Supporting Information

Total syntheses of Kavaratamide A and 5-epi-Kavaratamide A

Tieshun Rena, Ke Lvb, Fangzhong Hu*b, Yue Chen*a,b,c,

^aState Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China

^bState Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

^cFrontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, People's Republic of China

Emails: fzhu@nankai.edu.cn, yuechen@nankai.edu.cn

Table of Contents

1. General information	S2
2. General routing	S2
3. General procedure	S4
4. Cytotoxicity Assays	S17
5. Comparison of the Spectra of Isolated and Syntl	netic Compounds
•••••	S18
6. The copies of ¹ H and ¹³ C NMR	S20

1. General information

All reagents were purchased from commercial suppliers and could be used without purification. All solvents were obtained from commercial sources and purified according to standard procedures. For thin-layer chromatography, a silica gel plate (GF254) was used. The reaction products were purified by column chromatography using silica gel (200-300 mesh). Mass spectrometry was performed using Electrospray Ionization (ESI). NMR spectra were recorded on Brucker-400 NMR spectrometers with tetramethylsilane as the internal standard in CDCl₃ or DMSO-D6) (1 H at 400MHz and 13 C at 101MHz). All chemical shifts δ are in ppm. The chemical shift (δ ppm) is related to the resonance of the deuterated solvent as the internal references (CDCl₃ δ _H= 7.26 ppm, δ _C = 77.16 ppm, DMSO-D6 δ _H= 2.50 ppm, δ _C = 39.60 ppm).

2. General routing

16

3. General procedure

3.1 General procedure for the synthesis of 3

To a solution of compound 1 (1.00 g, 4.60 mmol, 1.0 eq), compound 2 (0.71 g, 4.60 mmol, 1.0 eq) and DIPEA (1.49 g, 11.51 mmol, 2.5 eq) in DCM (10 ml) was added HATU (2.28 g, 5.98 mmol, 1.3 eq) at 0° C under N_2 . The resulting solution was stirred

at 25°C under N₂ for 16 hours. Water (20 ml) was added to above solution at 0°C, extracted with EtOAc (30 ml) three times. The organic layers was combined, washed with brine (10 ml), dried over Na₂SO₄, filtrated and concentrated to afford a crude product, purified by silica gel column (PE : EtOAc = 5:1) to afford compound **3** (1.20 g, 82.2% yield). [á]25 D= -48.5 (c = 0.1, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 5.26 (dt, J = 10.3, 4.8 Hz, 2H), 4.47 (p, J = 4.3, 3.8 Hz, 1H), 3.70 (d, J = 3.5 Hz, 3H), 3.01 (d, J = 3.3 Hz, 3H), 2.01 (dt, J = 12.3, 6.0 Hz, 1H), 1.42 (t, J = 4.7 Hz, 12H), 0.95 (ddd, J = 36.7, 7.0, 3.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 171.0, 154.9, 78.5, 76.2, 54.2, 51.2, 51.1, 30.3, 30.3, 27.3, 27.3, 18.4, 16.2, 13.1. HRMS(ES⁺): m/z Found: 339.1893 [M+Na] ⁺, Calcd.: 339.1890.

3.2 General procedure for the synthesis of 4

To a solution of compound **3** (400.00 mg, 1.26 mmol, 1.0 eq) in EtOH (3 ml) and H₂O (1 ml) was added NaOH (75.85 mg, 1.90 mmol, 1.5 eq) at 0°C under N₂. The resulting solution was stirred at 25°C under N₂ for 16 hours. The solution was concentrated and NH₄Cl (aq) (10 ml) was added to above mixture, and the resulting mixture was extracted with EtOAc (50 ml) three times. The organic layer was combined, washed with brine (20 ml), dried over Na₂SO₄, filtrated and concentrated to afford crude product, purified by silica gel column (DCM: MeOH = 10:1) to afford compound **4** (306.00 mg, 80.0% yield). [á]25 D= -63.8 (c = 0.1, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 5.47 (d, J = 9.4 Hz, 1H), 5.25 (d, J = 7.4 Hz, 1H), 4.48 (t, J = 8.2 Hz, 1H), 3.05 (s, 3H), 1.99 (dp, J = 14.7, 7.3 Hz, 1H), 1.43 (d, J = 5.4 Hz, 12H), 1.04 - 0.96 (m, 3H), 0.90 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 173.3, 156.0, 79.6, 77.2, 55.3, 52.3, 31.6, 31.2, 28.3, 28.3, 19.3, 17.3, 14.0. HRMS(ES⁺): m/z Found: 325.1736 [M+Na] ⁺, Calcd.: 325.1734.

3.3 General procedure for the synthesis of 7

To a solution of compound **5** (2.00 g, 16.94 mmol, 1.0 eq), compound **6** (2.12 g, 18.62 mmol, 1.1 eq) and DIPEA (5.48 g, 42.32 mmol, 2.5 eq) in DCM (20 ml) was added HATU (8.36 g, 22.00 mmol, 1.3 eq) at 0°C under N₂. The resulting solution was stirred at 25°C under N₂ for 16 hours. Water (40 ml) was added to above solution at 0°C, extracted with EtOAc (60 ml) three times. The organic layers was combined, washed with brine (10 ml), dried over Na₂SO₄, filtrated and concentrated to afford a crude product, purified by silica gel column (PE : EtOAc = 3:1) to afford compound **7** (1.60 g, 40.8% yield). [á]25 D= -36.3 (c = 0.1, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 8.9 Hz, 1H), 4.42 (dt, J = 8.8, 4.3 Hz, 1H), 4.19 (dd, J = 13.1, 7.2 Hz, 1H), 3.90 (d, J = 5.0 Hz, 1H), 3.64 (d, J = 3.8 Hz, 3H), 2.70 (d, J = 3.4 Hz, 1H), 2.08 (dt, J = 12.9, 6.6 Hz, 2H), 0.95 - 0.71 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 172.4, 76.1, 56.7, 52.0, 31.6, 31.0, 19.0, 19.0, 17.7, 15.6. HRMS(ES⁺): m/z Found: 254.1365 [M+Na] +, Calcd.: 254.1363.

3.4 General procedure for the synthesis of 8

To a solution of compound 7 (1.20 g, 5.19 mmol, 1.0 eq) and imidazole (0.53 g, 7.78 mmol, 1.5 eq) in DCM (15 ml) was added TBSCl (1.17 g, 7.78 mmol, 1.5 eq) at 25°C under N₂. The resulting solution was stirred at 25°C under N₂ for 16 hours. Water (20 ml) was added to above solution at 0°C, extracted with EtOAc (30 ml) three times. The organic layers were combined, washed with brine (10 ml), dried over Na₂SO₄, filtrated

and concentrated to afford a crude product, purified by silica gel column (PE : EtOAc = 5:1) to afford compound **8** (1.43 g, 80.0% yield). [á]25 D= -32.8 (c = 0.1, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.00 (d, J = 9.2 Hz, 1H), 4.51 (dt, J = 8.8, 3.8 Hz, 1H), 3.95 (d, J = 3.4 Hz, 1H), 3.68 (d, J = 3.0 Hz, 3H), 2.25 - 2.03 (m, 2H), 0.94 (d, J = 3.1 Hz, 9H), 0.94 - 0.82 (m, 12H), 0.06 (d, J = 3.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 173.0, 171.9, 77.7, 56.5, 51.9, 32.7, 31.2, 25.7, 19.3, 19.0, 18.0, 17.7, 16.2, -5.0, -5.3. HRMS(ES⁺): m/z Found: 368.2229 [M+Na] ⁺, Calcd.: 368.2228.

3.5 General procedure for the synthesis of 9

To a solution of compound **8** (1.40 g, 4.05 mmol, 1.0 eq) in THF (15 ml) and H₂O (3 ml) was added LiOH.H₂O (0.25 g, 6.08 mmol, 1.5 eq) at 25°C under N₂. The resulting solution was stirred at 25°C under N₂ for 16 hours. The solution was concentrated to afford crude product, NH₄Cl (aq) (10 ml) was added to above mixture, extracted with EtOAc (20 ml) three times. The organic layers was combined, washed with brine (10 ml), dried over Na₂SO₄, filtrated and concentrated to afford a crude product, purified by silica gel column (DCM : MeOH = 10:1) to afford compound **9** (1.24 g, 72.0% yield). [á]25 D= -48.3 (c = 0.1, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 10.03 (s, 1H), 7.13 (d, J = 9.1 Hz, 1H), 4.59 (dd, J = 9.1, 4.2 Hz, 1H), 4.04 (d, J = 3.1 Hz, 1H), 2.26 (td, J = 6.9, 4.2 Hz, 1H), 2.12 (s, 1H), 0.96 (d, J = 6.3 Hz, 18H), 0.88 (d, J = 6.9 Hz, 3H), 0.07 (d, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 174.0, 77.4, 56.4, 32.6, 31.1, 25.8, 19.4, 19.1, 18.0, 17.5, 16.1, -5.0, -5.2. HRMS(ES⁺): m/z Found: 354.2070 [M+Na] ⁺, Calcd.: 354.2071.

