000
1	1.569065000	1.527320000	1.434375000
17	1.648690000	3.070905000	-0.477637000
8	2.803592000	-1.883088000	-0.653040000
6	3.182689000	-0.545971000	-0.943326000
1	2.307304000	0.086158000	-1.129118000
1	3.762834000	-0.123643000	-0.115521000
1	3.797601000	-0.575974000	-1.840164000

1	-4.834518000	-0.371777000	-1.474630000
6	-3.817339000	0.997410000	-0.166193000
6	-1.638467000	0.341714000	0.513808000
1	-4.638822000	1.702780000	-0.149426000
6	-2.668607000	1.272060000	0.565558000
1	-2.581973000	2.177251000	1.152916000
1	-2.978927000	-2.012830000	-1.533292000
6	-0.525370000	-1.655331000	-0.118532000
6	0.425317000	-1.126597000	0.668824000
16	-0.082949000	0.434405000	1.354276000
1	-0.395897000	-2.603732000	-0.624971000
6	1.773127000	-1.702524000	1.026724000
1	1.689987000	-2.259097000	1.962882000
1	2.505044000	-0.899267000	1.180783000
8	1.225250000	1.940988000	-0.733013000
1	0.736585000	2.750633000	-0.986883000
1	0.740719000	1.422819000	0.115581000
17	2.861938000	2.325483000	-0.424287000
8	2.218162000	-2.603377000	0.046868000
6	2.714314000	-1.953104000	-1.113389000
1	1.942532000	-1.335795000	-1.584340000
1	3.574355000	-1.324076000	-0.860907000
1	3.024631000	-2.731494000	-1.807457000

			P-• -~
6	-2.169162000	0.429637000	1.486671000
6	-3.385428000	0.297625000	0.898771000
6	-1.005702000	0.010541000	0.755517000
1	-4.286182000	0.604216000	1.412699000
6	-3.491781000	-0.249009000	-0.416811000
6	-1.141940000	-0.551989000	-0.572770000
1	-4.479453000	-0.340038000	-0.854186000
6	-2.405610000	-0.667997000	-1.155710000
1	-2.530231000	-1.079643000	-2.147765000
1	-2.047013000	0.845148000	2.478899000
6	0.288209000	0.071894000	1.160225000
6	1.284084000	-0.350211000	0.145549000
16	0.338530000	-1.043647000	-1.266339000
1	0.624138000	0.425669000	2.129949000

pre-TS3

6	2.154174000	0.855153000	-0.354407000
1	2.711883000	1.235506000	0.506720000
1	2.855983000	0.449752000	-1.084694000
17	2.389592000	-1.564165000	0.844539000
8	1.368644000	1.829892000	-0.956391000
6	1.072911000	2.950346000	-0.129878000
1	0.520023000	2.651608000	0.766838000
1	1.991949000	3.462623000	0.164813000
1	0.451678000	3.619222000	-0.720832000

			183
6	2.223796000	0.493035000	1.408325000
6	3.438161000	-0.027718000	0.999557000
6	1.100024000	0.269911000	0.603837000
1	4.323479000	0.125016000	1.602282000
6	3.530251000	-0.749684000	-0.196843000
6	1.205489000	-0.465331000	-0.592559000
1	4.490792000	-1.146458000	-0.502538000
6	2.422252000	-0.977906000	-1.009534000
1	2.512817000	-1.541984000	-1.928252000
1	2.132201000	1.061492000	2.325451000
6	-0.239628000	0.701838000	0.849520000
6	-1.161215000	0.297596000	-0.222787000
16	-0.340429000	-0.666252000	-1.424105000
1	-0.610245000	1.037148000	1.811917000
6	-2.668136000	0.107130000	-0.037784000
1	-2.992920000	0.743855000	0.793041000
1	-3.170688000	0.422273000	-0.951945000
17	-0.840486000	2.233910000	-0.374414000
8	-2.973313000	-1.233948000	0.176306000
6	-2.511770000	-1.734130000	1.425136000
1	-1.417852000	-1.806673000	1.443862000
1	-2.853050000	-1.096215000	2.246292000
1	-2.928254000	-2.731770000	1.538949000

post-TS3

0 0.371226000 0 0.302107000 0 0.567608000 0 -0.065997000 0 -0.138872000 0 -0.205687000
0.302107000 0.567608000 0.065997000 0.138872000 0.205687000
0.5676080000.0659970000.1388720000.205687000
-0.065997000-0.138872000-0.205687000
 -0.138872000 -0.205687000
-0.205687000
-0.329519000
-0.668596000
0.903097000
0.478502000
0.020038000
0 -0.426724000
) 1.531097000
-0.052309000
0.889897000
) -0.841257000
0-0.8412570000-0.413378000
-0.841257000 0 -0.413378000 0 -0.371804000
-0.8412570000-0.4133780000-0.37180400000.769565000
0-0.8412570000-0.4133780000-0.37180400000.76956500001.411810000
-0.841257000 0 -0.413378000 0 -0.371804000 0 0.769565000 0 1.411810000 0 1.343969000

