Supporting Information

Synthesis and antiproliferative activity of thiazole-fused anthraquinones

Daria V. Andreeva^a, Alexander S. Tikhomirov^a and Andrey E. Shchekotikhin^a*

^a Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russian Federation

* Corresponding author.

Andrey E. Shchekotikhin: shchekotikhin@gause-inst.ru

Legends to Figures and Tables

Figure S1. NMR spectra of compound 2 .	S3
Figure S2. NMR spectra of compound 3 .	S4
Figure S3. NMR spectra of compound 4 .	S 5
Figure S4. NMR spectra of compound 5a.	S6
Figure S5. NMR spectra of compound 5b.	S7
Figure S6. NMR spectra of compound 5c.	S8
Figure S7. NMR spectra of compound 6a.	S9
Figure S8. NMR spectra of compound 6b.	S10
Figure S9. NMR spectra of compound 6c.	S11
Figure S10. NMR spectra of compound 7a.	S12
Figure S11. NMR spectra of compound 7b.	S13
Figure S12. NMR spectra of compound 7c.	S14
Figure S13. NMR spectra of compound 8.	S15
Figure S14. NMR spectra of compound 9.	S16
Figure S15. NMR spectra of compound 10 .	S17
Figure S16. NMR spectra of compound 11 .	S18
Figure S17. NMR spectra of compound 12a .	S19
Figure S18. NMR spectra of compound 12b .	S20
Figure S19. NMR spectra of compound 12c .	S21
Figure S20. NMR spectra of compound 12d .	S22
Figure S21. HPLC spectra of compound 12a.	S23
Figure S22. HPLC spectra of compound 12b.	S24
Figure S23. HPLC spectra of compound 12c.	S25
Figure S24. HPLC spectra of compound 12d.	S26
Figure S25. 1D NOESY NMR spectra of compound 4.	S27
Figure S26. Electronic absorption spectra of compounds 4 and 7a.	S28

Figure S1. ¹H and ¹³C spectra of compound **2**.

Figure S2. ¹H and ¹³C spectra of compound **3**.

Figure S3. ¹H and ¹³C spectra of compound **4**.

Figure S5. ¹H and ¹³C spectra of compound **5b**.

Figure S6. ¹H and ¹³C spectra of compound **5c**.

Figure S7. ¹H and ¹³C spectra of compound **6a**.

Figure S8. ¹H and ¹³C spectra of compound **6b**.

Figure S9. ¹H and ¹³C spectra of compound **6c**.

Figure S10. ¹H and ¹³C spectra of compound **7a**.

Figure S11. ¹H and ¹³C spectra of compound **7b**.

Figure S12. ¹H and ¹³C spectra of compound **7c**.

Figure S13. ¹H and ¹³C spectra of compound 8.

S16

Figure S15. ¹H and ¹³C spectra of compound **10**.

Figure S16. ¹H of compound **11**.

-				
PT	٦A	Ch1	260nm	4nm

Peak#	Ret. Time	Area	Height	Area %
1	15.332	38242	2713	0.558
2	16.955	6692898	376447	97.692
3	28.056	119905	3754	1.750
Total	201000	6851046	382914	100.000

Method Filename	: FOS B.lcm	19.01.2023 12:38:51		
Time 0.01 30.00 33.00 45.00	Unit Pumps Pumps Pumps Controller	Command B.Conc B.Conc B.Conc Stop	Valu 20 70 20	

Shimadzu LC-20 AD; System - FOS Colon- Kromasil-100-5mkm. C-18, 4,6x250 mm. N 62511 Elution: A - H3PO4 0,01M pH 2,6; B - MeCN, fl - 1.0 ml/min, loop 20 mkl

Figure S21. HPLC spectra of compound 12a.

Figure S22. HPLC spectra of compound 12b.

PDA Ch1 280nm 4nm

Peak#	Ret. Time	Area	Height	Area %
1	10.939	147149	17159	1.321
2	13.053	10995095	486067	98.679
Total		11142245	503226	100.000

Method Filename

: FOS B.lcm 27.03.2023 15:46:40

Unit	Command	Valu
Pumps	B.Conc	30
Pumps	B.Conc	70
Pumps	B.Conc	30
Controller	Stop	
	Unit Pumps Pumps Pumps Controller	UnitCommandPumpsB.ConcPumpsB.ConcPumpsB.ConcControllerStop

Shimadzu LC-20 AD; System - FOS Colon- Kromasil-100-5mkm. C-18, 4,6x250 mm. N 62511 Elution: A - H3PO4 0,01M pH 2,6; B - MeCN, fl - 1.0 ml/min, loop 20 mkl

Figure S23. HPLC spectra of compound **12c.**

PDA Ch1 280nm 4nm

Ŀ.,	DA CHI 2001111 41111						
	Peak#	Ret. Time	Area	Height	Area %		
	1	11.794	22981	1800	0.368		
	2	12.736	199560	46180	3.196		
	3	13.056	6021212	366293	96.436		
	Total		6243753	414273	100.000		
_	10141		0245755	414275	100.00		

Method Filename : FOS B.lcm 28.03.2023 12:26:27

Гime	Unit	Command	Valu
0.01	Pumps	B.Conc	30
30.00	Pumps	B.Conc	70
33.00	Pumps	B.Conc	30
45.00	Controller	Stop	

Shimadzu LC-20 AD; System - FOS Colon- Kromasil-100-5mkm. C-18, 4,6x250 mm. N 62511 Elution: A - H3PO4 0,01M pH 2,6; B - MeCN, fl - 1.0 ml/min, loop 20 mkl

Figure S24. HPLC spectra of compound 12d.

Figure S25. 1D NOESY NMR spectra of compound 4.

Figure S26. Electronic absorption spectra of derivatives **4** and **7a** in EtOH (4×10^{-5} M).