3.6 General procedure for the synthesis of 11

To a solution of compound 9 (500.00 mg, 1.51 mmol, 1.0 eq) and compound 10 (239.10 mg, 1.66 mmol, 1.1 eq) in DCM (10 ml) was added EDCI (346.94 mg, 1.81 mmol, 1.2 eq) at 0°C under N₂. The resulting solution was stirred at 0°C under N₂ for 2 hours. Then a solution of DMAP (202.68 mg, 1.66 mmol, 1.1 eq) in DCM (2 ml) was added dropwise above solution at 0°C under N₂. The resulting solution was stirred at 25°C under N₂ for 16 hours. Water (20 ml) was added to above solution at 0°C, extracted with EtOAc (30 ml) three times. The organic layers was combined, washed with brine (10 ml), dried over Na₂SO₄, filtrated and concentrated to afford a crude product, purified by silica gel column (DCM : MeOH = 10:1) to afford compound 11 (214.50 mg, 40.0 % yield). [á]25 D= -38.5 (c = 0.1, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 5.30 - 5.21 (m, 1H), 4.65 - 4.42 (m, 1H), 3.19 (d, J = 5.2 Hz, 2H), 2.75 - 2.50 (m, 1H), 2.10 - 1.92(m, 1H), 1.14 (d, J = 7.0 Hz, 3H), 0.92 (d, J = 6.4 Hz, 18H), 0.04 (d, J = 11.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 203.2, 202.9, 174.7, 174.4, 169.5, 168.9, 77.3, 76.9, 71.8, 71.1, 44.8, 44.7, 32.4, 31.6, 30.0, 29.6, 25.9, 25.8, 25.8, 25.7, 20.3, 19.9, 18.3, 18.3, 16.0, 15.9, 15.4, 15.0, -4.8, -5.3. HRMS(ES⁺): m/z Found: 378.2070 [M+Na] +, Calcd.: 378.2071.

3.7 General procedure for the synthesis of 12

To a solution of compound 11 (200.00 mg, 0.56 mmol, 1.0 eq), PPh₃ (191.80 mg, 0.73

mmol, 1.3 eq) and MeOH (23.43 mg, 0.73 mmol, 1.3 eq) in DCM (2 ml) was added dropwise a solution of DIAD (147.87 mg, 0.73 mmol, 1.3 eq) in DCM (1 ml) at 0°C under N₂ for 1 hour. The resulting solution was stirred at 25°C under N₂ for 16 hours. Water (3 ml) was added to above solution at 0°C, extracted with EtOAc (10 ml) three times. The organic layers were combined, washed with brine (3 ml), dried over Na₂SO₄, filtrated and concentrated to afford a crude product, purified by silica gel column (PE: EtOAc = 5:1) to afford compound **12** (131.00 mg, 63.0% yield). [á]25 D= -45.2 (c = 0.1, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 5.28 (dt, J = 6.0, 3.3 Hz, 1H), 5.04 (t, J = 3.7 Hz, 1H), 4.50 (d, J = 3.9 Hz, 1H), 3.83 (d, J = 4.4 Hz, 3H), 2.68 (q, J = 7.3 Hz, 1H), 1.97 (dtt, J = 12.8, 9.2, 4.8 Hz, 1H), 1.11 (d, J = 6.4 Hz, 3H), 0.98 (d, J = 6.1 Hz, 3H), 0.92 (q, J = 2.8 Hz, 9H), 0.87 (d, J = 6.1 Hz, 3H), 0.77 - 0.66 (m, 3H), 0.11 - 0.04 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 179.7, 173.4, 170.4, 94.80, 75.8, 64.2, 58.4, 31.8, 28.5, 25.9, 25.8, 19.7, 19.0, 18.3, 15.9, 15.0, -4.8, -5.2. HRMS(ES⁺): m/z Found: 392.2227 [M+Na] ⁺, Calcd.: 392.2228.

3.8 General procedure for the synthesis of 15

To a solution of compound **14** (100.00 mg, 0.40 mmol, 1.00 eq) in dry DCM (2 ml) was added dropwise TiCl₄ (0.44 ml, 0.44 mmol, 1.12 eq, 1M solution in DCM) at 0°C under N_2 for 10 mins. The resulting solution was stirred at 0°C for 30 mins. DIPEA (61.70 mg, 0.48 mmol, 1.20 eq) was added dropwise to above solution at 0°C under N_2 for 10 mins. The resulting solution was stirred at 0°C for 30 mins. Cooled the solution to -78°C, a solution of compound **13** (71.41 mg, 0.56 mmol, 1.4 eq) in dry DCM (1 ml) was added dropwise to above solution for 30 mins. The resulting solution was stirred at -78°C under N_2 for 2h. NH₄Cl (aq) (3 ml) was added to above mixture, extracted with

EtOAc (5 ml) three times. The organic layers was combined, washed with brine (3 ml), dried over Na₂SO₄, filtrated and concentrated to afford a crude product, purified by silica gel column (PE : EtOAc = 3:1) to afford compound **15** (45.50 mg, 30.1% yield). [á]25 D= +78.6 (c = 0.1, MeOH). 1 H NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 2H), 7.27 – 7.20 (m, 3H), 5.36 (ddd, J = 10.9, 7.3, 3.8 Hz, 1H), 4.32 – 4.07 (m, 1H), 4.04 – 3.72 (m, 1H), 3.61 (dd, J = 17.9, 2.5 Hz, 1H), 3.36 (dt, J = 13.9, 6.9 Hz, 1H), 3.19 (dd, J = 13.2, 3.9 Hz, 1H), 3.14 – 2.95 (m, 2H), 2.88 (t, J = 10.3 Hz, 1H), 1.71 – 1.27 (m, 12H), 0.84 (d, J = 7.1 Hz, 3H). 13 C NMR (101 MHz, CDCl₃) δ 201.4, 174.1, 173.4, 136.4, 129.4, 129.0, 129.0, 127.3, 72.1, 68.3, 67.9, 46.6, 45.9, 44.6, 36.8, 36.4, 32.1, 31.8, 31.8, 29.6, 29.5, 29.2, 25.6, 22.7, 22.7, 14.1. HRMS(ES⁺): m/z Found: 402.1530 [M+Na] $^{+}$, Calcd.: 402.1532.

3.9 General procedure for the synthesis of 16

To a solution of compound **15** (40.00 mg, 0.11 mmol, 1.0 eq) in THF (1 ml) and H₂O (0.3 ml) was added LiOH.H₂O (6.63 mg, 0.16 mmol, 1.5 eq) at 25°C under N₂. The resulting solution was stirred at 25°C under N₂ for 16 hours. The solution was concentrated to afford crude product, NH₄Cl (aq) (3 ml) was added to above mixture, extracted with EtOAc (5 ml) three times. The organic layers was combined, washed with brine (3 ml), dried over Na₂SO₄, filtrated and concentrated to afford a crude product, purified by silica gel column (DCM : MeOH = 10:1) to afford compound **16** (10.00 mg, 50.4% yield). [á]25 D= +32.5 (c = 0.1, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 4.03 (dt, J = 8.3, 4.4 Hz, 1H), 2.64 – 2.44 (m, 2H), 1.62 – 1.28 (m, 12H), 0.87 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.4, 68.0, 40.8, 36.5, 31.8, 29.4, 29.2, 25.4, 22.6, 14.1. HRMS(ES⁺): m/z Found: 187.1337 [M-H]⁻, Calcd.: 187.1340.

3.10 General procedure for the synthesis of 17

A solution of compound **12** (150.00 mg, 0.41 mmol, 1 eq) in HCl/ dioxane (4 N) (2 ml) was stirred at 25°C under N₂ for 2 h. The mixture was concentrated to afford a hydrochloride compound **17** (88.00 mg, 84.9% yield). The product would be used to next step without further purification. [á]25 D= -36.4 (c = 0.1, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 5.09 (s, 1H), 4.75 (d, J = 3.8 Hz, 1H), 4.53 (d, J = 2.6 Hz, 1H), 3.86 (s, 3H), 2.73 – 2.63 (m, 1H), 2.20 – 2.07 (m, 1H), 1.12 (d, J = 7.1 Hz, 3H), 1.06 (d, J = 6.7 Hz, 3H), 0.85 (d, J = 6.8 Hz, 3H), 0.75 (d, J = 6.9 Hz, 3H). HRMS(ES⁺): m/z Found: 278.1373 [M+Na] ⁺, Calcd.: 278.1363.