6	3.669969000	-0.570603000	0.336986000
6	1.356720000	-0.914988000	-0.135649000
1	4.670757000	-0.959003000	0.481465000
6	2.637620000	-1.444364000	0.043014000
1	2.815316000	-2.509217000	-0.045228000
1	1.990427000	2.400734000	0.357950000
6	-0.275498000	0.756233000	-0.258663000
6	-1.045566000	-0.323448000	-0.527749000
16	-0.103212000	-1.793091000	-0.509240000
6	-2.530284000	-0.347490000	-0.776020000
1	-2.780670000	0.407623000	-1.522714000
1	-2.825441000	-1.330343000	-1.162196000
17	-0.897152000	2.372462000	-0.204652000
8	-3.282542000	-0.026287000	0.374928000
6	-3.143371000	-0.978017000	1.414407000
1	-3.382004000	-1.985383000	1.053804000
1	-2.126979000	-0.975510000	1.821579000
1	-3.844549000	-0.699213000	2.198753000

XYZ Coordinates for the chlorination of 2-methylbenzo[b]furan

		•	Starting Material
6	-1.491770000	-1.406524000	-0.000056000
6	-2.626797000	-0.606760000	0.000027000
6	-0.238920000	-0.783208000	-0.000025000
1	-3.606294000	-1.069782000	0.000025000
6	-2.533219000	0.794299000	0.000128000
6	-0.180305000	0.616043000	0.000092000
1	-3.438862000	1.388583000	0.000170000
6	-1.299037000	1.434501000	0.000171000
1	-1.209605000	2.513490000	0.000206000
1	-1.573682000	-2.486932000	-0.000089000
6	1.138219000	-1.221651000	0.000067000
6	1.896679000	-0.101627000	-0.000095000
8	1.117676000	1.029679000	-0.000071000
1	1.511042000	-2.233596000	0.000130000
6	3.362780000	0.124823000	-0.000187000
1	3.663824000	0.691688000	0.883527000
1	3.882644000	-0.831826000	-0.000146000
1	3.663737000	0.691570000	-0.884005000

6	2.500549000	0.668352000	-0.930951000
6	3.232473000	-0.406824000	-0.444403000
6	1.232652000	0.906794000	-0.390799000
1	4.216154000	-0.609525000	-0.850429000
6	2.725246000	-1.240539000	0.564164000
6	0.760608000	0.058025000	0.614534000
1	3.323000000	-2.070656000	0.920033000
6	1.468822000	-1.019806000	1.118325000
1	1.062934000	-1.651580000	1.898492000

1	2.899988000	1.305942000	-1.710337000
6	0.177584000	1.871965000	-0.610473000
6	-0.823577000	1.554102000	0.236722000
8	-0.490791000	0.453444000	1.006045000
1	0.166820000	2.689307000	-1.313893000
6	-2.173400000	2.115802000	0.481732000
1	-2.281264000	2.423930000	1.523787000
1	-2.334210000	2.978312000	-0.162683000
1	-2.941965000	1.367985000	0.266449000
8	-2.388037000	-1.551398000	0.578614000
1	-1.789266000	-0.916173000	1.012318000
17	-1.993959000	-1.398890000	-1.064360000

TS1 – High Energy transition state

6	2.911599000	0.180940000	-0.765604000
6	3.263846000	-1.114236000	-0.389691000
6	1.673236000	0.663563000	-0.356339000
1	4.220362000	-1.513794000	-0.702604000
6	2.414575000	-1.913097000	0.380987000
6	0.874197000	-0.163300000	0.419118000
1	2.721199000	-2.915294000	0.651297000
6	1.174024000	-1.443309000	0.815902000
1	0.496159000	-2.038992000	1.412228000
1	3.578947000	0.794088000	-1.357438000
6	0.949247000	1.918497000	-0.533013000
6	-0.222384000	1.842099000	0.101595000
8	-0.297030000	0.552169000	0.753597000
1	1.295187000	2.790281000	-1.066804000
6	-1.388986000	2.716556000	0.326591000
1	-1.547389000	2.874872000	1.394834000
1	-1.197844000	3.674205000	-0.154562000
1	-2.293001000	2.276117000	-0.098397000
8	-1.648726000	-0.236520000	0.447521000
1	-1.577540000	-0.404511000	-0.517956000
17	-3.530950000	-1.422849000	-0.539224000

			post-TSI
6	2.229069000	0.931594000	-1.003119000
6	3.152623000	0.045100000	-0.454382000
6	0.945256000	0.953464000	-0.465229000
1	4.154001000	0.004353000	-0.864030000
6	2.820827000	-0.798150000	0.610126000
6	0.682016000	0.105550000	0.594774000
1	3.563702000	-1.477873000	1.007035000
6	1.546471000	-0.781409000	1.180310000
1	1.257848000	-1.419585000	2.004038000
1	2.494955000	1.580628000	-1.827392000
6	-0.276962000	1.688106000	-0.773454000
6	-1.257293000	1.309177000	0.041743000
8	-0.658696000	0.368093000	1.008711000
1	-0.396328000	2.430091000	-1.548098000
6	-2.685671000	1.582627000	0.262430000
1	-2.864400000	1.925886000	1.282669000
1	-2.988063000	2.359288000	-0.438541000
1	-3.279666000	0.684935000	0.078535000
8	-1.435520000	-0.736660000	1.422916000
1	-1.536351000	-1.259352000	0.516405000
17	-1.564117000	-1.888011000	-1.154284000

-0.961431000	-0.702926000	-0.445407000
1.914448000	-2.407441000	-0.719531000
0.008626000	-1.489027000	-1.052617000
-0.109313000	-1.840434000	-2.069513000
0.375925000	-0.196060000	2.646434000
-2.073988000	0.540446000	1.082197000
-2.783329000	0.456862000	-0.068397000
-2.121064000	-0.293425000	-1.008989000
-2.372761000	1.068702000	1.972926000
-4.095492000	1.004083000	-0.485439000
-4.777371000	0.194847000	-0.754475000
-4.529679000	1.578583000	0.330749000
-3.978325000	1.653130000	-1.355726000
2.076785000	1.318039000	0.393248000
1.555646000	0.463731000	0.741019000
1.478798000	1.959044000	-0.045575000
3.372881000	0.900076000	-0.642986000
	-0.961431000 1.914448000 0.008626000 -0.109313000 0.375925000 -2.073988000 -2.783329000 -2.121064000 -2.372761000 -4.095492000 -4.777371000 -4.529679000 -3.978325000 2.076785000 1.555646000 1.478798000 3.372881000	-0.961431000 -0.702926000 1.914448000 -2.407441000 0.008626000 -1.489027000 -0.109313000 -1.840434000 0.375925000 -0.196060000 -2.073988000 0.540446000 -2.783329000 0.456862000 -2.121064000 -0.293425000 -2.372761000 1.068702000 -4.095492000 1.004083000 -4.777371000 0.194847000 -3.978325000 1.653130000 2.076785000 1.318039000 1.555646000 0.463731000 1.478798000 1.959044000 3.372881000 0.900076000

TS2

6	2.049699000	-0.242683000	-1.447300000
6	2.953716000	-0.895873000	-0.656016000
6	1.010394000	0.480734000	-0.802094000
1	3.770014000	-1.443546000	-1.108943000
6	2.867586000	-0.866922000	0.772443000
6	0.915696000	0.418315000	0.628330000
1	3.626026000	-1.385903000	1.345098000
6	1.859769000	-0.204649000	1.439080000
1	1.786956000	-0.177447000	2.517588000
1	2.131046000	-0.238709000	-2.526050000
6	-0.016784000	1.335803000	-1.213096000
6	-0.676798000	1.736216000	-0.058875000
8	-0.103013000	1.214361000	1.048918000
1	-0.287526000	1.628751000	-2.214671000
6	-1.881171000	2.547299000	0.145968000
1	-1.718574000	3.272404000	0.946095000
1	-2.165816000	3.049678000	-0.775014000
1	-2.695897000	1.884297000	0.463589000
8	-0.847393000	-1.159124000	0.208973000