3.11 General procedure for the synthesis of 18

To a solution of compound 17 (35.00 mg, 0.14 mmol, 1.0 eq) and compound 4 (53.89 mg, 0.18 mmol, 1.3 eq) in DCM (2 ml) was added EDCI (39.42 mg, 0.21 mmol, 1.5 eq) at 0°C under N₂. The resulting solution was stirred at 0°C under N₂ for 30 mins. Then a solution of DMAP (3.35 mg, 0.027 mmol, 0.2 eq) in DCM (1 ml) was added dropwise above solution at 0°C under N₂. The resulting solution was stirred at 25°C under N₂ for 16 hours. Water (3 ml) was added to above solution at 0°C, extracted with EtOAc (5 ml) three times. The organic layers was combined, washed with brine (3 ml), dried over Na₂SO₄, filtrated and concentrated to afford a crude product, purified by

silica gel column (PE : EtOAc = 1:1) to afford compound **18** (48.00 mg, 64.9 % yield). [á]25 D= -22.5 (c = 0.5, MeOH). 1 H NMR (400 MHz, CDCl₃) δ 5.80 (d, J = 3.2 Hz, 1H), 5.29 (t, J = 7.8 Hz, 2H), 5.06 (s, 1H), 4.48 (dd, J = 7.3, 2.7 Hz, 2H), 3.84 (s, 3H), 3.06 (d, J = 34.4 Hz, 3H), 2.58 (ddt, J = 11.9, 7.5, 4.5 Hz, 1H), 2.21 (pd, J = 6.8, 3.1 Hz, 1H), 1.99 (dq, J = 12.8, 6.6 Hz, 1H), 1.43 (d, J = 10.9 Hz, 12H), 1.08 (d, J = 7.2 Hz, 3H), 1.04 (d, J = 6.9 Hz, 3H), 0.99 (d, J = 6.9 Hz, 3H), 0.90 (dd, J = 11.1, 6.6 Hz, 6H), 0.77 (d, J = 6.9 Hz, 3H). 13 C NMR (101 MHz, CDCl₃) δ 179.8, 172.4, 171.1, 170.0, 169.0, 155.9, 94.6, 79.4, 78.2, 64.2, 58.5, 55.1, 52.5, 31.8, 31.3, 28.7, 28.3, 19.7, 19.5, 18.7, 17.1, 16.0, 15.2, 14.1. HRMS(ES⁺): m/z Found: 562.3105 [M+H] $^+$, Calcd.: 562.3099.

3.12 General procedure for the synthesis of Kavaratamide A

A solution of compound **18** (15.00 mg, 0.028 mmol, 1.0 eq) in HCl/ dioxane (4 N) (1 ml) was stirred at 25°C under N_2 for 2 h. The mixture was concentrated to afford a hydrochloride compound **18a** (12.20 mg, 92.2% yield). The product would be used to next step without further purification. To a solution of compound **18a** (12.20 mg, 0.026 mmol, 1.0 eq), compound **16** (5.31 mg, 0.028 mmol, 1.1 eq) and DIPEA (8.28 mg, 0.064 mmol, 2.5 eq) in DCM (1 ml) was added HATU (14.62 mg, 0.038 mmol, 1.5 eq) at 0°C under N_2 . The resulting solution was stirred at 25°C under N_2 for 16 hours. Water (2 ml) was added to above solution at 0°C, extracted with EtOAc (4 ml) three times. The organic layers was combined, washed with brine (3 ml), dried over Na_2SO_4 , filtrated and concentrated to afford a crude product, purified by silica gel column (PE: EtOAc = 1:1) to afford **Kavaratamide A** (7.50 mg, 48.0% yield). [á]25 D= -12.5 (c = 1.0, MeOH). IR (KBr) vmax: 3309, 2962, 2928, 2855, 1731, 1696, 1630, 1456, 1398, 1342, 1319, 1251, 1212, 1125, 1092, 1007, 943, 832, 703, 665 cm⁻¹. H NMR (400

MHz, CDCl₃) δ 6.48 (d, J = 8.9 Hz, 1H), 5.82 (d, J = 3.2 Hz, 1H), 5.28 (q, J = 7.2 Hz, 1H), 5.07 (s, 1H), 4.83 (dd, J = 8.9, 5.5 Hz, 1H), 4.50 (d, J = 2.7 Hz, 1H), 3.95 (s, 1H), 3.85 (s, 3H), 3.04 (s, 3H), 2.59 (tt, J = 7.1, 4.5 Hz, 1H), 2.38 (dd, J = 14.9, 2.8 Hz, 1H), 2.30 (d, J = 9.1 Hz, 1H), 2.26 – 2.17 (m, 1H), 2.05 (dt, J = 12.5, 6.5 Hz, 1H), 1.53 (dd, J = 8.8, 7.8 Hz, 1H), 1.45 (d, J = 7.3 Hz, 3H), 1.42 – 1.39 (m, 1H), 1.27 (m, 10H), 1.09 (d, J = 7.2 Hz, 3H), 1.04 (d, J = 6.7 Hz, 3H), 1.01 (d, J = 6.8 Hz, 3H), 0.92 (d, J = 6.5 Hz, 3H), 0.90 (d, J = 6.3 Hz, 3H), 0.87 (t, J = 6.7 Hz, 3H), 0.78 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.0, 172.9, 172.2, 171.1, 170.1, 169.1, 94.7, 78.4, 69.0, 64.4, 58.7, 53.9, 52.7, 42.9, 37.1, 31.9, 31.9, 31.3, 29.7, 29.4, 28.9, 28.5, 25.6, 22.9, 19.8, 19.8, 18.8, 17.4, 16.1, 15.3, 14.3, 14.2. HRMS(ES⁺): m/z Found: 632.3890 [M+Na]⁺, Calcd.: 632.3881.

3.13 General procedure for the synthesis of 19

To a solution of compound **12** (130.00 mg, 0.35 mmol, 1.0 eq) in THF (2 ml) was added TBAF (137.96 mg, 0.53 mmol, 1.5 eq) at 25°C under N₂. The resulting solution was stirred at 25°C under N₂ for 16 hours. Water (2 ml) was added to above solution at 0°C, extracted with EtOAc (4 ml) three times. The organic layers were combined, washed with brine (3 ml), dried over Na₂SO₄, filtrated and concentrated to afford a crude product, purified by silica gel column (PE : EtOAc = 1:1) to afford compound **19** (54.00 mg, 60.1% yield). [á]25 D= +12.6 (c = 0.1, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 5.07 (s, 1H), 4.99 (s, 1H), 4.64 (d, J = 2.7 Hz, 1H), 3.86 (s, 3H), 3.31 (d, J = 7.5 Hz, 1H), 2.45 (pd, J = 7.1, 2.7 Hz, 1H), 2.18 (pd, J = 6.8, 2.6 Hz, 1H), 1.12 (d, J = 7.0 Hz, 6H), 0.75 (dd, J = 6.9, 4.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 179.9, 175.1, 169.5, 94.3, 75.8, 63.7, 58.7, 32.2, 28.7, 20.0, 18.6, 15.3, 14.7. HRMS(ES⁺): m/z Found: 278.1373 [M+Na] +, Calcd.: 278.1363.

3.14 General procedure for the synthesis of S-Mosher ester

To a solution of compound **19** (5.00 mg, 0.019 mmol, 1.0 eq) and *S*-Mosher acid (5.04 mg, 0.021 mmol, 1.1 eq) in DCM (1 ml) was added EDCI (5.63 mg, 0.029 mmol, 1.5 eq) at 0°C under N₂. The resulting solution was stirred at 0°C under N₂ for 30 mins. Then a solution of DMAP (0.48 mg, 0.004 mmol, 0.2 eq) in DCM (0.5 ml) was added dropwise above solution at 0°C under N₂. The resulting solution was stirred at 25°C under N₂ for 6 hours. Water (3 ml) was added to above solution at 0°C, extracted with EtOAc (5 ml) three times. The organic layers was combined, washed with brine (3 ml), dried over Na₂SO₄, filtrated and concentrated to afford a crude product, purified by silica gel column (PE : EtOAc = 1:1) to afford **S-Mosher ester** (6.00 mg, 65.0 % yield). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, J = 6.6, 2.9 Hz, 2H), 7.41 (dd, J = 5.3, 2.0 Hz, 3H), 6.07 (d, J = 3.0 Hz, 1H), 5.10 (s, 1H), 4.68 (d, J = 2.8 Hz, 1H), 3.87 (s, 3H), 3.67 (d, J = 1.3 Hz, 3H), 2.50 (qt, J = 7.0, 3.5 Hz, 1H), 2.36 (pd, J = 6.8, 2.9 Hz, 1H), 1.13 (d, J = 7.1 Hz, 3H), 0.98 (d, J = 6.9 Hz, 3H), 0.89 (d, J = 6.9 Hz, 3H).

3.15 General procedure for the synthesis of *R*-Mosher ester

To a solution of compound **19** (5.00 mg, 0.019 mmol, 1.0 eq) and R-Mosher acid (5.04 mg, 0.021 mmol, 1.1 eq) in DCM (1 ml) was added EDCI (5.63 mg, 0.029 mmol, 1.5 eq) at 0°C under N₂. The resulting solution was stirred at 0°C under N₂ for 30 mins. Then a solution of DMAP (0.48 mg, 0.004 mmol, 0.2 eq) in DCM (0.5 ml) was added dropwise above solution at 0°C under N₂. The resulting solution was stirred at 25°C under N₂ for 6 hours. Water (3 ml) was added to above solution at 0°C, extracted with EtOAc (5 ml) three times. The organic layers was combined, washed with brine (3 ml), dried over Na₂SO₄, filtrated and concentrated to afford a crude product, purified by silica gel column (PE : EtOAc = 1:1) to afford *R*-Mosher ester (6.00 mg, 65.0 % yield). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (dd, J = 6.8, 3.0 Hz, 2H), 7.46 – 7.37 (m, 3H), 6.10 (d, J = 2.9 Hz, 1H), 5.10 (s, 1H), 4.67 (d, J = 2.8 Hz, 1H), 3.86 (s, 3H), 3.57 (d, J = 1.1 Hz, 3H), 2.49 (dtd, J = 13.8, 6.9, 2.7 Hz, 1H), 2.41 (qt, J = 6.9, 3.4 Hz, 1H), 1.13 (dd, J = 9.4, 7.0 Hz, 6H), 0.93 (d, J = 6.9 Hz, 3H), 0.74 (d, J = 6.9 Hz, 3H).