1	-0.469924000	-1.766437000	-0.454242000
1	-0.764699000	-1.617519000	1.065895000
17	-2.947118000	-1.735112000	-0.127830000

post-TS2 – Unexpected intermediate – leading to unexpected

reactivity

6	-1.967091000	-0.068643000	1.569413000
6	-3.075910000	-0.242889000	0.820575000
6	-0.769082000	0.277090000	0.855798000
1	-4.029590000	-0.414332000	1.304621000
6	-3.069438000	-0.111603000	-0.647320000
6	-0.657656000	-0.173508000	-0.581981000
1	-4.024560000	-0.108267000	-1.156904000
6	-1.936861000	0.002541000	-1.345000000
1	-1.894778000	0.070258000	-2.425219000
1	-1.991610000	-0.045170000	2.650316000
6	0.292777000	1.064970000	1.141470000
6	0.986353000	1.274021000	-0.094128000
8	0.452724000	0.650341000	-1.090836000
1	0.558623000	1.538571000	2.073618000
6	2.151874000	2.130235000	-0.332769000
1	2.605755000	1.914045000	-1.296517000
1	1.800127000	3.168990000	-0.316348000
1	2.863262000	2.014414000	0.485517000
8	-0.213467000	-1.486862000	-0.602994000
1	-0.434628000	-1.901396000	-1.448858000
1	1.716800000	-1.720430000	-0.060344000
17	2.893338000	-1.337517000	0.319083000

pre-TS3

6	2.016065000	1.439300000	0.022693000
6	3.117391000	0.660888000	-0.125727000
6	0.749384000	0.772010000	0.120124000
1	4.100978000	1.103473000	-0.202783000
6	3.006137000	-0.768845000	-0.183010000
6	0.679331000	-0.667931000	0.053432000
1	3.919796000	-1.339705000	-0.304028000
6	1.814919000	-1.456197000	-0.095285000
1	1.756395000	-2.534147000	-0.141650000
1	2.064587000	2.518980000	0.070753000
6	-0.524245000	1.200682000	0.282012000
6	-1.432226000	0.012625000	0.327124000
8	-0.553013000	-1.114023000	0.159839000
1	-0.892922000	2.214481000	0.373271000
6	-2.226434000	-0.154070000	1.604268000
1	-1.540878000	-0.202473000	2.451473000
1	-2.900765000	0.691840000	1.724944000
1	-2.799238000	-1.078334000	1.541280000
17	-2.499164000	0.076900000	-1.107398000

1	-1.771702000	-2.287636000	1.042801000
6	0.740418000	-0.792922000	0.766792000
6	1.477117000	0.409144000	0.342168000
8	0.592124000	1.303593000	-0.146571000
1	1.166843000	-1.571255000	1.385095000
6	2.728304000	0.971020000	0.909876000
1	2.445648000	1.564949000	1.781968000
1	3.404558000	0.175386000	1.211658000
1	3.203744000	1.617817000	0.173750000
17	1.884095000	-0.963084000	-1.015911000

			post-TS3
6	-1.508466000	-1.355779000	0.444074000
6	-2.807088000	-0.933329000	0.153555000
6	-0.493118000	-0.423433000	0.323572000
1	-3.622931000	-1.639917000	0.235656000
6	-3.079498000	0.377448000	-0.240132000
6	-0.807780000	0.859688000	-0.072250000
1	-4.099210000	0.669023000	-0.456161000
6	-2.063047000	1.327382000	-0.365092000
1	-2.245192000	2.349265000	-0.667827000
1	-1.302670000	-2.374894000	0.745509000
6	0.984568000	-0.468926000	0.552829000
6	1.386247000	0.945792000	0.189816000
8	0.381536000	1.641638000	-0.140837000
1	1.271054000	-0.674832000	1.587946000
6	2.722604000	1.527551000	0.213916000
1	3.025665000	1.594300000	1.266805000
1	3.424080000	0.846007000	-0.272063000
1	2.730660000	2.513300000	-0.242379000
17	1.868219000	-1.620807000	-0.486619000

•			Product (not observed	
6	1.372037000	-1.468093000	-0.000022000	
6	2.717567000	-1.128199000	0.000047000	
6	0.437472000	-0.430396000	-0.000034000	
1	3.465655000	-1.911494000	0.000060000	
6	3.132057000	0.213653000	0.000103000	
6	0.874978000	0.897483000	0.000019000	
1	4.190763000	0.442077000	0.000150000	
6	2.213260000	1.256624000	0.000089000	
1	2.518858000	2.295098000	0.000116000	
1	1.052043000	-2.503201000	-0.000055000	
6	-0.999047000	-0.329825000	-0.000066000	
6	-1.325868000	0.983450000	-0.000005000	
8	-0.189800000	1.749331000	-0.000063000	
6	-2.619719000	1.701893000	0.000093000	
1	-2.702579000	2.336740000	-0.884522000	
1	-3.439329000	0.985183000	-0.000340000	
1	-2.702884000	2.335989000	0.885222000	
17	-2.098856000	-1.656152000	-0.000086000	