3.16 General procedure for the synthesis of 20

To a solution of compound **19** (35.00 mg, 0.14 mmol, 1.0 eq) and compound **4** (53.89 mg, 0.18 mmol, 1.3 eq) in DCM (2 ml) was added EDCI (39.42 mg, 0.21 mmol, 1.5 eq) at 0°C under N₂. The resulting solution was stirred at 0°C under N₂ for 30 mins. Then a solution of DMAP (3.35 mg, 0.027 mmol, 0.2 eq) in DCM (1 ml) was added dropwise above solution at 0°C under N₂. The resulting solution was stirred at 25°C under N₂ for 16 hours. Water (3 ml) was added to above solution at 0°C, extracted with EtOAc (5 ml) three times. The organic layers was combined, washed with brine (3 ml), dried over Na₂SO₄, filtrated and concentrated to afford a crude product, purified by silica gel column (PE : EtOAc = 1:1) to afford compound **20** (52.00 mg, 70.3 % yield). [á]25 D= -30.6 (c = 0.1, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 5.86 (q, J

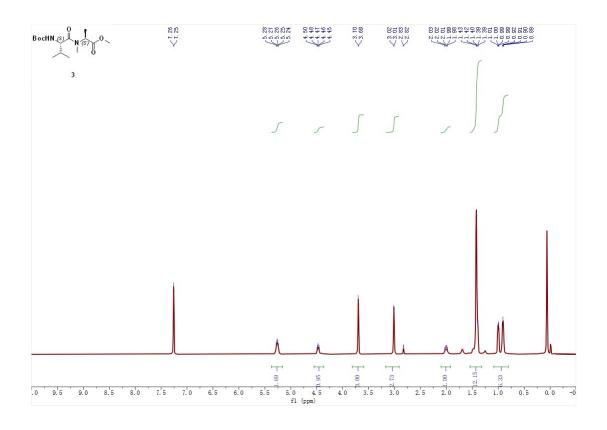
= 3.3, 2.8 Hz, 1H), 5.31 (dt, J = 15.7, 8.3 Hz, 2H), 5.05 (s, 1H), 4.58 (d, J = 2.6 Hz, 1H), 4.46 (dd, J = 9.5, 5.5 Hz, 1H), 3.83 (s, 3H), 3.07 (d, J = 36.3 Hz, 3H), 2.54 – 2.24 (m, 2H), 1.99 (td, J = 13.6, 12.7, 6.2 Hz, 1H), 1.47 (d, J = 7.5 Hz, 3H), 1.41 (s, 9H), 1.07 (dd, J = 7.1, 4.0 Hz, 6H), 0.97 (d, J = 7.0 Hz, 3H), 0.88 (t, J = 7.0 Hz, 6H), 0.71 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.8, 172.5, 171.3, 169.6, 168.8, 155.9, 94.3, 79.4, 78.5, 63.6, 63.6, 58.6, 55.1, 52.4, 31.7, 31.3, 30.0, 29.7, 28.6, 28.3, 19.7, 19.6, 18.7, 17.0, 15.9, 15.3, 14.2. HRMS(ES⁺): m/z Found: 562.3108 [M+Na] +, Calcd.: 562.3099.

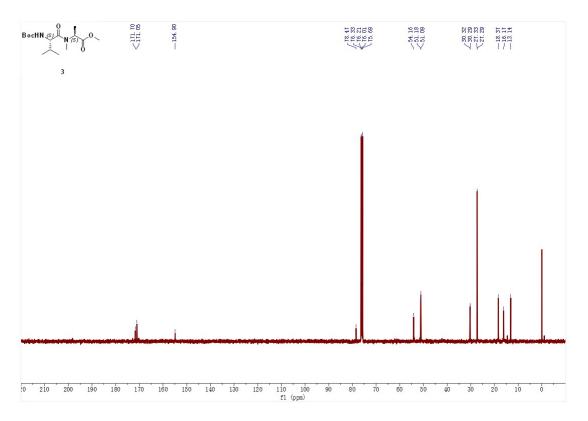
3.17 General procedure for the synthesis of 5-epi-Kavaratamide A

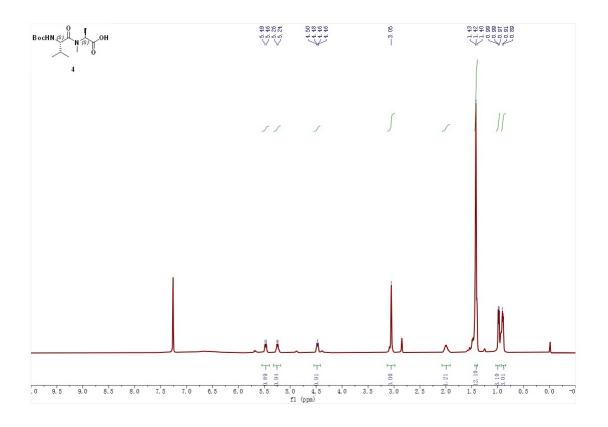
A solution of compound **20** (15.00 mg, 0.028 mmol, 1.0 eq) in HCl/ dioxane (4 N) (1 ml) was stirred at 25°C under N₂ for 2 h. The mixture was concentrated to afford a hydrochloride compound 20a (12.00 mg, 90.7% yield). The product would be used to next step without further purification. To a solution of compound 20a (12.00 mg, 0.025 mmol, 1.0 eq), compound 16 (5.22 mg, 0.028 mmol, 1.1 eq) and DIPEA (8.15 mg, 0.063 mmol, 2.5 eq) in DCM (1 ml) was added HATU (14.38 mg, 0.038 mmol, 1.5 eq) at 0°C under N₂. The resulting solution was stirred at 25°C under N₂ for 16 hours. Water (2 ml) was added to above solution at 0°C, extracted with EtOAc (4 ml) three times. The organic layers was combined, washed with brine (3 ml), dried over Na₂SO₄. filtrated and concentrated to afford a crude product, purified by silica gel column (PE: EtOAc = 1:1) to afford **5-epi-Kavaratamide A** (8.00 mg, 52.0% yield). $[\acute{a}]25$ D= -50.5 (c = 0.1, MeOH). H NMR (400 MHz, CDCl₃) δ 6.46 (d, J = 8.9 Hz, 1H), 5.95 – 5.83 (m, 1H), 5.33 (q, J = 7.5, 7.1 Hz, 2H), 5.07 (s, 1H), 4.89 – 4.79 (m, 1H), 4.60 (s, 1H), 3.95 (s, 1H), 3.85 (s, 3H), 3.06 (s, 3H), 2.47 - 2.29 (m, 3H), 2.28 - 2.17 (m, 1H), 2.08-1.97 (m, 2H), 1.50 (d, J = 7.4 Hz, 3H), 1.43 (s, 2H), 1.28 (s, 10H), 1.10 (t, J = 6.3 Hz, 6H), 1.01 (d, J = 6.8 Hz, 3H), 0.89 (t, J = 7.2 Hz, 9H), 0.73 (d, J = 6.9 Hz, 3H). ¹³C

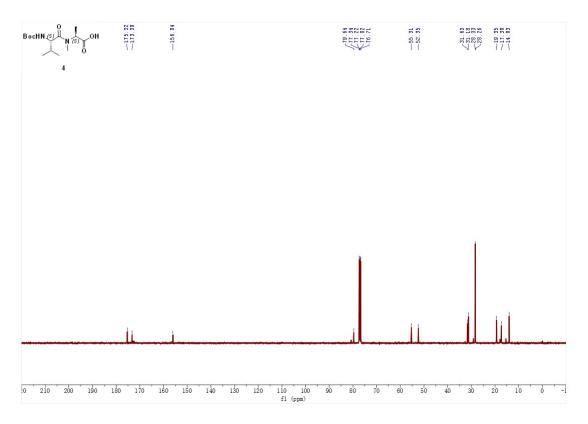
NMR (101 MHz, CDCl₃) δ 178.8, 171.7, 171.2, 170.2, 168.6, 167.7, 93.3, 77.5, 67.8, 62.6, 57.6, 52.7, 51.5, 41.8, 35.9, 30.8, 30.7, 29.0, 28.7, 28.5, 28.2, 27.6, 24.4, 21.6, 18.7, 18.6, 17.7, 16.2, 14.9, 14.2, 13.3, 13.1. HRMS(ES⁺): m/z Found: 632.3887 [M+Na]⁺, Calcd.: 632.3881.

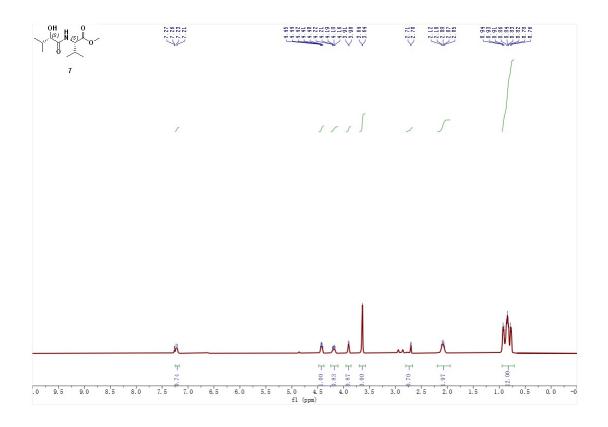
4. Cytotoxicity Assays for Kavaratamide A and 5-epi-Kavaratamide A

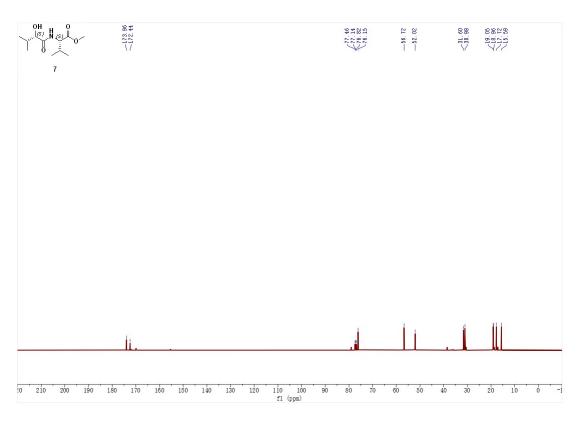

A viability assay was carried out to evaluate the cytotoxic activity of kavaratamide **A** and 5-epi-kavaratamide **A** in U251, 4T1, HepG2 and PANC1 cells. Cells were seeded at 2×10^4 cells/mL into white 96-well plates for overnight and then exposed to kavaratamide **A** and 5-epi-kavaratamide **A** at concentration of 0.01-100 μ M. After 72 hours incubation, 10 μ l of CCK-8 regent was added to each well and incubated for 2.5 h at 37 °C. The absorbance at 450 nm was measured using a microplate reader.

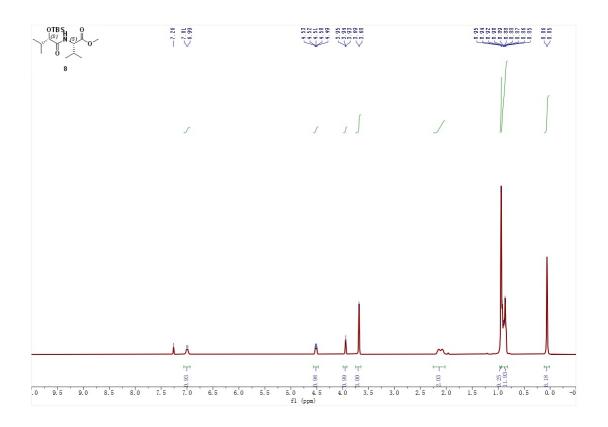

5. Comparison of the Spectra of Isolated and Synthetic Compounds

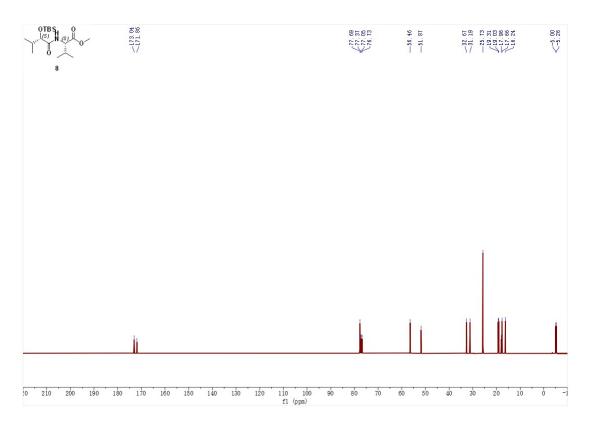

NMR comparison of natural **Kavaratamide A** [500 MHz (1 H) and 125 MHz (13 C) in CDCl₃] and synthetic **Kavaratamide A** [400 MHz (1 H) and 100 MHz (13 C) in CDCl₃].

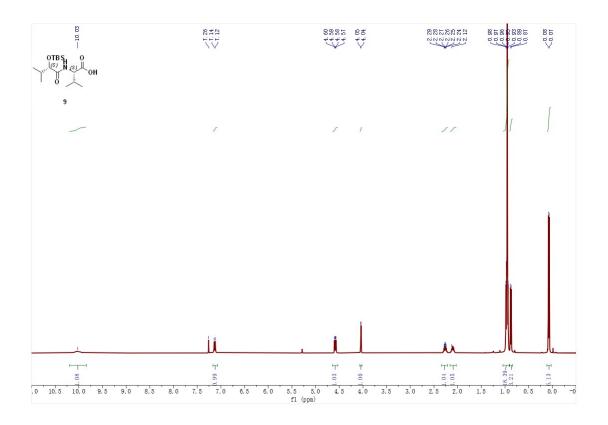

Position		Natural Kavaratamide A		Synthetic Kavaratamide A		Difference value	
iPr-O-Me-Pyr	1	3.85, s	58.7, CH3	3.85, s	58.7	0.0	0.0
	2		170.2, C		170.1		-0.1
	3	5.07, s	94.7, CH	5.07, s	94.7	0.0	0.0
	4		180.0, C		180.0		0.0
	5	4.50, d (2.5)	64.4, CH	4.50, d (2.7)	64.4	0.0	0.0
	6	2.56, sepd (7.5, 2.5)	28.5, CH	2.59, sepd (7.1,	28.5	0.03	0.0
				4.5)			
	7	1.09, d (7.5)	18.8, CH3	1.09, d (7.2)	18.8	0.0	0.0
	8	0.78, d (7.0)	15.3, CH3	0.78, d (6.9)	15.3	0.0	0.0
Hiva	9		169.1, C		169.1		0.0
	10	5.82, d (3.5)	78.4, CH	5.82, d (3.2)	78.4	0.0	0.0
	11	2.23, sepd (6.5, 3.0)	28.9, CH	2.23, m	28.9	0.0	0.0
	12	1.05, d (6.5)	19.8, CH3	1.04, d (6.7)	19.8	-0.01	0.0
	13	0.92, d (7.0)	16.1, CH3	0.92, d (6.5)	16.1	0.0	0.0
N-Me-Ala	14		171.1, C		171.1		0.0
	15	5.29, q (7.0)	52.8, CH	5.28, q (7.2)	52.8	-0.01	0.0
	16	1.46, d (7.0)	14.2, CH3	1.45, d (7.3)	14.2	-0.01	0.0
	17	3.04, s	31.9, CH3	3.04, s	31.9	0.0	0.0
Val	18		172.3, C		172.2		-0.1
	19	4.84, dd (8.5, 5.5)	53.9, CH	4.83, dd (8.9, 5.5)	53.9	-0.01	0.0
	20	2.06, sep (7.0)	31.3, CH	2.06, dt (12.5,	31.3	-0.01	0.0
				6.5)			
	21	1.01, d (7.0)	19.8, CH3	1.01, d (6.8)	19.8	0.0	0.0
	22	0.91, d (6.5)	17.4, CH3	0.90, d (6.3)	17.4	-0.01	0.0
	19-NH	6.54, d (8.5)		6.48, d (8.9)		-0.06	

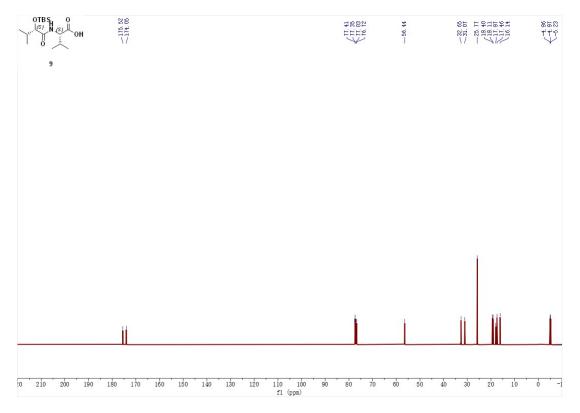

3-HDA	23		172.9, C		172.9		0.0
	24a	2.38, dd (15.0, 2.5)	42.9, CH2	2.38, dd (14.9,	42.9	0.0	0.0
				2.8)			
	24b	2.29, dd (15.0, 9.5)		2.30, d (9.1)		0.01	
		3.95, br s					
	25		69.0, CH	3.95, br s	69.0	0.0	0.0
	26a	1.54, dd (17.0, 7.5)	37.1, CH2	1.53, dd (8.3, 7.8)	37.1	-0.01	0.0
		1.42, overlap		1.42, overlap			
	26b					0.0	
	27	1.43-1.24, m	25.6, CH2	1.43-1.24, m	25.6	0.0	0.0
	28	1.43-1.24, m	29.7c,	1.43-1.24, m	29.7	0.0	0.0
			CH2				
	29	1.43-1.24, m	29.4c,	1.43-1.24, m	29.4	0.0	0.0
			CH2				
	30	1.43-1.24, m	31.9, CH2	1.43-1.24, m	31.9	0.0	0.0
	31	1.43-1.24, m	22.8, CH2	1.43-1.24, m	22.8	0.0	0.0
	32	0.88, t (7.0)	14.3, CH3	0.87, t (6.7)	14.3	-0.01	0.0

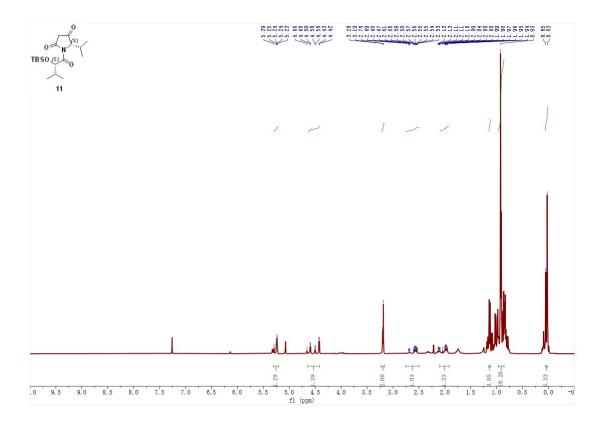


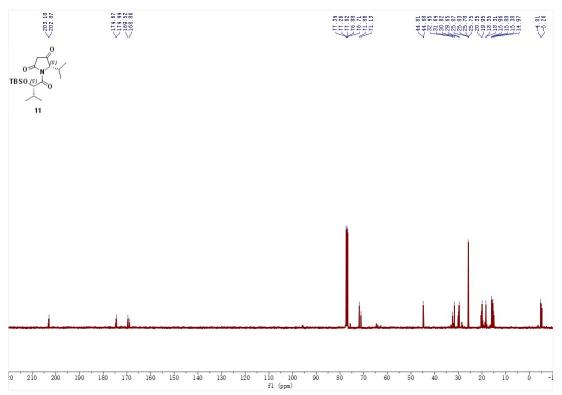


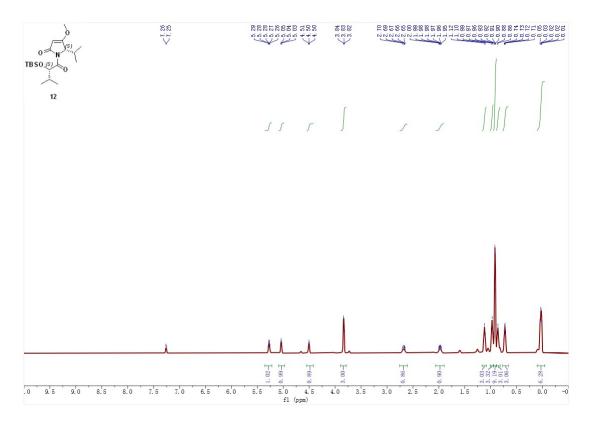


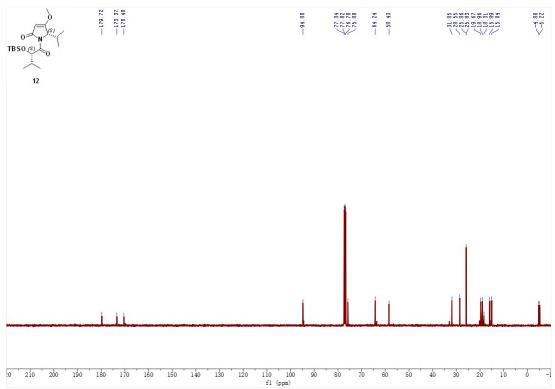


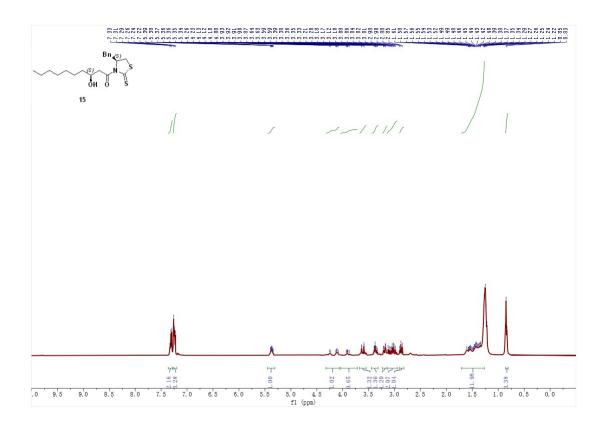


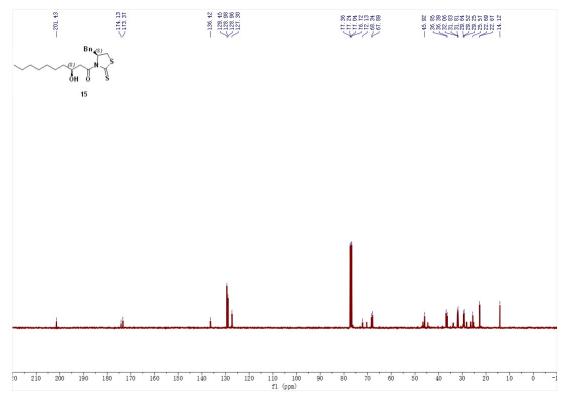


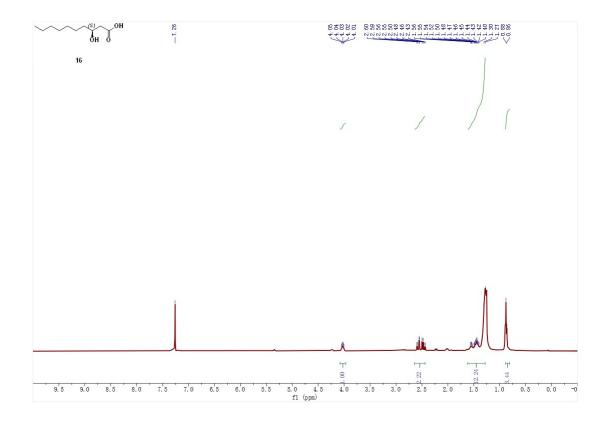


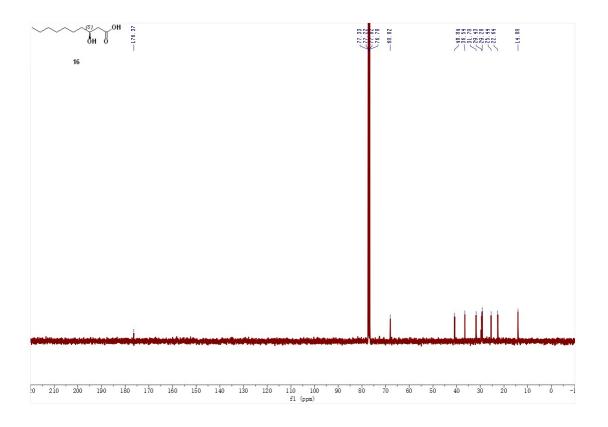


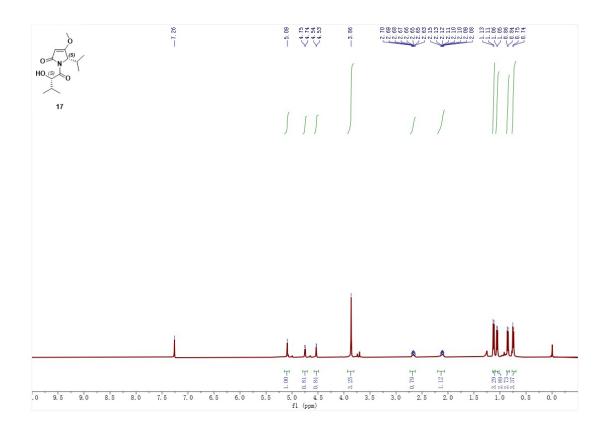


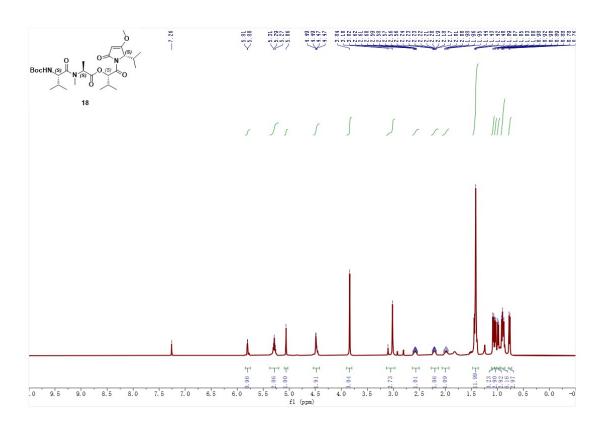


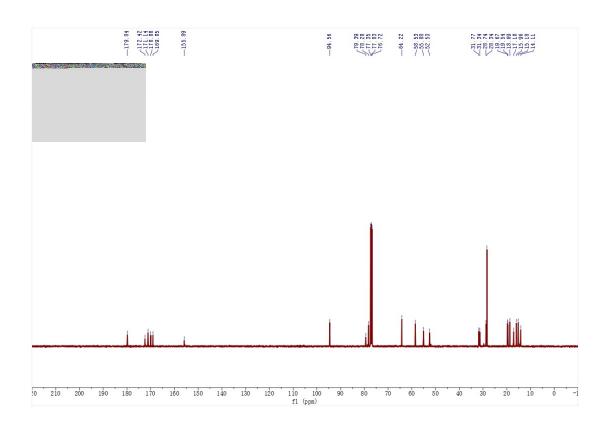


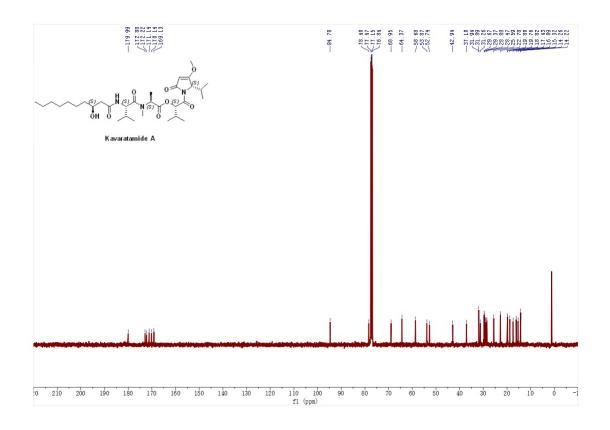


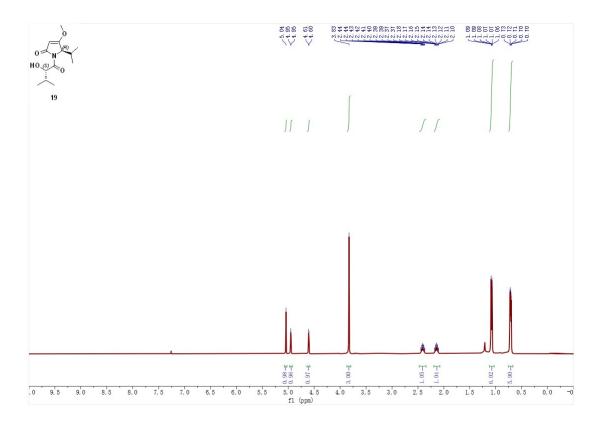


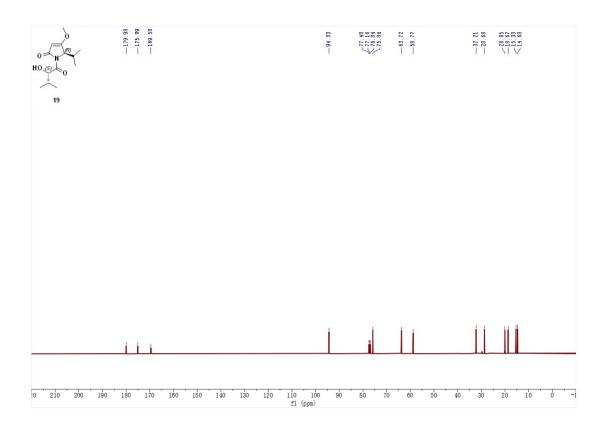


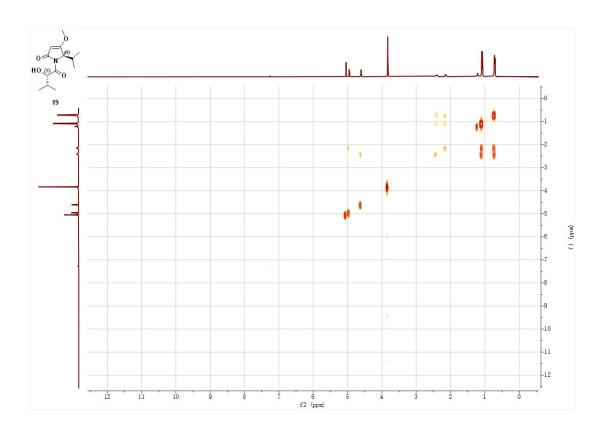


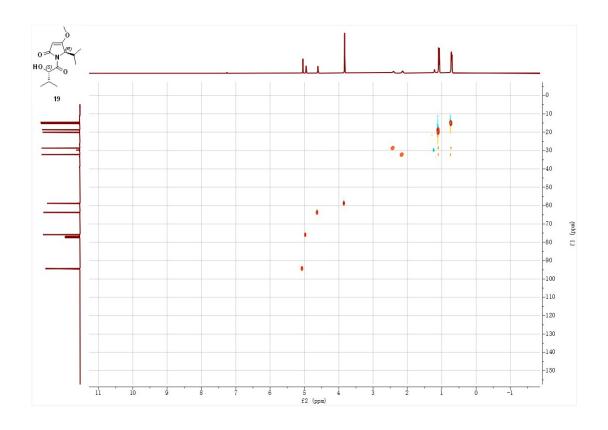


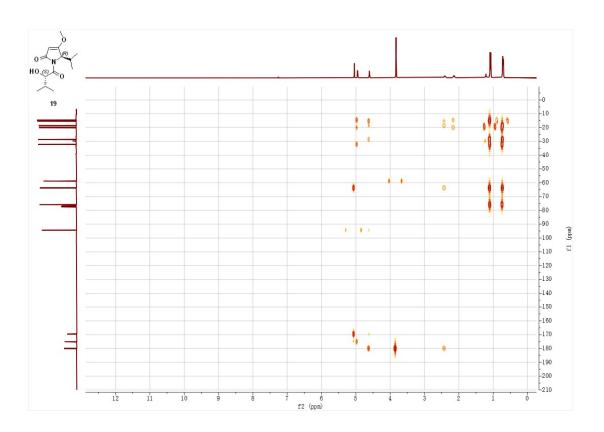


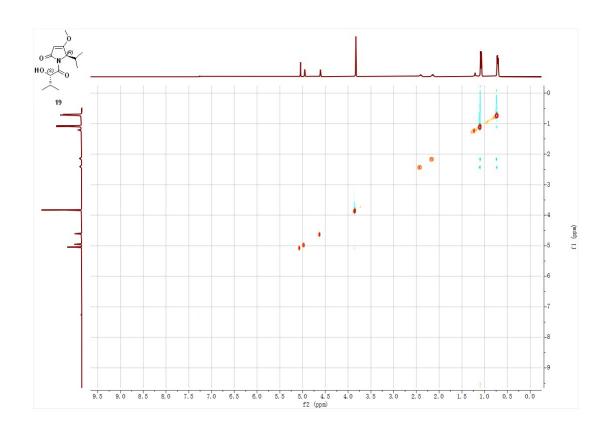


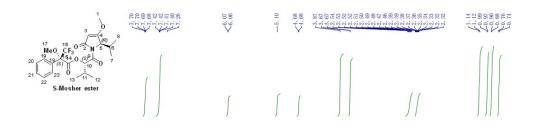


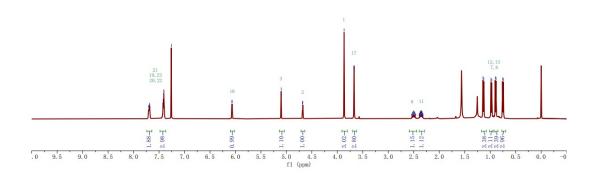


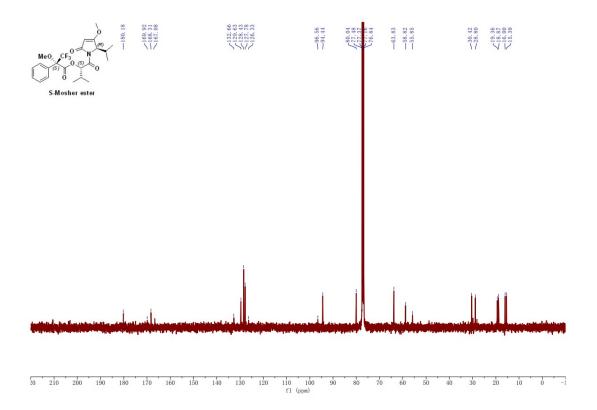


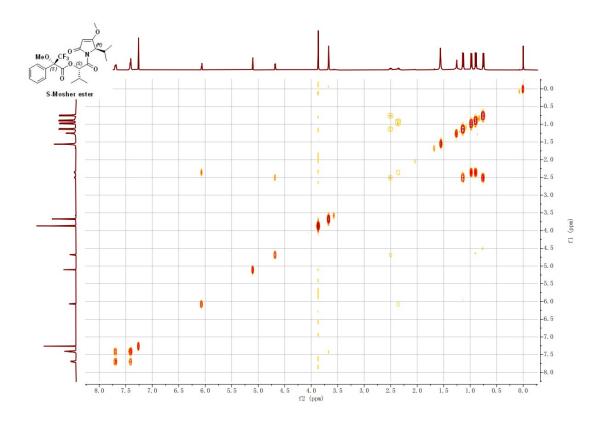


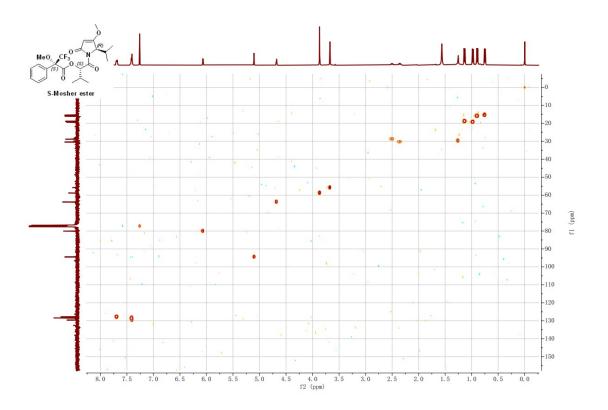


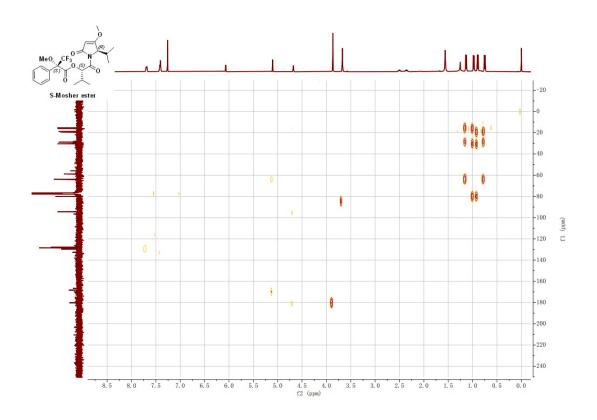


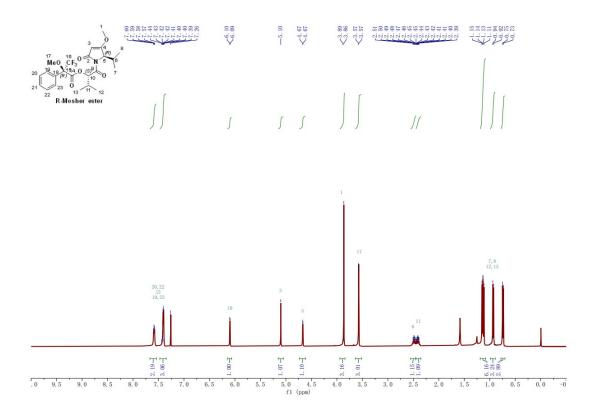


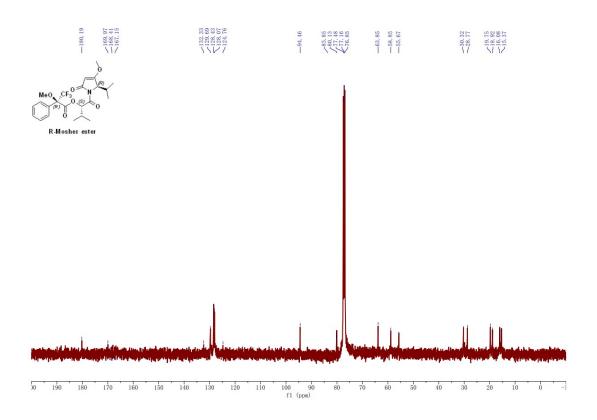


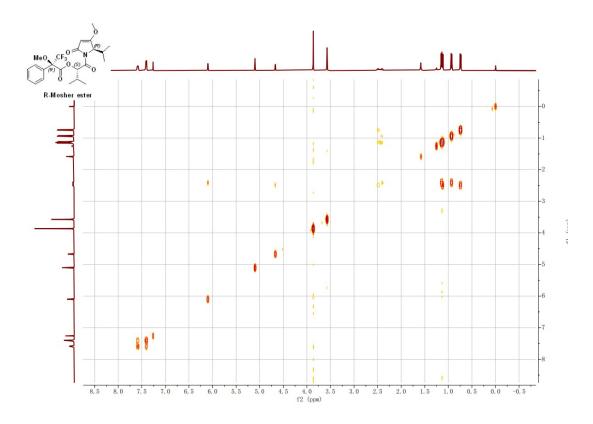


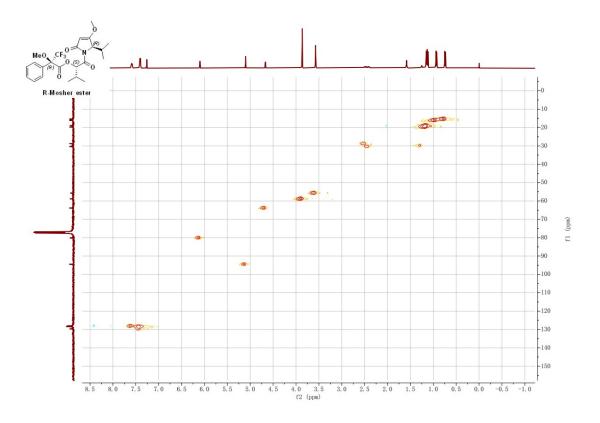


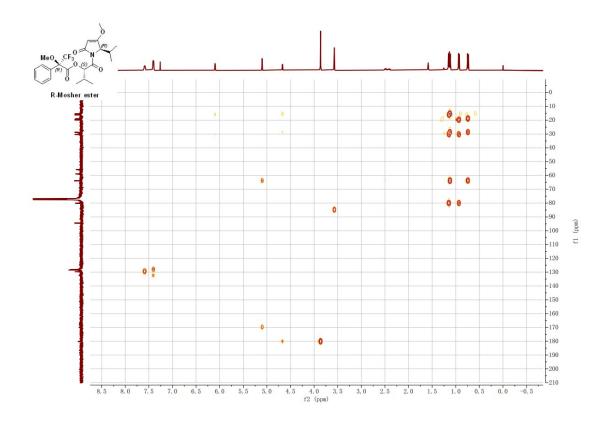

¹H-¹H COSY of S-Mosher ester

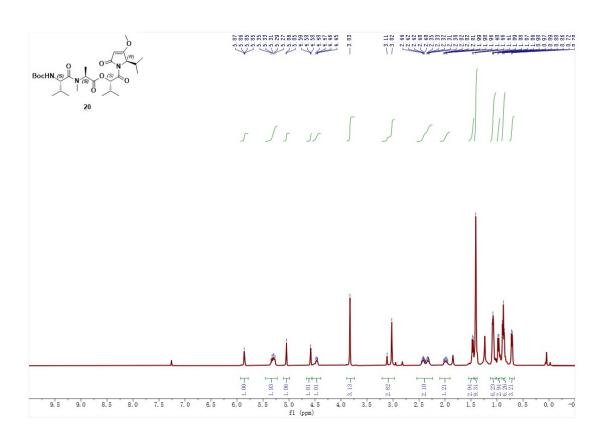


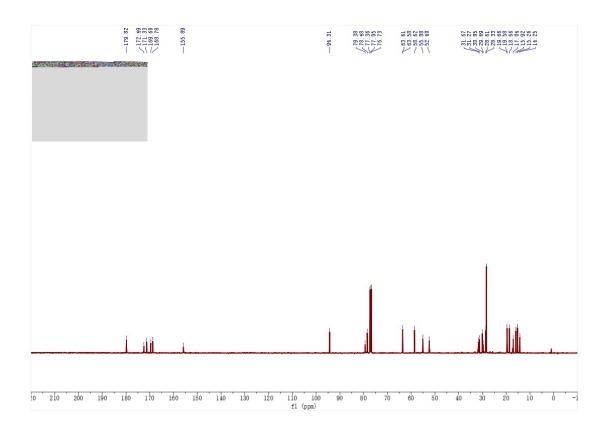

HSQC of S-Mosher ester

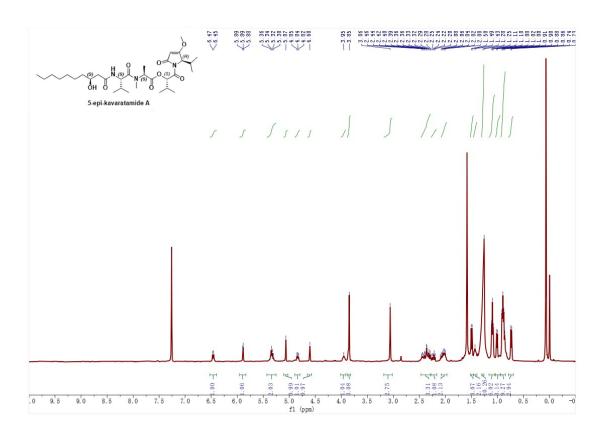

HMBC of S-Mosher ester

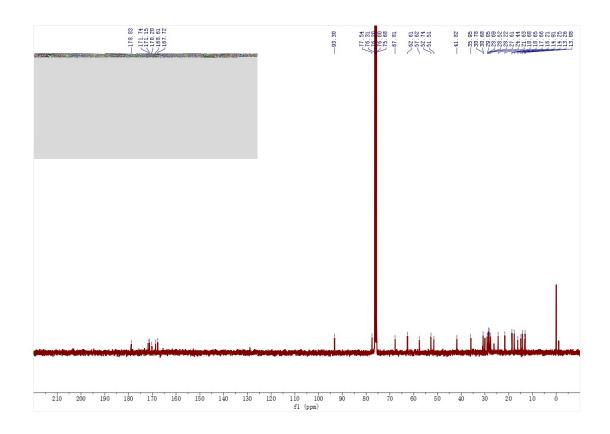



¹H-¹H COSY of *R*-Mosher ester




HSQC of *R*-Mosher ester




HMBC of *R*-Mosher ester

